JP2009222507A - Trace material detection element - Google Patents

Trace material detection element Download PDF

Info

Publication number
JP2009222507A
JP2009222507A JP2008066260A JP2008066260A JP2009222507A JP 2009222507 A JP2009222507 A JP 2009222507A JP 2008066260 A JP2008066260 A JP 2008066260A JP 2008066260 A JP2008066260 A JP 2008066260A JP 2009222507 A JP2009222507 A JP 2009222507A
Authority
JP
Japan
Prior art keywords
substrate
metal layer
layer formed
layer
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008066260A
Other languages
Japanese (ja)
Inventor
Junji Nishii
準治 西井
Kenji Kanetaka
健二 金高
Hiroaki Misawa
弘明 三澤
Tsuguo Ueno
貢生 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Hokkaido University NUC
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC, National Institute of Advanced Industrial Science and Technology AIST filed Critical Hokkaido University NUC
Priority to JP2008066260A priority Critical patent/JP2009222507A/en
Publication of JP2009222507A publication Critical patent/JP2009222507A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To measure a trace material with high sensitivity, by further improving the performance of an element used for detecting the trace material with high sensitivity, by using localized plasmon resonance. <P>SOLUTION: This trace material detection element utilizing plasmon resonance has a substrate; a plurality of fine projection parts or fine pores formed on one surface of the substrate; and a metal layer formed on the upper surface of the projection parts and on the substrate surface, or a metal layer formed on a peripheral part and the bottom surface of the fine pores. In the trace material detection element, the metal layer formed on the upper surface of the projection parts is in a noncontact state with the metal layer formed on the substrate surface, or the metal layer formed on the peripheral part of the fine pores is in a noncontact state, with the metal layer being formed on the bottom surface of the fine pores. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、局在プラズモン共鳴を用いて微量物質を高感度で検出するための素子及びその製造方法に関する。   The present invention relates to an element for detecting trace substances with high sensitivity using localized plasmon resonance and a method for manufacturing the same.

表面プラズモン共鳴とは、金属表面に光が入射した場合に金属表面の自由電子の粗密波、すなわち表面プラズモン波と、入射光によるエバネッセント波との共鳴によって発生するものであり、入射波長、入射角度、金属表面の媒質の屈折率等に依存し、それらをパラメーターとして共鳴条件が敏感に変化する。よって、反射光の強度をモニターすることによって、金属表面の物質の状態変化を解析できる。   Surface plasmon resonance is generated by resonance of free electron density waves on the metal surface, that is, surface plasmon wave and evanescent wave caused by incident light when light is incident on the metal surface. Depending on the refractive index of the metal surface medium, etc., the resonance conditions change sensitively using them as parameters. Therefore, by monitoring the intensity of the reflected light, it is possible to analyze the state change of the substance on the metal surface.

表面プラズモン共鳴を起こす方法として、プリズム光学系と回折格子光学系がある。前者は単純な全反射にもとづくものであり、プラズモン共鳴場のエネルギーは非常に小さく、また、共鳴条件を満足する入射角度に自由度がないという欠点がある。一方、回折格子光学系(下記特許文献1、特許文献2等参照)は、共鳴場の高強度化という観点では有効なものの、プリズム光学系と同様に励起光が回折格子と結合する条件に制約があるため、回折格子の作製が極めて難しいという問題がある。   As a method for causing surface plasmon resonance, there are a prism optical system and a diffraction grating optical system. The former is based on simple total reflection, and has the disadvantages that the energy of the plasmon resonance field is very small and that there is no degree of freedom in the incident angle that satisfies the resonance condition. On the other hand, the diffraction grating optical system (see Patent Document 1 and Patent Document 2 below) is effective in terms of increasing the intensity of the resonance field, but restricts the conditions for coupling the excitation light to the diffraction grating as in the prism optical system. Therefore, there is a problem that it is extremely difficult to manufacture a diffraction grating.

一方、金属微粒子あるいは金属ナノ構造を基板上に配置して、そこに励起光を照射することによって誘起される局在プラズモン共鳴を利用して、金属近傍に存在する物質を高感度で検出する方法が知られている。例えば、微細孔が形成された陽極酸化アルミナ基板を用いて、微細孔の中と微細孔の周囲の各々に不連続的に金を配置し、細孔内の金微粒子および細孔周囲の金薄膜のそれぞれによって発生する局在プラズモン共鳴場を利用して、微量物質の検出をする方法が知られている(下記特許文献3参照)。   On the other hand, a method of detecting a substance present in the vicinity of a metal with high sensitivity by using localized plasmon resonance induced by irradiating excitation light to metal fine particles or metal nanostructures arranged on a substrate. It has been known. For example, using an anodized alumina substrate in which micropores are formed, gold is disposed discontinuously in each of the micropores and around the micropores, and gold fine particles in the pores and a gold thin film around the pores There is known a method for detecting a trace substance using a localized plasmon resonance field generated by each of the above (see Patent Document 3 below).

また、基板表面上に2次元的に配列した孤立金属ナノドット同士のギャップをナノレベルで制御し、その間隙に発生する局在プラズモン共鳴場を利用して、核酸、糖鎖、タンパクなどの生態物質、あるいは、PCB,ダイオキシンなどの非生態物質の検出ができるという提案もある(例えば、下記特許文献4参照)。   In addition, the gap between isolated metal nanodots arranged two-dimensionally on the substrate surface is controlled at the nano level, and using the localized plasmon resonance field generated in the gap, ecological substances such as nucleic acids, sugar chains, proteins, etc. There is also a proposal that non-ecological substances such as PCB and dioxin can be detected (for example, see Patent Document 4 below).

しかしながら、陽極酸化アルミナ基板を利用する場合は、微細孔の形状、配列周期などの制御が難しく、被測定物質の導入排出系や励起光の入射光学系などの集積化も困難である。また、2次元的に配列した孤立金属ナノドットを利用する場合は、ギャップの距離をナノレベルで厳密に制御するという観点で、大面積化に限界がある。
特許1903195号 特許2502222号 特開2004−232027号公報 特開2007−218900号公報
However, when an anodized alumina substrate is used, it is difficult to control the shape and arrangement period of the micropores, and it is also difficult to integrate a substance to be measured introduction / discharge system and an excitation light incident optical system. In addition, when using isolated metal nanodots arranged two-dimensionally, there is a limit to increasing the area in terms of strictly controlling the gap distance at the nano level.
Patent 1903195 Patent 2502222 JP 2004-232027 A JP 2007-218900 A

本発明は、上記した従来技術の問題点に鑑みてなされたものであり、その主な目的は、局在プラズモン共鳴を用いて微量物質を高感度で検出するために用いる素子について、その性能を更に向上させて微量物質を高感度で測定することを可能とすることである。   The present invention has been made in view of the above-described problems of the prior art, and the main purpose of the present invention is to improve the performance of an element used to detect trace substances with high sensitivity using localized plasmon resonance. Further improvement is to enable trace substances to be measured with high sensitivity.

本発明者は上記した目的を達成すべく鋭意研究を重ねてきた。その結果、基板上に複数の微小突起部又は微細孔を形成し、該突起部の上面と基板面、或いは、該微細孔の周辺部と底面に非接触状態で金属層を形成する場合には、光照射時に金属層間のギャップ内に電場が発生し、ギャップの大きさを調整することによって、電場の強度を大きく向上させて微量物質を高感度で測定することが可能となることを見出した。また、この様な構造の素子の製造方法として、基板上に湿式エッチングに対するエッチング速度の速い層と遅い層を順次積層した後、この積層部分に微小突起部又は微細孔を形成し、その後、湿式エッチングを行うことによって、突起部の上面と基板面との中間部分、又は微細孔の表面と底面との中間部分にエッチングが進行した部分を形成できることを見出した。そして、この様にして突起部又は微細孔が部分的にエッチングされた基板に対して気相法によって金属層を形成する場合には、エッチングされた部分において金属層の析出が防止されて、上記した構造の微量物質検出用素子を簡単な方法で製造できることを見出した。本発明は、これらの知見に基づいて、更に研究を重ねた結果完成されたものである。   The inventor has conducted extensive research to achieve the above-described object. As a result, when a plurality of microprojections or micropores are formed on the substrate, and a metal layer is formed in a non-contact state on the top surface and substrate surface of the projections, or on the periphery and bottom surface of the micropores. It has been found that an electric field is generated in the gap between the metal layers during light irradiation, and by adjusting the size of the gap, the strength of the electric field can be greatly improved and trace substances can be measured with high sensitivity. . In addition, as a method of manufacturing an element having such a structure, after a layer having a high etching rate and a slow layer with respect to wet etching are sequentially stacked on a substrate, microprojections or micropores are formed in the stacked portion, and then wet processing is performed. It has been found that by etching, a portion where etching has progressed can be formed in an intermediate portion between the upper surface of the protrusion and the substrate surface, or an intermediate portion between the surface and the bottom surface of the fine hole. And when forming a metal layer by a vapor phase method with respect to the board | substrate with which the projection part or the micropore was partially etched in this way, precipitation of a metal layer is prevented in the etched part, It was found that the element for detecting a trace substance having the above structure can be manufactured by a simple method. The present invention has been completed as a result of further research based on these findings.

即ち、本発明は、下記の微量物質検出用素子及びその製造方法を提供するものである。
1. 基板と、該基板の一面に形成された複数の微小突起部と、該突起部の上面及び基板面上に形成された金属層とを有するプラズモン共鳴を利用する微量物質検出用素子であって、
該突起部の上面に形成された金属層と、基板面に形成された金属層とが非接触状態であることを特徴とする微量物質検出用素子。
2. 突起部が、突起部の上面と比較して直径が小さい部分を少なくとも一カ所含むものである上記項1に記載の微量物質検出用素子。
3. 突起部の上面に形成された金属層と基板面に形成された金属層との最短部分の間隔が5nm〜10μmである上記項1又は2に記載の微量物質検出用素子。
4. 基板と、該基板の一面に形成された複数の微細孔と、該微細孔の周辺部と微細孔底面に形成された金属層とを有するプラズモン共鳴を利用する微量物質検出用素子であって、
該微細孔の周辺部に形成された金属層と、底面に形成された金属層とが非接触状態であることを特徴とする微量物質検出用素子。
5. 微細孔内に、微細孔表面と比較して孔径が大きい部分が少なくとも一カ所存在する上記項4に記載の微量物質検出用素子。
6. 微細孔の周辺部に形成された金属層と微細孔の底面に形成された金属層との最短部分の間隔が5nm〜10μmである上記項4又は5に記載の微量物質検出用素子。
7. 金属層が金、銀、銅又はこれらを含む混合物からなるものである上記項1〜6のいずれかに記載の微量物質検出用素子。
8. 下記の工程からなる上記項1〜7のいずれかに記載された微量物質検出用素子の製造方法:
(1)基板上に、湿式エッチングによるエッチング速度が異なる少なくとも二層を、エッチング速度が速い層が基板面に近い位置となるように形成する工程、
(2)上記(1)工程で基板上に形成された層をドライエッチングして、微小突起部又は微細孔を形成する工程、
(3)上記(2)工程で微小突起部又は微細孔が形成された基板を湿式エッチングに供する工程、
(4)上記(3)工程でエッチング処理を行った基板に、蒸着法又はスパッタリング法によって金属層を形成する工程。
9. 基板がシリカガラス板又はシリコン板であり、基板上に形成される層のうちの少なくとも一層が、シリカガラスからなる層又はフッ素を含むシリカガラスからなる層であり、湿式エッチングをフッ酸水溶液で行う上記項8に記載の方法。
That is, the present invention provides the following element for detecting a trace substance and a method for producing the element.
1. An element for detecting a trace substance using plasmon resonance having a substrate, a plurality of minute protrusions formed on one surface of the substrate, and a metal layer formed on the upper surface and the substrate surface of the protrusion,
An element for detecting a trace substance, wherein a metal layer formed on an upper surface of the protrusion and a metal layer formed on a substrate surface are in a non-contact state.
2. Item 2. The trace substance detection element according to Item 1, wherein the protrusion includes at least one portion having a diameter smaller than that of the upper surface of the protrusion.
3. Item 3. The trace substance detection element according to Item 1 or 2, wherein the distance between the shortest portion of the metal layer formed on the upper surface of the protrusion and the metal layer formed on the substrate surface is 5 nm to 10 μm.
4). A trace substance detection element using plasmon resonance having a substrate, a plurality of micro holes formed on one surface of the substrate, and a metal layer formed on a peripheral portion of the micro holes and a bottom surface of the micro holes,
An element for detecting a trace substance, wherein a metal layer formed in a peripheral portion of the micropore and a metal layer formed on a bottom surface are in a non-contact state.
5. Item 5. The trace substance detection element according to Item 4, wherein at least one portion having a pore diameter larger than the surface of the micropore is present in the micropore.
6). Item 6. The trace substance detection element according to Item 4 or 5, wherein the distance between the shortest portion of the metal layer formed in the peripheral part of the microhole and the metal layer formed on the bottom surface of the microhole is 5 nm to 10 μm.
7). Item 7. The trace substance detection element according to any one of Items 1 to 6, wherein the metal layer is composed of gold, silver, copper, or a mixture containing these.
8). The manufacturing method of the element for a trace substance detection in any one of said claim | item 1-7 which consists of the following processes:
(1) forming at least two layers having different etching rates by wet etching on a substrate such that a layer having a high etching rate is close to the substrate surface;
(2) a step of dry-etching the layer formed on the substrate in the step (1) to form a minute protrusion or a minute hole;
(3) A step of subjecting the substrate on which the fine protrusions or fine holes are formed in the step (2) to wet etching,
(4) A step of forming a metal layer by a vapor deposition method or a sputtering method on the substrate subjected to the etching process in the step (3).
9. The substrate is a silica glass plate or a silicon plate, and at least one of the layers formed on the substrate is a layer made of silica glass or a layer made of silica glass containing fluorine, and wet etching is performed with a hydrofluoric acid aqueous solution. Item 9. The method according to Item 8.

以下、まず、本発明の微量物質検出用素子の製造方法を説明し、次いで、該素子の構造を説明する。
(1)微量物質検出素子の製造方法
(i)本発明では、まず、基板上に、湿式エッチングに対するエッチング速度の異なる層を少なくとも二層形成する。この際、エッチング速度が速い層が基板面に近い位置となるように各層を形成する。図1は、基板1上に、エッチング速度が速い第一層2と、第一層と比較してエッチング速度が遅い第二層3が積層された状態を示す概略図である。
Hereinafter, first, a method for producing a trace substance detection element of the present invention will be described, and then the structure of the element will be described.
(1) Manufacturing method of trace substance detection element :
(I) In the present invention, first, at least two layers having different etching rates for wet etching are formed on a substrate. At this time, each layer is formed so that the layer having a high etching rate is located close to the substrate surface. FIG. 1 is a schematic view showing a state in which a first layer 2 having a high etching rate and a second layer 3 having a low etching rate compared to the first layer are laminated on a substrate 1.

基板1としては、特に限定はなく、後述する製造工程において変質すること無く、また、測定対象の微量物質を含む溶液によって侵されることのないものであれば特に限定なく使用できる。例えば、市販品として入手しやすいシリコン、ガラス、各種樹脂等を用いることができる。既知のフォトリソグラフィーや電子線リソグラフィー、インプリントによるパターニング、および、その後のドライエッチングや湿式エッチング工程を考慮すると、基板は光学的に平坦な面を有していることが好ましい。   The substrate 1 is not particularly limited, and can be used without any particular limitation as long as it does not change in the manufacturing process described later and is not affected by a solution containing a trace substance to be measured. For example, silicon, glass, various resins and the like that are easily available as commercial products can be used. In consideration of known photolithography, electron beam lithography, patterning by imprinting, and subsequent dry etching or wet etching processes, the substrate preferably has an optically flat surface.

基板上に形成する層の種類については特に限定はなく、後述する微小突起部又は微細孔の形成工程、及び湿式エッチングによる突起部又は微細孔の断面形状の調整工程において適度な作業性を有する材料から選択すればよい。   The type of layer formed on the substrate is not particularly limited, and a material having an appropriate workability in a process for forming a microprojection or microhole described later and a process for adjusting the cross-sectional shape of the microprojection or microhole by wet etching. You can choose from.

例えば、基板1としてシリカガラス又はシリコン板を用いる場合には、基板上にはフッ素を含むシリカガラスからなる第一層2を形成し、この上に第二層3としてシリカガラス層を形成すれば、第一層2のフッ素含有量を調整することによって、第一層2のエッチング速度を簡単に制御することができる。   For example, when silica glass or a silicon plate is used as the substrate 1, the first layer 2 made of silica glass containing fluorine is formed on the substrate, and the silica glass layer is formed as the second layer 3 on the first layer 2. The etching rate of the first layer 2 can be easily controlled by adjusting the fluorine content of the first layer 2.

また、基板1としてシリコンを用いる場合には、基板上に第一層2としてSiO層を形成し、その上に第二層3としてシリコン層を形成することによって、SiO層のエッチングを優先的に進行させることができる。この場合、第一層のSiO層にフッ素原子を添加すれば、更に、第一層2のエッチング速度を調整することが可能となる。 When silicon is used as the substrate 1, the SiO 2 layer is formed as the first layer 2 on the substrate, and the silicon layer is formed as the second layer 3 on the substrate, thereby giving priority to the etching of the SiO 2 layer. Can be advanced. In this case, if fluorine atoms are added to the first SiO 2 layer, the etching rate of the first layer 2 can be further adjusted.

基板1上に形成する層2,3の厚さについては特に限定はないが、最終的に目的とする素子における突起部又は微細孔の形状等に応じて適切な膜厚を決定すればよい。   The thicknesses of the layers 2 and 3 formed on the substrate 1 are not particularly limited, but an appropriate film thickness may be determined according to the shape of the protrusions or fine holes in the final target element.

なお、本発明では、基板上に形成する層は二層に限定されず、エッチング速度の異なる層を三層以上積層してもよい。この場合にも、エッチング速度が速い層と遅い層が、エッチング速度が速い層が基板面に近い位置となるように積層されている部分があればよい。   In the present invention, the number of layers formed on the substrate is not limited to two, and three or more layers having different etching rates may be stacked. Also in this case, it is only necessary to have a portion in which a layer having a high etching rate and a layer having a low etching rate are laminated so that the layer having a high etching rate is close to the substrate surface.

上記した各層の形成方法については、特に限定はなく、例えば、CVD法、蒸着法、スパッタリング法などの各種気相法やスピンコーティング法などの湿式コーティング法などを適用できる。   The method for forming each layer is not particularly limited, and for example, various gas phase methods such as CVD, vapor deposition, and sputtering, and wet coating methods such as spin coating can be applied.

(ii)次いで、上記した方法で基板上に形成された層に対して、ドライエッチング法によって複数の微小突起部又は微細孔を形成する。   (Ii) Next, a plurality of microprojections or micropores are formed by dry etching on the layer formed on the substrate by the method described above.

微小突起部又は微細孔の大きさについては特に限定的ではないが、できるだけ高密度に突起部又は微細孔を形成することによって、高い電場強度を得ることが可能となる。加工性を考慮すると、通常、突起部の直径又は微細孔の孔径は、20nm〜100μm程度であることが好ましく、50nm〜10μm程度であることがより好ましい。また、隣接する突起部同士又は微細孔同士の最短距離については、通常、5nm〜500nm程度とすればよく、好ましくは10nm〜200nm程度とすればよい。   The size of the microprojections or micropores is not particularly limited, but it is possible to obtain high electric field strength by forming the projections or micropores as densely as possible. In consideration of processability, usually, the diameter of the protrusion or the diameter of the fine hole is preferably about 20 nm to 100 μm, and more preferably about 50 nm to 10 μm. In addition, the shortest distance between adjacent protrusions or micropores is usually about 5 nm to 500 nm, preferably about 10 nm to 200 nm.

なお、突起部及び微細孔の基板面に平行方向の断面形状については特に限定はなく、完全な円形であってもよく、或いは多角形であってもよい。この場合、突起部の直径又は微細孔の孔径とは、突起部又は微細孔について、基板に平行な断面の最大長さをいう。   In addition, there is no limitation in particular about the cross-sectional shape of a protrusion part and a micropore in the direction parallel to a substrate surface, A perfect circle may be sufficient or a polygon may be sufficient. In this case, the diameter of the protrusion or the hole diameter of the micro hole means the maximum length of the cross section parallel to the substrate with respect to the protrusion or the micro hole.

また、突起部の上面については、完全な平面でなくてもよく、後述する湿式エッチングによって曲面状態となっていてもよい。また、微細孔の底面についても、同様に完全な平面でなくてもよく、曲面状態となっていてもよい。   Further, the upper surface of the protruding portion may not be a complete flat surface, and may be in a curved surface state by wet etching described later. Similarly, the bottom surface of the fine hole may not be a perfect plane and may be in a curved surface state.

上記した突起部又は微細孔は、周知のパターニング技術とエッチング技術を利用することによって容易に形成できる。例えば、まず、基板表面にフォトレジストをスピンコートした後に、例えば、波長325nmのHe−Cdレーザー光を用いた干渉縞を、所定時間、照射し、現像することによって、所定のパターンの開口部を有するフォトレジスト層を形成することができる。   The above-described protrusions or fine holes can be easily formed by using a well-known patterning technique and etching technique. For example, first, after spin-coating a photoresist on the substrate surface, for example, by irradiating with an interference fringe using a He—Cd laser beam having a wavelength of 325 nm for a predetermined time, and developing, a predetermined pattern of openings is formed. A photoresist layer can be formed.

図2は、微細孔を形成するためのフォトレジスト層が形成された状態を示す概略図である。基板1上に、第一層2及び第二層3が積層されており、この上に所定のパターンの開口部5を有するレジスト層4が形成されている。   FIG. 2 is a schematic view showing a state in which a photoresist layer for forming fine holes is formed. A first layer 2 and a second layer 3 are laminated on a substrate 1, and a resist layer 4 having openings 5 having a predetermined pattern is formed thereon.

図3は、微小突起部を形成するためのフォトレジスト層が形成された状態を示す概略図である。基板1上に、第一層2及び第二層3が積層されており、この上に形成される突起部の断面形状に一致するパターンを有するレジスト層6が形成されている。   FIG. 3 is a schematic view showing a state in which a photoresist layer for forming the minute protrusions is formed. A first layer 2 and a second layer 3 are laminated on a substrate 1, and a resist layer 6 having a pattern that matches the cross-sectional shape of the protrusions formed thereon is formed.

その後、例えば、HやCHFなどのフッ素系ガス、Clなどの塩素系ガス等を用いたプラズマエッチングを行うことによって、基板上に目的とする大きさ、周期の突起部又は微細孔を形成できる。また、電子線レジストをコートした後に電子線描画とドライエッチングを行っても、同様な形状の突起部又は微細孔を形成できる。 Thereafter, for example, by performing plasma etching using a fluorine-based gas such as H 3 F 8 or CHF 3 , a chlorine-based gas such as Cl 2, or the like, a protrusion having a desired size, period, or fineness is formed on the substrate. A hole can be formed. Further, even when electron beam drawing and dry etching are performed after the electron beam resist is coated, projections or fine holes having the same shape can be formed.

図4は、基板1の一面に微細孔が形成された状態の概略を示す断面図である。図4では、第一層2及び第二層3を貫通する状態で基板1の表面まで達する微細孔が形成されている。   FIG. 4 is a cross-sectional view schematically showing a state in which fine holes are formed on one surface of the substrate 1. In FIG. 4, fine holes reaching the surface of the substrate 1 in a state of penetrating the first layer 2 and the second layer 3 are formed.

形成される突起部の高さ又は微細孔の深さについては、エッチング条件を適切に設定することによって容易に調整できる。後述する様に、本発明の目的とする局在プラズモン共鳴を用いた微量物質検出素子では、局在プラズモン共鳴の電場強度を向上させるためには、金属層間の最短部分の間隔が5nm〜10μm程度の範囲にあることが好ましい。このため、突起部の高さ又は微細孔の深さについては、後述する方法で形成される金属層の厚さに応じて、金属層を形成した後の金属層間の最短部分の間隔が5nm〜10μm程度、好ましくは20nm〜2μm程度となるように調整することが好ましい。但し、作製の難易度を考慮すると、突起部の高さ又は微細孔の深さは、50nm〜2μm程度であることが好ましい。突起部の高さ又は微細孔の深さが上記範囲より小さい場合には、金属の成膜の際の膜厚制御が困難となる。また上記範囲を上回ると、エッチングの際の基板とレジストとのエッチング速度差に限界があるため、レジスト以外の金属系材料、例えば、クロム、ニッケル、タングルテンシリサイドをマスクとして使用する必要があり、さらに、後の金属層の成膜時間が長くなるという問題点がある。   About the height of the projection part formed, or the depth of a micropore, it can adjust easily by setting etching conditions appropriately. As will be described later, in the trace substance detection element using the localized plasmon resonance which is an object of the present invention, the distance between the shortest portions between the metal layers is about 5 nm to 10 μm in order to improve the electric field strength of the localized plasmon resonance. It is preferable that it exists in the range. For this reason, about the height of a projection part or the depth of a micropore, according to the thickness of the metal layer formed by the method mentioned later, the space | interval of the shortest part between metal layers after forming a metal layer is 5 nm- It is preferable to adjust so as to be about 10 μm, preferably about 20 nm to 2 μm. However, in consideration of the difficulty of production, the height of the protrusions or the depth of the fine holes is preferably about 50 nm to 2 μm. When the height of the protrusions or the depth of the fine holes is smaller than the above range, it becomes difficult to control the film thickness during metal film formation. If the above range is exceeded, there is a limit to the etching rate difference between the substrate and the resist at the time of etching, so it is necessary to use a metal-based material other than the resist, for example, chromium, nickel, tangle suicide as a mask, Furthermore, there is a problem that the time for forming the subsequent metal layer becomes long.

(iii)次いで、上記した方法で微小突起部又は微細孔が形成された基板を湿式エッチングに供する。これにより、突起部が形成されている場合には、突起部の側壁部分において、エッチング速度の速い第二層2のエッチングが進行して、突起部の上面と比較して、直径が小さい部分が形成される。また、微細孔が形成されている場合には、微細孔の側壁部分において、エッチング速度の速い第二層2のエッチングが進行して、表面部分の孔径と比較して孔径が大きい部分が微細孔内に形成される。   (Iii) Next, the substrate on which the fine protrusions or fine holes are formed by the above-described method is subjected to wet etching. Thereby, when the protrusion is formed, the etching of the second layer 2 having a high etching rate proceeds on the side wall portion of the protrusion, and a portion having a smaller diameter than the upper surface of the protrusion is formed. It is formed. In addition, in the case where micropores are formed, the etching of the second layer 2 having a high etching rate proceeds in the side wall portion of the micropore, and the portion having a larger pore diameter than the surface portion has a micropore. Formed inside.

図5は、複数の微細孔が形成された基板について、湿式エッチングを行った後の状態を模式的に示す平面図及び断面図である。図5では、基板1上に形成された第一層2と第二層3を貫通する微細孔において、エッチング速度が速い第二層2のエッチングが進行して、第二層2の部分の微細孔の孔径が、表面部分の孔径と比較して大きくなっている。   FIG. 5 is a plan view and a cross-sectional view schematically showing a state after wet etching is performed on a substrate on which a plurality of fine holes are formed. In FIG. 5, in the fine holes penetrating the first layer 2 and the second layer 3 formed on the substrate 1, the etching of the second layer 2, which has a high etching rate, proceeds, and the fineness of the portion of the second layer 2 The hole diameter of the hole is larger than the hole diameter of the surface portion.

図6は、複数の微小突起部が形成された基板について、湿式エッチングを行った後の状態を模式的に示す平面図及び断面図である。第一層2と第二層3が積層された部分に形成された微小突起部において、エッチング速度が速い第一層2のエッチングが進行して、この部分の直径が、突起部の上面部分の直径と比較して小さくなっている。   FIG. 6 is a plan view and a cross-sectional view schematically showing a state after wet etching is performed on a substrate on which a plurality of minute protrusions are formed. In the minute protrusion formed in the portion where the first layer 2 and the second layer 3 are laminated, the etching of the first layer 2 having a high etching rate proceeds, and the diameter of this portion is the upper surface portion of the protrusion. It is smaller than the diameter.

微小突起部又は微細孔の側壁部分のエッチングの程度については特に限定的ではなく、後述する気相法による金属層の形成工程において、側壁への金属の付着を防止して、突起部の上面に形成される金属層と基板面に形成される金属層、又は微細孔の周辺部に形成される金属層と底面に形成される金属層との接触を防止できる程度に、突起部の側壁部分又は微細孔の側壁部分がエッチングされていればよい。   The degree of etching of the microprojection or the side wall portion of the microhole is not particularly limited. In the metal layer formation step by the vapor phase method described later, metal adhesion to the side wall is prevented, and the top surface of the projection is formed. The side wall portion of the protrusion or the metal layer formed on the substrate surface or the metal layer formed on the periphery of the fine hole and the metal layer formed on the bottom surface can be prevented from contacting each other. It is only necessary that the side wall portion of the fine hole is etched.

尚、エッチングされた部分の浸食状態は、側壁部分の全体において均一でなくてもよく、側壁の一部のみがエッチングされていてもよい。或いは、側壁部分が階段状、曲線状等の各種の形状でエッチングされていてもよい。この様な側壁の不均一なエッチング状態は、例えば、後述する方法でフッ素添加シリカガラス層を形成する際に、該シリカガラス層の厚さ方向において、フッ素添加量を部分的又は傾斜的に変化させてエッチング速度を調整することによって容易に形成することができる。   The erosion state of the etched part may not be uniform over the entire side wall part, and only a part of the side wall may be etched. Alternatively, the side wall portion may be etched in various shapes such as a stepped shape and a curved shape. Such a non-uniform etching state of the side wall is, for example, when the fluorine-added silica glass layer is formed by a method to be described later, and the fluorine addition amount is changed partially or in the gradient direction in the thickness direction of the silica glass layer. Thus, it can be easily formed by adjusting the etching rate.

湿式エッチングの方法については、特に限定はなく、第一層2及び第二層3を形成する材料の種類に応じて、第一層2のエッチングが優先的に進行する様にエッチング液及びエッチング条件を採用すればよい。   There is no particular limitation on the wet etching method, and the etching solution and the etching conditions are set so that the etching of the first layer 2 proceeds preferentially according to the type of material forming the first layer 2 and the second layer 3. Should be adopted.

例えば、基板1としてシリカガラスを用い、第一層2をフッ素添加シリカガラスで形成し、第二層(表面層)3をシリカガラスで形成した場合には、フッ酸水溶液を用いてエッチングを行うことによって、第一層2のフッ素添加シリカガラス層のエッチングを優先的に進行させることができる。   For example, when silica glass is used as the substrate 1, the first layer 2 is formed of fluorine-added silica glass, and the second layer (surface layer) 3 is formed of silica glass, etching is performed using a hydrofluoric acid aqueous solution. Thus, the etching of the fluorine-added silica glass layer of the first layer 2 can be preferentially advanced.

シリカガラスにフッ素を添加すると、得られるガラスのフッ酸に対するエッチング速度が、フッ素添加量に応じて増加することはよく知られている(参考文献:Antireflection microstructures fabricated upon fluorine-doped SiO2 films. Opt. Lett., 26, 1642-1644, 2001. K. Kintaka, J. Nishii, A. Mizutani, H. Kikuta, H.Nakano.)。このようなガラスは、化学気相法で容易に作製することができる。フッ素添加量としては、シリカガラス全体を基準として、0.5〜10モル%程度、好ましくは1〜6モル%程度とすればよい。フッ素添加量が上記下限よりも少ない場合は、後のフッ酸でのエッチングの際に、表面層であるシリカガラスとのエッチング速度差が小さ過ぎることがあり、また、上限よりも多い場合には、シリカガラスとの膨張率差が大きくなり、基板が反る場合があるので好ましくない。   It is well known that when fluorine is added to silica glass, the etching rate of the resulting glass for hydrofluoric acid increases with the amount of fluorine added (reference: Antireflection microstructures fabricated upon fluorine-doped SiO2 films. Opt. Lett., 26, 1642-1644, 2001. K. Kintaka, J. Nishii, A. Mizutani, H. Kikuta, H. Nakano.). Such glass can be easily produced by a chemical vapor deposition method. The amount of fluorine added may be about 0.5 to 10 mol%, preferably about 1 to 6 mol%, based on the entire silica glass. If the amount of fluorine added is less than the above lower limit, the etching rate difference from the silica glass as the surface layer may be too small during subsequent etching with hydrofluoric acid, and if more than the upper limit, The difference in expansion coefficient from silica glass increases, and the substrate may be warped.

さらに、最上面を形成する第二層3をシリコン等のフッ酸でエッチングされにくい材料で成膜する場合には、第一層2をフッ素を添加しないシリカガラスで形成することも可能である。この場合にも、エッチング液としてフッ酸水溶液を用いることによって、シリコン層と比較してシリカガラス層のエッチングを優先的に進行させることができる。   Further, when the second layer 3 forming the uppermost surface is formed of a material that is difficult to be etched with hydrofluoric acid such as silicon, the first layer 2 can be formed of silica glass to which no fluorine is added. Also in this case, by using a hydrofluoric acid aqueous solution as an etchant, it is possible to preferentially advance the etching of the silica glass layer as compared with the silicon layer.

以上の通り、第一層2をフッ素添加シリカガラス又は純粋シリカガラスで形成する場合には、エッチング液としてフッ酸水溶液を用いることができる。フッ酸水溶液の濃度については、シリカガラス中のフッ素の添加量にも依存するが、通常、0.1〜10重量%程度とすればよい。エッチング速度は、該水溶液の濃度と、溶液温度で制御することができる。好ましいエッチング条件は、温度15〜25℃程度、時間5秒〜10分程度である。   As described above, when the first layer 2 is formed of fluorine-added silica glass or pure silica glass, an aqueous hydrofluoric acid solution can be used as an etching solution. About the density | concentration of hydrofluoric acid aqueous solution, although it is dependent also on the addition amount of the fluorine in a silica glass, what is necessary is just about 0.1 to 10 weight% normally. The etching rate can be controlled by the concentration of the aqueous solution and the solution temperature. Preferable etching conditions are a temperature of about 15 to 25 ° C. and a time of about 5 seconds to 10 minutes.

(iv)上記した方法で湿式エッチングを行った後、微小突起部分の上面と基板面、或いは、微細孔が形成された基板の微細孔の周辺部と微細孔の底面に金属層を形成する。   (Iv) After wet etching is performed by the above-described method, a metal layer is formed on the upper surface and substrate surface of the microprojection portion, or on the peripheral portion of the microhole and the bottom surface of the microhole in which the microhole is formed.

金属層は、例えば、真空蒸着法、スパッタ法などの気相法によって形成することが好ましい。これにより、微小突起部の上面と基板面、或いは微細孔の周辺部と底面に金属層が形成され、突起部の側壁又は微細孔の側壁では、第二層2に相当する部分がエッチングされていることによって、この部分への金属の付着が防止される。その結果、微小突起部分の上面に形成された金属層と基板面に形成された金属層、或いは、微細孔の周辺部の金属層と微細孔底面に形成された金属層は、互いに非接触状態となる。   The metal layer is preferably formed, for example, by a vapor phase method such as a vacuum evaporation method or a sputtering method. As a result, a metal layer is formed on the top surface and substrate surface of the microprojection, or on the periphery and bottom surface of the micropore, and the portion corresponding to the second layer 2 is etched on the side wall of the microprojection or the micropore. This prevents the metal from adhering to this portion. As a result, the metal layer formed on the top surface of the microprojection and the metal layer formed on the substrate surface, or the metal layer on the periphery of the microhole and the metal layer formed on the bottom surface of the microhole are not in contact with each other. It becomes.

図7は、微細孔が形成された基板に金属層を形成した状態を模式的に示す断面図である。図7において、微細孔の周辺部と、微細孔の底面に金属層7及び8が形成されており、両者は非接触状態となっている。図8は、微小突起部が形成された基板に金属層を形成した状態を模式的に示す断面図である。図8では、微小突起部の上面と基板面に金属層9及び10が形成されており、両者は非接触状態である。   FIG. 7 is a cross-sectional view schematically showing a state in which a metal layer is formed on a substrate in which fine holes are formed. In FIG. 7, metal layers 7 and 8 are formed on the periphery of the microhole and on the bottom surface of the microhole, and both are in a non-contact state. FIG. 8 is a cross-sectional view schematically showing a state in which a metal layer is formed on a substrate on which minute protrusions are formed. In FIG. 8, metal layers 9 and 10 are formed on the top surface and the substrate surface of the fine protrusions, and both are in a non-contact state.

金属層の種類については、光照射によって強いプラズモン共鳴場が得られるものであれば特に限定はなく、例えば、金、銀、銅、これらの混合物などを用いることができる。   The type of the metal layer is not particularly limited as long as a strong plasmon resonance field can be obtained by light irradiation. For example, gold, silver, copper, a mixture thereof, or the like can be used.

金属層の厚さについては、基板上に形成された突起部の高さ、或いは微細孔の深さに応じて、突起部の上面に形成された金属層と基板面に形成された金属層との間の最短部分の間隔、或いは、微細孔の周辺部に形成された金属層と微細孔の底面に形成された金属層との間の最短部分の間隔が5nm〜10μm程度、好ましくは20nm〜2μm程度となるように調整することが好ましい。   Regarding the thickness of the metal layer, the metal layer formed on the upper surface of the protrusion and the metal layer formed on the substrate surface according to the height of the protrusion formed on the substrate or the depth of the fine hole, Or the distance between the shortest portion between the metal layer formed at the periphery of the micropore and the metal layer formed at the bottom surface of the micropore is about 5 nm to 10 μm, preferably 20 nm to It is preferable to adjust so that it may become about 2 micrometers.

金属層間の最短部分の間隔を上記範囲とすることによって、検出測定時に光照射する際に金属層間に発生した電場の強度が著しく増強されると共に、間隔を開けて形成されている金属層の両方において増強されたシグナルを同時に観測することが可能となり、微量物質を高感度で検出することができる。尚、真空蒸着法、スパッタ法などの気相法を採用することによって、形成される金属層の膜厚の制御が容易となる。   By setting the distance between the shortest portions of the metal layers within the above range, the intensity of the electric field generated between the metal layers when irradiating light during detection measurement is remarkably enhanced, and both of the metal layers formed with a gap are provided. The enhanced signal can be observed simultaneously, and trace substances can be detected with high sensitivity. By adopting a vapor phase method such as a vacuum deposition method or a sputtering method, the film thickness of the formed metal layer can be easily controlled.

この場合、金属層間の最短部分の間隔とは、例えば突起部の上面と基板面上に金属層が形成されている場合において、突起部上面に形成された金属層の下面のエッジ部分と、基板面に形成された金属層の上面のエッジ部分とが最短距離となる場合には、これらのエッジ部分間の間隔をいう。   In this case, the distance between the shortest portions between the metal layers is, for example, when the metal layer is formed on the upper surface of the protrusion and the substrate surface, the edge portion on the lower surface of the metal layer formed on the upper surface of the protrusion, and the substrate When the edge portion on the upper surface of the metal layer formed on the surface is the shortest distance, the interval between these edge portions is referred to.

また、金属層の膜厚は、光照射によってプラズモンが発生する以上の厚さであればよく、例えば、10nm程度以上とすればプラズモン共鳴を得ることができる。   The film thickness of the metal layer may be any thickness that generates plasmons by light irradiation. For example, plasmon resonance can be obtained when the thickness is about 10 nm or more.

(2)微量物質検出用素子の構造
上記した方法によれば、基板と、該基板の一面に形成された複数の微小突起部と、該突起部の上面及び基板面上に形成された金属層とを有し、該突起部の上面に形成された金属層と、基板面に形成された金属層とが非接触状態であるプラズモン共鳴を利用する微量物質検出用素子、或いは、
基板と、該基板の一面に形成された複数の微細孔と、該微細孔の周辺部と底面に形成された金属層とを有し、該微細孔の周辺部に形成された金属層と、底面に形成された金属層とが非接触状態であるプラズモン共鳴を利用する微量物質検出用素子が得られる。
(2) Trace element detection element structure :
According to the method described above, the substrate has a plurality of minute protrusions formed on one surface of the substrate, the upper surface of the protrusion and the metal layer formed on the substrate surface, and the upper surface of the protrusion. A trace substance detecting element utilizing plasmon resonance in which the metal layer formed on the substrate and the metal layer formed on the substrate surface are in a non-contact state, or
A substrate, a plurality of micropores formed on one surface of the substrate, a metal layer formed on a peripheral portion and a bottom surface of the micropore, and a metal layer formed on the peripheral portion of the micropore, A trace substance detection element using plasmon resonance in which the metal layer formed on the bottom surface is in a non-contact state can be obtained.

これらの微量物質検出用素子の内で、微小突起部を形成した素子では、該突起部には、該突起部上面と比較して直径が小さい部分が少なくとも一カ所存在する。また、基板面上に微細孔を形成した素子では、微細孔内に、微細孔表面と比較して孔径が大きい部分が少なくとも一カ所存在する。この様な素子は、従来知られていない新規な構造を有する素子である。   Among these elements for detecting a trace substance, in an element in which a minute protrusion is formed, the protrusion has at least one portion having a smaller diameter than the upper surface of the protrusion. Further, in an element in which a microhole is formed on the substrate surface, at least one portion having a hole diameter larger than the surface of the microhole is present in the microhole. Such an element is an element having a novel structure that has not been conventionally known.

上記構造の本発明の素子では、突起部を有する素子については、突起部の上面と基板面に金属層が形成され、微細孔を有する素子については、微細孔の周辺部と底面に金属層が形成されており、光照射によって生じるプラズモン共鳴場はこれらの金属層のエッジ部分に局在する。そして、微小突起部の上面と基板面に形成された金属層間の最短距離、或いは、微細孔の周辺部と底面に形成された金属層間の最短距離を所定の範囲、特に、5nm〜10μm程度に調整することによって、局在プラズモン共鳴場の電場強度を著しく向上させることができる。   In the element of the present invention having the above structure, a metal layer is formed on the upper surface and the substrate surface of the protrusion for the element having the protrusion, and a metal layer is formed on the peripheral and bottom surfaces of the hole for the element having the minute hole. The formed plasmon resonance field generated by light irradiation is localized at the edge portions of these metal layers. Then, the shortest distance between the metal layers formed on the top surface of the microprojection part and the substrate surface, or the shortest distance between the metal layers formed on the peripheral part and bottom surface of the microhole is set to a predetermined range, particularly about 5 nm to 10 μm. By adjusting, the electric field strength of the localized plasmon resonance field can be remarkably improved.

この様な突起部の上面と基板面に形成された金属層間のギャップ、或いは、微細孔の周辺部と底面に形成された金属層間のギャップ、即ち、高さ方向における金属層間のギャップを調整することによって、局在プラズモン共鳴場の電場強度を向上させた微量物質測定用素子は、従来全く知られていない新規な構造の素子である。   The gap between the metal layers formed on the upper surface and the substrate surface of such a protrusion or the gap between the metal layers formed on the periphery and the bottom surface of the fine hole, that is, the gap between the metal layers in the height direction is adjusted. Thus, the element for measuring a trace substance with improved electric field strength of the localized plasmon resonance field is an element having a novel structure that has not been known at all.

上記した特徴を有する本発明の微量物質測定用素子は、時間領域差分法での計算結果によれば、平坦な金属面に発生するプラズモン共鳴場と比較して、その電場強度は、10倍以上に増強される。従って、本発明の微量物質検出素子を用いれば、従来の10−5以下の濃度の微量物質を高感度に検出できるばかりか、マイクロ流露などのその他の分析デバイスへの集積化も可能となる。 According to the calculation result by the time domain difference method, the element for measuring a trace substance of the present invention having the above-described characteristics has an electric field strength of 10 5 times that of a plasmon resonance field generated on a flat metal surface. It is strengthened to the above. Therefore, by using the trace substance detection element of the present invention, it is possible not only to detect a conventional trace substance having a concentration of 10 −5 or less with high sensitivity, but also to integrate it into other analysis devices such as micro-flow dew.

上記した通り、本発明の微量物質検出用素子は、局在プラズモン共鳴を利用するセンサに用いられる検出用素子であって、従来にはない新規な構造を有し、局在プラズモン共鳴場の電場強度を向上させて、微量物質を高感度に検出することを可能としたものである。   As described above, the trace substance detection element of the present invention is a detection element used in a sensor that utilizes localized plasmon resonance, and has a novel structure that has not existed in the past, and an electric field of a localized plasmon resonance field. The strength is improved, and trace substances can be detected with high sensitivity.

また、本発明の微量物質検出用素子の製造方法によれば、上記した新規な構造を有する検出用素子を、気相法と湿式エッチングを利用した比較的簡単な製造方法によって、精度良く製造することができる。   In addition, according to the method for manufacturing a trace substance detection element of the present invention, the detection element having the above-described novel structure is accurately manufactured by a relatively simple manufacturing method using a vapor phase method and wet etching. be able to.

以下、図面を参照しつつ、本発明の実施例を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

以下の実施例では、基板としてシリコン又はシリカガラスを用い、その表面に、中間層としてフッ素添加シリカガラスを成膜し、最表面層にシリカガラスを成膜した場合について説明する。本発明に係る微量物質検出素子は、下記形態に限定されるものではなく、例えば、基板/中間層/最表面層の順に、シリコン/シリカガラス/シリコン、シリコン/シリカガラス/窒化ケイ素、シリコン/樹脂/シリカガラス、樹脂/シリカガラス/樹脂、などの様々な組み合わせの層を積層させた基板を用いて、下記実施例の方法を応用することによって製造できる。   In the following examples, a case where silicon or silica glass is used as a substrate, fluorine-added silica glass is formed as an intermediate layer on the surface, and silica glass is formed as an outermost layer will be described. The trace substance detection element according to the present invention is not limited to the following form. For example, silicon / silica glass / silicon, silicon / silica glass / silicon nitride, silicon / silica glass, silicon / silica glass / silicon nitride, It can manufacture by applying the method of the following Example using the board | substrate which laminated | stacked the layer of various combinations, such as resin / silica glass and resin / silica glass / resin.

実施例1
実施例1では、複数の微細孔を形成した基板を用いて、微量物質検出用素子を作製した例を示す。基板上に形成される微細孔は、孔径150nm、深さ100nm、隣接する微細孔間の間隔が300nmである。このような形状の素子は、以下の工程を経て再現性よく作製できる。なお、以下で述べる作製条件は、本発明に使用した装置における代表的な例であり、本発明を限定するものではない。
Example 1
Example 1 shows an example in which a trace substance detection element is manufactured using a substrate in which a plurality of fine holes are formed. The micropores formed on the substrate have a pore diameter of 150 nm, a depth of 100 nm, and an interval between adjacent micropores of 300 nm. An element having such a shape can be manufactured with good reproducibility through the following steps. Note that the manufacturing conditions described below are typical examples of the apparatus used in the present invention, and do not limit the present invention.

(1)基板として光学研磨されたシリコン板を用い、該シリコン板の表面に、プラズマCVD法でフッ素添加シリカガラス膜を50nm成膜した。フッ素原料としてはCガスを用い、シリカ原料としてテトラエトシキシランを用いて、これらの原料を酸素プラズマ中で分解して基板に堆積させた。 (1) An optically polished silicon plate was used as the substrate, and a fluorine-added silica glass film having a thickness of 50 nm was formed on the surface of the silicon plate by plasma CVD. C 2 F 6 gas was used as the fluorine raw material, and tetraethoxysilane was used as the silica raw material, and these raw materials were decomposed in oxygen plasma and deposited on the substrate.

(2)次に、フッ素原料であるCガスを止め、純粋なシリカガラス層を連続して50nm堆積させた。得られたガラス層の屈折率をエリプソメトリーで測定したところ、フッ素添加シリカガラス膜は1.42、シリカガラス層は1.47であり、フッ素添加によって屈折率が低下していることを確認した。また、ESCAで前者のフッ素含有量を測定したところ、約6モル%であった。 (2) Next, C 2 F 6 gas as a fluorine raw material was stopped, and a pure silica glass layer was continuously deposited to 50 nm. When the refractive index of the obtained glass layer was measured by ellipsometry, it was 1.42 for the fluorine-added silica glass film and 1.47 for the silica glass layer, and it was confirmed that the refractive index was lowered by fluorine addition. . Moreover, when the fluorine content of the former was measured by ESCA, it was about 6 mol%.

図1は、シリコン基板上にフッ素含有シリカガラス膜とシリカガラス膜を積層した状態を示す概略図である。   FIG. 1 is a schematic view showing a state in which a fluorine-containing silica glass film and a silica glass film are laminated on a silicon substrate.

(3)上記(2)工程で得られたシリカガラス膜にi線レジストを400nmの膜厚になるようにスピンコートし、波長325nmのHe−Cdレーザー(約200μW/cm)の干渉光を90秒照射した。その後、シャッターを一旦閉め、基板を90度回転させてから、再び同時間の照射を行った。照射後に、3分間の現像を行い、目的とするレジストパターンを得た。図2は、現像後のレジストパターン膜が形成された状態を示す概略図である。 (3) The silica glass film obtained in the step (2) is spin-coated with an i-line resist so as to have a film thickness of 400 nm, and interference light of a He—Cd laser (about 200 μW / cm 2 ) having a wavelength of 325 nm is applied. Irradiated for 90 seconds. Thereafter, the shutter was temporarily closed, the substrate was rotated 90 degrees, and irradiation was performed again at the same time. After the irradiation, development was performed for 3 minutes to obtain a desired resist pattern. FIG. 2 is a schematic view showing a state in which a resist pattern film after development is formed.

(4)次いで、レジストマスクを介して、上記(1)工程及び(2)工程で成膜したガラス層をドライエッチングした。ドライエッチングの条件は、高周波誘導プラズマパワー200W、バイアス高周波パワー100W、チャンバー内圧力1Paとして、エッチングガスとしてAr:70cc/分、C:30cc/分を導入した。エッチング中の基板温度を5℃に設定し、10分エッチング、60秒冷却のサイクルを複数回繰り返した。 (4) Next, the glass layer formed in the steps (1) and (2) was dry-etched through a resist mask. As dry etching conditions, a high frequency induction plasma power of 200 W, a bias high frequency power of 100 W, a chamber pressure of 1 Pa, Ar: 70 cc / min, and C 3 F 8 : 30 cc / min were introduced as etching gases. The substrate temperature during etching was set to 5 ° C., and a cycle of 10-minute etching and 60-second cooling was repeated a plurality of times.

(5)次いで、バイアスを印加しない酸素プラズマ(パワー300W、圧力100Pa)中で10分程度のアッシングを行い、表面に残留するレジストを除去した。図4はドライエッチング後の微細孔が形成された構造体を模式的に示す断面図である。   (5) Next, ashing was performed for about 10 minutes in oxygen plasma (power 300 W, pressure 100 Pa) without applying a bias, and the resist remaining on the surface was removed. FIG. 4 is a cross-sectional view schematically showing a structure in which fine holes after dry etching are formed.

(6)得られた構造体を、20℃に保った0.5%フッ酸水溶液に10秒間浸積後、素早く蒸留水で洗浄し、図5に示すような、微細孔側壁のフッ素含有シリカガラス膜部分が湿式エッチングされた構造体を形成した。   (6) The obtained structure was immersed in a 0.5% hydrofluoric acid aqueous solution kept at 20 ° C. for 10 seconds, and then quickly washed with distilled water, and the fluorine-containing silica with fine pore side walls as shown in FIG. A structure in which the glass film portion was wet-etched was formed.

(7)次いで、エッチング後の基板表面にスパッタ法で金を40nm成膜した。成膜条件は、以下の通りである。また、図7は金の成膜後の構造体の模式的に示す断面図である。   (7) Next, a 40 nm gold film was formed on the etched substrate surface by sputtering. The film forming conditions are as follows. FIG. 7 is a cross-sectional view schematically showing the structure after gold film formation.

ターゲット 金(2インチφ)
基板温度 室温
ターゲット−基板間距離 150mm
基板回転 無し
導入ガス アルゴン50cc/分
成膜時の圧力 4Pa
成膜時間 4分
(8)上記した方法で金を成膜して得られた構造体を、図9に示す光学系に設置し、基板と対物レンズの間隙に、濃度10−8モル/リットルのピリジン溶液を滴下して、波長785nmのレーザーを励起光とするラマン散乱分光スペクトルを測定した。その結果、図10に示すとおり、波数1023cm−1にピリジン骨格に由来するピークが検出できた。
Target gold (2 inches φ)
Substrate temperature Room temperature Target-substrate distance 150mm
Substrate rotation None Introduced gas Argon 50 cc / min Pressure during film formation 4 Pa
Deposition time 4 minutes (8) The structure obtained by depositing gold by the method described above was placed in the optical system shown in FIG. 9, and a concentration of 10 −8 mol / liter was placed in the gap between the substrate and the objective lens. A pyridine solution was added dropwise, and a Raman scattering spectrum using a laser having a wavelength of 785 nm as excitation light was measured. As a result, as shown in FIG. 10, a peak derived from the pyridine skeleton was detected at a wave number of 1023 cm −1 .

実施例2
実施例2では、複数の微小突起部を形成した基板を用いて、微量物質検出用素子を作製した例を示す。基板上に形成される突起部は、直径150nm、高さ100nm、隣接する突起部の間隔が300nmである。このような形状の素子は、以下の工程を経て再現性よく作製できる。なお、以下で述べる作製条件は、本発明に使用した装置における代表的な例であり、本発明を限定するものではない。
Example 2
Example 2 shows an example in which a trace substance detection element is manufactured using a substrate on which a plurality of minute protrusions are formed. The protrusions formed on the substrate have a diameter of 150 nm, a height of 100 nm, and an interval between adjacent protrusions of 300 nm. An element having such a shape can be manufactured with good reproducibility through the following steps. Note that the manufacturing conditions described below are typical examples of the apparatus used in the present invention, and do not limit the present invention.

(1)実施例1と同様にしてシリコン基板上にフッ素含有シリカガラス膜とシリカガラス膜を積層した後、i線レジストを400nmの膜厚になるようにスピンコートし、波長325nmのHe−Cdレーザー(約200μW/cm)の干渉光を120秒照射した。その後、シャッターを一旦閉め、基板を90度回転させてから、再び同時間の照射を行った。照射後に、3分間の現像を行い、目的とするレジストパターンを得た。図3は現像後のレジストパターンが形成された状態を示す概略図である。 (1) After laminating a fluorine-containing silica glass film and a silica glass film on a silicon substrate in the same manner as in Example 1, an i-line resist was spin-coated to a film thickness of 400 nm, and He—Cd having a wavelength of 325 nm. Laser interference light (about 200 μW / cm 2 ) was irradiated for 120 seconds. Thereafter, the shutter was temporarily closed, the substrate was rotated 90 degrees, and irradiation was performed again at the same time. After the irradiation, development was performed for 3 minutes to obtain a desired resist pattern. FIG. 3 is a schematic view showing a state in which a resist pattern after development is formed.

(2)次いで、レジストマスクを介してフッ素含有シリカガラス膜とシリカガラス膜をドライエッチングした。ドライエッチングの条件は、高周波誘導プラズマパワー200W、バイアス高周波パワー100W、チャンバー内圧力1Paとして、エッチングガスとしてAr:70cc/分、C:30cc/分を導入した。エッチング中の基板温度を5℃に設定し、10分エッチング、60秒冷却のサイクルを複数回繰り返した。 (2) Next, the fluorine-containing silica glass film and the silica glass film were dry-etched through a resist mask. As dry etching conditions, a high frequency induction plasma power of 200 W, a bias high frequency power of 100 W, a chamber pressure of 1 Pa, Ar: 70 cc / min, and C 3 F 8 : 30 cc / min were introduced as etching gases. The substrate temperature during etching was set to 5 ° C., and a cycle of 10-minute etching and 60-second cooling was repeated a plurality of times.

(3)次いで、実施例1と同様にして、酸素プラズマアッシング、フッ酸エッチングを行い、図6に示すような、突起部側壁のフッ素含有シリカガラス膜がエッチングされた構造体を形成した。   (3) Next, in the same manner as in Example 1, oxygen plasma ashing and hydrofluoric acid etching were performed to form a structure in which the fluorine-containing silica glass film on the side walls of the protrusions was etched as shown in FIG.

(4)次いで、エッチング後の基板表面にスパッタ法で金を40nm成膜した。成膜条件は実施例1と同様である。図8は金の成膜後の構造体を模式的に示す断面図である。   (4) Next, a 40 nm gold film was formed on the etched substrate surface by sputtering. The film forming conditions are the same as in Example 1. FIG. 8 is a cross-sectional view schematically showing the structure after gold film formation.

(5)上記した方法で金を成膜して得られた構造体を、実施例1と同様な光学系に設置し、基板と対物レンズの間隙に、濃度10−8モル/リットルのピリジン溶液を滴下して、波長785nmのレーザーを励起光とするラマン散乱分光スペクトルを測定した。その結果、図11に示すとおり、波数1023cm−1にピリジン骨格に由来するピークが検出できた。 (5) The structure obtained by depositing gold by the above method is placed in the same optical system as in Example 1, and a pyridine solution having a concentration of 10 −8 mol / liter is placed in the gap between the substrate and the objective lens. Was dropped, and a Raman scattering spectrum using a laser having a wavelength of 785 nm as excitation light was measured. As a result, as shown in FIG. 11, a peak derived from the pyridine skeleton was detected at a wave number of 1023 cm −1 .

比較例1
光学研磨されたシリコン基板に、実施例1における(7)工程と同様の方法で厚さ40nmの金を成膜した。次いで、金を成膜したシリコン基板を実施例1と同様の光学系に設置し、基板と対物レンズの間隙に、濃度10−8モル/リットルのピリジン溶液を滴下して、波長785nmのレーザーを励起光とするラマン散乱分光スペクトルを測定したところ、ピリジン骨格に由来するピークは検出できなかった。
Comparative Example 1
A 40 nm thick gold film was formed on the optically polished silicon substrate by the same method as in step (7) in Example 1. Next, a silicon substrate on which gold was formed was placed in the same optical system as in Example 1. A pyridine solution having a concentration of 10 −8 mol / liter was dropped into the gap between the substrate and the objective lens, and a laser with a wavelength of 785 nm was applied. When a Raman scattering spectroscopic spectrum as excitation light was measured, no peak derived from the pyridine skeleton could be detected.

また、同様の方法で12モル/リットルのピリジン溶液を測定したとこと、図12に示すとおり、実施例1,2と同じ波数位置にピークが検出された。   Further, a 12 mol / liter pyridine solution was measured by the same method, and as shown in FIG. 12, a peak was detected at the same wave number position as in Examples 1 and 2.

以上の結果から、実施例1及び2で得た素子では、10−8モル/リットルという低濃度のピリジン溶液中のピリジンを検出することが可能であるのに対して、比較例1で得た素子では、この様な低濃度のピリジンを検出できないことがわかる。 From the above results, the devices obtained in Examples 1 and 2 were able to detect pyridine in a pyridine solution having a low concentration of 10 −8 mol / liter, whereas those obtained in Comparative Example 1 were obtained. It can be seen that the device cannot detect such a low concentration of pyridine.

エッチング速度が速い層とエッチング速度が遅い層を基板上に積層した状態を示す概略図。Schematic which shows the state which laminated | stacked the layer with a quick etching rate, and the layer with a slow etching rate on the board | substrate. 微細孔を形成するためのフォトレジスト層が形成された状態を示す概略図。Schematic which shows the state in which the photoresist layer for forming a micropore was formed. 微小突起部を形成するためのフォトレジスト層が形成された状態を示す概略図。Schematic which shows the state in which the photoresist layer for forming a microprotrusion part was formed. 基板の一面に微細孔が形成された状態を模式的に示す断面図。Sectional drawing which shows typically the state by which the fine hole was formed in the one surface of a board | substrate. 複数の微細孔が形成された基板に対して湿式エッチングを行った後の状態を模式的に示す平面図及び断面図。The top view and sectional drawing which show typically the state after performing wet etching with respect to the board | substrate with which the several fine hole was formed. 複数の微小突起部が形成された基板に対して湿式エッチングを行った後の状態を模式的に示す平面図及び断面図。The top view and sectional drawing which show typically the state after performing wet etching with respect to the board | substrate with which the several microprotrusion part was formed. 微細孔が形成された基板に金属層を形成した状態を模式的に示す断面図。Sectional drawing which shows typically the state which formed the metal layer in the board | substrate with which the fine hole was formed. 微小突起部が形成された基板に金属層を形成した状態を模式的に示す断面図。Sectional drawing which shows typically the state which formed the metal layer in the board | substrate with which the microprotrusion part was formed. 実施例1で用いたラマン散乱スペクトル測定用光学系の模式図。1 is a schematic diagram of an optical system for Raman scattering spectrum measurement used in Example 1. FIG. 実施例1で測定したラマン散乱スペクトルを示す図面。FIG. 3 shows a Raman scattering spectrum measured in Example 1. FIG. 実施例2で測定したラマン散乱スペクトルを示す図面。FIG. 3 is a drawing showing a Raman scattering spectrum measured in Example 2. FIG. 比較例1で測定した濃度12モル/リットルのピリジン溶液において検出されたラマン散乱スペクトルを示す図面。The figure which shows the Raman scattering spectrum detected in the pyridine solution of the density | concentration of 12 mol / liter measured in the comparative example 1. FIG.

符号の説明Explanation of symbols

1 基板
2 エッチング速度が速い層
3 エッチング速度が遅い層
4 レジスト層
5 レジスト層の開口部
6 レジスト層
7,8,9,10 金属層
DESCRIPTION OF SYMBOLS 1 Substrate 2 Layer with high etching rate 3 Layer with low etching rate 4 Resist layer 5 Resist layer opening 6 Resist layer 7, 8, 9, 10 Metal layer

Claims (9)

基板と、該基板の一面に形成された複数の微小突起部と、該突起部の上面及び基板面上に形成された金属層とを有するプラズモン共鳴を利用する微量物質検出用素子であって、
該突起部の上面に形成された金属層と、基板面に形成された金属層とが非接触状態であることを特徴とする微量物質検出用素子。
An element for detecting a trace substance using plasmon resonance having a substrate, a plurality of minute protrusions formed on one surface of the substrate, and a metal layer formed on the upper surface and the substrate surface of the protrusion,
An element for detecting a trace substance, wherein a metal layer formed on an upper surface of the protrusion and a metal layer formed on a substrate surface are in a non-contact state.
突起部が、突起部の上面と比較して直径が小さい部分を少なくとも一カ所含むものである請求項1に記載の微量物質検出用素子。 The trace substance detection element according to claim 1, wherein the protrusion includes at least one portion having a diameter smaller than that of the upper surface of the protrusion. 突起部の上面に形成された金属層と基板面に形成された金属層との最短部分の間隔が5nm〜10μmである請求項1又は2に記載の微量物質検出用素子。 The element for detecting a trace substance according to claim 1 or 2, wherein a distance between a shortest portion between the metal layer formed on the upper surface of the protrusion and the metal layer formed on the substrate surface is 5 nm to 10 µm. 基板と、該基板の一面に形成された複数の微細孔と、該微細孔の周辺部と微細孔底面に形成された金属層とを有するプラズモン共鳴を利用する微量物質検出用素子であって、
該微細孔の周辺部に形成された金属層と、底面に形成された金属層とが非接触状態であることを特徴とする微量物質検出用素子。
A trace substance detection element using plasmon resonance having a substrate, a plurality of micro holes formed on one surface of the substrate, and a metal layer formed on a peripheral portion of the micro holes and a bottom surface of the micro holes,
An element for detecting a trace substance, wherein a metal layer formed in a peripheral portion of the micropore and a metal layer formed on a bottom surface are in a non-contact state.
微細孔内に、微細孔表面と比較して孔径が大きい部分が少なくとも一カ所存在する請求項4に記載の微量物質検出用素子。 The element for detecting a trace substance according to claim 4, wherein at least one portion having a hole diameter larger than that of the surface of the fine hole is present in the fine hole. 微細孔の周辺部に形成された金属層と微細孔の底面に形成された金属層との最短部分の間隔が5nm〜10μmである請求項4又は5に記載の微量物質検出用素子。 The element for detecting a trace substance according to claim 4 or 5, wherein a distance between a shortest portion of the metal layer formed in the peripheral portion of the fine hole and the metal layer formed on the bottom surface of the fine hole is 5 nm to 10 µm. 金属層が金、銀、銅又はこれらを含む混合物からなるものである請求項1〜6のいずれかに記載の微量物質検出用素子。 The element for detecting a trace substance according to any one of claims 1 to 6, wherein the metal layer is made of gold, silver, copper, or a mixture containing these. 下記の工程からなる請求項1〜7のいずれかに記載された微量物質検出用素子の製造方法:
(1)基板上に、湿式エッチングによるエッチング速度が異なる少なくとも二層を、エッチング速度が速い層が基板面に近い位置となるように形成する工程、
(2)上記(1)工程で基板上に形成された層をドライエッチングして、微小突起部又は微細孔を形成する工程、
(3)上記(2)工程で微小突起部又は微細孔が形成された基板を湿式エッチングに供する工程、
(4)上記(3)工程でエッチング処理を行った基板に、蒸着法又はスパッタリング法によって金属層を形成する工程。
The manufacturing method of the element for a trace substance detection in any one of Claims 1-7 which consists of the following processes:
(1) forming at least two layers having different etching rates by wet etching on a substrate such that a layer having a high etching rate is close to the substrate surface;
(2) a step of dry-etching the layer formed on the substrate in the step (1) to form a minute protrusion or a minute hole;
(3) A step of subjecting the substrate on which the fine protrusions or fine holes are formed in the step (2) to wet etching,
(4) A step of forming a metal layer by a vapor deposition method or a sputtering method on the substrate subjected to the etching process in the step (3).
基板がシリカガラス板又はシリコン板であり、基板上に形成される層のうちの少なくとも一層が、シリカガラスからなる層又はフッ素を含むシリカガラスからなる層であり、湿式エッチングをフッ酸水溶液で行う請求項8に記載の方法。 The substrate is a silica glass plate or a silicon plate, and at least one of the layers formed on the substrate is a layer made of silica glass or a layer made of silica glass containing fluorine, and wet etching is performed with a hydrofluoric acid aqueous solution. The method of claim 8.
JP2008066260A 2008-03-14 2008-03-14 Trace material detection element Pending JP2009222507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008066260A JP2009222507A (en) 2008-03-14 2008-03-14 Trace material detection element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008066260A JP2009222507A (en) 2008-03-14 2008-03-14 Trace material detection element

Publications (1)

Publication Number Publication Date
JP2009222507A true JP2009222507A (en) 2009-10-01

Family

ID=41239459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008066260A Pending JP2009222507A (en) 2008-03-14 2008-03-14 Trace material detection element

Country Status (1)

Country Link
JP (1) JP2009222507A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014025029A1 (en) 2012-08-10 2014-02-13 浜松ホトニクス株式会社 Surface-enhanced raman scattering element
WO2014025037A1 (en) 2012-08-10 2014-02-13 浜松ホトニクス株式会社 Surface-enhanced raman scattering element, and method for producing same
WO2014025031A1 (en) 2012-08-10 2014-02-13 浜松ホトニクス株式会社 Surface-enhanced raman scattering element
WO2014025035A1 (en) 2012-08-10 2014-02-13 浜松ホトニクス株式会社 Surface-enhanced raman scattering element
WO2014025027A1 (en) 2012-08-10 2014-02-13 浜松ホトニクス株式会社 Surface-enhanced raman scattering element
US8710427B2 (en) 2009-11-19 2014-04-29 Seiko Epson Corporation Sensor chip, sensor cartridge, and analysis apparatus
TWI453398B (en) * 2009-11-19 2014-09-21 Seiko Epson Corp Sensor chip, sensor cartridge, and analysis apparatus
WO2014168237A1 (en) * 2013-04-12 2014-10-16 株式会社カネカ Structure replication method, localized surface plasmon resonance sensor chip manufacturing method including this replication method, structure, localized surface plasmon resonance sensor chip, and localized surface plasmon resonance sensor
CN104541155A (en) * 2012-08-10 2015-04-22 浜松光子学株式会社 Surface-enhanced Raman scattering element
JP2015212674A (en) * 2014-05-07 2015-11-26 セイコーエプソン株式会社 Analyzer and electronic apparatus
KR20160117885A (en) * 2015-04-01 2016-10-11 한국과학기술원 Label-free Sensor and Method for Manufacture thereof
US9588049B2 (en) 2012-08-10 2017-03-07 Hamamatsu Photonics K.K. Surface-enhanced Raman scattering unit, and method for using same
US9612201B2 (en) 2012-08-10 2017-04-04 Hamamatsu Photonics K.K. Surface-enhanced raman scattering element
US9851305B2 (en) 2013-03-29 2017-12-26 Hamamatsu Photonics K.K. Surface-enhanced Raman scattering unit and Raman spectroscopic analysis method
JP2018004644A (en) * 2016-07-01 2018-01-11 ツィンファ ユニバーシティ Method of detecting single molecules
JP2018004643A (en) * 2016-07-01 2018-01-11 ツィンファ ユニバーシティ Carrier and device for single molecule detection
JP2018004642A (en) * 2016-07-01 2018-01-11 ツィンファ ユニバーシティ Method of manufacturing carrier for single molecule detection
US9952158B2 (en) 2013-03-29 2018-04-24 Hamamatsu Photonics K.K. Surface-enhanced raman scattering unit and raman spectroscopic analysis method
US9964492B2 (en) 2013-03-29 2018-05-08 Hamamatsu Photonics K.K. Surface-enhanced raman scattering unit and raman spectroscopic analysis method
US9976961B2 (en) 2012-08-10 2018-05-22 Hamamatsu Photonics K.K. Surface-enhanced raman scattering element including a conductor layer having a base part and a plurality of protusions
US10132755B2 (en) 2012-08-10 2018-11-20 Hamamatsu Photonics K.K. Surface-enhanced Raman scattering element, and method for manufacturing surface-enhanced Raman scattering element
US10393663B2 (en) 2015-02-26 2019-08-27 Hamamatsu Photonics K.K. Surface-enhanced raman scattering element and method for manufacturing same
US10408761B2 (en) 2012-08-10 2019-09-10 Hamamatsu Photonics K.K. Surface-enhanced Raman scattering element
US10551322B2 (en) 2012-08-10 2020-02-04 Hamamatsu Photonics K.K. Surface-enhanced Raman scattering unit including integrally formed handling board
CN112005101A (en) * 2018-08-28 2020-11-27 松下知识产权经营株式会社 Sensor substrate and method for manufacturing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004232027A (en) * 2003-01-30 2004-08-19 Fuji Photo Film Co Ltd Fine structure, producing method therefor, and sensor
JP2007101308A (en) * 2005-10-03 2007-04-19 Canon Inc Target substance detecting element, device, and method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004232027A (en) * 2003-01-30 2004-08-19 Fuji Photo Film Co Ltd Fine structure, producing method therefor, and sensor
JP2007101308A (en) * 2005-10-03 2007-04-19 Canon Inc Target substance detecting element, device, and method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6012057868; WANG S. et al: 'Nanopin Plasmonic Resonator Arrayand Its Optical Properties' NANO LETTERS Vol.7, No.4, 2007, Pages 1076-1080 *
JPN6012057871; CUI Bo et al: 'Fabrication of metal nanoring array by nanoimprint lithography(NIL) and reactive ion etching' Microelectronic Engineering 84 , 2007, Pages 1544-1547 *

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8710427B2 (en) 2009-11-19 2014-04-29 Seiko Epson Corporation Sensor chip, sensor cartridge, and analysis apparatus
US9151666B2 (en) 2009-11-19 2015-10-06 Seiko Epson Corporation Sensor chip, sensor cartridge, and analysis apparatus
TWI453398B (en) * 2009-11-19 2014-09-21 Seiko Epson Corp Sensor chip, sensor cartridge, and analysis apparatus
US10184895B2 (en) 2012-08-10 2019-01-22 Hamamatsu Photonics K.K. Surface-enhanced raman scattering unit, and method for using same
US9658166B2 (en) 2012-08-10 2017-05-23 Hamamatsu Photonics K.K. Surface-enhanced raman scattering unit, and method for using same
WO2014025035A1 (en) 2012-08-10 2014-02-13 浜松ホトニクス株式会社 Surface-enhanced raman scattering element
DE112013004011B4 (en) 2012-08-10 2023-02-16 Hamamatsu Photonics K.K. Element for surface enhanced Raman scattering
DE112013003984B4 (en) 2012-08-10 2021-12-02 Hamamatsu Photonics K.K. Surface-enhanced Raman scattering element and a method of manufacturing a surface-enhanced Raman scattering element
DE112013003997B4 (en) 2012-08-10 2021-12-02 Hamamatsu Photonics K.K. Surface-reinforced Raman scattering element
CN104541155A (en) * 2012-08-10 2015-04-22 浜松光子学株式会社 Surface-enhanced Raman scattering element
DE112013004001B4 (en) 2012-08-10 2021-11-18 Hamamatsu Photonics K.K. Element for surface-enhanced Raman scattering
DE112013004006B4 (en) 2012-08-10 2021-11-18 Hamamatsu Photonics K.K. Element for surface-enhanced Raman scattering
US10551322B2 (en) 2012-08-10 2020-02-04 Hamamatsu Photonics K.K. Surface-enhanced Raman scattering unit including integrally formed handling board
US9588049B2 (en) 2012-08-10 2017-03-07 Hamamatsu Photonics K.K. Surface-enhanced Raman scattering unit, and method for using same
US10408761B2 (en) 2012-08-10 2019-09-10 Hamamatsu Photonics K.K. Surface-enhanced Raman scattering element
US9612201B2 (en) 2012-08-10 2017-04-04 Hamamatsu Photonics K.K. Surface-enhanced raman scattering element
US9976961B2 (en) 2012-08-10 2018-05-22 Hamamatsu Photonics K.K. Surface-enhanced raman scattering element including a conductor layer having a base part and a plurality of protusions
US9726608B2 (en) 2012-08-10 2017-08-08 Hamamatsu Photonics K.K. Surface-enhanced raman scattering element
US9846123B2 (en) 2012-08-10 2017-12-19 Hamamatsu Photonics K.K. Surface-enhanced Raman scattering element
WO2014025027A1 (en) 2012-08-10 2014-02-13 浜松ホトニクス株式会社 Surface-enhanced raman scattering element
US9857306B2 (en) 2012-08-10 2018-01-02 Hamamatsu Photonics K.K. Surface-enhanced Raman scattering element
US9863884B2 (en) 2012-08-10 2018-01-09 Hamamatsu Photonics K.K. Surface-enhanced Raman scattering element, and method for producing same
US9863883B2 (en) 2012-08-10 2018-01-09 Hamamatsu Photonics K.K. Surface-enhanced raman scattering element
WO2014025031A1 (en) 2012-08-10 2014-02-13 浜松ホトニクス株式会社 Surface-enhanced raman scattering element
WO2014025037A1 (en) 2012-08-10 2014-02-13 浜松ホトニクス株式会社 Surface-enhanced raman scattering element, and method for producing same
CN104520695A (en) * 2012-08-10 2015-04-15 浜松光子学株式会社 Surface-enhanced raman scattering element
CN107576647A (en) * 2012-08-10 2018-01-12 浜松光子学株式会社 SERS unit
US9874523B2 (en) 2012-08-10 2018-01-23 Hamamatsu Photonics K.K. Surface-enhanced Raman scattering element including a conductor layer having a base part and a plurality of protusions
CN104520695B (en) * 2012-08-10 2018-04-13 浜松光子学株式会社 Surface enhanced raman scattering element
WO2014025029A1 (en) 2012-08-10 2014-02-13 浜松ホトニクス株式会社 Surface-enhanced raman scattering element
US10132755B2 (en) 2012-08-10 2018-11-20 Hamamatsu Photonics K.K. Surface-enhanced Raman scattering element, and method for manufacturing surface-enhanced Raman scattering element
US10281404B2 (en) 2013-03-29 2019-05-07 Hamamatsu Photonics K.K. Surface-enhanced raman scattering unit and raman spectroscopic analysis method
US9964492B2 (en) 2013-03-29 2018-05-08 Hamamatsu Photonics K.K. Surface-enhanced raman scattering unit and raman spectroscopic analysis method
US9952158B2 (en) 2013-03-29 2018-04-24 Hamamatsu Photonics K.K. Surface-enhanced raman scattering unit and raman spectroscopic analysis method
US9851305B2 (en) 2013-03-29 2017-12-26 Hamamatsu Photonics K.K. Surface-enhanced Raman scattering unit and Raman spectroscopic analysis method
WO2014168237A1 (en) * 2013-04-12 2014-10-16 株式会社カネカ Structure replication method, localized surface plasmon resonance sensor chip manufacturing method including this replication method, structure, localized surface plasmon resonance sensor chip, and localized surface plasmon resonance sensor
JP2015212674A (en) * 2014-05-07 2015-11-26 セイコーエプソン株式会社 Analyzer and electronic apparatus
US10393663B2 (en) 2015-02-26 2019-08-27 Hamamatsu Photonics K.K. Surface-enhanced raman scattering element and method for manufacturing same
KR101718906B1 (en) 2015-04-01 2017-03-23 한국과학기술원 Label-free Sensor and Method for Manufacture thereof
KR20160117885A (en) * 2015-04-01 2016-10-11 한국과학기술원 Label-free Sensor and Method for Manufacture thereof
JP2018004643A (en) * 2016-07-01 2018-01-11 ツィンファ ユニバーシティ Carrier and device for single molecule detection
JP2018004642A (en) * 2016-07-01 2018-01-11 ツィンファ ユニバーシティ Method of manufacturing carrier for single molecule detection
JP2018004644A (en) * 2016-07-01 2018-01-11 ツィンファ ユニバーシティ Method of detecting single molecules
CN112005101A (en) * 2018-08-28 2020-11-27 松下知识产权经营株式会社 Sensor substrate and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP2009222507A (en) Trace material detection element
US20150146180A1 (en) Method for fabricating nanoantenna array, nanoantenna array chip and structure for lithography
Zhan et al. The anomalous infrared transmission of gold films on two‐dimensional colloidal crystals
US20100284001A1 (en) Surfaced enhanced raman spectroscopy substrates
JP3907709B2 (en) Manufacturing method of inorganic diffraction element
KR20110097834A (en) A substrate for surface enhanced raman scattering (sers)
US8900524B2 (en) Optical sensor
Thilsted et al. Lithography‐Free Fabrication of Silica Nanocylinders with Suspended Gold Nanorings for LSPR‐Based Sensing
CN112968293B (en) Terahertz device based on enhanced abnormal optical transmission and preparation method thereof
WO2019146692A1 (en) Analysis substrate
Ho et al. Hollow plasmonic U-cavities with high-aspect-ratio nanofins sustaining strong optical vortices for light trapping and sensing
Zhang et al. Arrayed nanopore silver thin films for surface-enhanced Raman scattering
Zhang et al. Lithographically-generated 3D lamella layers and their structural color
Darvill et al. Breaking the symmetry of nanosphere lithography with anisotropic plasma etching induced by temperature gradients
Leong et al. Fabrication of suspended, three-dimensional chiral plasmonic nanostructures with single-step electron-beam lithography
CN112857232A (en) Long-range optical self-reference displacement sensor
Dan'ko et al. Nanopatterning Au chips for SPR refractometer by using interference lithography and chalcogenide photoresist
US20170199127A1 (en) Nanograting sensor devices and fabrication methods thereof
Skinner et al. Large-area subwavelength aperture arrays fabricated using nanoimprint lithography
Knoben et al. Plasmonic Au islands on polymer nanopillars
Michieli et al. Optimal geometry for plasmonic sensing with non-interacting Au nanodisk arrays
Dan’ko et al. Formation of laterally ordered arrays of noble metal nanocavities for SERS substrates by using interference photolithography
WO2019146700A1 (en) Analysis substrate and production method therefor
Jasim et al. Microsphere photolithography patterned nanohole array on an optical fiber
Gwiazda et al. Simple and versatile high aspect ratio nanostructuring via zinc oxide masking

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130827