JP2009221415A - Material for infrared optical element and infrared optical element using the same - Google Patents

Material for infrared optical element and infrared optical element using the same Download PDF

Info

Publication number
JP2009221415A
JP2009221415A JP2008069553A JP2008069553A JP2009221415A JP 2009221415 A JP2009221415 A JP 2009221415A JP 2008069553 A JP2008069553 A JP 2008069553A JP 2008069553 A JP2008069553 A JP 2008069553A JP 2009221415 A JP2009221415 A JP 2009221415A
Authority
JP
Japan
Prior art keywords
infrared
optical element
inorganic particles
resin
infrared transmitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008069553A
Other languages
Japanese (ja)
Inventor
Yoshiharu Yamamoto
義春 山本
Kenichi Ikeda
健一 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008069553A priority Critical patent/JP2009221415A/en
Publication of JP2009221415A publication Critical patent/JP2009221415A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a material for IR optical elements, the material which is inexpensive and excellent in processability, and to provide IR optical elements using the material. <P>SOLUTION: The material 104 for IR optical elements comprises an IR transmitting resin 100 and IR transmitting inorganic particles 101 to 103 dispersed in the IR transmitting resin 100. The particle size distribution of the IR transmitting inorganic particles 101 to 103 is adjusted so as to appropriately suppress scattering of IR light by the IR transmitting inorganic particles 101 to 103 when the material 104 for IR optical elements transmit light. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、赤外光学素子の形成に用いられる赤外光学素子用材料及び当該材料を用いた赤外光学素子に関する。   The present invention relates to an infrared optical element material used for forming an infrared optical element and an infrared optical element using the material.

撮像光学系には、可視光を結像するもの、紫外光を結像するもの、赤外光を結像するものなどがあるが、中でも赤外光を結像する撮像光学系は、監視用途やセキュリティ用途として、例えば人体等の熱物体から放射される赤外光を結像するために用いられることが多い。   Imaging optical systems include those that image visible light, those that image ultraviolet light, and those that image infrared light. Among them, imaging optical systems that image infrared light are used for monitoring purposes. For security purposes, it is often used to image infrared light emitted from a thermal object such as a human body.

熱物体から放射される赤外光の放射スペクトル強度は放射則に従う。侵入者監視等の用途では、人体から放射される10μm前後の波長にピーク強度を持つ赤外光が検出対象となる。また、熱的反応を行う工業プラント装置の監視では、監視温度が高い場合は3μm、低い温度の場合は5μm程度の波長にピーク強度を持つ赤外光が検出対象となる。   The emission spectrum intensity of infrared light emitted from a thermal object follows the radiation law. In applications such as intruder monitoring, infrared light having a peak intensity at a wavelength of about 10 μm emitted from the human body is a detection target. In the monitoring of an industrial plant apparatus that performs a thermal reaction, infrared light having a peak intensity at a wavelength of about 3 μm when the monitored temperature is high and about 5 μm when the temperature is low is a detection target.

このような赤外波長域で用いられる撮像光学系には、反射光学系、屈折光学系、更に反射光学系及び屈折光学系を組み合わせたカタジオプトリック光学系がある。一般に、可視光用光学素子が使える反射光学系は視野が狭いという大きな問題があるため、実質的には、屈折光学系とカタジオプトリック光学系が主に用いられている。   Examples of the imaging optical system used in such an infrared wavelength region include a reflection optical system, a refractive optical system, and a catadioptric optical system that combines a reflective optical system and a refractive optical system. In general, a reflection optical system that can use an optical element for visible light has a big problem that the field of view is narrow, and therefore, a refractive optical system and a catadioptric optical system are mainly used.

これらの光学系を構成する材料としては、Ge、ZnSe、ZnS等が報告されている(例えば、特許文献1及び2参照)。また、赤外透過材料として、AgCl、AgBr等も知られている(例えば、特許文献3参照)。
特開平06−027368号公報 特開平04−125515号公報 特開平05−088002号公報
As materials constituting these optical systems, Ge, ZnSe, ZnS, and the like have been reported (for example, see Patent Documents 1 and 2). Moreover, AgCl, AgBr, etc. are also known as an infrared transmitting material (for example, refer patent document 3).
Japanese Patent Laid-Open No. 06-027368 Japanese Patent Laid-Open No. 04-125515 JP 05-0800002 A

赤外透過光学素子を形成する材料としてGeやSiを用いる場合、赤外光の透過率は比較的良好であるが、加工性に問題がある。したがって、これらの材料は、研磨加工により球面レンズを形成するために用いられることが多く、非球面化には適していない。   When Ge or Si is used as a material for forming an infrared transmission optical element, the infrared light transmittance is relatively good, but there is a problem in workability. Therefore, these materials are often used to form a spherical lens by polishing, and are not suitable for making aspherical surfaces.

ZnSeやZnSを赤外光学素子の材料として用いる場合、赤外の透過率は比較的良好であるが、これらの材料には、毒性及び材料コストが高いという問題がある。   When ZnSe or ZnS is used as a material for an infrared optical element, the infrared transmittance is relatively good. However, these materials have a problem of high toxicity and material cost.

AgClやAgBrを赤外光学素子の材料として用いる場合には、可視光や紫外光が照射されたときに材料中のAgイオンが金属Agとして析出し、赤外の透過率を急激に低下させるという問題がある。そこで、可視光や紫外光を遮蔽するため、これらの材料で形成された光学素子の表面に、ピンホールのない高信頼性の膜を設ける必要がある。しかしながら、このような膜を設けることは、高コスト化に繋がるのみならず、膜にダメージを与えることなく光学素子を保持可能となる鏡筒構成及びその組立工程を必要とするなど、取り扱い面で問題がある。   When AgCl or AgBr is used as a material for an infrared optical element, Ag ions in the material are deposited as metallic Ag when irradiated with visible light or ultraviolet light, and the infrared transmittance is drastically reduced. There's a problem. Therefore, in order to shield visible light and ultraviolet light, it is necessary to provide a highly reliable film without a pinhole on the surface of an optical element formed of these materials. However, providing such a film not only leads to high costs, but also requires a lens barrel configuration and an assembling process that can hold the optical element without damaging the film. There's a problem.

それ故に、本発明は、成形性等の良好な加工性を備え、低コスト化が可能な赤外光学素子用材料及びこれを用いた赤外光学素子を提供することを目的とする。   Therefore, an object of the present invention is to provide an infrared optical element material that has good processability such as moldability and can be reduced in cost, and an infrared optical element using the same.

本発明は、赤外光学素子の形成に用いられる赤外光学素子用材料に関するものであり、赤外光に対する透過性を有する赤外透過樹脂と、赤外光に対する透過性を有し、赤外透過樹脂に混合された赤外透過無機粒子とを備えるものである。   The present invention relates to a material for an infrared optical element used for forming an infrared optical element. The present invention relates to an infrared transmitting resin having transparency to infrared light, and having transparency to infrared light. Infrared transmitting inorganic particles mixed with a transmitting resin.

この場合、赤外透過無機粒子の粒度分布のピーク値が70nm以下であることが好ましい。   In this case, the peak value of the particle size distribution of the infrared transmitting inorganic particles is preferably 70 nm or less.

あるいは、赤外透過無機粒子に含まれる粒径100nm以上の粒子の割合が30%以下であることが好ましい。   Alternatively, the ratio of particles having a particle size of 100 nm or more contained in the infrared transmitting inorganic particles is preferably 30% or less.

上記のように赤外透過無機粒子の粒度分布を調整すると、赤外光学素子用材料を赤外光が通過する際における散乱の程度が適度に抑制される。   When the particle size distribution of the infrared transmitting inorganic particles is adjusted as described above, the degree of scattering when infrared light passes through the infrared optical element material is moderately suppressed.

赤外透過無機粒子は、水溶性であることが好ましい。この場合、赤外透過無機粒子としては、無機塩を含む溶液をスプレードライヤーにおいて噴霧乾燥して得られる粒子を用いることができる。赤外透過無機粒子は、塩化ナトリウム、臭化カリウム、塩化カリウムの少なくとも1つを含むことが好ましい。   The infrared transmitting inorganic particles are preferably water-soluble. In this case, as the infrared transmitting inorganic particles, particles obtained by spray-drying a solution containing an inorganic salt in a spray dryer can be used. The infrared transmitting inorganic particles preferably contain at least one of sodium chloride, potassium bromide, and potassium chloride.

無機塩水溶液をスプレードライヤーにより噴霧乾燥して赤外透過無機粒子を生成する場合、無機塩濃度やスプレードライヤーの条件(温度、噴霧速度等)を制御することで、所望の粒度分布を有する赤外透過無機粒子を得ることができる。   When producing inorganic infrared transparent particles by spray drying an inorganic salt aqueous solution with a spray dryer, controlling the inorganic salt concentration and spray dryer conditions (temperature, spraying speed, etc.) enables infrared having a desired particle size distribution. Transparent inorganic particles can be obtained.

また、赤外透過樹脂は、ポリエチレン樹脂、シクロオレフィン系樹脂、フッ素系樹脂、4フッ化エチレン樹脂のいずれかであることが好ましい。   The infrared transmitting resin is preferably any one of a polyethylene resin, a cycloolefin resin, a fluorine resin, and a tetrafluoroethylene resin.

これらの樹脂材料を用いる場合、熱を加えて軟化させた後に、赤外透過無機粒子を混練することによって、容易に赤外光学素子用材料を得ることができる。   When these resin materials are used, the material for infrared optical elements can be easily obtained by kneading the infrared transmitting inorganic particles after softening by applying heat.

また、本発明は、赤外光を透過する赤外光学素子に関するものであって、赤外光に対する透過性を有する赤外透過樹脂と、赤外光に対する透過性を有し、赤外透過樹脂に混合された赤外透過無機粒子とを備えるものである。   The present invention also relates to an infrared optical element that transmits infrared light, an infrared transmitting resin having transparency to infrared light, and an infrared transmitting resin having transparency to infrared light. Infrared transmitting inorganic particles mixed in the container.

赤外光学素子は、赤外透過樹脂及びこれに混合される赤外透過無機粒子とからなり、加工性に優れるため、非球面の作用面を設けて収差を良好に補正することが可能となる。   The infrared optical element is composed of an infrared transmitting resin and infrared transmitting inorganic particles mixed with the infrared transmitting resin, and has excellent workability. Therefore, an aspherical working surface can be provided to satisfactorily correct aberrations. .

本発明によれば、加工性に優れた赤外光学素子用材料を低コストで提供することが可能となる。また、本発明に係る赤外光学素子用材料を用いれば、形成される作用面を非球面化することにより、良好に収差が補正された光学素子を低コストで実現できる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the material for infrared optical elements excellent in workability at low cost. Further, when the material for infrared optical elements according to the present invention is used, an optical element in which aberrations are favorably corrected can be realized at low cost by aspherical the formed working surface.

(実施の形態1)
図1は、本発明の実施の形態1に係る赤外光学素子用材料の部分拡大図である。
(Embodiment 1)
FIG. 1 is a partially enlarged view of an infrared optical element material according to Embodiment 1 of the present invention.

赤外光学素子材料104は、赤外透過樹脂100と、赤外透過樹脂100に混合された赤外透過無機粒子101〜103とから構成されている。   The infrared optical element material 104 includes an infrared transmitting resin 100 and infrared transmitting inorganic particles 101 to 103 mixed with the infrared transmitting resin 100.

赤外透過樹脂100は、赤外透過無機粒子をその内部に分散した状態で保持でき、所望の形状の赤外光学素子に形成できるように、熱可塑性樹脂であることが望ましい。本発明においては、赤外透過樹脂として、ポリエチレン樹脂、シクロオレフィン系樹脂、フッ素系樹脂あるいは4フッ化エチレン樹脂を用いることが望ましい。赤外領域の光に対する樹脂材料の特性吸収は、分子の各原子間の化学結合力と個々の原子の質量とに応じて、固有かつ独立に現れるところ、ポリエチレン樹脂、シクロオレフィン系樹脂、フッ素系樹脂あるいは4フッ化エチレン樹脂は赤外吸収が少ない。また、これらの樹脂は熱可塑性であるので、成形が容易であり、本発明に係る赤外光学素子材料104には好適である。   The infrared transmitting resin 100 is desirably a thermoplastic resin so that the infrared transmitting inorganic particles can be held in a dispersed state therein and can be formed into an infrared optical element having a desired shape. In the present invention, it is desirable to use polyethylene resin, cycloolefin resin, fluorine resin or tetrafluoroethylene resin as the infrared transmitting resin. Characteristic absorption of resin material for light in the infrared region appears inherently and independently depending on the chemical bonding force between each atom of the molecule and the mass of each atom. Polyethylene resin, cycloolefin resin, fluorine system Resin or tetrafluoroethylene resin has little infrared absorption. In addition, since these resins are thermoplastic, they can be easily molded and are suitable for the infrared optical element material 104 according to the present invention.

赤外透過無機粒子101〜103は、赤外光に対する透過性を有する無機塩であり、例えば、塩化ナトリウム、臭化カリウム、塩化カリウムを用いることができる。赤外透過無機粒子101〜103は、1粒子毎に完全に分散した状態で赤外透過樹脂に混合されることが理想的ではあるが、実際には、図1に示されるように、赤外透過樹脂100中において、複数個の粒子が凝集した状態で分散する場合がある。この場合でも所望の光学特性が得られるように、本実施形態では、赤外透過無機粒子101〜103の粒径分布が調節されている。具体的には、赤外透過無機粒子101〜103(赤外透過樹脂100への混合前)の粒度分布のピーク値が、70nm以下であることが好ましく、65nm以下であればより好ましい。   The infrared transmitting inorganic particles 101 to 103 are inorganic salts having transparency to infrared light. For example, sodium chloride, potassium bromide, and potassium chloride can be used. The infrared transmitting inorganic particles 101 to 103 are ideally mixed with the infrared transmitting resin in a state of being completely dispersed for each particle, but actually, as shown in FIG. In the permeable resin 100, a plurality of particles may be dispersed in an aggregated state. In this embodiment, the particle size distribution of the infrared transmitting inorganic particles 101 to 103 is adjusted so that desired optical characteristics can be obtained even in this case. Specifically, the peak value of the particle size distribution of the infrared transmitting inorganic particles 101 to 103 (before mixing with the infrared transmitting resin 100) is preferably 70 nm or less, and more preferably 65 nm or less.

短波長側の波長3μm近傍の赤外光は、赤外透過無機粒子101〜103による散乱の影響を受けやすい。赤外光が赤外光学素子用材料104を透過する際に赤外透過無機粒子101〜103によって散乱すると、フレア成分となる不要光が発生する。赤外透過無機粒子101〜103の粒度分布のピーク値が70nmを超えると、散乱強度が増大し、フレア成分による不要光を結像の際に無視できなくなる。   Infrared light in the vicinity of a wavelength of 3 μm on the short wavelength side is easily affected by scattering by the infrared transmitting inorganic particles 101 to 103. When the infrared light is scattered by the infrared transmitting inorganic particles 101 to 103 when passing through the infrared optical element material 104, unnecessary light serving as a flare component is generated. When the peak value of the particle size distribution of the infrared transmitting inorganic particles 101 to 103 exceeds 70 nm, the scattering intensity increases, and unnecessary light due to the flare component cannot be ignored during imaging.

ここで、本実施の形態に係る赤外透過無機粒子101〜103の調整方法を説明する。   Here, the adjustment method of the infrared transmission inorganic particles 101-103 which concerns on this Embodiment is demonstrated.

図2は、赤外透過性無機塩の水溶液から赤外透過無機粒子を製造する装置の概略構成図である。   FIG. 2 is a schematic configuration diagram of an apparatus for producing infrared transmitting inorganic particles from an aqueous solution of an infrared transmitting inorganic salt.

図2に示される製造装置は、スプレードライヤー204と、スプレードライヤー204内に液体を噴霧するノズル方式のアトマイザー200とを中心に構成されている。アトマイザー200には、貯留タンク200から配管202を通じて、赤外透過無機粒子の材料となる無機塩の水溶液が供給される。また、スプレードライヤー204には、熱風発生装置(図示せず)からの熱風を吹き込むための配管203が設けられている。配管203から吹き込まれる熱風は、アトマイザー200の噴出口近傍に導かれ、アトマイザー200から噴霧された無機塩水溶液を瞬時に乾燥させ、無機塩粒子(赤外透過無機粒子)を析出させる。噴霧乾燥によって得られた赤外透過無機粒子は、スプレードライヤー204の下部に設けられた配管205を通じて外部に取り出される。   The manufacturing apparatus shown in FIG. 2 is mainly configured by a spray dryer 204 and a nozzle type atomizer 200 that sprays liquid in the spray dryer 204. The atomizer 200 is supplied with an aqueous solution of an inorganic salt serving as a material for the infrared transmitting inorganic particles from the storage tank 200 through the pipe 202. The spray dryer 204 is provided with a pipe 203 for blowing hot air from a hot air generator (not shown). The hot air blown from the pipe 203 is led to the vicinity of the jet outlet of the atomizer 200, and the inorganic salt aqueous solution sprayed from the atomizer 200 is instantly dried to deposit inorganic salt particles (infrared transmitting inorganic particles). The infrared transmitting inorganic particles obtained by spray drying are taken out through a pipe 205 provided at the lower part of the spray dryer 204.

生成される赤外透過無機粒子の粒径及び粒度分布は、無機塩水溶液の濃度や単位時間当たりの噴霧量、スプレードライヤー204に吹き込む熱風温度を調整することによって制御される。   The particle size and particle size distribution of the generated infrared transmitting inorganic particles are controlled by adjusting the concentration of the inorganic salt aqueous solution, the spray amount per unit time, and the temperature of hot air blown into the spray dryer 204.

一例として、スプレードライヤーの入口熱風温度200℃、出口温度150℃の条件下で、濃度1%以下の塩化ナトリウム水溶液を1ml/分でノズルから噴霧することで、粒径65nmをピークとする粒度分布の塩化ナトリウムの粒子が得られた。また、臭化カリウムまたは塩化カリウムが用いられる場合でも、塩化ナトリウムの場合と略同等の条件下で、同様の粒度分布を有する粒子を作成できた。   As an example, spraying a sodium chloride aqueous solution with a concentration of 1% or less from a nozzle at a rate of 1 ml / min under the conditions of a spray dryer inlet hot air temperature of 200 ° C. and an outlet temperature of 150 ° C., a particle size distribution having a peak particle size of 65 nm Of sodium chloride particles were obtained. Moreover, even when potassium bromide or potassium chloride was used, particles having the same particle size distribution could be prepared under substantially the same conditions as in the case of sodium chloride.

尚、赤外透過無機粒子の表面を改質剤で処理して表面性状を改善しても良い。この場合、赤外透過無機粒子の凝集を抑制して赤外透過樹脂中での均一な分散を促進したり、赤外透過無機粒子表面の濡れ性を改善して赤外透過樹脂との混ざりやすさを向上させたりすることができる。   The surface properties may be improved by treating the surface of the infrared transmitting inorganic particles with a modifier. In this case, the aggregation of the infrared transmitting inorganic particles is suppressed to promote uniform dispersion in the infrared transmitting resin, or the wettability of the infrared transmitting inorganic particles is improved to facilitate mixing with the infrared transmitting resin. Can be improved.

赤外域の光に対して良好な透過特性を有する赤外透過樹脂に、上記の方法で得られた赤外透過無機粒子を混合した赤外光学素子用材料は、元の赤外透過樹脂よりも優れた赤外透過特性を獲得することができる。また、本実施の形態に係る赤外光学素子用材料は、良好な成形性を有するため、作用面を成形加工で非球面化した赤外光学素子の形成が容易となり、それ故に、収差が良好に補正される赤外光学素子を実現できる。更に、本実施の形態によれば、赤外光学素子用材料及びこれにより形成される赤外光学素子の低コスト化を図ることも可能となる。   The material for infrared optical elements in which the infrared transmitting inorganic particles obtained by the above method are mixed with the infrared transmitting resin having good transmission characteristics with respect to the light in the infrared region is more than the original infrared transmitting resin. Excellent infrared transmission characteristics can be obtained. In addition, since the infrared optical element material according to the present embodiment has good moldability, it is easy to form an infrared optical element whose working surface is aspherical by molding, and therefore has good aberration. Infrared optical elements that can be corrected to be realized. Furthermore, according to the present embodiment, it is possible to reduce the cost of the infrared optical element material and the infrared optical element formed thereby.

また、塩化ナトリウムや、臭化カリウム、塩化カリウムは、赤外透過特性が良好な材料ではあるが、吸湿性や潮解性を有するため、取り扱いが困難であるという問題があった。しかしながら、本実施の形態では、赤外透過無機粒子が赤外透過樹脂中に分散して混合されるので、雰囲気中の水分から隔離された状態となるので、赤外光学素子用材料及びこれによって形成された赤外光学素子の使用環境に関する制約を解消することができる。   Further, sodium chloride, potassium bromide, and potassium chloride are materials having good infrared transmission characteristics, but have a problem that they are difficult to handle because of their hygroscopicity and deliquescence. However, in the present embodiment, since the infrared transmitting inorganic particles are dispersed and mixed in the infrared transmitting resin, it is isolated from moisture in the atmosphere. Restrictions on the use environment of the formed infrared optical element can be eliminated.

(実施の形態2)
図3は、本発明の実施の形態2に係る赤外光学素子用材料の部分拡大図である。
(Embodiment 2)
FIG. 3 is a partially enlarged view of an infrared optical element material according to Embodiment 2 of the present invention.

本実施の形態に係る赤外光学素子用材料303は、実施の形態1に係るものと同じ赤外透過樹脂300及び赤外透過無機粒子301及び302から構成されているが、赤外透過無機粒子301及び302の粒度分布が実施の形態1に係るものと若干異なっている。   The infrared optical element material 303 according to the present embodiment is composed of the same infrared transmitting resin 300 and infrared transmitting inorganic particles 301 and 302 as those according to the first embodiment. The particle size distributions 301 and 302 are slightly different from those according to the first embodiment.

具体的に、本実施の形態では、粒径が100nm以上である粒子の割合が30%以下となるように、赤外透過無機粒子の粒度分布が調整されている。粒径が100nm以上の粒子の割合が30%を超えると、赤外透過無機粒子301及び302による散乱光の強度が増大し、結像の際にフレア成分による不要光を無視することができなくなる。   Specifically, in the present embodiment, the particle size distribution of the infrared transmitting inorganic particles is adjusted so that the proportion of particles having a particle size of 100 nm or more is 30% or less. When the ratio of particles having a particle size of 100 nm or more exceeds 30%, the intensity of scattered light from the infrared transmitting inorganic particles 301 and 302 increases, and unnecessary light due to flare components cannot be ignored during imaging. .

(実施の形態3)
図4は、本発明の実施の形態3に係る赤外撮像カメラの要部を示す模式図である。
(Embodiment 3)
FIG. 4 is a schematic diagram showing a main part of an infrared imaging camera according to Embodiment 3 of the present invention.

赤外撮像カメラ400は、赤外レンズ401及び402を保持し、赤外光学系404を構成をする鏡筒403と、受光した光の強度に応じた信号を出力する赤外撮像素子405とを備えている。赤外レンズ401及び402は、上記の実施の形態1または2に係る赤外光学素子材料を、例えば熱プレスや射出成形等の成形加工により形成された球面または非球面のレンズである。   The infrared imaging camera 400 includes an infrared imaging device 405 that holds infrared lenses 401 and 402 and constitutes an infrared optical system 404, and an infrared imaging element 405 that outputs a signal corresponding to the intensity of received light. I have. The infrared lenses 401 and 402 are spherical or aspherical lenses formed by molding the infrared optical element material according to the first or second embodiment, for example, by hot pressing or injection molding.

上述したように、本発明に係る赤外光学素子用材料は、熱可塑性の赤外透過樹脂に赤外透過無機粒子を分散させたものであるので、熱プレスや射出成形によって、金型面を転写した面形状を有する赤外レンズ401及び402を容易かつ高精度に得ることができる。金型面形状を非球面化することで収差補正能力の高い赤外レンズを実現できるので、赤外レンズの構成枚数が少なく解像性能の高い赤外撮像光学系を実現できる。   As described above, since the infrared optical element material according to the present invention is obtained by dispersing infrared transmitting inorganic particles in a thermoplastic infrared transmitting resin, the mold surface is formed by hot pressing or injection molding. Infrared lenses 401 and 402 having a transferred surface shape can be obtained easily and with high accuracy. Since an infrared lens having a high aberration correction capability can be realized by making the mold surface aspherical, it is possible to realize an infrared imaging optical system with a small number of infrared lenses and high resolution performance.

本発明に係る赤外光学素子用材料は、赤外撮像カメラ等に用いられる赤外光学素子を形成するために利用できる。   The material for an infrared optical element according to the present invention can be used to form an infrared optical element used in an infrared imaging camera or the like.

本発明の実施の形態1に係る赤外光学素子用材料の部分拡大図The elements on larger scale of the material for infrared optical elements which concerns on Embodiment 1 of this invention 赤外透過無機粒子の製造装置を示す概略構成図Schematic configuration diagram showing an apparatus for producing infrared transmitting inorganic particles 本発明の実施の形態2に係る赤外光学素子用材料の部分拡大図The elements on larger scale of the material for infrared optical elements which concerns on Embodiment 2 of this invention 本発明の実施の形態3に係る赤外撮像カメラの要部を示す模式図Schematic diagram showing the main part of an infrared imaging camera according to Embodiment 3 of the present invention.

符号の説明Explanation of symbols

100、300 赤外透過樹脂
101〜103、301、302 赤外透過無機粒子
104、303 赤外光学素子用材料
100, 300 Infrared transmitting resin 101-103, 301, 302 Infrared transmitting inorganic particles 104, 303 Infrared optical element material

Claims (8)

赤外光学素子の形成に用いられる赤外光学素子用材料であって、
赤外光に対する透過性を有する赤外透過樹脂と、
赤外光に対する透過性を有し、前記赤外透過樹脂に混合された赤外透過無機粒子とを備える、赤外光学素子用材料。
A material for an infrared optical element used for forming an infrared optical element,
An infrared transmitting resin having transparency to infrared light;
An infrared optical element material comprising infrared transmitting inorganic particles having transparency to infrared light and mixed with the infrared transmitting resin.
前記赤外透過無機粒子の粒度分布のピーク値が70nm以下であることを特徴とする、請求項1記載の赤外光学素子用材料。   The infrared optical element material according to claim 1, wherein a peak value of a particle size distribution of the infrared transmitting inorganic particles is 70 nm or less. 前記赤外透過無機粒子に含まれる粒径100nm以上の粒子の割合が30%以下であることを特徴とする、請求項1記載の赤外光学素子用材料。   The infrared optical element material according to claim 1, wherein a ratio of particles having a particle diameter of 100 nm or more contained in the infrared transmitting inorganic particles is 30% or less. 前記赤外透過無機粒子が水溶性であることを特徴とする、請求項2または3記載の赤外光学素子用材料。   The infrared optical element material according to claim 2, wherein the infrared transmitting inorganic particles are water-soluble. 前記赤外透過無機粒子は、無機塩を含む溶液をスプレードライヤーにおいて噴霧乾燥して得られる粒子であることを特徴とする、請求項4記載の赤外光学素子用材料。   The infrared optical element material according to claim 4, wherein the infrared transmitting inorganic particles are particles obtained by spray drying a solution containing an inorganic salt in a spray dryer. 前記赤外透過無機粒子は、塩化ナトリウム、臭化カリウム、塩化カリウムの少なくとも1つを含むことを特徴とする、請求項4記載の赤外光学素子用材料。   5. The infrared optical element material according to claim 4, wherein the infrared transmitting inorganic particles include at least one of sodium chloride, potassium bromide, and potassium chloride. 前記赤外透過樹脂は、ポリエチレン樹脂、シクロオレフィン系樹脂、フッ素系樹脂、4フッ化エチレン樹脂のいずれかであることを特徴とする請求項1記載の赤外光学素子用材料。   2. The infrared optical element material according to claim 1, wherein the infrared transmitting resin is any one of a polyethylene resin, a cycloolefin resin, a fluorine resin, and a tetrafluoroethylene resin. 赤外光を透過する赤外光学素子であって、
赤外光に対する透過性を有する赤外透過樹脂と、
赤外光に対する透過性を有し、前記赤外透過樹脂に混合された赤外透過無機粒子とを備える、赤外光学素子。
An infrared optical element that transmits infrared light,
An infrared transmitting resin having transparency to infrared light;
An infrared optical element comprising infrared transmissive inorganic particles having transparency to infrared light and mixed with the infrared transmissive resin.
JP2008069553A 2008-03-18 2008-03-18 Material for infrared optical element and infrared optical element using the same Pending JP2009221415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008069553A JP2009221415A (en) 2008-03-18 2008-03-18 Material for infrared optical element and infrared optical element using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008069553A JP2009221415A (en) 2008-03-18 2008-03-18 Material for infrared optical element and infrared optical element using the same

Publications (1)

Publication Number Publication Date
JP2009221415A true JP2009221415A (en) 2009-10-01

Family

ID=41238521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008069553A Pending JP2009221415A (en) 2008-03-18 2008-03-18 Material for infrared optical element and infrared optical element using the same

Country Status (1)

Country Link
JP (1) JP2009221415A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011062084A1 (en) * 2009-11-18 2011-05-26 日東電工株式会社 Infrared ray reflective substrate
WO2012120725A1 (en) * 2011-03-09 2012-09-13 日東電工株式会社 Infrared reflective film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011062084A1 (en) * 2009-11-18 2011-05-26 日東電工株式会社 Infrared ray reflective substrate
JP2011104887A (en) * 2009-11-18 2011-06-02 Nitto Denko Corp Infrared reflection substrate
KR101370763B1 (en) * 2009-11-18 2014-03-06 닛토덴코 가부시키가이샤 Infrared ray reflective substrate
WO2012120725A1 (en) * 2011-03-09 2012-09-13 日東電工株式会社 Infrared reflective film
JP2012189683A (en) * 2011-03-09 2012-10-04 Nitto Denko Corp Infrared ray reflection film
CN103415792A (en) * 2011-03-09 2013-11-27 日东电工株式会社 Infrared reflective film

Similar Documents

Publication Publication Date Title
CN106574990B (en) Translucency structural body, its manufacturing method and article
Biehl et al. Refractive microlens fabrication by ink-jet process
CN103180764B (en) Near-infrared reflective film, method for producing same, and near-infrared reflector provided with near-infrared reflective film
US7952650B2 (en) Reflector and projection type display apparatus
US20130250403A1 (en) High infrared transmission window with self cleaning hydrophilic surface
CN107709430B (en) Composite systems and its preparation method and application comprising matrix and scattering ingredient
JPH10512305A (en) Composite media with selectable radiation transmission properties
CN103562756A (en) Infrared shielding film
CN103026272B (en) The manufacture method of near-infrared reflection film and be provided with the near-infrared reflection body of near-infrared reflection film
CN112212977B (en) High-speed high-resolution high-precision ultrahigh-temperature molten pool temperature field online monitoring device and method
JP2009221415A (en) Material for infrared optical element and infrared optical element using the same
JP2011164583A (en) Lens for imaging device, and imaging device
US20180164613A1 (en) Photochromic Lens Module, Camera and Terminal Device
CN108369303A (en) Optical reflectance coating
CN109153156A (en) Resin solidification light supply apparatus
TWI703090B (en) Boride particles, boride particle dispersion, infrared shielding transparent substrate, infrared shielding optical member, infrared shielding particle dispersion, infrared shielding interlayer transparent substrate, infrared shielding particle dispersion powder, and master batch
JP6301576B2 (en) Light diffusion transmission sheet
JP7378924B2 (en) Optical elements, their manufacturing methods, imaging devices, and optical instruments
JP2013105846A (en) Optical component having antifogging film and semiconductor device
CN105522730A (en) Preparation method of light diffusion film
Roy et al. Thin Transparent Photothermal Coatings for Rapid Defogging in Automotive Applications
RU2729254C1 (en) Device for additive manufacturing of volumetric micro-dimensional nanoparticle structures
WO2022244703A1 (en) Light absorber, product with light absorber, and light-absorbing composition
CN109708758A (en) Imaging spectrometer and high spatial resolution spectrum imaging method based on interference effect
Thesing et al. Simple approach to obtain a localized surface plasmon resonance sensor based on poly (dimethylsiloxane)/gold nanoparticles nanocomposite