JP2009222038A - Heat exchanger for stirling engine - Google Patents

Heat exchanger for stirling engine Download PDF

Info

Publication number
JP2009222038A
JP2009222038A JP2008070535A JP2008070535A JP2009222038A JP 2009222038 A JP2009222038 A JP 2009222038A JP 2008070535 A JP2008070535 A JP 2008070535A JP 2008070535 A JP2008070535 A JP 2008070535A JP 2009222038 A JP2009222038 A JP 2009222038A
Authority
JP
Japan
Prior art keywords
heat
heat exchanger
fins
working gas
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008070535A
Other languages
Japanese (ja)
Inventor
Shin Matsumoto
伸 松本
Keiji Oshima
恵司 大嶋
Naohiro Konosu
直広 鴻巣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2008070535A priority Critical patent/JP2009222038A/en
Publication of JP2009222038A publication Critical patent/JP2009222038A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the heat exchange efficiency of a heat exchanger by improving the contact efficiency between working gas and fins. <P>SOLUTION: A number of fins are formed on an inner surface of a ring-shaped base toward the center of the ring. The width of working gas passages formed of the fins is set to be constant. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はスターリング機関用熱交換器に関する。   The present invention relates to a heat exchanger for a Stirling engine.

スターリング機関は、フロンではなくヘリウム、水素または窒素などの自然冷媒を作動ガスとして用いているため、オゾン層の破壊を招くことのない熱機関として注目を集めている。
図4はスターリング機関の構成を示す概要図である。冷凍機として用いるスターリング機関1では、リニアモータ20などの動力源によりピストン12を往復運動させると、ディスプレーサ13はピストン12に対し作動ガスの流動抵抗等により所定の位相差を持って同期往復運動する。このピストン12とディスプレーサ13の動作により、圧縮空間45と膨脹空間46の間で作動ガスが行き来きし、圧縮空間45では作動ガスの温度が上昇し、膨脹空間46では作動ガスの温度が低下する。圧縮空間(高温空間)45の熱を高温伝熱ヘッド40を通じて放熱して等温圧縮変化を実現し、外部の熱を低温伝熱ヘッド41を通じ膨脹空間(低温空間)46に吸収して等温膨脹変化を実現すれば、逆スターリングサイクルを形成することとなる。
圧縮空間(高温空間)45の熱を高温伝熱ヘッド40に伝え、また外部の熱を低温伝熱ヘッド41を通じ膨脹空間(低温空間)46で吸収するため、高温伝熱ヘッド40と低温伝熱ヘッド41の内部にはそれぞれ熱交換器42,43が配置される。このような熱交換器42,43の熱交換効率と熱授受効率を高めることは、これまでも当技術分野における関心ごとであった。
The Stirling engine is attracting attention as a heat engine that does not cause destruction of the ozone layer because it uses a natural refrigerant such as helium, hydrogen, or nitrogen as a working gas instead of Freon.
FIG. 4 is a schematic diagram showing the configuration of the Stirling engine. In the Stirling engine 1 used as a refrigerator, when the piston 12 is reciprocated by a power source such as a linear motor 20, the displacer 13 is synchronously reciprocated with a predetermined phase difference with respect to the piston 12 due to the flow resistance of the working gas. . By the operation of the piston 12 and the displacer 13, the working gas moves back and forth between the compression space 45 and the expansion space 46, the temperature of the working gas increases in the compression space 45, and the temperature of the working gas decreases in the expansion space 46. . The heat of the compression space (high-temperature space) 45 is radiated through the high-temperature heat transfer head 40 to achieve isothermal compression change, and the external heat is absorbed into the expansion space (low-temperature space) 46 through the low-temperature heat transfer head 41 to change isothermal expansion. If this is realized, a reverse Stirling cycle is formed.
Since the heat of the compression space (high temperature space) 45 is transmitted to the high temperature heat transfer head 40 and external heat is absorbed by the expansion space (low temperature space) 46 through the low temperature heat transfer head 41, the high temperature heat transfer head 40 and the low temperature heat transfer head are absorbed. Heat exchangers 42 and 43 are arranged inside the head 41, respectively. Increasing the heat exchange efficiency and heat transfer efficiency of the heat exchangers 42 and 43 has been a concern in the art.

この熱交換器に関する従来技術として特許文献1には、多数のフィンを設けた平板状素材をフィンを内側にしてリング状に成形した熱交換器が記載されている。
特開2007−85641号公報
As a conventional technique related to this heat exchanger, Patent Document 1 describes a heat exchanger in which a flat plate-like material provided with a large number of fins is shaped into a ring shape with the fins inside.
JP 2007-85641 A

熱交換器を通過する作動ガスの流速について検討すと、多数のフィンを設けた平板状素材をフィンを内側にしてリング状に成形すると、通常、図5のように流路形状は台形となる。
一般的に流路を流れる流体の圧力損失(差圧)ΔPと流速vの関係は、流体の密度をρ、流路の摩擦係数をf、流路長さをl、流路の水力直径をdとすれば、次式で表される。
When considering the flow rate of the working gas passing through the heat exchanger, if a flat plate-like material provided with a large number of fins is formed into a ring shape with the fins inside, the flow path shape is usually trapezoidal as shown in FIG. .
In general, the relationship between the pressure loss (differential pressure) ΔP and the flow velocity v of the fluid flowing through the flow path is expressed as follows: fluid density is ρ, flow coefficient of friction is f, flow path length is l, and hydraulic diameter of the flow path is If d, it is expressed by the following equation.

Figure 2009222038
Figure 2009222038

数式1を流速vを求める式に変形する。   Equation 1 is transformed into an equation for obtaining the flow velocity v.

Figure 2009222038
Figure 2009222038

次に、長方形流路の場合(両端の側壁を含めない)の流路短辺をw、流路長辺をhとすれば、水力直径dは次式のようになる。   Next, assuming that the short channel side is w and the long channel side is h in the case of a rectangular channel (not including the side walls at both ends), the hydraulic diameter d is expressed by the following equation.

Figure 2009222038
Figure 2009222038

数式2に数式3を代入すると、   Substituting equation 3 into equation 2,

Figure 2009222038
Figure 2009222038

となり、流速vは、流路短辺wのルートに比例することがわかる。すなわち、流路短辺wが小さいほど流速vは小さくなり、流路短辺wが大きいほど流速vは大きくなる。
以上のことから、台形流路のように流路短辺が変化する場合には流速分布がフィン方向に渡って漸次変化し、流速分布は図6ようになる。このようにフィン方向に渡り作動ガスの流速が異なると熱交換器内での作動ガスの流れが乱れることなり、作動ガスとフィンの接触効率が低下することとなる。
係る場合に、特許文献1に記載のように、熱交換器の外周方向に向かってはフィンの断面積を漸増することにより熱交換器の外周方向に向かって熱が流れやすくしても、フィンに作動ガスの熱がうまく伝わらないため、その効果を有効に発揮することができない。つまり、熱交換器の熱交換効率を向上させるには、作動ガスとフィンとの接触効率を低下させることなく熱交換器の熱の流れを良くする事が必要となる。
本発明は上記の点に鑑みなされたものであって、作動ガスと伝熱ヘッドとの間の熱授受が安定しているスターリング機関用熱交換器を提供することおよびそれを用いたスターリング機関を提供することを目的とする。
Thus, it can be seen that the flow velocity v is proportional to the route of the flow path short side w. That is, the flow velocity v decreases as the flow path short side w decreases, and the flow velocity v increases as the flow path short side w increases.
From the above, when the short side of the channel changes like a trapezoidal channel, the flow velocity distribution gradually changes in the fin direction, and the flow velocity distribution is as shown in FIG. If the flow velocity of the working gas is different in the fin direction as described above, the flow of the working gas in the heat exchanger is disturbed, and the contact efficiency between the working gas and the fin is lowered.
In such a case, as described in Patent Document 1, even if heat is likely to flow toward the outer circumferential direction of the heat exchanger by gradually increasing the cross-sectional area of the fin toward the outer circumferential direction of the heat exchanger, Since the heat of the working gas is not transmitted well, the effect cannot be exhibited effectively. That is, to improve the heat exchange efficiency of the heat exchanger, it is necessary to improve the heat flow of the heat exchanger without reducing the contact efficiency between the working gas and the fins.
The present invention has been made in view of the above points, and provides a heat exchanger for a Stirling engine in which heat transfer between a working gas and a heat transfer head is stable, and a Stirling engine using the same. The purpose is to provide.

請求項1に係る発明は、圧縮空間と膨脹空間を行き来する作動ガスとの間で授受した熱を伝熱ヘッドに伝達するスターリング機関用熱交換器において、前記伝熱ヘッドの内周と接触するリング状ベースの内面に、リングの中心方向に向かって延びる多数のフィンを、該フィンによって形成される作動ガス流路の幅が一定となるように設けたこと、を特徴とする。
請求項2に係る発明は、請求項1に記載の発明であって、前記フィンは、中心方向に向かって先細りとなっていることを特徴とする。
The invention according to claim 1 is a Stirling engine heat exchanger that transfers heat transferred between the compression space and the working gas traveling between the expansion space to the heat transfer head, and is in contact with the inner periphery of the heat transfer head. A plurality of fins extending toward the center of the ring are provided on the inner surface of the ring-shaped base so that the width of the working gas flow path formed by the fins is constant.
The invention according to claim 2 is the invention according to claim 1, characterized in that the fins are tapered toward the center.

本発明によると、作動ガスから安定した熱授受が可能なスターリング機関用熱交換器を得ることができる。   According to the present invention, it is possible to obtain a heat exchanger for a Stirling engine capable of stably transferring heat from a working gas.

図1に本発明に係るスターリング機関用熱交換器の平面図、図2に図1に示したA−A断面図を示し、これに基づき説明する。
本発明に係るスターリング機関用熱交換器100は、薄いリング状のベース101の内面に、ベース101の軸線中心方向に向かって延びるフィン102を一定ピッチで多数形成したものである。ベース101およびフィン102に囲まれた領域が作動ガスの流路となる。なお、熱交換器100は、ベース101の外周にて図示しない高温伝熱ヘッドまたは低温伝熱ヘッドの内周に接触し、伝熱ヘッドを介して熱の授受を行っている。
図3は熱交換器の平面図の部分拡大図である。図3のようにフィン102は、流路の周方向幅wが径方向に渡って一定となるようにベース101の中心方向に向かい細くなっている。これにより、流路全体で流速が一定となり作動ガスがスムーズに流れることとなり、フィン102と効率良く熱の授受が可能となる。
さらに、フィン102は熱交換器100の外周側に断面積が漸増することとなる。これにより外周側ほど熱抵抗が小さくなり、熱交換器100の外周方向に向かって熱が流れやすくなることで、伝熱ヘッドとの間の熱授受量が増加する。
また、熱交換器100 は、熱伝達効率が高い銅、銅合金、アルミニウム、アルミニウム合金などから製作されている。
FIG. 1 is a plan view of a heat exchanger for a Stirling engine according to the present invention, and FIG. 2 is a sectional view taken along line AA shown in FIG.
A heat exchanger 100 for a Stirling engine according to the present invention is formed by forming a large number of fins 102 at a constant pitch on the inner surface of a thin ring-shaped base 101 extending in the axial center direction of the base 101. A region surrounded by the base 101 and the fins 102 becomes a working gas flow path. The heat exchanger 100 is in contact with the inner periphery of a high-temperature heat transfer head or a low-temperature heat transfer head (not shown) on the outer periphery of the base 101, and transfers heat through the heat transfer head.
FIG. 3 is a partially enlarged view of a plan view of the heat exchanger. As shown in FIG. 3, the fins 102 are narrowed toward the center of the base 101 so that the circumferential width w of the flow path is constant in the radial direction. As a result, the flow velocity is constant throughout the flow path, and the working gas flows smoothly, and heat can be efficiently exchanged with the fins 102.
Furthermore, the cross-sectional area of the fin 102 gradually increases toward the outer periphery of the heat exchanger 100. As a result, the thermal resistance decreases toward the outer peripheral side, and heat easily flows toward the outer peripheral direction of the heat exchanger 100, thereby increasing the amount of heat exchanged with the heat transfer head.
The heat exchanger 100 is made of copper, copper alloy, aluminum, aluminum alloy or the like having high heat transfer efficiency.

上記より従来技術より熱伝達効率が良いことが理解できるが、さらに、長方形流路と台形流路による流速分布の差異により生じる放熱量の違いについても検討してみる。
一般的に放熱量Qは、ガスとフィンの温度差ΔT、熱伝達率hyおよび表面積Aを用いて以下の式で定義される。
From the above, it can be understood that the heat transfer efficiency is better than that of the prior art, but further, the difference in the heat release caused by the difference in flow velocity distribution between the rectangular flow path and the trapezoidal flow path will be examined.
Generally, the heat dissipation amount Q is defined by the following equation using the temperature difference ΔT between the gas and the fin, the heat transfer coefficient hy, and the surface area A.

Figure 2009222038
Figure 2009222038

また、平板の壁面温度一定条件における熱伝達率hyは、ガスの熱伝導率をλ、平板(フィン)の流れ方向長さをL、平均ヌセルト数をNum、ガスのプラントル数をPr、流れ方向距離に基づくレイノルズ数をReLとすると、次式で計算される。   In addition, the heat transfer coefficient hy under constant wall surface temperature conditions is λ for the gas thermal conductivity, L for the flow direction length of the flat plate (fin), Num for the average Nusselt number, Pr for the Prandtl number for the gas, and the flow direction When the Reynolds number based on the distance is ReL, the following formula is used.

Figure 2009222038
Figure 2009222038

Figure 2009222038
Figure 2009222038

Figure 2009222038
Figure 2009222038

数式6〜8において流速v以外のパラメータが一定とすると、放熱量Qと流速vの間には以下の関係が成り立つこととなる。   If the parameters other than the flow velocity v in Expressions 6 to 8 are constant, the following relationship is established between the heat release amount Q and the flow velocity v.

Figure 2009222038
Figure 2009222038

ここで、台形流路における放熱量Qを簡易に求めるため、台形流路をn分割された長方形流路の集合として考えることとする。流路断面積をA、流路に依存しない定数をKとすると、放熱量は以下のように表される。   Here, in order to easily obtain the heat dissipation amount Q in the trapezoidal channel, the trapezoidal channel is considered as a set of rectangular channels divided into n. Assuming that the cross-sectional area of the flow path is A and the constant that does not depend on the flow path is K, the heat radiation amount is expressed as follows.

Figure 2009222038
Figure 2009222038

具体的に差異を把握するため、平均水力直径dを0.6とした場合、すなわち平均流路幅wを0.3とした場合における、長方形流路と台形流路(分割された長方形流路の集合)における放熱量Qについて比較してみる。
台形流路を図7に示すように5分割の流路(I〜V)とし、各区間の水力直径を区間I
:0.2,区間II:0.4,区間III:0.6,区間IV:0.8,区間V:1.0とし、流
速vは前記数式4により求めることとすると、台形流路(5分割された長方形流路の集合)の放熱量Q5は以下のようになる。
In order to grasp the difference specifically, when the average hydraulic diameter d is 0.6, that is, when the average flow path width w is 0.3, in the rectangular flow path and the trapezoid flow path (a set of divided rectangular flow paths) Compare the heat dissipation amount Q.
As shown in FIG. 7, the trapezoidal flow path is divided into five flow paths (I to V), and the hydraulic diameter of each section is defined as section I.
: 0.2, section II: 0.4, section III: 0.6, section IV: 0.8, section V: 1.0, and the flow velocity v is determined by the above equation 4, a trapezoidal channel ( The heat release amount Q5 of the rectangular flow path divided into five is as follows.

Figure 2009222038
Figure 2009222038

流路短辺wを0.3としたときの長方形流路の放熱量をQ1とすると以下の様になる。   When the heat radiation amount of the rectangular channel when the channel short side w is 0.3 is Q1, the result is as follows.

Figure 2009222038
Figure 2009222038

以上より、Q1とQ5を比較することにより、長方流路の方が放熱効率も高くなることがわかる。   From the above, by comparing Q1 and Q5, it can be seen that the heat dissipation efficiency is higher in the rectangular channel.

本発明は、スターリング機関全般に利用可能である。   The present invention is applicable to all Stirling engines.

本発明に係る実施形態の平面図The top view of the embodiment concerning the present invention 本発明に係る実施形態のA−A断面図AA sectional view of an embodiment concerning the present invention. 本発明に係る実施形態の部分拡大図The elements on larger scale of the embodiment concerning the present invention スターリング機関の構成を示す概要図Outline diagram showing the structure of a Stirling engine 従来のスターリング機関用熱交換器の平面図Plan view of conventional heat exchanger for Stirling engine 台形流路の流速分布図Flow chart of trapezoidal flow path 台形流路を5分割長方形流路に置換する概念図Conceptual diagram of replacing trapezoidal flow path with 5-divided rectangular flow path

符号の説明Explanation of symbols

101 ベース
102 フィン
101 Base 102 Fin

Claims (2)

圧縮空間と膨脹空間を行き来する作動ガスとの間で授受した熱を伝熱ヘッドに伝達するスターリング機関用熱交換器において、
前記伝熱ヘッドの内周と接触するリング状ベースの内面に、リングの中心方向に向かって延びる多数のフィンを、該フィンによって形成される作動ガス流路の幅が一定となるように設けたこと、
を特徴とするスターリング機関用熱交換器。
In a heat exchanger for a Stirling engine that transfers heat transferred between the compression space and the working gas moving back and forth to the expansion space to the heat transfer head,
A large number of fins extending toward the center of the ring are provided on the inner surface of the ring-shaped base in contact with the inner periphery of the heat transfer head so that the width of the working gas flow path formed by the fins is constant. thing,
A heat exchanger for Stirling engines.
前記フィンは、中心方向に向かって先細りとなっていることを特徴とする請求項1に記載のスターリング機関用熱交換器。
The heat exchanger for a Stirling engine according to claim 1, wherein the fins are tapered toward the center.
JP2008070535A 2008-03-19 2008-03-19 Heat exchanger for stirling engine Pending JP2009222038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008070535A JP2009222038A (en) 2008-03-19 2008-03-19 Heat exchanger for stirling engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008070535A JP2009222038A (en) 2008-03-19 2008-03-19 Heat exchanger for stirling engine

Publications (1)

Publication Number Publication Date
JP2009222038A true JP2009222038A (en) 2009-10-01

Family

ID=41239057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008070535A Pending JP2009222038A (en) 2008-03-19 2008-03-19 Heat exchanger for stirling engine

Country Status (1)

Country Link
JP (1) JP2009222038A (en)

Similar Documents

Publication Publication Date Title
Cao et al. Performance enhancement of heat pipes assisted thermoelectric generator for automobile exhaust heat recovery
Wang et al. Waste heat recovery through plate heat exchanger based thermoelectric generator system
Orr et al. A review of car waste heat recovery systems utilising thermoelectric generators and heat pipes
JP4541694B2 (en) Improvement of the thermal system of the Stalin engine
He et al. Thermoelectric performance optimization when considering engine power loss caused by back pressure applied to engine exhaust waste heat recovery
JP2006214350A (en) Thermoelectric generator
CN104595056B (en) Cold end heat exchanger of free piston type Stirling engine
Senthilkumar et al. Experimental investigation on carbon nano tubes coated brass rectangular extended surfaces
WO2016075896A1 (en) Heat exchange device and manufacturing method of heat exchange device
US20140090818A1 (en) Heat exchanger device
US10808968B2 (en) Thermoacoustic cooling device
JP2010133686A (en) Heat pipe and cooler
US7574861B2 (en) External combustion engine
JP5378407B2 (en) COOLING ROLL FOR ROLL CROWN CONTROL AND ITS CONTROL METHOD
Mortazavi et al. Experimental characterization of additively manufactured metallic heat exchangers
JP2007309533A (en) Fin tube heat exchanger
JP2015121361A (en) Stack of thermoacoustic device, and thermoacoustic device
JP2008104317A (en) Power system using thermoelectric transducer
JP2009222038A (en) Heat exchanger for stirling engine
JP2005265261A (en) Pulse pipe refrigerator
JP7179170B2 (en) Self-excited oscillating heat pipe cooling device and railway vehicle equipped with the cooling device
CN211953778U (en) Heat exchanger
CN107966062B (en) Built-in water-cooling heat exchanger for acoustic energy free piston type machine
CN208579662U (en) A kind of built-in water-cooling heat exchanger for sound energy free-piston type machine
KR101867458B1 (en) Thermoelectric Power Generating System