JP2009225896A - Medical material for three-dimensional culture - Google Patents

Medical material for three-dimensional culture Download PDF

Info

Publication number
JP2009225896A
JP2009225896A JP2008072590A JP2008072590A JP2009225896A JP 2009225896 A JP2009225896 A JP 2009225896A JP 2008072590 A JP2008072590 A JP 2008072590A JP 2008072590 A JP2008072590 A JP 2008072590A JP 2009225896 A JP2009225896 A JP 2009225896A
Authority
JP
Japan
Prior art keywords
medical material
mesh
dimensional
titanium
mesh sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008072590A
Other languages
Japanese (ja)
Other versions
JP5311853B2 (en
Inventor
Kazutaka Yoshino
和卓 吉野
Yasuo Seki
康夫 関
Minoru Teraura
實 寺浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hi Lex Corp
Original Assignee
Hi Lex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hi Lex Corp filed Critical Hi Lex Corp
Priority to JP2008072590A priority Critical patent/JP5311853B2/en
Publication of JP2009225896A publication Critical patent/JP2009225896A/en
Application granted granted Critical
Publication of JP5311853B2 publication Critical patent/JP5311853B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof

Abstract

<P>PROBLEM TO BE SOLVED: To provide a medical material for three-dimensional culture, which is used for cell culture and tissue culture or as a scaffold for the growth of cells inside a living body, and has high culture efficiency and growth efficiency,. <P>SOLUTION: The medical material 10 for three-dimensional culture is obtained by laminating a plurality of mesh sheets 11 where longitudinal wires 12 and horizontal wires 13 made of titanium wires, are aligned in a mesh shape. A woven fabric where multiple vertical wires 12 and horizontal wires 13 are braided in a woven metal wire shape or a honeycomb woven fabric with polygonal mesh is adopted as the mesh sheet 11. The upper and lower layers of the laminated mesh sheets 11 may be connected to each other by connection lines vertically or diagonally extending. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は三次元培養医療材料に関する。さらに詳しくは、複数本のチタン線を配列または編組して立体的に構成した三次元培養医療材料に関する。なお、本明細書で「チタン」とは、純チタンのほか、チタン合金を含む。   The present invention relates to a three-dimensional culture medical material. More specifically, the present invention relates to a three-dimensional culture medical material that is three-dimensionally configured by arranging or braiding a plurality of titanium wires. In this specification, “titanium” includes titanium alloy in addition to pure titanium.

WO2006/033435WO2006 / 033435 特開2004−16398号公報JP 2004-16398 A

従来、チタン繊維を絡合し、焼結させた不織布からなるウエブを細胞培養あるいは組織培養の培養基盤として使用することが知られている(特許文献1参照)。また、同様な不織布を骨の欠損部に埋め込み、骨再生の足場材として使用することも知られている(特許文献2)。特許文献2には、心材の周囲にチタン繊維を多層に巻き付けて、立体的な棒状の形態に構成することも提案している。   Conventionally, it is known to use a web made of a nonwoven fabric entangled and sintered with titanium fibers as a culture base for cell culture or tissue culture (see Patent Document 1). It is also known that a similar nonwoven fabric is embedded in a bone defect and used as a scaffold for bone regeneration (Patent Document 2). Patent Document 2 also proposes that titanium fibers are wound in multiple layers around a core material to form a three-dimensional rod shape.

これらの不織布からなる培養基盤や足場材などの医療材料は、三次元構造を備えており、そのため、細胞や組織を播種し、適切な培養液および酸素を供給すると、細胞が不織布の隙間(空隙)に入り込み、培養基盤や足場材の形状に合わせて成長・分裂していく。さらに所定の三次元構造の形態を有するので、細胞や組織の成長を目的とする三次元形状に誘導することができる。また、これらの医療材料を生体内に埋め込んでおくと、骨芽細胞が足場内に入り込み、固定され、やがて足場材の周囲に骨組織が形成されていく。   Medical materials such as culture bases and scaffolds made of these non-woven fabrics have a three-dimensional structure. Therefore, when cells or tissues are seeded, and an appropriate culture solution and oxygen are supplied, the cells are separated from the non-woven fabric (voids). ) And grow and divide according to the shape of the culture base and scaffolding material. Further, since it has a predetermined three-dimensional structure, it can be guided to a three-dimensional shape for the purpose of cell or tissue growth. Further, when these medical materials are embedded in the living body, osteoblasts enter the scaffold and are fixed, and eventually bone tissue is formed around the scaffold.

前記従来の三次元培養医療材料は、チタン繊維を用いるので、生体との親和性が高い。しかも繊維間の空隙の大きさを細胞が好む大きさにある程度設定することができる。しかしチタン繊維を絡合させたウエブや心材に巻き付けた三次元構造体では、繊維間の空隙の大きさが揃っておらず、細胞が好む大きさの空隙ほか、小さ過ぎる空隙や、大き過ぎる空隙なども多い。そのため、細胞や組織が三次元構造体の全体に拡がらず、空隙の大きさが揃っている特定の個所のみに固まって増殖することがある。本発明は、細胞培養や組織培養、あるいは生体内の細胞が成長する足場材として利用することができ、培養効率、成長効率が高い三次元培養医療材料を提供することを技術課題としている。   Since the conventional three-dimensional culture medical material uses titanium fiber, it has high affinity with a living body. Moreover, the size of the space between the fibers can be set to some extent to the size preferred by the cells. However, in a three-dimensional structure wound around a web or core material intertwined with titanium fibers, the gaps between the fibers are not uniform, and other than the voids that are preferred by the cells, voids that are too small or voids that are too large There are many. For this reason, cells and tissues may not spread over the entire three-dimensional structure, but may solidify and grow only in specific places where the sizes of the voids are uniform. An object of the present invention is to provide a three-dimensional culture medical material that can be used as a scaffold for cell culture, tissue culture, or cell growth in vivo, and has high culture efficiency and growth efficiency.

本発明の三次元培養医療材料は、チタン線を網状に整列させた網目シートを、複数枚重ね合わせてなることを特徴としている(請求項1)。ここにいう「重ね合わせ」には、複数枚の網目シートを重ねる場合のほか、1枚の網目シートを複数回巻き付けて多層にする場合を含む。このような三次元培養医療材料では、前記網目シートとして、多数本の縦線と横線を金網状に編組した織布を採用することができる(請求項2)。本明細書では織布は編布を含む。また、前記網目シートとして、多角形の網目を有するハニカム状の織布を採用することもできる(請求項3)。前記三次元培養医療材料は、前記重ね合わされた網目シートの上下の層同士が、上下または斜めに延びる連結線によって連結されることにより三次元織物構造を有するものが好ましい(請求項4)。   The three-dimensional culture medical material of the present invention is characterized in that a plurality of mesh sheets in which titanium wires are arranged in a net shape are overlapped (claim 1). The “superposition” here includes not only a case where a plurality of mesh sheets are overlapped but also a case where a single mesh sheet is wound a plurality of times to form a multilayer. In such a three-dimensional culture medical material, as the mesh sheet, a woven fabric in which a large number of vertical lines and horizontal lines are braided in a wire mesh shape can be adopted (Claim 2). In this specification, the woven fabric includes a knitted fabric. In addition, a honeycomb-shaped woven fabric having a polygonal mesh can be adopted as the mesh sheet. The three-dimensional cultured medical material preferably has a three-dimensional woven structure by connecting upper and lower layers of the overlapped mesh sheet by connecting lines extending vertically or obliquely (Claim 4).

本発明の三次元培養医療材料の第2の態様は、一方向に螺旋状に配列される第1のチタン線群と、反対方向に螺旋状に配列される第2のチタン線群とからなる、チューブ状に形成された網目シートを有することを特徴としている(請求項5)。このような三次元培養医療材料としては、前記第1のチタン線群の上に第2のチタン線群が重ねられているものを採用することができる(請求項6)。また、前記第1のチタン線群と第2のチタン線群とが編組されているものであってもよい(請求項7)。さらに前記チューブ状に構成された網目シートが、複数層重ね合わされているものが好ましい(請求項8)。   The 2nd aspect of the three-dimensional culture medical material of this invention consists of the 1st titanium wire group arranged in a spiral in one direction, and the 2nd titanium wire group arranged in a spiral in the opposite direction. And having a mesh sheet formed in a tube shape (claim 5). As such a three-dimensional cultured medical material, a material in which a second titanium wire group is superimposed on the first titanium wire group can be employed (Claim 6). Further, the first titanium wire group and the second titanium wire group may be braided (Claim 7). Furthermore, it is preferable that the mesh sheet configured in a tube shape is overlapped with a plurality of layers (Claim 8).

前記網目シートを構成するチタン線は、チタンの単線とすることができる(請求項9)。さらに前記網目シートを構成するチタン線は、副数本のチタン素線を撚り合わせた撚り線とすることもできる(請求項10)。   The titanium wire constituting the mesh sheet may be a single titanium wire. Furthermore, the titanium wire constituting the mesh sheet may be a stranded wire obtained by twisting sub-titanium strands (claim 10).

前記積層構造の場合は、各網目シートの網目の大きさと、上下の層の間隔が略同一寸法であるものが好ましい(請求項11)。さらにいずれの場合においても、前記網目シートの網目の大きさは、50〜600μmとするのが好ましい(請求項12)。   In the case of the laminated structure, it is preferable that the mesh size of each mesh sheet and the distance between the upper and lower layers are substantially the same (claim 11). In any case, the mesh size of the mesh sheet is preferably 50 to 600 μm.

本発明の三次元培養医療材料(請求項1)は、チタン線を網状に整列させた網目シートを用いているので、網目の大きさが揃っている。そのため、細胞などの好みの大きさに設定することにより、効率的な細胞や組織の培養を行うことができる。   Since the three-dimensional culture medical material of the present invention (Claim 1) uses a mesh sheet in which titanium wires are arranged in a mesh, the mesh size is uniform. Therefore, efficient cell and tissue culture can be performed by setting a desired size of cells and the like.

前記網目シートが、多数本の縦線と横線を金網状に編組した織布である場合(請求項2)は、強度が高く、網目構造が崩れにくいので、間隙の大きさおよび形状が長期間維持される。また、前記網目シートが、多角形の網目を有するハニカム状の織布からなる場合(請求項3)も、強度が高く、網目構造、間隙の大きさおよび形状が崩れにくい。   When the mesh sheet is a woven fabric in which a large number of vertical lines and horizontal lines are braided in a wire mesh shape (Claim 2), the strength and the network structure are not easily broken, so the size and shape of the gaps are long. Maintained. Further, when the mesh sheet is made of a honeycomb-shaped woven fabric having a polygonal mesh (Claim 3), the strength is high and the network structure, the size and shape of the gap are not easily broken.

前記重ね合わされた網目シートの上下の層同士が、上下または斜めに延びる連結線によって連結されることにより三次元織物構造を有する場合(請求項4)は、層同士の結合強度が高く、層間分離が生じにくい。   In the case where the upper and lower layers of the overlapped mesh sheet are connected by connecting lines extending vertically or obliquely to form a three-dimensional woven structure (Claim 4), the bonding strength between the layers is high and the interlayer separation is high. Is unlikely to occur.

本発明の三次元培養医療材料の第2の態様(請求項5)は、チューブ状に形成されているので、管状臓器あるいは骨のように、管状あるいは細長い形態に細胞や組織を培養することに適しており、そのような培養が容易である。また、網目が菱形の場合は伸縮性が高い。   Since the second aspect (Claim 5) of the three-dimensional culture medical material of the present invention is formed in a tube shape, cells and tissues are cultured in a tubular or elongated form like a tubular organ or bone. Suitable and easy to culture. Moreover, when a mesh is a rhombus, stretchability is high.

前記第1のチタン線群の上に第2のチタン線群が重ねられている場合(請求項6)は、製造が容易である。他方、前記第1のチタン線群と第2のチタン線群とが編組されている場合(請求項7)は、強度が高く、網目の形状が安定する。   In the case where the second titanium wire group is superimposed on the first titanium wire group (Claim 6), the manufacturing is easy. On the other hand, when the first titanium wire group and the second titanium wire group are braided (Claim 7), the strength is high and the mesh shape is stable.

前記チューブ状に構成された網目シートが、複数層重ね合わされている場合(請求項8)は、厚い管状構造が得られる。それにより、管状臓器や骨の足場材として有用である。   When a plurality of layers of the mesh sheet configured in the tube shape are overlaid (claim 8), a thick tubular structure is obtained. Thereby, it is useful as a scaffold for tubular organs and bones.

前記網目シートを構成するチタン線が、チタンの単線からなる場合(請求項9)は、柔軟性が高い三次元培養医療材料を得ることができる。他方、前記網目シートを構成するチタン線が、副数本のチタン素線を撚り合わせた撚り線からなる場合(請求項10)は、強度が高い。   When the titanium wire constituting the mesh sheet is a single titanium wire (Claim 9), a highly flexible three-dimensional culture medical material can be obtained. On the other hand, when the titanium wire constituting the mesh sheet is formed of a stranded wire obtained by twisting sub-titanium strands (claim 10), the strength is high.

各層の網目の大きさと、上下の層の間隔が略同一寸法である場合(請求項11)は、上下左右の線間の間隙が揃うため、一層、培養効率が高くなる。前記網目シートの網目の大きさが、50〜600μmである場合(請求項12)は、細胞が好む大きさであるので、培養効率が高い。   When the mesh size of each layer and the distance between the upper and lower layers are substantially the same size (claim 11), the gap between the upper, lower, left and right lines is aligned, so that the culture efficiency is further increased. When the mesh size of the mesh sheet is 50 to 600 [mu] m (Claim 12), since the size is preferred by the cells, the culture efficiency is high.

つぎに図面を参照しながら本発明の三次元培養医療材料(以下、単に医療材料という)の実施の形態を説明する。図1は本発明の医療材料の一実施形態を示す斜視図、図2a、図2bはそれぞれその医療材料を構成する網目シートの実施形態を示す断面図、図3は本発明の医療材料の他の実施形態を示す斜視図、図4a〜図4eは本発明の積層型医療材料の上下層の連結構造の実施形態を示す概略断面図、図5は本発明に関わる網目シートのさらに他の実施形態を示す平面図、図図6a〜図6cはそれぞれ本発明の医療材料のさらに他の実施形態を示す斜視図、図7および図8はそれぞれ本発明の医療材料のさらに他の実施形態の製造方法を示す工程図、図9は本発明の医療材料のさらに他の実施形態を示す側面図、図10は本発明の医療材料に関わるチタン線の他の実施形態を示す斜視図である。   Next, an embodiment of a three-dimensional culture medical material (hereinafter simply referred to as medical material) of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing an embodiment of the medical material of the present invention, FIGS. 2a and 2b are cross-sectional views showing an embodiment of a mesh sheet constituting the medical material, and FIG. 3 is another view of the medical material of the present invention. FIG. 4A to FIG. 4E are schematic cross-sectional views showing an embodiment of the connecting structure of the upper and lower layers of the laminated medical material of the present invention, and FIG. 5 is still another implementation of the mesh sheet according to the present invention. FIG. 6a to FIG. 6c are perspective views showing still other embodiments of the medical material of the present invention, and FIGS. 7 and 8 are drawings for manufacturing still other embodiments of the medical material of the present invention, respectively. FIG. 9 is a side view showing still another embodiment of the medical material of the present invention, and FIG. 10 is a perspective view showing another embodiment of the titanium wire related to the medical material of the present invention.

図1に示す医療材料10は、多数枚の網目シート11を重ねあわせたものである。それぞれの網目シート11は、横方向にほぼ等間隔で配列された縦線12と、縦方向にほぼ等間隔で配列された横線13とからなる。縦線12同士の間隔L1と、横線13同士の間隔L2は、ほぼ同一にするのが好ましい。それらの間隔L1、L2は、培養しようとする細胞あるいは組織が好む大きさに設定するが、通常は50〜600μm程度、好ましくは100〜400μm、さらに好ましくは150〜200μm程度である。また、縦線12および横線13に用いるチタン線の太さは、4〜1000μm、好ましくは5〜150μm程度である。チタン線の太さは、使用する部位によって変えてもよく、たとえば強度が必要なところは太い線を使用する。チタン線は単線でもよく、チタン素線を撚り合わせた撚り線でもよい(図10参照)。   A medical material 10 shown in FIG. 1 is a laminate of a large number of mesh sheets 11. Each mesh sheet 11 includes vertical lines 12 arranged at substantially equal intervals in the horizontal direction and horizontal lines 13 arranged at substantially equal intervals in the vertical direction. The interval L1 between the vertical lines 12 and the interval L2 between the horizontal lines 13 are preferably substantially the same. The intervals L1 and L2 are set to a size preferred by the cells or tissues to be cultured, but are usually about 50 to 600 μm, preferably about 100 to 400 μm, and more preferably about 150 to 200 μm. The thickness of the titanium wire used for the vertical line 12 and the horizontal line 13 is about 4 to 1000 μm, preferably about 5 to 150 μm. The thickness of the titanium wire may be changed depending on the site to be used. For example, a thick wire is used where strength is required. The titanium wire may be a single wire or a stranded wire obtained by twisting titanium wires (see FIG. 10).

縦線12と横線13は、図2aに示すように、副数本の縦線12に対し、横線13を1本置きに上側と下側に通して交差させ、同様に横線13に対し、縦線12を1本置きに上下に通して交差させ、全体として金網状の織布の形態としている。なお、1本置きでなく、2本置きにしたり、2本あるいは数本を束にして網目構造とすることもできる。   As shown in FIG. 2A, the vertical line 12 and the horizontal line 13 intersect with the minor number of vertical lines 12 by passing every other horizontal line 13 through the upper side and the lower side. Every other line 12 is crossed by passing up and down to form a wire mesh woven fabric as a whole. In addition, it is not every other, but every other two, or two or several can be bundled to form a mesh structure.

図2bに示すように、多数本のほぼ等間隔に配列された横線13の上に多数本の縦線12をほぼ等間隔に配列した形態も採用することができる。それぞれの網目シート11は、あらかじめ焼結、溶接、拡散接合などで一体化してもよく、一体化しなくてもよい。焼結する場合は全体を焼結するほか、数本置きに、スポット状に焼結して固定することもできる。また、図1のように、多数枚の網目シート11を重ね合わせた後、焼結してもよく、焼結せずに重ねたままでもよい。なお、図1では、上下の網目シート11の縦線12と横線13の向きが合わされているが、層ごとに向きを変えたり斜めにして重ねたりしてもよい。なお、織布の織り構造は、前述の金網状のほか、メリヤス編み、リリアン編みなど、公知の織物ないし編み物の形態とすることができる。   As shown in FIG. 2b, it is also possible to adopt a form in which a large number of vertical lines 12 are arranged at substantially equal intervals on a large number of horizontal lines 13 arranged at approximately equal intervals. Each mesh sheet 11 may be integrated in advance by sintering, welding, diffusion bonding, or the like, or may not be integrated. In the case of sintering, in addition to sintering the whole, it is also possible to sinter and fix in spots every other several. Further, as shown in FIG. 1, a plurality of mesh sheets 11 may be stacked and then sintered, or may be stacked without being sintered. In FIG. 1, the vertical lines 12 and the horizontal lines 13 of the upper and lower mesh sheets 11 are aligned, but the directions may be changed for each layer or may be stacked obliquely. The weaving structure of the woven fabric may be a known woven or knitted form such as knitting or Lilian knitting in addition to the above-described wire netting.

上記のように構成される医療材料10は、網目の大きさが揃っているので、細胞が好む大きさに設定しておくと培養効率が高い。培養液に漬ける場合は、培養液との接触状態がほぼ均等になるので好ましい。培養液流れの中に配置する場合は、流れの抵抗がほぼ均一になるので好ましい。網目シート11を焼結する場合は、網目構造が崩れず、網目の大きさおよび形状が変化しないので、長期間にわたって効率的な細胞培養を行うことができる。   Since the medical material 10 configured as described above has a uniform mesh size, the culture efficiency is high if the size is set to be preferred by the cells. When immersed in a culture solution, the contact state with the culture solution is almost uniform, which is preferable. The arrangement in the culture fluid flow is preferable because the flow resistance becomes almost uniform. When the mesh sheet 11 is sintered, the network structure does not collapse and the size and shape of the mesh do not change, so that efficient cell culture can be performed over a long period of time.

図3に示す医療材料15は、複数枚の網目シート11と、上下の層同士を連結する連結線(連結糸)16とからなる、いわゆる三次元網目構造を備えた立体織布を採用している。このような立体織布は重ねずに1枚だけでも本発明の三次元培養医療材料として使用することができる。連結線16は、各層を構成する縦線(縦糸)12および横線(横糸)13とは別個の糸を用いることもできる。また、縦線12あるいは横線13を織っていく途中で下の層に通すこともできる。その場合はその縦線12あるいは横線13の一部が連結線16となる。図3の場合は別個の連結線16を用い、上下の3層をジグザグ状に縫い合わせた連結構造17を採用している。この連結構造17では、上下の間隔の変化に対応できるので、柔軟性が高い。連結線16同士の間隔は150〜500μm程度である。   The medical material 15 shown in FIG. 3 employs a three-dimensional woven fabric having a so-called three-dimensional network structure composed of a plurality of mesh sheets 11 and connecting lines (connecting threads) 16 connecting upper and lower layers. Yes. Such a three-dimensional woven fabric can be used as the three-dimensional culture medical material of the present invention even if only one sheet is not stacked. The connecting line 16 may be a thread separate from the vertical line (warp thread) 12 and the horizontal line (weft thread) 13 constituting each layer. It is also possible to pass through the lower layer while weaving the vertical line 12 or the horizontal line 13. In that case, a part of the vertical line 12 or the horizontal line 13 becomes the connecting line 16. In the case of FIG. 3, a separate connecting line 16 is used, and a connecting structure 17 in which the upper and lower three layers are sewn in a zigzag shape is adopted. In this connection structure 17, since it can respond to the change of an up-and-down space | interval, it is highly flexible. The interval between the connecting lines 16 is about 150 to 500 μm.

図4a〜eは連結線16による上下の層18、19の連結構造の種々の実施形態を示している。図4aの連結構造20は、上下の層18、19を、その間にほぼ直角に延びる連結線16で連結した構成を備えている。この連結構造20では、連結線16が上の層18に係合し、1目分離れた位置から下の層19に渡され、さらに1目分離れた位置から上の層18に渡される。このように1本の連結線16を上の層18と下の層19に交互に係合して立体構造を維持している。連結線16同士の間隔は、各層18、19の網目の幅とほぼ同程度であり、たとえば150〜500μm程度である。   FIGS. 4 a-e show various embodiments of the connection structure of the upper and lower layers 18, 19 by the connection line 16. The connection structure 20 in FIG. 4a has a configuration in which upper and lower layers 18 and 19 are connected by a connection line 16 extending substantially perpendicularly therebetween. In this connection structure 20, the connection line 16 engages with the upper layer 18 and is passed from the position separated from the first line to the lower layer 19, and further passed from the position separated from the first line to the upper layer 18. In this way, one connecting line 16 is alternately engaged with the upper layer 18 and the lower layer 19 to maintain the three-dimensional structure. The interval between the connecting lines 16 is approximately the same as the mesh width of each of the layers 18 and 19, and is, for example, about 150 to 500 μm.

図4bの連結構造21では、連結線16が上の層18に係合された後、すぐに斜め下に向かい、下の層19に係合され、すぐに真っ直ぐに上に向かい、上の層に係合されるという順序で上下の層18、19を鋸歯状に縫い合わせている。この連結構造21は連結線16の密度が高いので、連結強度が高い。   In the connecting structure 21 of FIG. 4b, after the connecting line 16 is engaged with the upper layer 18, it immediately goes diagonally downward and is engaged with the lower layer 19, and immediately goes straight up, The upper and lower layers 18 and 19 are sewn together in the order of being engaged with each other. Since this connection structure 21 has a high density of the connection lines 16, the connection strength is high.

図4cの連結構造22では、連結線16は上の層18に係合された後、すぐに斜め下に向かい、下の層19に係合され、斜め上に向かい、上の層18に係合され、再び斜め下に向かうという順序で上下の層18、19をジグザグ状に縫い合わせている。このものは上下の層の間の連結線16が長く、斜めに連結しているので、柔軟性が高い。したがって変形させた状態で細胞や組織の培養を行わせることもできる。   In the connection structure 22 of FIG. 4c, the connection line 16 is immediately engaged obliquely downward, engaged with the lower layer 19, and is obliquely upwardly engaged with the upper layer 18, after being engaged with the upper layer 18. The upper and lower layers 18 and 19 are sewn in a zigzag shape in the order of going downward and diagonally again. This is highly flexible because the connecting line 16 between the upper and lower layers is long and connected obliquely. Therefore, cells and tissues can be cultured in a deformed state.

図4dの連結構造23は、図4cの連結構造22の連結線16と同様のものを、反ピッチずらせて2重に設けた構成を備えている。この連結構造23では、図3の連結構造15と同様に柔軟性が高く、しかも連結強度が高い。   The connection structure 23 of FIG. 4d has a configuration in which the same structure as the connection line 16 of the connection structure 22 of FIG. In this connection structure 23, the flexibility is high and the connection strength is high similarly to the connection structure 15 of FIG.

図4eの連結構造24は、図4aの連結構造20と図4dの連結構造23を組み合わせた形態を備えており、連結強度が高く、変形しにくい。   The connection structure 24 of FIG. 4e is provided with a combination of the connection structure 20 of FIG. 4a and the connection structure 23 of FIG. 4d, and has high connection strength and is not easily deformed.

図1、図3の医療材料10、15の網目シート11は、縦線12と横線13が直角に交差して、矩形状の網目とされているが、図5に示すように、六角形状の網目を備えたハニカム構造25の網目シート26を採用することもできる。このようなハニカム構造はたとえば立体(三次元)編物、立体(三次元)編組することにより製造することができる。さらに五角形、八角形など、多角形の網目のハニカム構造を採用することもできる。これらのハニカム構造では、縦線12と横線13が複雑に係合・離間するので、網目構造が安定する。ハニカム構造の網目として、繊維強化樹脂(FRP)の芯材として用いられる立体編物、たとえばダブルラッセル立体編布などの立体編物を用いることもできる。   The mesh sheets 11 of the medical materials 10 and 15 in FIGS. 1 and 3 are rectangular meshes with the vertical lines 12 and the horizontal lines 13 intersecting at right angles. However, as shown in FIG. It is also possible to employ a mesh sheet 26 of a honeycomb structure 25 having a mesh. Such a honeycomb structure can be manufactured by, for example, three-dimensional (three-dimensional) knitting or three-dimensional (three-dimensional) braiding. Furthermore, a honeycomb structure having a polygonal mesh such as a pentagon or an octagon can be employed. In these honeycomb structures, the vertical lines 12 and the horizontal lines 13 are engaged and separated in a complicated manner, so that the network structure is stabilized. As the mesh of the honeycomb structure, a three-dimensional knitted fabric used as a core material of fiber reinforced resin (FRP), for example, a three-dimensional knitted fabric such as a double raschel solid knitted fabric can be used.

前記実施形態はいずれも平面状の網目シート11を重ね合わせることにより立体構造を得ているが、図6aに示すように、前述のいずれかの平面上の網目シート11を筒状に丸めて立体構造にすることにより医療材料27を得ることもできる。さらに図6bに示すように、網目シート11を複数回巻き付けた医療材料28とすることもできる。また、図6cに示すように単層の筒状のシート27を重ね合わせた医療材料29とすることにより、厚く、強度が高い医療医療が得られる。このような医療材料28、29は、血管や消化管などの管状臓器の再生医療や、骨の欠損部に骨芽細胞を導入して骨を形成させる治療などに適する。   In any of the above embodiments, the three-dimensional structure is obtained by superimposing the planar mesh sheets 11. However, as shown in FIG. 6 a, the mesh sheet 11 on any one of the aforementioned planes is rounded into a cylindrical shape. The medical material 27 can also be obtained by making the structure. Further, as shown in FIG. 6b, the medical material 28 may be formed by winding the mesh sheet 11 a plurality of times. In addition, as shown in FIG. 6c, by using the medical material 29 in which the single-layered cylindrical sheets 27 are overlapped, a thick medical treatment with high strength can be obtained. Such medical materials 28 and 29 are suitable for regenerative medicine of tubular organs such as blood vessels and gastrointestinal tracts, and for the treatment of forming bone by introducing osteoblasts into bone defects.

平面状の網目シートを筒状にする場合、端縁同士を重ねて結合する必要があるが、たとえば図7に示すように、チタン線30、32を筒状に形成することもできる。図7は、円柱状の芯材31の周囲にチタン線30を螺旋状に巻き付け(第1工程S1)、さらに他のチタン線32を逆方向の螺旋状に巻き付けて(第2工程S2)、筒状の医療材料とする。さらにこの実施形態では、それらの上に、3本目および4本目のチタン線33、34を向きを交互に変えながら螺旋状に巻き付けて多層の医療材料35としている(第3工程S3)。このものはチタン線30、32同士、あるいはその上のチタン線33、34同士が菱形の網目構造を構成しているので、変形が比較的容易である。重ねたチタン線同士は、焼結などにより結合して全体を一体化することもできる。   When the planar mesh sheet is formed into a cylindrical shape, the edges need to be overlapped and joined, but for example, as shown in FIG. 7, the titanium wires 30 and 32 can be formed into a cylindrical shape. In FIG. 7, the titanium wire 30 is spirally wound around the cylindrical core member 31 (first step S1), and another titanium wire 32 is wound in a reverse spiral shape (second step S2). A cylindrical medical material is used. Furthermore, in this embodiment, the third and fourth titanium wires 33 and 34 are spirally wound on the third and fourth titanium wires 33 and 34 alternately on the third and fourth titanium wires 33 and 34 (third step S3). Since the titanium wires 30 and 32 or the titanium wires 33 and 34 on the titanium wires 30 and 32 constitute a rhombus network structure, the deformation thereof is relatively easy. The overlapped titanium wires can be joined together by sintering or the like to be integrated together.

図8は、多数本のチタン線36、37を筒状に編組して構成した筒状の医療材料38を示している。編組の方法は、ホースなどの補強用のブレード層あるいは網代層を形成する方法と同様であり、第1群の複数本のチタン線36を右螺旋となるように、第2群の複数本のチタン線37を左螺旋となるように、交互に編組していく。それにより、金網と同様の、網目の形および大きさが揃った網目構造の筒状の医療材料38を得ることができる。   FIG. 8 shows a cylindrical medical material 38 formed by braiding a large number of titanium wires 36 and 37 into a cylindrical shape. The braiding method is the same as the method of forming a reinforcing blade layer such as a hose or a netting layer. The titanium wires 37 are braided alternately so as to form a left spiral. Thereby, a cylindrical medical material 38 having a mesh structure with the same mesh shape and size as the wire mesh can be obtained.

図9は、竹籠を編む要領で、軸方向に延びる複数本のチタン線39を環状に配置し、それらに対して斜めのチタン線40、41を交互に編み込んだものである。このものは強度が高い。   FIG. 9 shows a procedure for knitting bamboo baskets, in which a plurality of axially extending titanium wires 39 are arranged in an annular shape, and oblique titanium wires 40 and 41 are alternately knitted with respect to them. This is strong.

前記実施形態で用いるチタン線は、いずれもチタンの単線(チタン素線)によって構成することもできるが、図10に示すような、副数本のチタン素線42を撚り合わせて1本の撚り線43としたもの、さらに複数本の撚り線43を撚り合わせた複層タイプの撚り線を用いることもできる。このような撚り線43は、チタン線の本数や層数によって太さを変えることができる。そのため、たとえば4〜20μm程度の細いチタン線を準備しておき、用途に応じて適宜の本数のチタン線を撚り合わせて、さらに撚り線同士を撚り合わせて使用するのが好ましい。撚り線43の太さは前述のチタン線(図1の縦線12、横線13)と同様、4〜1000μm、好ましくは5〜150μm程度であり、強度が必要な個所は太くするなど、使用する個所に応じて適切な太さのものを用いる。   Any of the titanium wires used in the embodiment can be constituted by a single titanium wire (titanium strand). However, as shown in FIG. 10, sub-titanium strands 42 are twisted together to form one strand. A multi-layer type stranded wire obtained by twisting a plurality of stranded wires 43 may be used. Such a stranded wire 43 can vary in thickness depending on the number of titanium wires and the number of layers. Therefore, for example, it is preferable to prepare a thin titanium wire of about 4 to 20 μm, twist an appropriate number of titanium wires according to the application, and twist the twisted wires together. The thickness of the stranded wire 43 is 4 to 1000 μm, preferably about 5 to 150 μm, similar to the above-described titanium wire (vertical line 12 and horizontal line 13 in FIG. 1). Use the appropriate thickness depending on the location.

前記チタン線を用いた三次元構造の医療材料は、リン酸カルシウムを付着させたり、コーティングすることにより、あるいはコラーゲンを担持させることにより、細胞培養担体あるいは組織培養担体とすることができる。   The medical material having a three-dimensional structure using the titanium wire can be used as a cell culture carrier or a tissue culture carrier by attaching or coating calcium phosphate, or by supporting collagen.

本発明の医療材料の一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the medical material of this invention. 図2a、図2bはそれぞれその医療材料を構成する網目シートの実施形態を示す断面図である。2a and 2b are cross-sectional views each showing an embodiment of a mesh sheet constituting the medical material. 本発明の医療材料の他の実施形態を示す斜視図である。It is a perspective view which shows other embodiment of the medical material of this invention. 図4a〜図4eは本発明の積層型医療材料の上下層の連結構造の実施形態を示す概略断面図である。4a to 4e are schematic cross-sectional views showing an embodiment of a connection structure for upper and lower layers of the laminated medical material of the present invention. 本発明に関わる網目シートのさらに他の実施形態を示す平面図である。It is a top view which shows other embodiment of the mesh sheet | seat in connection with this invention. 図6a〜図6cはそれぞれ本発明の医療材料のさらに他の実施形態を示す斜視図である。6a to 6c are perspective views showing still other embodiments of the medical material of the present invention. 本発明の医療材料のさらに他の実施形態の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of further another embodiment of the medical material of this invention. 本発明の医療材料のさらに他の実施形態の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of further another embodiment of the medical material of this invention. 本発明の医療材料のさらに他の実施形態を示す側面図である。It is a side view which shows other embodiment of the medical material of this invention. 本発明の医療材料に関わるチタン線の他の実施形態を示す斜視図である。It is a perspective view which shows other embodiment of the titanium wire in connection with the medical material of this invention.

符号の説明Explanation of symbols

10 医療材料
11 網目シート
12 縦線
13 横線
L1、L2 間隔
15 医療材料
16 連結線
17 連結構造
18 上の層
19 下の層
20、21、22、23、24 連結構造
25 ハニカム構造
26 網目シート
27、28、29 医療材料
30、32 チタン線
31 芯材
33、34 チタン線
35 医療材料
36、37 チタン線
38 医療材料
39、40、41 チタン線
42 チタン素線
43 撚り線
DESCRIPTION OF SYMBOLS 10 Medical material 11 Mesh sheet 12 Vertical line 13 Horizontal line L1, L2 Space | interval 15 Medical material 16 Connection line 17 Connection structure 18 Upper layer 19 Lower layer 20, 21, 22, 23, 24 Connection structure 25 Honeycomb structure 26 Mesh sheet 27 , 28, 29 Medical material 30, 32 Titanium wire 31 Core material 33, 34 Titanium wire 35 Medical material 36, 37 Titanium wire 38 Medical material 39, 40, 41 Titanium wire 42 Titanium wire 43 Stranded wire

Claims (12)

チタン線を網状に整列させた網目シートを、複数枚重ね合わせてなる三次元培養医療材料。   A three-dimensional cultured medical material made up of a plurality of mesh sheets in which titanium wires are arranged in a mesh. 前記網目シートが、多数本の縦線と横線を金網状に編組した織布である請求項1記載の三次元培養医療材料。   The three-dimensional cultured medical material according to claim 1, wherein the mesh sheet is a woven fabric in which a number of vertical lines and horizontal lines are braided in a wire mesh shape. 前記網目シートが、多角形の網目を有するハニカム状の織布からなる請求項1記載の三次元培養医療剤料・   The three-dimensional cultured medical agent according to claim 1, wherein the mesh sheet is made of a honeycomb-shaped woven fabric having a polygonal mesh. 前記重ね合わされた網目シートの上下の層同士が、上下または斜めに延びる連結線によって連結されることにより三次元織物構造を有する請求項1記載の三次元培養医療材料。   The three-dimensional culture medical material according to claim 1, wherein the upper and lower layers of the overlapped mesh sheet have a three-dimensional woven structure by being connected by connecting lines extending vertically or obliquely. 一方向に螺旋状に配列される第1のチタン線群と、反対方向に螺旋状に配列される第2のチタン線群とからなる、チューブ状に形成された網目シートを有する三次元培養医療材料。   Three-dimensional culture medical treatment having a mesh sheet formed in a tube shape, comprising a first titanium wire group spirally arranged in one direction and a second titanium wire group spirally arranged in the opposite direction material. 前記第1のチタン線群の上に第2のチタン線群が重ねられている請求項5記載の三次元培養医療材料。   The three-dimensional cultured medical material according to claim 5, wherein a second titanium wire group is superimposed on the first titanium wire group. 前記第1のチタン線群と第2のチタン線群とが編組されている請求項5記載の三次元培養医療材料。   The three-dimensional cultured medical material according to claim 5, wherein the first titanium wire group and the second titanium wire group are braided. 前記チューブ状に構成された網目シートが、複数層重ね合わされている請求項5記載の三次元培養医療材料。   The three-dimensional culture medical material according to claim 5, wherein a plurality of layers of the mesh sheet configured in the tube shape are overlapped. 前記網目シートを構成するチタン線が、チタンの単線からなる請求項1〜8のいずれかに記載の三次元培養医療材料。   The three-dimensional culture medical material according to any one of claims 1 to 8, wherein the titanium wire constituting the mesh sheet is a single titanium wire. 前記網目シートを構成するチタン線が、副数本のチタンの単線を撚り合わせた撚り線からなる請求項1〜8のいずれかに記載の三次元培養医療材料。   The three-dimensional culture medical material according to any one of claims 1 to 8, wherein the titanium wire constituting the mesh sheet is a stranded wire obtained by twisting sub-titanium single wires. 各網目シートの網目の大きさと、上下の層の間隔が略同一寸法である請求項1〜4、8のいずれかに記載の三次元培養医療材料。   The three-dimensional culture medical material according to any one of claims 1 to 4, wherein the mesh size of each mesh sheet and the distance between the upper and lower layers are substantially the same. 前記網目シートの網目の大きさが、50〜600μmである請求項1〜11のいずれかに記載の三次元培養医療材料。   The three-dimensional culture medical material according to any one of claims 1 to 11, wherein the mesh size of the mesh sheet is 50 to 600 µm.
JP2008072590A 2008-03-19 2008-03-19 3D culture medical material Active JP5311853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008072590A JP5311853B2 (en) 2008-03-19 2008-03-19 3D culture medical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008072590A JP5311853B2 (en) 2008-03-19 2008-03-19 3D culture medical material

Publications (2)

Publication Number Publication Date
JP2009225896A true JP2009225896A (en) 2009-10-08
JP5311853B2 JP5311853B2 (en) 2013-10-09

Family

ID=41242030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008072590A Active JP5311853B2 (en) 2008-03-19 2008-03-19 3D culture medical material

Country Status (1)

Country Link
JP (1) JP5311853B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136347A1 (en) * 2010-04-28 2011-11-03 株式会社ハイレックスコーポレーション Cell induction material
KR101210358B1 (en) 2011-10-19 2012-12-11 원광대학교산학협력단 Method for fabricating a three dimensional scaffold using knitting technique and a scaffold thereof
JP2013090785A (en) * 2011-10-26 2013-05-16 Nakashima Medical Co Ltd Implant material
KR20190036292A (en) * 2017-09-27 2019-04-04 한국전기연구원 Biodegradable weaving-type membrane and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004016398A (en) * 2002-06-14 2004-01-22 Tissue Engineering Initiative Co Ltd Footing material made of titanium for bone regeneration and method for manufacturing the same
JP2004067547A (en) * 2002-08-02 2004-03-04 Yoshinori Kuboki Titanium fiber medical material
JP2004141301A (en) * 2002-10-23 2004-05-20 Techno Network Shikoku Co Ltd Biomaterial, cell culture apparatus, artificial tissue, and artificial organ
WO2006033435A1 (en) * 2004-09-24 2006-03-30 Hi-Lex Corporation Scaffold material capable of inducing biological hard tissue or soft tissue
WO2006090777A1 (en) * 2005-02-23 2006-08-31 Hi-Lex Corporation Medical material, artificial tooth root and method of producing material for clinical use

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004016398A (en) * 2002-06-14 2004-01-22 Tissue Engineering Initiative Co Ltd Footing material made of titanium for bone regeneration and method for manufacturing the same
JP2004067547A (en) * 2002-08-02 2004-03-04 Yoshinori Kuboki Titanium fiber medical material
JP2004141301A (en) * 2002-10-23 2004-05-20 Techno Network Shikoku Co Ltd Biomaterial, cell culture apparatus, artificial tissue, and artificial organ
WO2006033435A1 (en) * 2004-09-24 2006-03-30 Hi-Lex Corporation Scaffold material capable of inducing biological hard tissue or soft tissue
WO2006090777A1 (en) * 2005-02-23 2006-08-31 Hi-Lex Corporation Medical material, artificial tooth root and method of producing material for clinical use

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136347A1 (en) * 2010-04-28 2011-11-03 株式会社ハイレックスコーポレーション Cell induction material
JP2011229761A (en) * 2010-04-28 2011-11-17 Hi-Lex Corporation Cell guiding material
KR101210358B1 (en) 2011-10-19 2012-12-11 원광대학교산학협력단 Method for fabricating a three dimensional scaffold using knitting technique and a scaffold thereof
JP2013090785A (en) * 2011-10-26 2013-05-16 Nakashima Medical Co Ltd Implant material
KR20190036292A (en) * 2017-09-27 2019-04-04 한국전기연구원 Biodegradable weaving-type membrane and manufacturing method thereof
KR102302669B1 (en) * 2017-09-27 2021-09-14 한국전기연구원 Biodegradable weaving-type membrane and manufacturing method thereof

Also Published As

Publication number Publication date
JP5311853B2 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
US7946236B2 (en) Using zigzags to create three-dimensional embroidered structures
JP4339116B2 (en) 3D fillet stitch fabric wall reinforcement
JPS61179337A (en) Multilayered fabric
JP5311853B2 (en) 3D culture medical material
EP1763600B1 (en) Metallic fibers reinforced textile prosthesis
CN107205745A (en) The system and method removed for intravascular obturator
JP2017047003A (en) Stent and medical instrument
JP2011516156A (en) Coated stent and method for producing the same
JP4718481B2 (en) Method for producing tubular membrane
EP1843721B1 (en) LOW PROFILE, DURABLE, REINFORCED ePTFE COMPOSITE GRAFT
JP2004510538A (en) connector
BG61527B1 (en) Fibres of spiral-type element and their assembling and use as catalysts and/or for the regeneration of precious metals
CN201362768Y (en) Sectional mesh grid and winding component thereof
CN113271889A (en) Medical device for introduction into a hollow body organ, medical kit and method of manufacture
WO2014132454A1 (en) Suture to be used in producing medical instrument provided with sutured part, method for using same and medical instrument sewn using same
ES2653688T3 (en) A masonry reinforcement structure comprising parallel sets of metal filaments grouped in a parallel position
CN110667136A (en) Method for preparing profiling prefabricated part by needling
JPH10131008A (en) Three-dimensional structural net
TW201529057A (en) Artificial blood vessel
JP2005261867A (en) Tubular artificial organ
WO2023277019A1 (en) Stent graft
CN210851395U (en) Puncture profiling prefabricated part
CN210481653U (en) Novel antibacterial deodorizing mesh cloth
JP3185179U (en) Functional sheet
JP2019201885A (en) Contrast thread

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130702

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5311853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250