JP2009222706A - Photocatalytic activity evaluation method of powder - Google Patents
Photocatalytic activity evaluation method of powder Download PDFInfo
- Publication number
- JP2009222706A JP2009222706A JP2009017805A JP2009017805A JP2009222706A JP 2009222706 A JP2009222706 A JP 2009222706A JP 2009017805 A JP2009017805 A JP 2009017805A JP 2009017805 A JP2009017805 A JP 2009017805A JP 2009222706 A JP2009222706 A JP 2009222706A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- photocatalytic activity
- evaluating
- absorbance
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000843 powder Substances 0.000 title claims abstract description 140
- 230000001699 photocatalysis Effects 0.000 title claims abstract description 55
- 238000011156 evaluation Methods 0.000 title claims abstract description 22
- 238000000034 method Methods 0.000 claims abstract description 40
- 235000021466 carotenoid Nutrition 0.000 claims abstract description 38
- 150000001747 carotenoids Chemical class 0.000 claims abstract description 38
- 239000006185 dispersion Substances 0.000 claims abstract description 33
- 238000005562 fading Methods 0.000 claims abstract description 29
- 230000002209 hydrophobic effect Effects 0.000 claims abstract description 8
- 239000000049 pigment Substances 0.000 claims description 33
- 238000002835 absorbance Methods 0.000 claims description 30
- JEBFVOLFMLUKLF-IFPLVEIFSA-N Astaxanthin Natural products CC(=C/C=C/C(=C/C=C/C1=C(C)C(=O)C(O)CC1(C)C)/C)C=CC=C(/C)C=CC=C(/C)C=CC2=C(C)C(=O)C(O)CC2(C)C JEBFVOLFMLUKLF-IFPLVEIFSA-N 0.000 claims description 19
- 235000013793 astaxanthin Nutrition 0.000 claims description 19
- 239000001168 astaxanthin Substances 0.000 claims description 19
- 229940022405 astaxanthin Drugs 0.000 claims description 19
- MQZIGYBFDRPAKN-ZWAPEEGVSA-N astaxanthin Chemical compound C([C@H](O)C(=O)C=1C)C(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)C(=O)[C@@H](O)CC1(C)C MQZIGYBFDRPAKN-ZWAPEEGVSA-N 0.000 claims description 18
- 238000010521 absorption reaction Methods 0.000 claims description 17
- 238000002845 discoloration Methods 0.000 claims description 4
- 238000004737 colorimetric analysis Methods 0.000 claims description 2
- 239000003054 catalyst Substances 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 44
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 38
- 239000000975 dye Substances 0.000 description 33
- 239000003921 oil Substances 0.000 description 13
- 235000019198 oils Nutrition 0.000 description 13
- 239000004408 titanium dioxide Substances 0.000 description 12
- 239000000523 sample Substances 0.000 description 10
- 238000011481 absorbance measurement Methods 0.000 description 9
- 239000002537 cosmetic Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 238000004381 surface treatment Methods 0.000 description 7
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 7
- FDSDTBUPSURDBL-LOFNIBRQSA-N canthaxanthin Chemical compound CC=1C(=O)CCC(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)C(=O)CCC1(C)C FDSDTBUPSURDBL-LOFNIBRQSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 125000003976 glyceryl group Chemical group [H]C([*])([H])C(O[H])([H])C(O[H])([H])[H] 0.000 description 6
- 239000003973 paint Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 239000004793 Polystyrene Substances 0.000 description 5
- 238000005119 centrifugation Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 238000013032 photocatalytic reaction Methods 0.000 description 5
- 229920002223 polystyrene Polymers 0.000 description 5
- 229910052724 xenon Inorganic materials 0.000 description 5
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 5
- WWZKQHOCKIZLMA-UHFFFAOYSA-N Caprylic acid Natural products CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- XQAXGZLFSSPBMK-UHFFFAOYSA-M [7-(dimethylamino)phenothiazin-3-ylidene]-dimethylazanium;chloride;trihydrate Chemical compound O.O.O.[Cl-].C1=CC(=[N+](C)C)C=C2SC3=CC(N(C)C)=CC=C3N=C21 XQAXGZLFSSPBMK-UHFFFAOYSA-M 0.000 description 4
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 4
- GHVNFZFCNZKVNT-UHFFFAOYSA-N decanoic acid Chemical compound CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 4
- 229960000907 methylthioninium chloride Drugs 0.000 description 4
- VYIRVAXUEZSDNC-TXDLOWMYSA-N (3R,3'S,5'R)-3,3'-dihydroxy-beta-kappa-caroten-6'-one Chemical compound C([C@H](O)CC=1C)C(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC(=O)[C@]1(C)C[C@@H](O)CC1(C)C VYIRVAXUEZSDNC-TXDLOWMYSA-N 0.000 description 3
- VYIRVAXUEZSDNC-LOFNIBRQSA-N Capsanthyn Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CC(O)CC1(C)C)C=CC=C(/C)C=CC(=O)C2(C)CC(O)CC2(C)C VYIRVAXUEZSDNC-LOFNIBRQSA-N 0.000 description 3
- OOUTWVMJGMVRQF-DOYZGLONSA-N Phoenicoxanthin Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)C(=O)C(O)CC1(C)C)C=CC=C(/C)C=CC2=C(C)C(=O)CCC2(C)C OOUTWVMJGMVRQF-DOYZGLONSA-N 0.000 description 3
- 235000012682 canthaxanthin Nutrition 0.000 description 3
- 239000001659 canthaxanthin Substances 0.000 description 3
- 229940008033 canthaxanthin Drugs 0.000 description 3
- 235000018889 capsanthin Nutrition 0.000 description 3
- WRANYHFEXGNSND-LOFNIBRQSA-N capsanthin Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CC(O)CC1(C)C)C=CC=C(/C)C=CC(=O)C2(C)CCC(O)C2(C)C WRANYHFEXGNSND-LOFNIBRQSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000001688 paprika extract Substances 0.000 description 3
- 235000012658 paprika extract Nutrition 0.000 description 3
- -1 perfluoroalkyl phosphoric acid Chemical compound 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000012756 surface treatment agent Substances 0.000 description 3
- 239000005632 Capric acid (CAS 334-48-5) Substances 0.000 description 2
- 239000005635 Caprylic acid (CAS 124-07-2) Substances 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- VFLDPWHFBUODDF-FCXRPNKRSA-N curcumin Chemical compound C1=C(O)C(OC)=CC(\C=C\C(=O)CC(=O)\C=C\C=2C=C(OC)C(O)=CC=2)=C1 VFLDPWHFBUODDF-FCXRPNKRSA-N 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 229940057995 liquid paraffin Drugs 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N phosphoric acid Substances OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- PRAKJMSDJKAYCZ-UHFFFAOYSA-N squalane Chemical compound CC(C)CCCC(C)CCCC(C)CCCCC(C)CCCC(C)CCCC(C)C PRAKJMSDJKAYCZ-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 1
- DRRMRHKHTQRWMB-UHFFFAOYSA-N [3-(2-ethylhexanoyloxy)-2,2-bis(2-ethylhexanoyloxymethyl)propyl] 2-ethylhexanoate Chemical compound CCCCC(CC)C(=O)OCC(COC(=O)C(CC)CCCC)(COC(=O)C(CC)CCCC)COC(=O)C(CC)CCCC DRRMRHKHTQRWMB-UHFFFAOYSA-N 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 150000001514 astaxanthins Chemical class 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- HGKOWIQVWAQWDS-UHFFFAOYSA-N bis(16-methylheptadecyl) 2-hydroxybutanedioate Chemical compound CC(C)CCCCCCCCCCCCCCCOC(=O)CC(O)C(=O)OCCCCCCCCCCCCCCCC(C)C HGKOWIQVWAQWDS-UHFFFAOYSA-N 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000004148 curcumin Substances 0.000 description 1
- 235000012754 curcumin Nutrition 0.000 description 1
- 229940109262 curcumin Drugs 0.000 description 1
- GHVNFZFCNZKVNT-UHFFFAOYSA-M decanoate Chemical compound CCCCCCCCCC([O-])=O GHVNFZFCNZKVNT-UHFFFAOYSA-M 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- VFLDPWHFBUODDF-UHFFFAOYSA-N diferuloylmethane Natural products C1=C(O)C(OC)=CC(C=CC(=O)CC(=O)C=CC=2C=C(OC)C(O)=CC=2)=C1 VFLDPWHFBUODDF-UHFFFAOYSA-N 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 229940008099 dimethicone Drugs 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- CEQFOVLGLXCDCX-WUKNDPDISA-N methyl red Chemical compound C1=CC(N(C)C)=CC=C1\N=N\C1=CC=CC=C1C(O)=O CEQFOVLGLXCDCX-WUKNDPDISA-N 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- JXTPJDDICSTXJX-UHFFFAOYSA-N n-Triacontane Natural products CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC JXTPJDDICSTXJX-UHFFFAOYSA-N 0.000 description 1
- 150000003961 organosilicon compounds Chemical class 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000010702 perfluoropolyether Substances 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 150000004032 porphyrins Chemical class 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000013074 reference sample Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- GROMGGTZECPEKN-UHFFFAOYSA-N sodium metatitanate Chemical compound [Na+].[Na+].[O-][Ti](=O)O[Ti](=O)O[Ti]([O-])=O GROMGGTZECPEKN-UHFFFAOYSA-N 0.000 description 1
- 229940032094 squalane Drugs 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- 230000000475 sunscreen effect Effects 0.000 description 1
- 239000000516 sunscreening agent Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Catalysts (AREA)
Abstract
Description
本発明は、粉体の光触媒活性評価法に関し、さらに詳細には、簡便に油中での光触媒活性の評価が可能であり、化粧料に用いる粉体の光触媒活性評価に適した評価法に関する。 The present invention relates to a method for evaluating the photocatalytic activity of a powder. More specifically, the present invention relates to an evaluation method that can easily evaluate the photocatalytic activity in oil and is suitable for evaluating the photocatalytic activity of a powder used in cosmetics.
化粧料には様々な粉体が用いられているが、粉体に光があたるとその光触媒活性により過酸化物を生成するなど皮膚への有害な作用が考えられる。従来粉体の光触媒活性の評価方法としては、例えば、粉体をメチレンブルー水溶液に入れ、撹拌しながら紫外線を照射したのち、メチレンブルー水溶液と粉体を分離し、溶液中のメチレンブルー濃度を紫外可視吸光光度計により測定し、メチレンブルーの分解の程度を調べる方法が知られている(特許文献1)。 Various powders are used in cosmetics, and if the powder is exposed to light, harmful effects on the skin such as generation of peroxides due to its photocatalytic activity can be considered. As a method for evaluating the photocatalytic activity of conventional powders, for example, the powder is placed in a methylene blue aqueous solution, irradiated with ultraviolet rays while stirring, the methylene blue aqueous solution and the powder are separated, and the methylene blue concentration in the solution is determined by the UV-visible absorbance. A method of measuring by a meter and examining the degree of decomposition of methylene blue is known (Patent Document 1).
しかしながら、この方法は水溶性色素を用いるものであるため、油系での光触媒活性の評価は困難であり、また疎水性の粉体の評価には適用できないという問題があった。さらに、粉体を分離するため、色素が粉体に吸着する場合には、測定結果が不正確になる場合もあった。 However, since this method uses a water-soluble dye, it is difficult to evaluate the photocatalytic activity in an oil system, and it cannot be applied to the evaluation of hydrophobic powders. Further, since the powder is separated, the measurement result may be inaccurate when the dye is adsorbed on the powder.
また、色素としてメチルレッドを用いる方法も提案されているが、この色素も水溶性であるため、油系での光触媒活性の評価は困難であり、また疎水性の粉体の評価には適用できないという問題があった(特許文献2)。さらに、有機物の分解速度をガスクロマトグラフィーで測定する方法も知られているが、操作が煩雑であり簡便に評価することが困難であった。 In addition, a method using methyl red as a pigment has been proposed, but since this pigment is also water-soluble, it is difficult to evaluate the photocatalytic activity in an oil system, and it cannot be applied to the evaluation of hydrophobic powder. (Patent Document 2). Furthermore, a method of measuring the decomposition rate of organic substances by gas chromatography is known, but the operation is complicated and difficult to evaluate easily.
したがって、油系での粉体の光触媒活性を評価でき、また疎水性粉体にも適用可能な光触媒活性の評価方法が求められていた。 Therefore, a photocatalytic activity evaluation method that can evaluate the photocatalytic activity of an oil-based powder and can also be applied to a hydrophobic powder has been demanded.
本発明者は、上記課題を解決すべく鋭意検討を行った結果、カロテノイド系色素は、それ自体は光照射による褪色は小さいが、油中に粉体と共存させると容易に褪色が進行するため、その褪色度合を指標とすることにより粉体の光触媒活性を簡便に評価できることを見出し本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventor has found that the carotenoid pigment itself has a small fading due to light irradiation, but the fading easily proceeds when coexisting with powder in oil. The inventors have found that the photocatalytic activity of the powder can be easily evaluated by using the degree of fading as an index, and have completed the present invention.
すなわち、本発明は、粉体をカロテノイド系色素溶液に分散させて粉体分散液を調製する工程と、該粉体分散液を光照射処理する工程とを含み、光照射処理によるカロテノイド系色素の褪色度合を指標とすることを特徴とする粉体の光触媒活性評価法である。 That is, the present invention includes a step of dispersing a powder in a carotenoid pigment solution to prepare a powder dispersion, and a step of subjecting the powder dispersion to light irradiation treatment. This is a method for evaluating the photocatalytic activity of a powder, characterized by using the degree of fading as an index.
本発明の粉体の光触媒活性評価法は、油中における粉体の光触媒活性を評価するものであるため、化粧料や肌上における評価として実際に即したものである。また、従来困難であった疎水性粉体にも適用することができ、粉体の表面処理剤のスクリーニングにも利用可能である。さらに、粉体を分離することなく評価することができるため、簡便であるとともに、色素を吸着しやすい粉体についても正確に評価可能である。 The method for evaluating the photocatalytic activity of the powder of the present invention evaluates the photocatalytic activity of the powder in oil, and thus is practically suitable for evaluation on cosmetics and skin. It can also be applied to hydrophobic powders that have been difficult in the past, and can also be used for screening of powder surface treatment agents. Furthermore, since the evaluation can be performed without separating the powder, it is possible to accurately evaluate the powder that is simple and easily adsorbs the pigment.
本発明の評価法は、カロテノイド系色素の褪色度合を指標とするものである。使用するカロテノイド系色素は、特に制限されるものではないが、アスタキサンチン、カンタキサンチンおよびカプサンチンが好ましく、中でもアスタキサンチンが特に好ましい。これらの色素は、粉体の不存在下において、光に暴露されても褪色が少なく、かつ光触媒活性を持つ粉体との共存下においては、光照射により褪色する性質を有する。本発明に用いるカロテノイド系色素は、粉体の不存在下で、下記測定方法において、光照射前の吸光度が4.0の色素溶液を用いた場合の褪色率が10%以下であることが好ましく、さらに5%以下であることが好ましい。上記アスタキサンチン、カンタキサンチンおよびカプサンチンは、この褪色率が5%以下である。 The evaluation method of the present invention uses the degree of fading of the carotenoid pigment as an index. The carotenoid pigment used is not particularly limited, but astaxanthin, canthaxanthin and capsanthin are preferable, and astaxanthin is particularly preferable. These dyes have the property of fading even when exposed to light in the absence of powder, and fading by light irradiation in the presence of powder having photocatalytic activity. The carotenoid dye used in the present invention preferably has a fading rate of 10% or less when a dye solution having an absorbance of 4.0 before light irradiation is used in the following measurement method in the absence of powder. Further, it is preferably 5% or less. The above astaxanthin, canthaxanthin and capsanthin have a fading rate of 5% or less.
(褪色率の測定方法)
色素を、後述する油性成分によって、下記吸光度測定方法による極大吸収波長における吸光度が3.0以上5.0未満になる濃度に調製する。この色素溶液10gを直径5cmのポリスチレン製シャーレ(FALCON社製 PRIMARIA Tissue Culture Dish)に入れ、下記光照射処理方法により光照射を行い、遠心分離により粉体と色素溶液を分離後、色素溶液を下記吸光度測定方法により極大吸収波長における吸光度を測定し、下記算出式により褪色率を求める。
(Measurement method of fading rate)
The dye is prepared to a concentration at which the absorbance at the maximum absorption wavelength by the following absorbance measurement method is 3.0 or more and less than 5.0 by the oily component described later. 10 g of this dye solution is placed in a 5 cm diameter petri dish (PRIMARIA Tissue Culture Dish manufactured by FALCON), irradiated with light by the following light irradiation treatment method, and after separating the powder and the dye solution by centrifugation, the dye solution is The absorbance at the maximum absorption wavelength is measured by the absorbance measurement method, and the fading rate is obtained by the following calculation formula.
<吸光度測定方法>
分光光度計:UV−2500P(SHIMADZU製)
セル:ポリメチルメタアクリレート製、光路長10mm(10×10×45mm)、
Kartell製
<Absorbance measurement method>
Spectrophotometer: UV-2500P (manufactured by SHIMADZU)
Cell: made of polymethyl methacrylate, optical path length 10 mm (10 × 10 × 45 mm),
Made by Kartel
<光照射処理方法>
ソーラシミュレータ:バイオソーラシミュレータ(ワコム電創社製)
使用ランプ:ワコムキセノンショートアークランプ
照射強度:照射面のUV−A強度10.4 mW/cm2
(照度計(Honle社UVA−Meter)で測定)
照射時間:16分
<Light irradiation treatment method>
Solar simulator: Bio solar simulator (manufactured by Wacom Denso)
Lamp used: Wacom Xenon short arc lamp Irradiation intensity: UV-A intensity 10.4 mW / cm 2 on irradiated surface
(Measured with illuminometer (Honle UVA-Meter))
Irradiation time: 16 minutes
<褪色率の算出式>
褪色率(%)=(A−A’)/A × 100
A :光照射前の極大吸収波長の吸光度
A’:光照射後の極大吸収波長の吸光度
<Calculation formula for fading rate>
Fading rate (%) = (AA ′) / A × 100
A: Absorbance at the maximum absorption wavelength before light irradiation A ': Absorbance at the maximum absorption wavelength after light irradiation
上記カロテノイド系色素は、油性成分に溶解してカロテノイド系色素溶液として用いる。油性成分としては、特に限定されるものではないが、簡便性の観点から化粧品の原料として一般的に使用できる油性成分から選ぶことができる。油性成分は、非極性であっても極性であっても使用することができ、また植物油、鉱物油などの起源を問わない。例えば、極性油としては、トリ2−エチルヘキサン酸グリセリル、トリ(カプリル/カプリン酸)グリセリル、リンゴ酸ジイソステアリル、テトラ2−エチルヘキサン酸ペンタエリトリットなどが挙げられ、また非極性油としては、流動パラフィンやスクワランなどが例示できる。その中でも、特に、透明性が高く、可視・紫外領域に吸収を持たず、変色変質を起こさない、流動パラフィンなどの炭化水素油や、トリ2-エチルヘキサン酸グリセリルが好ましく使用できる。 The carotenoid pigment is dissolved in an oil component and used as a carotenoid pigment solution. Although it does not specifically limit as an oily component, From a viewpoint of simplicity, it can select from the oily component generally used as a raw material of cosmetics. The oily component can be used regardless of whether it is nonpolar or polar, and may be of any origin such as vegetable oil or mineral oil. For example, polar oils include glyceryl tri-2-ethylhexanoate, glyceryl tri (capryl / caprate), diisostearyl malate, pentaerythritol tetra-2-ethylhexanoate, and nonpolar oils. Examples thereof include liquid paraffin and squalane. Of these, hydrocarbon oils such as liquid paraffin and glyceryl tri-2-ethylhexanoate, which have high transparency, do not absorb in the visible / ultraviolet region, and do not cause discoloration or alteration, can be preferably used.
カロテノイド系色素溶液中のカロテノイド系色素の濃度は、特に限定されるものではないが、極大吸収波長の吸光度で管理することができ、光路長10mmの石英セルもしくはポリメチルメタアクリレート製のセルを用い、分光光度計(例えば、UV−2500PC(SHIMADZU製))による当該カロテノイド系色素における極大吸収波長の吸光度が3.0以上5.0未満になるように調製することが好ましい。3.0未満であると、もともとの吸光度が小さく、色素が薄い為、試料間の差が測りづらくなる場合がある。また、5.0以上であると、色素が濃い為に、試料間の差を出す為に必要以上の時間がかかったり、試料間の差が捉えづらくなることがある。 The concentration of the carotenoid dye in the carotenoid dye solution is not particularly limited, but can be controlled by the absorbance at the maximum absorption wavelength, and a quartz cell having a light path length of 10 mm or a cell made of polymethyl methacrylate is used. It is preferable to prepare such that the absorbance at the maximum absorption wavelength in the carotenoid pigment is 3.0 or more and less than 5.0 by a spectrophotometer (for example, UV-2500PC (manufactured by SHIMADZU)). If it is less than 3.0, the original absorbance is small and the dye is thin, so that the difference between samples may be difficult to measure. On the other hand, if it is 5.0 or more, since the pigment is dark, it may take more time than necessary to produce the difference between samples, or the difference between samples may be difficult to grasp.
本発明の評価法の評価対象となる粉体は、特に制限されるものではなく、例えば化粧料に一般的に配合される無機粉体や有機粉体が挙げられ、またこれらは、シリコーン、油剤、多糖類等によって表面処理されていてもよい。これらの中でも、光触媒活性があることが知られている、二酸化チタン、酸化亜鉛、チタン酸ストロンチウム(SrTiO3)、チタン酸バリウム(BaTi4O9)、チタン酸ナトリウム(Na2Ti6O13)、二酸化ジルコニウム、α−Fe2O3、K4Nb6O17、Rb4Nb6O17、K2Rb2Nb6O17などの金属酸化物や、これらを表面処理した粉体の光触媒活性評価に本発明の評価法を好適に用いることができる。本発明の評価法では、粉体(母粉体)間だけでなく、同母粉体で、表面処理剤の違うものや表面処理量の違いによる光触媒活性の強さの比較をすることも可能である。また、親水性であっても、疎水性であっても評価可能であるが、色素溶液が油系であるため親和性が高く高分散することから特に疎水性粉体の評価に適している。疎水化処理粉体としては、トリメチルシリル化剤、メチルハイドロジェンポリシロキサン等の有機ケイ素化合物で処理された粉体や、パーフルオロアルキルリン酸、パーフルオロポリエーテルアルキルリン酸、パーフルオロアルキルシラン等のフッ素化合物で処理された粉体などが挙げられる。また、本発明の原理を用いれば、単一の粉体に限らずファンデーション、おしろい、日焼け止めといった粉体化粧料であっても評価可能である。 The powder to be evaluated in the evaluation method of the present invention is not particularly limited, and examples thereof include inorganic powders and organic powders generally blended in cosmetics, and these include silicones and oil agents. The surface may be treated with a polysaccharide or the like. Among these, titanium dioxide, zinc oxide, strontium titanate (SrTiO 3 ), barium titanate (BaTi 4 O 9 ), sodium titanate (Na 2 Ti 6 O 13 ) are known to have photocatalytic activity. , Zirconium dioxide, α-Fe 2 O 3 , K 4 Nb 6 O 17 , Rb 4 Nb 6 O 17 , K 2 Rb 2 Nb 6 O 17 and other metal oxides, and the photocatalytic activity of powders obtained by surface treatment thereof The evaluation method of the present invention can be suitably used for evaluation. In the evaluation method of the present invention, it is possible to compare the strength of photocatalytic activity not only between powders (mother powders) but also with the same mother powder, with different surface treatment agents and with different surface treatment amounts. It is. Moreover, it can be evaluated whether it is hydrophilic or hydrophobic, but it is particularly suitable for the evaluation of hydrophobic powder because the dye solution is oil-based and has high affinity and high dispersion. Hydrophobized powders include powders treated with organosilicon compounds such as trimethylsilylating agent and methylhydrogenpolysiloxane, and perfluoroalkyl phosphoric acid, perfluoropolyether alkyl phosphoric acid, perfluoroalkylsilane and the like. Examples thereof include powders treated with a fluorine compound. Further, if the principle of the present invention is used, it is possible to evaluate not only a single powder but also a powder cosmetic such as a foundation, an interesting one, and a sunscreen.
これらの粉体を上記カロテノイド系色素溶液に分散させて粉体分散液を調製する。粉体とカロテノイド系色素溶液の混合比は、特に限定されず、粉体の種類によって適宜設定することができるが、例えば、光触媒活性が高いと想定される金属酸化物同士を比較したい場合には、粉体:カロテノイド系色素溶液の質量比を0.2:100〜15:100のようにして粉体がカロテノイド系色素溶液に対して薄い濃度の範囲で評価を行うと、試料間の光触媒活性の差が評価しやすい。また、例えば、光触媒活性が低いと考えられる有機粉体等を評価する際には、2:100〜50:100の範囲で評価を行うと評価しやすい。一般的には粉体とカロテノイド系色素溶液の比を0.2:100〜50:100の割合で混合させることが好ましい。この範囲よりも粉体が少ないと、光触媒活性が充分に起こらない場合があり、また、この範囲よりも粉体が多いと粉体によっては光触媒反応が進みすぎてしまい、試料間の比較がしづらくなることがある。さらに、粉体分散液の流動性が低くなり、光触媒反応の際に光が均一に当たらなくなる場合がある。 These powders are dispersed in the carotenoid pigment solution to prepare a powder dispersion. The mixing ratio of the powder and the carotenoid pigment solution is not particularly limited, and can be set as appropriate depending on the type of powder. For example, when comparing metal oxides that are assumed to have high photocatalytic activity. When the mass ratio of the powder: carotenoid dye solution is 0.2: 100 to 15: 100 and the powder is evaluated in a thin concentration range with respect to the carotenoid dye solution, the photocatalytic activity between the samples It is easy to evaluate the difference. Further, for example, when evaluating an organic powder or the like that is considered to have low photocatalytic activity, it is easy to evaluate by evaluating in the range of 2: 100 to 50: 100. In general, the ratio of the powder and the carotenoid pigment solution is preferably mixed at a ratio of 0.2: 100 to 50: 100. If the amount of powder is less than this range, the photocatalytic activity may not occur sufficiently. If the amount of powder is more than this range, the photocatalytic reaction may progress too much depending on the powder, and comparison between samples may be performed. It can be difficult. Furthermore, the fluidity of the powder dispersion is lowered, and light may not be uniformly applied during the photocatalytic reaction.
また粉体をカロテノイド系色素溶液中に分散させる方法は、特に限定されないが、機械力によって均一に分散することが好ましい。具体的には、油溶性色素溶液と測定対象の粉体とを規格瓶に入れ、密封し、例えば、ペイントシェイカー(ASADA製)にて5分〜15分ほど分散する方法などがある。また機械力を使わずとも、手で振って分散させたり、さじなどで均一に混合してもよい。 The method for dispersing the powder in the carotenoid dye solution is not particularly limited, but it is preferable that the powder is uniformly dispersed by mechanical force. Specifically, there is a method in which an oil-soluble dye solution and a powder to be measured are placed in a standard bottle, sealed, and dispersed by, for example, a paint shaker (ASADA) for about 5 to 15 minutes. Further, without using mechanical force, it may be dispersed by shaking by hand, or evenly mixed with a spoon.
このように調製した粉体分散液に、光照射処理して光触媒反応を生じさせる。照射光は紫外光を含んでいることが好ましく、さらに可視光を含んでいることが好ましい。光源としては、キセノンランプ、ブラックライト、太陽光、蛍光灯などを用いることができるが、紫外光に加えて可視光を同時に照射でき太陽光に近い波長を持つキセノンランプ(照射波長:320nm〜850nm)などを好適に使用できる。また、熱がかからない条件下で反応を起こすと光触媒活性評価の精度が高まるため好ましく、例えば、バイオソーラシミュレータ(ワコム電創社製)などを好適に用いることができる。照射光の光量は、各測定で統一されていれば特に限定されるものではないが、熱エネルギー換算で5J/cm2以上50J/cm2未満であると好ましい。また、さらに好ましくは8J/cm2〜25J/cm2である。5J/cm2未満であると褪色が充分に促進されない場合があり、一方、50J/cm2以上であると褪色が進行しすぎてしまい、サンプル間の差を見出せなくなってしまう場合がある。 The powder dispersion thus prepared is subjected to a light irradiation treatment to cause a photocatalytic reaction. The irradiation light preferably contains ultraviolet light, and more preferably contains visible light. As a light source, a xenon lamp, a black light, sunlight, a fluorescent lamp, or the like can be used, but a xenon lamp (irradiation wavelength: 320 nm to 850 nm) that can simultaneously irradiate visible light in addition to ultraviolet light and has a wavelength close to sunlight. Etc.) can be suitably used. In addition, it is preferable to cause the reaction under conditions where heat is not applied because the accuracy of photocatalytic activity evaluation is increased. For example, a biosolar simulator (manufactured by Wacom Denso) can be suitably used. Amount of irradiation light is preferably is not particularly limited as long as it is united with each measurement, it is less than 5 J / cm 2 or more 50 J / cm 2 by thermal energy conversion. Further, more preferably from 8J / cm 2 ~25J / cm 2 . If it is less than 5 J / cm 2 , the fading may not be sufficiently promoted, whereas if it is 50 J / cm 2 or more, the fading may proceed excessively, and a difference between samples may not be found.
上記のようにして粉体分散液を光照射処理した後、光照射処理によるカロテノイド系色素の褪色度合を評価し、これを指標として粉体の光触媒活性を評価する。カロテノイド系色素の褪色度合の測定は、種々の光学的手法による分析値を用いて評価することができ、例えば、測色値、吸光度、反射率等を用いることができる。 After the powder dispersion is subjected to light irradiation treatment as described above, the degree of discoloration of the carotenoid pigment due to the light irradiation treatment is evaluated, and the photocatalytic activity of the powder is evaluated using this as an index. The measurement of the degree of fading of the carotenoid pigment can be evaluated using analytical values obtained by various optical techniques, and for example, colorimetric values, absorbance, reflectance and the like can be used.
カロテノイド系色素の褪色度合を測色値によって評価する場合、測色に供する試料は、粉体を含む粉体分散液であっても、粉体分散液から粉体を分離したカロテノイド系色素溶液であってもよい。このうち、粉体分散液を測色する方が、粉体の分離操作を行う必要がないため簡便であり、また、カロテノイド系色素を吸着しやすい粉体であっても、高い精度で光触媒活性を評価することができる。表色系としては、Lab表色系、XYZ表色系等が用いられ、各試料の測色値を対比してもよいが、対照となる試料との色差を求め、これを対比することもできる。例えば、光照射未処理の試料と光照射処理した試料の色差ΔE値を指標として用いることができ、ΔE値が大きいほうが、カロテノイド油溶性色素の褪色がより進んだと言えるので、光触媒活性が高いと評価することができる。光照射未処理の試料としては、光照射前の試料や光照射と同じ時間暗所の保存した試料を用いることができる。 When evaluating the degree of discoloration of carotenoid pigments by colorimetric values, even if the sample used for colorimetry is a powder dispersion containing powder, a carotenoid pigment solution in which the powder is separated from the powder dispersion is used. There may be. Of these, it is easier to measure the color of the powder dispersion because there is no need to separate the powder, and even with powders that easily adsorb carotenoid pigments, photocatalytic activity is highly accurate. Can be evaluated. As the color system, Lab color system, XYZ color system or the like is used, and the colorimetric values of each sample may be compared. However, the color difference with the reference sample may be obtained and compared. it can. For example, the color difference ΔE value between the light-irradiated sample and the light-irradiated sample can be used as an index, and it can be said that the higher the ΔE value, the more the carotenoid oil-soluble pigment has faded, so the photocatalytic activity is higher. Can be evaluated. As the sample not subjected to light irradiation, a sample before light irradiation or a sample stored in a dark place for the same time as light irradiation can be used.
一方、カロテノイド系色素の褪色度合を吸光度によって評価する場合、測定に供する試料としては、粉体分散液から粉体を分離したカロテノイド系色素溶液を用いることが、粉体による吸収スペクトルへの影響を排除できるため好ましい。例えば、測定対象の粉体が金属酸化物などの場合には、遠心分離等の分離手段によりカロテノイド系色素溶液と容易に分離することが可能である。吸光度の測定に用いられる機器は、上記UV−2500PC(SHIMADZU製)などの一般に広く用いられている紫外・可視分光光度計を用いることができる。この場合、異なる粉体の光照射処理後のカロテノイド系色素の極大吸収波長における吸光度を比較し光触媒活性を評価することができる。すなわち、吸光度が低い方がカロテノイド系色素の褪色がより進んだと言えるので、光触媒活性が高いと評価することができる。また、光照射未処理の試料と光照射処理した試料との吸光度を比較して、粉体の光触媒活性の有無を評価することもできる。 On the other hand, when the degree of fading of carotenoid pigments is evaluated by absorbance, the use of a carotenoid pigment solution in which powder is separated from a powder dispersion as a sample for measurement has an effect on the absorption spectrum of the powder. This is preferable because it can be eliminated. For example, when the powder to be measured is a metal oxide or the like, it can be easily separated from the carotenoid dye solution by a separation means such as centrifugation. As a device used for measuring the absorbance, a generally used ultraviolet / visible spectrophotometer such as UV-2500PC (manufactured by SHIMADZU) can be used. In this case, the photocatalytic activity can be evaluated by comparing the absorbance at the maximum absorption wavelength of the carotenoid pigments after the light irradiation treatment of different powders. That is, it can be evaluated that the photocatalytic activity is high because the carotenoid pigment is more faded when the absorbance is lower. Moreover, the presence or absence of the photocatalytic activity of the powder can also be evaluated by comparing the absorbance of the unirradiated sample and the sample subjected to the light irradiation treatment.
以下、本発明を実施例等により詳細に説明するが、本発明はこれら実施例等に何ら制限されるものではない。 EXAMPLES Hereinafter, although an Example etc. demonstrate this invention in detail, this invention is not restrict | limited to these Examples etc. at all.
参 考 例 1
色素の検討:
下記表1に示す油溶性色素について、粉体の存在下および不存在下における褪色率を調べた。各色素をトリ2−エチルヘキサン酸グリセリルで希釈した。濃度は、下記吸光度測定条件による極大吸収波長における吸光度が3.0以上5.0未満になるように調製した。この色素溶液に酸化チタン粒子(Degussa P25;Degussa社製)を添加し、ペイントシェイカー(ASADA社製)を用いて10分間分散処理を行った。酸化チタンの量は、色素溶液10gに対して0.04gとした。
Reference example 1
Examination of dyes:
About the oil-soluble pigment | dye shown in following Table 1, the fading rate in presence of powder and the absence was investigated. Each dye was diluted with glyceryl tri-2-ethylhexanoate. The concentration was adjusted so that the absorbance at the maximum absorption wavelength under the following absorbance measurement conditions was 3.0 or more and less than 5.0. Titanium oxide particles (Degussa P25; manufactured by Degussa) were added to the dye solution, and dispersion treatment was performed for 10 minutes using a paint shaker (ASADA). The amount of titanium oxide was 0.04 g with respect to 10 g of the dye solution.
次に、粉体を添加しない色素溶液と、粉体を分散させた色素溶液それぞれ10gを、2つの直径5cmのポリスチレン製シャーレ(FALCON社製 PRIMARIA Tissue Culture Dish)に入れ、それぞれ下記光照射処理方法により光照射を行った。光照射処理前後の試料について、下記吸光度測定条件により各色素の極大吸収波長における吸光度を測定し、下記算出式により褪色率を求めた。 Next, 10 g of each of the dye solution to which no powder is added and the dye solution in which the powder is dispersed are placed in two 5 cm diameter polystyrene dishes (FALCON PRIMARIA Tissue Culture Dish). Was irradiated with light. For the samples before and after the light irradiation treatment, the absorbance at the maximum absorption wavelength of each dye was measured under the following absorbance measurement conditions, and the fading rate was determined by the following formula.
<吸光度測定方法>
分光光度計:UV−2500P(SHIMADZU製)
セル:ポリメチルメタアクリレート製、光路長10mm(10×10×45mm)、
Kartell製
<Absorbance measurement method>
Spectrophotometer: UV-2500P (manufactured by SHIMADZU)
Cell: made of polymethyl methacrylate, optical path length 10 mm (10 × 10 × 45 mm),
Made by Kartel
<光照射処理方法>
ソーラシミュレータ:バイオソーラシミュレータ(ワコム電創社製)
使用ランプ:ワコムキセノンショートアークランプ
照射強度:照射面のUV−A強度10.4 mW/cm2
(照度計(Honle社UVA−Meter)で測定)
照射時間:16分
<Light irradiation treatment method>
Solar simulator: Bio solar simulator (manufactured by Wacom Denso)
Lamp used: Wacom Xenon short arc lamp Irradiation intensity: UV-A intensity 10.4 mW / cm 2 on irradiated surface
(Measured with illuminometer (Honle UVA-Meter))
Irradiation time: 16 minutes
<褪色率の算出式>
褪色率(%)=(A−A’)/A × 100
A :光照射前の極大吸収波長の吸光度
A’:光照射後の極大吸収波長の吸光度
<Calculation formula for fading rate>
Fading rate (%) = (AA ′) / A × 100
A: Absorbance at the maximum absorption wavelength before light irradiation A ': Absorbance at the maximum absorption wavelength after light irradiation
この結果から、カロテノイド系色素であるアスタキサンチン、カンタキサンチン、カプサンチンはいずれも、光照射のみではほとんど褪色しないが、二酸化チタンの存在下では、光触媒反応により容易に褪色することが示された。一方、クルクミンまたはポルフィリン系の色素は、光照射のみで容易に褪色してしまうことが明らかとなった。 From these results, it was shown that the carotenoid pigments astaxanthin, canthaxanthin, and capsanthin hardly fade by light irradiation alone, but easily fade by photocatalytic reaction in the presence of titanium dioxide. On the other hand, it has been clarified that curcumin or porphyrin-based dyes are easily faded only by light irradiation.
実 施 例 1
二酸化チタンおよびシリカの光触媒活性評価:
下記表2に示す結晶型、平均粒子径の異なる二酸化チタンおよびシリカの光触媒活性を評価した。
Example 1
Evaluation of photocatalytic activity of titanium dioxide and silica:
The photocatalytic activities of titanium dioxide and silica having different crystal types and average particle sizes shown in Table 2 below were evaluated.
アスタキサンチン(トリ(カプリル/カプリン酸)トリグリセリル溶液)をトリ2−エチルヘキサン酸グリセリルで希釈した。濃度は、参考例1と同様の吸光度測定法による極大吸収波長(476nm)における吸光度が3.5になるように調製した。このアスタキサンチン溶液に、上記4種類の粉体を添加し、ペイントシェイカーを用いて10分間分散処理を行った。粉体の量は、色素溶液10gに対して0.04gとした。粉体を分散させた粉体分散液それぞれ10gを、2つの直径5cmのポリスチレン製シャーレ(FALCON社製 PRIMARIA Tissue Culture Dish)に入れ、参考例1と同様の光照射処理方法によって光照射した。光照射後の粉体分散液と、光照射時間と同じ時間暗所に保存した粉体分散液とのLab表色系法による色差(ΔE)を分光式色差計(日本電色工業社製,SE−2000)を用いて測定した。結果を表2に示す。 Astaxanthin (tri (capryl / capric acid) triglyceryl solution) was diluted with glyceryl tri-2-ethylhexanoate. The concentration was adjusted so that the absorbance at the maximum absorption wavelength (476 nm) by the same absorbance measurement method as in Reference Example 1 was 3.5. The above four types of powders were added to this astaxanthin solution, and a dispersion treatment was performed for 10 minutes using a paint shaker. The amount of the powder was 0.04 g with respect to 10 g of the dye solution. 10 g of each of the powder dispersions in which the powder was dispersed was placed in two petri dish made of polystyrene having a diameter of 5 cm (PRIMARIA Tissue Culture Dish manufactured by FALCON) and irradiated with light by the same light irradiation treatment method as in Reference Example 1. The color difference (ΔE) by the Lab color system method between the powder dispersion after light irradiation and the powder dispersion stored in the dark for the same time as the light irradiation time is measured by a spectroscopic color difference meter (manufactured by Nippon Denshoku Industries Co., Ltd., SE-2000). The results are shown in Table 2.
一般に、酸化チタンの光触媒活性については、結晶形はルチルよりもアナターゼの方が高く、また粒子径が小さいほうが、比表面積が大きくなるため光を受ける面積が大きくなり、反応の場が増え活性が高くなることが知られている。また、シリカは光触媒活性をほとんど有しないことが知られているが、上記結果は、これらの傾向をよく示すものであった。 In general, with regard to the photocatalytic activity of titanium oxide, the crystal form of anatase is higher than that of rutile, and the smaller the particle size, the larger the specific surface area, the larger the area that receives light, which increases the reaction field and increases the activity. It is known to be higher. Silica is known to have almost no photocatalytic activity, but the above results well show these tendencies.
実 施 例 2
表面処理粉体の測定:
二酸化チタン(TIPAQUE CR―50;石原産業社製)をトリエトキシシリルエチルポリジメチルシロキシエチルヘキシルジメチコン(KF−9909;信越化学工業社製)と加熱混合して表面処理した。表面処理量は、未処理、3質量%、5質量%、7質量%とした。実施例1と同じ濃度に調整したアスタキサンチン溶液に表面処理した二酸化チタン粒子を添加しペイントシェイカーを用いて10分間分散処理を行った。酸化チタンの量は、色素溶液10gに対して0.04gとした。二酸化チタン未添加のアスタキサンチン溶液と、二酸化チタンを分散させたアスタキサンチン溶液それぞれ10gを、2つの直径5cmのポリスチレン製シャーレ(FALCON社製 PRIMARIA Tissue Culture Dish)に入れ、参考例1と同じ光照射処理方法で光照射した。光照射後の粉体分散液から遠心分離により粉体を分離し、アスタキサンチン溶液の極大吸収波長(476nm)における吸光度を参考例1と同様の吸光度測定方法により測定した。結果を表3に示す。
Example 2
Measurement of surface treatment powder:
Titanium dioxide (TIPAQUE CR-50; manufactured by Ishihara Sangyo Co., Ltd.) was heated and mixed with triethoxysilylethyl polydimethylsiloxyethyl hexyl dimethicone (KF-9909; manufactured by Shin-Etsu Chemical Co., Ltd.) for surface treatment. The surface treatment amount was untreated, 3% by mass, 5% by mass, and 7% by mass. The surface-treated titanium dioxide particles were added to the astaxanthin solution adjusted to the same concentration as in Example 1, and dispersion treatment was performed for 10 minutes using a paint shaker. The amount of titanium oxide was 0.04 g with respect to 10 g of the dye solution. 10 g of each of the astaxanthin solution to which titanium dioxide is not added and the astaxanthin solution in which titanium dioxide is dispersed are placed in two 5 cm diameter polystyrene dishes (FALCON PRIMARIA Tissue Culture Dish), and the same light irradiation treatment method as in Reference Example 1 And irradiated with light. The powder was separated from the powder dispersion after light irradiation by centrifugation, and the absorbance at the maximum absorption wavelength (476 nm) of the astaxanthin solution was measured by the same absorbance measurement method as in Reference Example 1. The results are shown in Table 3.
一般に、粉体を表面処理することによって、粉体表面における光触媒反応の場が減少するため光触媒活性が低下することが知られているが、上記結果は、表面処理量に依存して吸光度が増加し、光触媒活性が低下することを示しており、このような知見に合致するものであった。 Generally, it is known that surface treatment of powder reduces the photocatalytic activity because the field of photocatalytic reaction on the powder surface decreases, but the above results indicate that the absorbance increases depending on the amount of surface treatment. However, it was shown that the photocatalytic activity was lowered, which was consistent with such findings.
実 施 例 3
色素溶液と粉体の混合比の検討:
粉体分散液における色素溶液と粉体の混合比が光触媒活性評価に与える影響について検討した。粉体は、実施例1で比較的高い活性を示した微粒子酸化チタン(平均粒子径30nm、Degussa P25;Degussa社製)および比較的低い活性を示したルチル型酸化チタン(平均粒子径250nm、TIPAQUE CR−50;石原産業社製)を使用した。また色素溶液は、アスタキサンチン(トリ(カプリル/カプリン酸)トリグリセリル溶液)をトリ2−エチルヘキサン酸グリセリルで希釈し、参考例1と同様の吸光度測定法による吸光度(476nm)が4.1になるように濃度を調製したアスタキサンチン溶液を用いた。このアスタキサンチン溶液に酸化チタンを質量比100:0.01、100:5、100:20(色素溶液:粉体)となるよう添加し、ペイントシェイカーを用いて10分間分散処理を行った。各粉体分散液と粉体を添加しないアスタキサンチン溶液それぞれ10gを、前記直径5cmのポリスチレン製シャーレに入れ、参考例1と同様の光照射処理方法によって光照射した。光照射後の粉体分散液から遠心分離により粉体を分離し、参考例1と同様にしてアスタキサンチン溶液の極大吸収波長(476nm)における吸光度を測定し、褪色率を求めた。結果を表4に示す。
Example 3
Examination of mixing ratio of dye solution and powder:
The influence of the mixing ratio of the dye solution and the powder in the powder dispersion on the photocatalytic activity evaluation was investigated. The powders were fine particle titanium oxide (average particle size 30 nm, Degussa P25; manufactured by Degussa) having a relatively high activity in Example 1, and rutile titanium oxide (average particle size 250 nm, TIPAQUE) having a relatively low activity. CR-50; manufactured by Ishihara Sangyo Co., Ltd.). The dye solution was prepared by diluting astaxanthin (tri (capryl / capric acid) triglyceryl solution) with glyceryl tri-2-ethylhexanoate to obtain an absorbance (476 nm) of 4.1 by the same absorbance measurement method as in Reference Example 1. An astaxanthin solution having a concentration adjusted as described above was used. Titanium oxide was added to the astaxanthin solution so that the mass ratios were 100: 0.01, 100: 5, and 100: 20 (dye solution: powder), and dispersion treatment was performed for 10 minutes using a paint shaker. 10 g of each powder dispersion and each astaxanthin solution to which no powder was added were placed in a polystyrene petri dish having a diameter of 5 cm and irradiated with light by the same light irradiation treatment method as in Reference Example 1. The powder was separated from the powder dispersion after light irradiation by centrifugation, and the absorbance at the maximum absorption wavelength (476 nm) of the astaxanthin solution was measured in the same manner as in Reference Example 1 to determine the fading rate. The results are shown in Table 4.
混合比100:0.01では、触媒活性が高い微粒子二酸化チタンでも褪色率が0%と評価され、一方、混合比100:20では、微粒子二酸化チタンの褪色が進みすぎてしまうため、これらの混合比では試料間の活性の差が適切に表れない結果となった。 When the mixing ratio is 100: 0.01, even the fine particle titanium dioxide having a high catalytic activity is evaluated as having a fading rate of 0%. On the other hand, when the mixing ratio is 100: 20, the fading of the fine particle titanium dioxide proceeds too much. In the ratio, the difference in activity between samples did not appear properly.
実 施 例 4
照射光量の検討:
照射光量が光触媒活性評価に及ぼす影響について検討した。粉体は、アナターゼ型二酸化チタン(TIPAQUE A−100;石原産業社製)および硫酸バリウム(板状硫酸バリウム・HL;堺化学工業社製)を使用した。実施例3と同じ濃度に調整したアスタキサンチン溶液に、これらの粉体を質量比100:2(色素溶液:粉体)で添加し、ペイントシェイカーを用いて10分間分散処理を行った。粉体分散液および粉体を添加しないアスタキサンチン溶液それぞれ10gを、前記直径5cmのポリスチレン製シャーレ(FALCON社製 PRIMARIA Tissue Culture Dish)に入れ、下記条件によって光照射した。光照射後の粉体分散液から遠心分離により粉体を分離し、参考例1と同様にして、アスタキサンチン溶液の極大吸収波長(476nm)における吸光度を測定し褪色率を求めた。結果を表5に示す。
Example 4
Examination of irradiation light quantity:
The effect of irradiation light quantity on photocatalytic activity evaluation was examined. Anatase type titanium dioxide (TIPAQUE A-100; manufactured by Ishihara Sangyo Co., Ltd.) and barium sulfate (plate-like barium sulfate / HL; manufactured by Sakai Chemical Industry Co., Ltd.) were used as the powder. These powders were added at a mass ratio of 100: 2 (pigment solution: powder) to the astaxanthin solution adjusted to the same concentration as in Example 3, and dispersed for 10 minutes using a paint shaker. 10 g of each of the powder dispersion and the astaxanthin solution to which no powder was added were placed in the 5 cm diameter petri dish made of polystyrene (PRIMALA Tissue Culture Dish manufactured by FALCON) and irradiated with light under the following conditions. The powder was separated from the powder dispersion after light irradiation by centrifugation, and the absorbance at the maximum absorption wavelength (476 nm) of the astaxanthin solution was measured in the same manner as in Reference Example 1 to determine the fading rate. The results are shown in Table 5.
<光照射条件>
ソーラシミュレータ:バイオソーラシミュレータ(ワコム電創社製)
使用ランプ:ワコムキセノンショートアークランプ
照射強度:照射面のUV−A強度10.4 mW/cm2
(照度計(Honle社UVA−Meter)で測定)
照射時間:1.6分(約1J/cm2)、8分(約5J/cm2)、16分(約10
J/cm2)、40分(約25J/cm2)、120分(約75J/cm2)
<Light irradiation conditions>
Solar simulator: Bio solar simulator (manufactured by Wacom Denso)
Lamp used: Wacom Xenon short arc lamp Irradiation intensity: UV-A intensity 10.4 mW / cm 2 on irradiated surface
(Measured with illuminometer (Honle UVA-Meter))
Irradiation time: 1.6 minutes (about 1 J / cm 2 ), 8 minutes (about 5 J / cm 2 ), 16 minutes (about 10
J / cm 2 ), 40 minutes (about 25 J / cm 2 ), 120 minutes (about 75 J / cm 2 )
照射光量が1J/cm2の場合はいずれも褪色率が5%未満と低く、また、75J/cm2ではアナターゼ型二酸化チタンの褪色が進みすぎてしまうため、試料間の光触媒活性の差が適切に表れない結果となった。 When the irradiation light quantity is 1 J / cm 2, the fading rate is low as less than 5%, and at 75 J / cm 2 , the fading of anatase-type titanium dioxide proceeds too much, so the difference in photocatalytic activity between samples is appropriate. The result was not shown in
本発明の粉体の光触媒活性評価法は、簡便な方法によって、油系での粉体の光触媒活性を評価できるものであり、また広範な粉体に対して適用可能なものである。さらには、粉体の表面処理剤のスクリーニングにも利用可能である。したがって、本発明の評価法は、化粧料に用いる粉体の光触媒活性評価法として非常に有用である。 The method for evaluating the photocatalytic activity of a powder according to the present invention can evaluate the photocatalytic activity of an oil-based powder by a simple method, and can be applied to a wide range of powders. Furthermore, it can also be used for screening of powder surface treatment agents. Therefore, the evaluation method of the present invention is very useful as a method for evaluating the photocatalytic activity of powders used in cosmetics.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009017805A JP2009222706A (en) | 2008-02-19 | 2009-01-29 | Photocatalytic activity evaluation method of powder |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008037551 | 2008-02-19 | ||
JP2009017805A JP2009222706A (en) | 2008-02-19 | 2009-01-29 | Photocatalytic activity evaluation method of powder |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009222706A true JP2009222706A (en) | 2009-10-01 |
Family
ID=41239628
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009017805A Pending JP2009222706A (en) | 2008-02-19 | 2009-01-29 | Photocatalytic activity evaluation method of powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009222706A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020200470A (en) * | 2015-09-11 | 2020-12-17 | トロノックス エルエルシー | Inorganic pigments surface-treated with polyol esters |
-
2009
- 2009-01-29 JP JP2009017805A patent/JP2009222706A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020200470A (en) * | 2015-09-11 | 2020-12-17 | トロノックス エルエルシー | Inorganic pigments surface-treated with polyol esters |
JP7101214B2 (en) | 2015-09-11 | 2022-07-14 | トロノックス エルエルシー | Inorganic pigment surface-treated with polyol ester |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Groeneveld et al. | Parameters that affect the photodegradation of dyes and pigments in solution and on substrate–An overview | |
Lewicka et al. | Photochemical behavior of nanoscale TiO2 and ZnO sunscreen ingredients | |
CN100519666C (en) | Silicon dioxide-coated nanoparticulate UV protectant | |
Krysztafkiewicz et al. | Adsorption of dyes on a silica surface | |
Siddiquey et al. | The effects of organic surface treatment by methacryloxypropyltrimethoxysilane on the photostability of TiO2 | |
Michalow et al. | Synthesis, characterization and electronic structure of nitrogen-doped TiO2 nanopowder | |
Siddiquey et al. | Microwave-assisted silica coating and photocatalytic activities of ZnO nanoparticles | |
Ferreira et al. | Poly (vinyl acetate) paints in works of art: a photochemical approach. Part 1 | |
Battistin et al. | A new approach to UV protection by direct surface functionalization of TiO2 with the antioxidant polyphenol dihydroxyphenyl benzimidazole carboxylic acid | |
Petersen et al. | DNA damaging potential of photoactivated P25 titanium dioxide nanoparticles | |
CN113440423B (en) | Modified titanium dioxide particle, preparation method thereof and skin care product | |
JP5150826B2 (en) | Method for producing silica-coated zinc oxide fine particles and silica-coated zinc oxide fine particles obtained by the method | |
CN105223183A (en) | A kind of substrate that can be used for zwitterion pigment selective enumeration method | |
Lee et al. | Multicomponent polymer coating to block photocatalytic activity of TiO 2 nanoparticles | |
Agbe et al. | A simple sensing of hazardous photo-induced superoxide anion radicals using a molecular probe in ZnO-Nanoparticles aqueous medium | |
Benítez-Martínez et al. | Determination of TiO 2 nanoparticles in sunscreen using N-doped graphene quantum dots as a fluorescent probe | |
Ojeda et al. | Size characterization and quantification of titanium dioxide nano-and microparticles-based products by asymmetrical flow field-flow fractionation coupled to dynamic light scattering and inductively coupled plasma mass spectrometry | |
CN112754947A (en) | Protection system for efficiently neutralizing inorganic sunscreen agent to generate free radicals and application thereof | |
Dransfield et al. | Photoactivity tests of TiO2-based inorganic sunscreens: Part 1: Non-aqueous dispersions | |
JP2009222706A (en) | Photocatalytic activity evaluation method of powder | |
Li et al. | Fabrication of CeO2/CaO nanocomposite as ultraviolet screening agent and its application in sunscreen | |
El-Toni et al. | Synthesis and silica coating of calcia-doped ceria/mica nanocomposite by seeded polymerization technique | |
Rosi et al. | Synthesis of cerium oxide nanoparticles using marine algae Sargassum wightii Greville extract: implications for antioxidant applications | |
KR101095992B1 (en) | Method for Preparing Fullerene-Silica Nanocomplex Using Microemulsion and Composition for UV Blcoking Containing Fullerene-Silica Nanocomplex Thereof | |
FR2750603A1 (en) | DISPERSION OF A HUMIDITY RETENTION AGENT INTERCEPTING ULTRAVIOLET LIGHT, AND COSMETIC PRODUCT COMPRISING THIS DISPERSION |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120117 |
|
A072 | Dismissal of procedure [no reply to invitation to correct request for examination] |
Free format text: JAPANESE INTERMEDIATE CODE: A073 Effective date: 20130528 |