JP2009221033A - Material composition for hydrogen formation and method for producing hydrogen - Google Patents

Material composition for hydrogen formation and method for producing hydrogen Download PDF

Info

Publication number
JP2009221033A
JP2009221033A JP2008065144A JP2008065144A JP2009221033A JP 2009221033 A JP2009221033 A JP 2009221033A JP 2008065144 A JP2008065144 A JP 2008065144A JP 2008065144 A JP2008065144 A JP 2008065144A JP 2009221033 A JP2009221033 A JP 2009221033A
Authority
JP
Japan
Prior art keywords
hydrogen
raw material
material composition
mol
dehydrogenation reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008065144A
Other languages
Japanese (ja)
Other versions
JP5127516B2 (en
Inventor
Masakazu Ikeda
雅一 池田
Yukio Kobayashi
幸雄 小林
Atsushi Segawa
敦司 瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Petroleum Energy Center JPEC
Original Assignee
Petroleum Energy Center PEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petroleum Energy Center PEC filed Critical Petroleum Energy Center PEC
Priority to JP2008065144A priority Critical patent/JP5127516B2/en
Publication of JP2009221033A publication Critical patent/JP2009221033A/en
Application granted granted Critical
Publication of JP5127516B2 publication Critical patent/JP5127516B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic compound material for hydrogen formation which suppresses activity deterioration in a dehydrogenation catalyst in hydrogen production by a dehydrogenation reaction of an organic compound having a cyclohexane ring and can enhance conversion rate. <P>SOLUTION: A composition containing ≥50 mol% of an organic compound having a cyclohexane ring and also containing ≥0.1 mol% of an oxygen-containing compound is used. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、水素生成用原料組成物に関する。詳細には、シクロヘキサン環を有する有機化合物の脱水素反応による水素製造における脱水素触媒の活性劣化を抑制し、また転化率を向上し得る水素生成用原料組成物に関する。また、かかる原料組成物を用いた水素の製造方法に関し、さらに膜分離により水素を分離する小型化可能な水素製造システムに関する。   The present invention relates to a raw material composition for generating hydrogen. Specifically, the present invention relates to a raw material composition for hydrogen generation that can suppress the deterioration of the activity of a dehydrogenation catalyst in hydrogen production by dehydrogenation of an organic compound having a cyclohexane ring and can improve the conversion rate. The present invention also relates to a method for producing hydrogen using such a raw material composition, and further relates to a miniaturizable hydrogen production system that separates hydrogen by membrane separation.

水素は石油精製、化学産業などをはじめとしてあらゆる産業分野において広く用いられている。とくに近年、将来のエネルギーとして水素エネルギーが注目されてきており、燃料電池を中心に研究が進められているが、水素ガスは熱量あたりの体積が大きく、また液化に必要なエネルギーも大きいため、水素の貯蔵、輸送のシステムが重要な課題となっている。また水素供給のために新たなインフラストラクチャーの整備が必要である(非特許文献1参照)。   Hydrogen is widely used in various industrial fields including the oil refining and chemical industries. In particular, hydrogen energy has been attracting attention as a future energy, and research is focused on fuel cells. However, hydrogen gas has a large volume per calorie and also requires a large amount of energy for liquefaction. The storage and transportation system is an important issue. In addition, it is necessary to develop a new infrastructure for supplying hydrogen (see Non-Patent Document 1).

一方、液状の炭化水素は水素ガスに比べてエネルギー密度が大きく取り扱いやすいことに加え、既存のインフラストラクチャーが利用できるという利点もあることから、炭化水素を貯蔵、輸送して、必要に応じ炭化水素から水素を製造する方法は重要である。
水素の製造はメタンや軽質パラフィンの水蒸気改質法、自己熱改質法、部分酸化法など公知の技術により広く行われているが、これらの反応は高温を必要とする。さらに、COを副生するため燃料電池、特に固体高分子型燃料電池によるオンサイトでの発電を対象とした場合には、その後段にシフト反応器及び、CO選択酸化もしくはメタネーションによる一酸化炭素除去器が必要となり、非常に複雑なプロセスとなる。また、自動車用の水素ステーションを対象とした場合には、PSA(圧力スイング吸着)を用いて高純度の水素にしなければならない。これはメタノールの改質方式においても同じである。
Liquid hydrocarbons, on the other hand, have the advantage of being easy to handle and having a higher energy density than hydrogen gas, and also have the advantage of being able to use existing infrastructure. The method of producing hydrogen from methane is important.
Production of hydrogen is widely carried out by known techniques such as steam reforming of methane and light paraffin, autothermal reforming, and partial oxidation, but these reactions require high temperatures. Furthermore, in the case where on-site power generation by a fuel cell, particularly a polymer electrolyte fuel cell, is intended to produce CO as a by-product, a shift reactor and carbon monoxide by CO selective oxidation or methanation are provided in the subsequent stage. A remover is required, which is a very complex process. In addition, when an automobile hydrogen station is targeted, high purity hydrogen must be obtained using PSA (pressure swing adsorption). The same applies to the methanol reforming system.

これに対し、液状のシクロヘキサン環を有する有機化合物を原料とし、そのシクロヘキサン環を脱水素し芳香族環にする反応は、反応が単純でCOの副生がないことから製造、精製プロセスも単純である。さらに脱水素触媒の存在下で容易に反応が進行し、生成物は気体である水素と液体である芳香族環を有する有機化合物であり両者の分離も容易であるために、小規模の水素製造に適した方法である(非特許文献2参照)。また、副生COの処理工程(たとえばCOシフト反応)が不必要であることから、水素発生までの起動時間も著しく短縮することができる。このため、水素発生システムの小型化および起動時間の短縮が非常に強く求められる用途、たとえば車上で水素を発生させ燃料電池により発電を行いモーターにより走行するオンボード水素発生方式燃料電池自動車では、前述の炭化水素の水蒸気改質法やメタノールの改質法などに比較して格段に適している。   On the other hand, a reaction using a liquid organic compound having a cyclohexane ring as a raw material and dehydrogenating the cyclohexane ring to an aromatic ring is simple and has no CO by-product, so the production and purification process is also simple. is there. Furthermore, the reaction proceeds easily in the presence of a dehydrogenation catalyst, and the product is an organic compound having a gaseous hydrogen and a liquid aromatic ring. (See Non-Patent Document 2). In addition, since the by-product CO treatment step (for example, CO shift reaction) is unnecessary, the start-up time until hydrogen generation can be remarkably shortened. For this reason, in applications where the miniaturization of the hydrogen generation system and the shortening of the start-up time are strongly demanded, for example, on-board hydrogen generation type fuel cell automobiles that generate hydrogen on the vehicle and generate power with the fuel cell and run by the motor, Compared to the above-mentioned hydrocarbon steam reforming method and methanol reforming method, it is particularly suitable.

しかしながら、この脱水素反応において、触媒の活性劣化が問題となっており、その主要因は炭素析出であると言われている。活性劣化を抑制するために炭素析出の開始反応となる芳香環の開裂反応の進行を抑制する必要があり、例えば、シクロヘキサン環を有する炭化水素の脱水素反応に高い活性を示すと考えられている白金/アルミナ系では、アルカリ金属のカリウムを添加し、アルミナ担体上の酸点での分解反応を抑制するといった検討がなされ、耐久性が向上した結果が得られている(非特許文献3参照)。しかし脱水素反応時に水素を供給させなければならず、水素の無い条件において、劣化抑制に十分な効果があるとはいえない。
たとえば前述のオンボード水素発生燃料電池自動車に適用する場合では、脱水素反応時に水素を供給させることは水素供給システムを別に備えなければならず、水素発生システムの小型化の点できわめて不利である。このため、水素を供給することなく脱水素反応を触媒の活性劣化を抑制する方法が熱望されていた。
小林紀,「季報エネルギー総合工学」,2003年,第25巻,第4号,p.73〜87 市川勝,「工業材料」,2003年,第51巻,第4号,p.62〜69 岡田佳巳ら,「水素エネルギーシステム」,2006年,第31巻,第2号,p.3〜13
However, in this dehydrogenation reaction, deterioration of the catalyst activity is a problem, and it is said that the main factor is carbon deposition. In order to suppress the deterioration of activity, it is necessary to suppress the progress of the cleavage reaction of the aromatic ring, which is the initiation reaction of carbon deposition. For example, it is considered to exhibit high activity in the dehydrogenation reaction of hydrocarbons having a cyclohexane ring. In the platinum / alumina system, studies have been made to suppress the decomposition reaction at the acid sites on the alumina support by adding alkali metal potassium, and the result of improved durability has been obtained (see Non-Patent Document 3). . However, hydrogen must be supplied at the time of the dehydrogenation reaction, and it cannot be said that there is a sufficient effect for suppressing deterioration in the absence of hydrogen.
For example, in the case of application to the above-mentioned on-board hydrogen generating fuel cell vehicle, supplying hydrogen during the dehydrogenation reaction requires a separate hydrogen supply system, which is extremely disadvantageous in terms of downsizing the hydrogen generating system. . For this reason, there has been a strong demand for a method of suppressing the deterioration of the catalyst activity in the dehydrogenation reaction without supplying hydrogen.
Nori Kobayashi, “Quarterly Energy Comprehensive Engineering”, 2003, Vol. 25, No. 4, p. 73-87 Masaru Ichikawa, “Industrial Materials”, 2003, Vol. 51, No. 4, p. 62-69 Yoshiaki Okada et al., “Hydrogen Energy System”, 2006, Vol. 31, No. 2, p. 3-13

本発明の目的は、シクロヘキサン環を有する有機化合物の脱水素反応による水素製造における脱水素触媒の活性劣化を抑制し、また転化率を向上させるために、原料そのものの改良を行い、これらの問題点を解決し、効率よく、安定に水素を生成できる原料組成物を提供すると共に、該原料組成物を用いた水素の製造方法を提供することである。   The object of the present invention is to improve the raw material itself in order to suppress the deterioration of the activity of the dehydrogenation catalyst in the hydrogen production by the dehydrogenation reaction of the organic compound having a cyclohexane ring, and to improve the conversion rate. To provide a raw material composition that can efficiently and stably generate hydrogen, and to provide a method for producing hydrogen using the raw material composition.

本発明者らは上記の課題を解決するため鋭意研究を重ねた結果、シクロヘキサン環を有する有機化合物に含酸素化合物を配合することにより、脱水素触媒の活性劣化の抑制と転化率の向上ができることを見出し、本発明を完成したものである。   As a result of intensive studies to solve the above problems, the present inventors can suppress the deterioration of the activity of the dehydrogenation catalyst and improve the conversion rate by blending an oxygen-containing compound with an organic compound having a cyclohexane ring. And the present invention has been completed.

すなわち、本発明は、シクロヘキサン環を有する有機化合物を50mol%以上、かつ含酸素化合物を0.1mol%以上含有してなる、当該シクロヘキサン環の脱水素反応により水素を生成する水素生成用原料組成物に関する。   That is, the present invention provides a hydrogen-producing raw material composition for producing hydrogen by a dehydrogenation reaction of a cyclohexane ring, comprising 50 mol% or more of an organic compound having a cyclohexane ring and 0.1 mol% or more of an oxygen-containing compound. About.

また、本発明は、シクロヘキサン環を有する有機化合物が、シクロヘキサン、テトラリン、デカリンおよびこれらのアルキル置換体から選ばれる少なくとも1種の有機化合物であることを特徴とする前記の水素生成用原料組成物に関する。   The present invention also relates to the above-mentioned raw material composition for hydrogen generation, wherein the organic compound having a cyclohexane ring is at least one organic compound selected from cyclohexane, tetralin, decalin, and alkyl-substituted products thereof. .

また、本発明は、含酸素化合物が、アルコール、エーテルおよび水から選ばれる少なくとも1種の含酸素化合物であることを特徴とする前記の水素生成用原料組成物に関する。   The present invention also relates to the above-described raw material composition for hydrogen generation, wherein the oxygen-containing compound is at least one oxygen-containing compound selected from alcohol, ether and water.

また、本発明は、アルコールが炭素数2以上のアルコールであることを特徴とする前記の水素生成用原料組成物に関する。   The present invention also relates to the above-described raw material composition for hydrogen generation, wherein the alcohol is an alcohol having 2 or more carbon atoms.

また、本発明は、エーテルのアルキル基が炭素数2以上のアルキル基であることを特徴とする前記の水素生成用原料組成物に関する。   In addition, the present invention relates to the above-described raw material composition for hydrogen generation, wherein the ether alkyl group is an alkyl group having 2 or more carbon atoms.

また、本発明は、脱水素触媒の存在下、前記の水素生成用原料組成物を流通させ、シクロヘキサン環を脱水素させることにより水素を発生するとともに脱水素反応生成物を得ることを特徴とする水素の製造方法に関する。   Further, the present invention is characterized in that in the presence of a dehydrogenation catalyst, the above-described hydrogen-producing raw material composition is circulated to generate hydrogen by dehydrogenating a cyclohexane ring and to obtain a dehydrogenation reaction product. The present invention relates to a method for producing hydrogen.

また、本発明は、前記の方法により得られる水素および脱水素反応生成物、ならびに脱水素反応前の水素生成用原料組成物から選ばれる少なくとも1種を燃焼させ、その燃焼熱を利用して脱水素反応を行うことを特徴とする水素の製造方法に関する。   In addition, the present invention burns at least one selected from the hydrogen and dehydrogenation reaction products obtained by the above-described method and the raw material composition for hydrogen generation before the dehydrogenation reaction, and dehydrates using the heat of combustion. The present invention relates to a method for producing hydrogen, characterized by performing an elementary reaction.

さらに、本発明は、前記の方法により得られる水素と脱水素反応生成物を膜分離により分離することを特徴とする水素製造システムに関する。   Furthermore, the present invention relates to a hydrogen production system characterized in that hydrogen obtained by the above method and a dehydrogenation reaction product are separated by membrane separation.

本発明による水素生成用原料組成物を脱水素反応に適用することにより、触媒の劣化を抑制し、さらに転化率を向上させた水素の製造方法を提供できる。さらに耐久性の優れた、効率のよい水素製造システムを提供することができる。   By applying the hydrogen generating raw material composition according to the present invention to the dehydrogenation reaction, it is possible to provide a method for producing hydrogen in which deterioration of the catalyst is suppressed and the conversion rate is further improved. Furthermore, an efficient hydrogen production system with excellent durability can be provided.

以下、本発明を詳細に説明する。
本発明の水素生成用原料組成物としては、主成分としてシクロヘキサン環を有する有機化合物が用いられる。本発明においてシクロヘキサン環とは、脱水素可能な飽和六員環を言い、脱水素反応により芳香族環を生成し、生成する芳香族環はベンゼン環になるものに限られず、2環、3環などの多環芳香族環(縮合環)となるものも含む。
本発明で用いられるシクロヘキサン環を有する有機化合物としては特に限定されるものではないが、シクロヘキサン環を有する1環または2環の化合物が好ましい。また置換基を有していてもよいが、脱水素反応に悪影響を及ぼさないものが好ましい。置換基としてはアルキル基が好ましく、アルキル基としては炭素数1〜4のアルキル基が好ましい。
Hereinafter, the present invention will be described in detail.
As the raw material composition for hydrogen generation of the present invention, an organic compound having a cyclohexane ring as a main component is used. In the present invention, the cyclohexane ring refers to a saturated 6-membered ring that can be dehydrogenated, and an aromatic ring is generated by a dehydrogenation reaction, and the generated aromatic ring is not limited to a benzene ring, but two rings, three rings And those that become polycyclic aromatic rings (condensed rings).
The organic compound having a cyclohexane ring used in the present invention is not particularly limited, but a monocyclic or bicyclic compound having a cyclohexane ring is preferable. Moreover, although you may have a substituent, what does not have a bad influence on dehydrogenation reaction is preferable. The substituent is preferably an alkyl group, and the alkyl group is preferably an alkyl group having 1 to 4 carbon atoms.

本発明で用いられるシクロヘキサン環を有する有機化合物としては、具体的には、シクロヘキサン、メチルシクロヘキサン、デカリン、メチルデカリン、テトラリン、メチルテトラリンが挙げられる。これらの中でも、シクロヘキサン、メチルシクロヘキサン、デカリン、メチルデカリンが好ましく、メチルシクロヘキサンが特に好ましい。また、シクロヘキサン環を有する有機化合物は複数の有機化合物の混合物であっても良く、また脱水素反応に支障のない限り、適宜に他の化合物、たとえばシクロヘキサン環を有しない炭化水素などを含んでいても良い。   Specific examples of the organic compound having a cyclohexane ring used in the present invention include cyclohexane, methylcyclohexane, decalin, methyldecalin, tetralin, and methyltetralin. Among these, cyclohexane, methylcyclohexane, decalin, and methyldecalin are preferable, and methylcyclohexane is particularly preferable. In addition, the organic compound having a cyclohexane ring may be a mixture of a plurality of organic compounds, and appropriately contains other compounds, for example, hydrocarbons having no cyclohexane ring, as long as the dehydrogenation reaction is not hindered. Also good.

本発明の水素生成用原料組成物中のシクロヘキサン環を有する有機化合物の含有割合は、原料組成物全量基準で50mol%以上であることが必要であり、好ましくは60mol%以上であり、より好ましくは70mol%以上である。シクロヘキサン環を有する有機化合物の含有割合が50mol%未満の場合は、水素生成量が減少するため好ましくない。一方、上限は99.9mol%以下であり、好ましくは99mol%以下である。   The content ratio of the organic compound having a cyclohexane ring in the raw material composition for hydrogen generation of the present invention needs to be 50 mol% or more based on the total amount of the raw material composition, preferably 60 mol% or more, more preferably It is 70 mol% or more. When the content ratio of the organic compound having a cyclohexane ring is less than 50 mol%, the amount of hydrogen generation is decreased, which is not preferable. On the other hand, the upper limit is 99.9 mol% or less, preferably 99 mol% or less.

本発明の水素生成用原料組成物に配合される含酸素化合物としては、含酸素有機化合物および水が挙げられる。
含酸素有機化合物の場合、炭素数が2以上のものが好ましい。また、軽油クラスの炭素数16程度までは使用可能であるが、シクロヘキサン環を含む炭化水素と比べ、大幅に重質となってしまう化合物は使用上問題となる可能性があるため、炭素数8以下のものが好ましい。含酸素有機化合物としては、特にアルコールおよびエーテルが好ましい。
本発明の水素生成用原料組成物には、2種以上の異なる含酸素化合物が含まれてもよい。2種以上の含酸素化合物を用いる場合、2種以上の異なる含酸素化合物をシクロヘキサン環を有する有機化合物に個別に添加してもよいし、含酸素化合物の混合物を添加してもよい。
Examples of the oxygen-containing compound to be blended in the raw material composition for hydrogen generation of the present invention include an oxygen-containing organic compound and water.
In the case of an oxygen-containing organic compound, those having 2 or more carbon atoms are preferred. Moreover, although it can be used up to about 16 carbon atoms of the light oil class, a compound that becomes significantly heavier than hydrocarbons containing a cyclohexane ring may cause a problem in use. The following are preferred. As the oxygen-containing organic compound, alcohol and ether are particularly preferable.
The raw material composition for hydrogen generation of the present invention may contain two or more different oxygenated compounds. When two or more oxygen-containing compounds are used, two or more different oxygen-containing compounds may be added individually to the organic compound having a cyclohexane ring, or a mixture of oxygen-containing compounds may be added.

含酸素有機化合物として用いられるアルコールとしては、炭素数2〜6のアルコールが好ましい。具体的には、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、イソブチルアルコール、t−ブチルアルコール、エチレングリコール、グリセリンが挙げられる。中でもエタノール、2−プロパノール、1−ブタノール、2−ブタノール、イソブチルアルコール、t−ブチルアルコールがさらに好ましい。   As alcohol used as an oxygen-containing organic compound, a C2-C6 alcohol is preferable. Specific examples include ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, t-butyl alcohol, ethylene glycol, and glycerin. Of these, ethanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, and t-butyl alcohol are more preferable.

含酸素有機化合物として用いられるエーテルとしては、炭素数2〜8のエーテルが好ましい。具体的には、ジメチルエーテル、エチルメチルエーテル、ジエチルエーテル、メチルプロピルエーテル、メチルイソプロピルエーテル、エチルプロピルエーテル、エチルイソプロピルエーテル、ジイソプロピルエーテル、メチルブチルエーテル、メチルイソブチルエーテル、メチルt−ブチルエーテル、エチルブチルエーテル、エチルイソブチルエーテル、エチルt−ブチルエーテルが挙げられる。中でもエチルイソプロピルエーテル、エチルt−ブチルエーテルがさらに好ましい。   The ether used as the oxygen-containing organic compound is preferably an ether having 2 to 8 carbon atoms. Specifically, dimethyl ether, ethyl methyl ether, diethyl ether, methyl propyl ether, methyl isopropyl ether, ethyl propyl ether, ethyl isopropyl ether, diisopropyl ether, methyl butyl ether, methyl isobutyl ether, methyl t-butyl ether, ethyl butyl ether, ethyl isobutyl Examples include ether and ethyl t-butyl ether. Of these, ethyl isopropyl ether and ethyl t-butyl ether are more preferable.

本発明の水素生成用原料組成物中の含酸素化合物の含有割合は、原料組成物全量基準で0.1mol%以上であることが必要である。含酸素化合物の含有割合が増えるほど脱水素触媒の劣化抑制の効果は高まるが、相対的にシクロヘキサン環を含む有機化合物の含有割合が減少するため水素生成量が減ってしまうという背反する関係にあることから、適切な範囲が存在する。含酸素化合物の含有割合は0.5mol%以上であることが好ましく、1mol%以上がさらに好ましい。また、40mol%以下が好ましく、30mol%以下がさらに好ましい。   The content ratio of the oxygen-containing compound in the raw material composition for hydrogen generation of the present invention needs to be 0.1 mol% or more based on the total amount of the raw material composition. Although the effect of suppressing deterioration of the dehydrogenation catalyst increases as the content ratio of the oxygen-containing compound increases, the content ratio of the organic compound containing the cyclohexane ring relatively decreases, so that the amount of hydrogen generation decreases. Therefore, an appropriate range exists. The content ratio of the oxygen-containing compound is preferably 0.5 mol% or more, and more preferably 1 mol% or more. Moreover, 40 mol% or less is preferable and 30 mol% or less is more preferable.

本発明においては、脱水素触媒の存在下に、前記した水素生成用原料組成物を流通させ、シクロヘキサン環を脱水素させることにより水素を発生するとともに脱水素反応生成物を得る。
脱水素触媒における触媒活性主成分は脱水素活性を有する成分であり、任意に選択することができる。好ましくは周期表の第7A族、第8族、第1B族元素であり、具体的には鉄、コバルト、ニッケル、銅、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金、金などが挙げられる。これらの中でも、ニッケル、パラジウム、白金、レニウムが好ましい。またこれらの元素の2種類以上を組み合わせても良い。なお、本明細書では、周期表の表記はIUPAC1987年版に基づく。
In the present invention, in the presence of a dehydrogenation catalyst, the above-described raw material composition for hydrogen generation is circulated to generate hydrogen by dehydrogenating the cyclohexane ring, and a dehydrogenation reaction product is obtained.
The main component of catalytic activity in the dehydrogenation catalyst is a component having dehydrogenation activity, and can be arbitrarily selected. Preferably, Group 7A, Group 8, Group 1B elements of the periodic table, specifically iron, cobalt, nickel, copper, ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum, gold, etc. Is mentioned. Among these, nickel, palladium, platinum, and rhenium are preferable. Two or more of these elements may be combined. In this specification, the notation of the periodic table is based on the IUPAC 1987 edition.

これらの触媒活性主成分は、一般的には担体に担持されて使用される。担体に担持させる方法は任意であるが、含浸法が好ましく挙げられる。具体的には、Pore‐filling法、Incipient Wetness法、蒸発乾固法などが挙げられる。
含浸法に用いる化合物は水溶性の塩が好ましく、水溶液として含浸することが好ましい。水溶性の化合物としては、塩化物、硝酸塩、炭酸塩、酢酸塩、アンモニウム塩が好ましく挙げられる。また、貴金属の場合、金属のコロイド溶液を用いることも好ましく、たとえば、白金のコロイド溶液などが好ましく用いられる。この場合、白金コロイド粒子の粒子径は4nm以下であることが好ましい。
These catalytically active main components are generally used by being supported on a carrier. Although the method of making it support | carrier is arbitrary, the impregnation method is mentioned preferably. Specific examples include the Pore-filling method, the Incipient Wetness method, and the evaporation to dryness method.
The compound used in the impregnation method is preferably a water-soluble salt, and is preferably impregnated as an aqueous solution. Preferred examples of the water-soluble compound include chlorides, nitrates, carbonates, acetates, and ammonium salts. In the case of a noble metal, it is also preferable to use a colloidal solution of metal, for example, a colloidal solution of platinum is preferably used. In this case, the particle diameter of the platinum colloid particles is preferably 4 nm or less.

担体としては、機械的強度が高く熱的に安定で表面積が大きい金属酸化物、複合金属酸化物が好ましく、具体的には、アルミナ、シリカ、チタニア、ジルコニアなどが挙げられ、アルミナ、シリカがより好ましい。また形状については、通常成型品である粒状のほか、粉状、板状、後述するようなフィン状などいかなる形状でもよい。   As the carrier, metal oxides and composite metal oxides having high mechanical strength, thermal stability, and large surface area are preferable, and specific examples include alumina, silica, titania, zirconia, and the like. preferable. Further, the shape may be any shape such as a granular shape that is usually a molded product, a powder shape, a plate shape, or a fin shape as described later.

脱水素触媒には必要に応じ添加剤を共存させても良い。好ましい添加剤として、スズと塩基性物質が挙げられる。スズは活性金属の凝集を抑制する。また塩基性物質が共存することにより、酸性に起因する分解などの副反応が抑制されるとともに、炭素質析出による触媒の劣化が抑制される。塩基性物質の種類は任意であるが、第1A族元素および第2A族元素の化合物が好ましく、具体的にはリチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウムなどの化合物が挙げられる。これらの化合物としては、水溶性の物質が好ましい。塩化物、硫酸塩、硝酸塩、炭酸塩、酢酸塩、アンモニウム塩がさらに好ましい。塩基性物質の含有量は触媒活性主成分に対して重量比で0.1〜100の範囲が好ましい。これらの塩基性物質を触媒に含有させる調製法は任意であるが、好ましくは含浸法である。具体的には、Pore‐filling法、Incipient Wetness法、蒸発乾固法などが挙げられる。   An additive may coexist if necessary in the dehydrogenation catalyst. Preferred additives include tin and basic substances. Tin suppresses the aggregation of active metals. The coexistence of the basic substance suppresses side reactions such as decomposition caused by acidity, and suppresses deterioration of the catalyst due to carbonaceous deposition. The type of basic substance is arbitrary, but compounds of Group 1A elements and Group 2A elements are preferable, and specifically, lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, etc. Compounds. These compounds are preferably water-soluble substances. More preferred are chlorides, sulfates, nitrates, carbonates, acetates and ammonium salts. The content of the basic substance is preferably in the range of 0.1 to 100 by weight ratio with respect to the catalytically active main component. A preparation method for incorporating these basic substances into the catalyst is optional, but an impregnation method is preferred. Specific examples include the Pore-filling method, the Incipient Wetness method, and the evaporation to dryness method.

シクロヘキサン環の脱水素反応は、一般に可逆反応であり、また吸熱反応である。化学平衡の点では高温、低圧の条件が有利であるが、反応原料の種類、水素発生システムのシステム上の条件、材料の耐熱性、放熱量など種々の要求に応じて、反応条件は適宜選択できる。反応圧力は、下限としては、好ましくは0.1MPa以上であり、さらに好ましくは0.11MPa以上である。上限としては、好ましくは2.0MPa以下であり、さらに好ましくは1.0MPa以下である。なお、本明細書では特に断らないかぎり圧力は絶対圧で示す。反応温度は化学平衡上高温が好ましいが、エネルギー効率の点では低温の方が好ましい。好ましい反応温度は下限として200℃以上、さらに好ましくは270℃以上、最も好ましくは320℃以上であり、上限として好ましくは400℃以下、さらに好ましくは380℃以下、最も好ましくは360℃以下である。また化学平衡上は不利であるが、触媒の失活を防ぐ目的あるいは装置の運転上の理由で原料に水素を加えることもできる。なお本発明では、水素を加えなくとも触媒の劣化を抑制できることが重要な特徴でもある。
LHSV(液空間速度)の好ましい範囲は、触媒の活性に依存するが、通常は0.2hr−1以上、40hr−1以下である。
The cyclohexane ring dehydrogenation reaction is generally a reversible reaction and an endothermic reaction. In terms of chemical equilibrium, conditions of high temperature and low pressure are advantageous, but the reaction conditions are appropriately selected according to various requirements such as the type of reaction raw material, the conditions on the system of the hydrogen generation system, the heat resistance of the material, and the amount of heat release. it can. The lower limit of the reaction pressure is preferably 0.1 MPa or more, and more preferably 0.11 MPa or more. As an upper limit, Preferably it is 2.0 MPa or less, More preferably, it is 1.0 MPa or less. In the present specification, unless otherwise specified, the pressure is expressed as an absolute pressure. The reaction temperature is preferably a high temperature in terms of chemical equilibrium, but a low temperature is preferable in terms of energy efficiency. The reaction temperature is preferably 200 ° C. or higher, more preferably 270 ° C. or higher, most preferably 320 ° C. or higher as the lower limit, and the upper limit is preferably 400 ° C. or lower, more preferably 380 ° C. or lower, most preferably 360 ° C. or lower. Although it is disadvantageous in terms of chemical equilibrium, hydrogen can be added to the raw material for the purpose of preventing the deactivation of the catalyst or for the reason of operating the apparatus. In the present invention, it is also an important feature that the deterioration of the catalyst can be suppressed without adding hydrogen.
A preferable range of LHSV (liquid hourly space velocity) depends on the activity of the catalyst, but is usually 0.2 hr −1 or more and 40 hr −1 or less.

水素製造システムについては特に制限は無いが、小型化が可能なシステムが本発明の目的に合致するため好ましい。この例として、いわゆる燃焼ガス加熱器を有した膜型反応器を用いることにより、脱水素触媒と水素分離膜を設け、脱水素反応時に同時に水素を分離し高純度水素を得るとともに、脱水素化物および非透過水素を燃焼させ、脱水素反応に必要な熱を供給できるシステムとすることができる。例えば、流通式反応管の一方から原料組成物を流通させ、内部に存在する脱水素触媒により基質(シクロヘキサン環を有する有機化合物)を脱水素して水素と反応生成物を生成させ、発生した水素を、同時に、in situで、水素分離膜により膜分離して、水素を選択的に透過させて、高純度な水素を得る。水素は迅速に分離され、吸熱反応である脱水素反応部分には、触媒燃焼および/または燃焼ガス等による適宜の加熱源により容易に熱が供給され、脱水素反応が進行する。   Although there is no restriction | limiting in particular about a hydrogen production system, Since the system which can be reduced in size meets the objective of this invention, it is preferable. As an example of this, by using a membrane reactor having a so-called combustion gas heater, a dehydrogenation catalyst and a hydrogen separation membrane are provided, and hydrogen is separated simultaneously during the dehydrogenation reaction to obtain high-purity hydrogen, and a dehydrogenated product And it can be set as the system which can supply the heat required for a dehydrogenation reaction by burning non-permeated hydrogen. For example, a raw material composition is circulated from one of the flow-type reaction tubes, a substrate (an organic compound having a cyclohexane ring) is dehydrogenated by a dehydrogenation catalyst present inside, hydrogen and a reaction product are generated, and hydrogen generated At the same time, the membrane is separated in situ by a hydrogen separation membrane, and hydrogen is selectively permeated to obtain high-purity hydrogen. Hydrogen is quickly separated, and heat is easily supplied to the dehydrogenation reaction part, which is an endothermic reaction, by an appropriate heating source such as catalytic combustion and / or combustion gas, and the dehydrogenation reaction proceeds.

水素分離膜としては、炭化水素と水素の混合ガスから水素を選択的に分離できる金属膜もしくは多孔質無機膜などが好ましく用いられる。
金属膜の場合、管状で細孔を有する多孔質金属支持体もしくは管状で細孔を有する多孔質セラミック支持体の内表面もしくは外表面に金属薄膜を形成させた水素分離膜であり、金属薄膜として、Pdを100〜10質量%含む金属膜、もしくは、Ag、Cu、V、Nb、Taより選ばれる少なくとも一種の金属を80〜10質量%含む金属膜が好ましい。
分離膜用支持体上での金属薄膜の形成方法は任意の方法を選択できるが、具体的には、無電解メッキ法、蒸着法、圧延法などが挙げられる。
As the hydrogen separation membrane, a metal membrane or a porous inorganic membrane capable of selectively separating hydrogen from a mixed gas of hydrocarbon and hydrogen is preferably used.
In the case of a metal membrane, it is a hydrogen separation membrane in which a metal thin film is formed on the inner surface or outer surface of a tubular porous metal support having pores or a porous ceramic support having pores. A metal film containing 100 to 10% by mass of Pd, or a metal film containing 80 to 10% by mass of at least one metal selected from Ag, Cu, V, Nb, and Ta is preferable.
Although any method can be selected as the method for forming the metal thin film on the support for the separation membrane, specific examples include electroless plating, vapor deposition, and rolling.

多孔質無機膜の場合、管状で細孔を有する多孔質セラミック支持体の内表面もしくは外表面に、細孔孔径の制御されたセラミック薄膜を形成させた水素分離膜が好ましい。多孔質無機膜は分子篩作用により選択的分離を行うため、薄膜部分の孔径は0.3nm以上、0.7nm以下が好ましく、0.3nm以上、0.5nm以下がさらに好ましい。セラミック膜の材質は、公知のセラミック材料が使えるが、シリカ、アルミナ、チタニア、ガラス、炭化ケイ素、窒化ケイ素が好ましい。   In the case of a porous inorganic membrane, a hydrogen separation membrane in which a ceramic thin film having a controlled pore size is formed on the inner or outer surface of a porous porous ceramic support having pores is preferable. Since the porous inorganic membrane is selectively separated by molecular sieve action, the pore diameter of the thin film portion is preferably 0.3 nm or more and 0.7 nm or less, and more preferably 0.3 nm or more and 0.5 nm or less. A known ceramic material can be used as the material of the ceramic film, but silica, alumina, titania, glass, silicon carbide, and silicon nitride are preferable.

水素製造システムを構成する熱伝導性支持材料は、300Kにおける熱伝導率が10W/m・K以上の材料とすることができる。具体的には金属が好ましく、表面に酸化物などの皮膜を有するものを含む。具体的には、熱伝導性材料として通常用いられる任意の金属および合金を用いることができるが、特にアルミニウムまたは表面にアルミニウムを有する金属および合金が好ましい。
金属であるので、熱伝導性は高く、熱供給が速くなり反応効率が向上する効果がある。すなわち、脱水素反応は吸熱反応であるために、反応部分に金属管を用い、適宜の加熱手段による加熱で熱を供給し、触媒と水素分離膜の間隙内の脱水素反応に熱を付与することにより、かかる脱水素反応への熱の付与が容易となる。
The thermally conductive support material constituting the hydrogen production system can be a material having a thermal conductivity at 300K of 10 W / m · K or more. Specifically, metals are preferable, and those having a film such as an oxide on the surface are included. Specifically, any metal and alloy usually used as a heat conductive material can be used, but aluminum or a metal or alloy having aluminum on the surface is particularly preferable.
Since it is a metal, its thermal conductivity is high, and there is an effect that the heat supply is fast and the reaction efficiency is improved. That is, since the dehydrogenation reaction is an endothermic reaction, a metal tube is used for the reaction portion, and heat is supplied by heating by an appropriate heating means, thereby giving heat to the dehydrogenation reaction in the gap between the catalyst and the hydrogen separation membrane. This facilitates application of heat to the dehydrogenation reaction.

脱水素反応面に触媒を保持させるにはいかなる方法も採用することができる。例えば、脱水素反応面に、まず触媒担体を保持させた後、この保持された担体に触媒活性成分を担持させることにより脱水素触媒を脱水素反応面に保持させる方法が挙げられる。好適には、脱水素反応面を高表面積になるよう予め処理した後、触媒担体および触媒活性成分を担持させる方法を挙げることができる。脱水素反応面を高表面積にするための処理方法については公知の方法が採用できる。例えば、特開2002−119856号公報に記載されているように、陽極酸化の処理をベースにして高表面積化する方法が挙げられる。
高表面積化した外表面は、触媒担持のために、アルミナなどの安定で高表面積を有する金属酸化物の層を形成することが好ましい。このためには、例えば、高表面積処理した脱水素反応面に、アルミナ水和物ゾルを塗布・乾燥後、焼成して、担体としての金属酸化物層を形成させることができる。
Any method can be employed to hold the catalyst on the dehydrogenation reaction surface. For example, a method in which a catalyst carrier is first held on the dehydrogenation reaction surface and then a catalytically active component is supported on the held carrier to hold the dehydrogenation catalyst on the dehydrogenation reaction surface. Preferable examples include a method in which the dehydrogenation reaction surface is pretreated so as to have a high surface area, and then the catalyst carrier and the catalyst active component are supported. A known method can be adopted as a treatment method for increasing the surface area of the dehydrogenation reaction surface. For example, as described in JP-A No. 2002-119856, there is a method of increasing the surface area based on anodizing treatment.
The outer surface having a high surface area is preferably formed with a metal oxide layer having a stable and high surface area such as alumina for supporting the catalyst. For this purpose, for example, an alumina hydrate sol can be applied to a dehydrogenation reaction surface treated with a high surface area, dried, and then fired to form a metal oxide layer as a carrier.

本発明にかかる脱水素反応は吸熱反応であるので、脱水素反応熱の供給を効率的に行うためには、熱供給源と触媒が直接接触することが好ましい。このため、担体の形状を脱水素反応面に直接接する板状、管状、もしくはフィン状として、原料組成物と接触する面積を大とすることが好ましい。加熱源と直接接触し、しかも原料組成物と接触する面積を大とすることが可能であるならば何れの形状も採用できる。
たとえば、フィン型としては、脱水素反応面に軸方向に長く、そして外側に向かって伸びる複数のフィン状突起を設ける構造とすることができる。該フィン表面には触媒を直接保持させる。好適には、先に述べたように金属酸化物層を表面に形成させて、該酸化物層を担体として触媒活性成分を担持させる。このようなフィン型は原料組成物と接触面積が大であるので加熱が容易となり好ましい。また管外側に加熱源を配置する場合には、この加熱源に直接接触することが可能となるので好ましい。
Since the dehydrogenation reaction according to the present invention is an endothermic reaction, it is preferable that the heat supply source and the catalyst are in direct contact in order to efficiently supply the dehydrogenation reaction heat. For this reason, it is preferable to increase the area in contact with the raw material composition by making the shape of the carrier plate-like, tubular, or fin-like in direct contact with the dehydrogenation reaction surface. Any shape can be adopted as long as it is possible to increase the area in direct contact with the heating source and in contact with the raw material composition.
For example, the fin type may have a structure in which a plurality of fin-like protrusions extending in the axial direction and extending outward are provided on the dehydrogenation reaction surface. The catalyst is directly held on the fin surface. Preferably, as described above, a metal oxide layer is formed on the surface, and a catalytically active component is supported on the oxide layer as a support. Since such a fin type has a large contact area with the raw material composition, heating is easy and it is preferable. Further, when a heating source is disposed outside the tube, it is preferable because it can directly contact the heating source.

シクロヘキサン環を有する有機化合物を原料とする場合の脱水素の生成物は、水素と不飽和炭化水素であり、不飽和炭化水素は主として芳香族炭化水素である。これらは回収して水素化することにより、原料の炭化水素に戻すことができる。あるいは必要に応じて脱水素反応に必要な熱源の燃料としても用いることができる。また芳香族炭化水素は一般にオクタン価が高いので、沸点が好適な物質はガソリン基材として用いることもできる。あるいは化学製品として用いることもできる。このような観点からシクロヘキサン環を有する炭化水素を原料として脱水素し、脱水素の生成物として、水素のほか芳香族炭化水素を得る方法は好ましい方法である。   The product of dehydrogenation in the case of using an organic compound having a cyclohexane ring as a raw material is hydrogen and an unsaturated hydrocarbon, and the unsaturated hydrocarbon is mainly an aromatic hydrocarbon. These can be recovered and hydrogenated to return to the starting hydrocarbon. Alternatively, it can also be used as a heat source fuel necessary for the dehydrogenation reaction, if necessary. In addition, since aromatic hydrocarbons generally have a high octane number, substances having a suitable boiling point can also be used as a gasoline base material. Alternatively, it can be used as a chemical product. From such a viewpoint, a method of dehydrogenating a hydrocarbon having a cyclohexane ring as a raw material and obtaining an aromatic hydrocarbon in addition to hydrogen as a dehydrogenation product is a preferable method.

脱水素反応により生成した水素は、芳香族炭化水素等の反応生成物と混在した状態であるが、直ちに、in situで水素分離膜により、水素を分離することができる。
ここで、膜分離反応器における水素分離膜の透過側圧力は、0.2MPa以下が好ましく、0.12MPa以下がさらに好ましい。また、水素分離膜の透過側には、透過側水素分圧を低下させる目的で不活性ガスを供給することが好ましい。透過側水素分圧は、0.12MPa以下が好ましく、0.05MPa以下がさらに好ましい。もっとも好ましくは0.01MPa以下である。
Although the hydrogen produced by the dehydrogenation reaction is in a state where it is mixed with a reaction product such as an aromatic hydrocarbon, the hydrogen can be immediately separated in situ by a hydrogen separation membrane.
Here, the permeation side pressure of the hydrogen separation membrane in the membrane separation reactor is preferably 0.2 MPa or less, and more preferably 0.12 MPa or less. Further, it is preferable to supply an inert gas to the permeation side of the hydrogen separation membrane for the purpose of reducing the permeation side hydrogen partial pressure. The permeate side hydrogen partial pressure is preferably 0.12 MPa or less, and more preferably 0.05 MPa or less. Most preferably, it is 0.01 MPa or less.

連続的に透過側(透過した方の側)からは水素を、また非透過側(透過する前の側)からは未反応原料組成物や脱水素化物を取り出すことにより、連続的な水素の製造をすることができる。脱水素化物、たとえばトルエンなどは、適宜に非透過側から、水素と共に抜き出すことができる。非透過側の未反応原料組成物等は、これを燃焼させて脱水素反応用加熱媒体とすることができる。   Continuous hydrogen production by removing hydrogen from the permeate side (permeate side) and unreacted raw material composition and dehydrogenated product from the non-permeate side (before permeation side) Can do. A dehydrogenated product such as toluene can be extracted together with hydrogen from the non-permeate side as appropriate. The unreacted raw material composition and the like on the non-permeate side can be burned to form a heating medium for dehydrogenation reaction.

以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例の範囲に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to the range of these Examples.

(実施例1)
γ−アルミナ担体に0.3質量%の白金を担持した平均直径1.5mmの球状市販触媒を触媒Aとした。触媒A3mlを内径8mmのステンレス製反応管に充填して固定床流通系反応装置に取り付けた。前処理として、水素を50ml/min.の流量で流し300℃で1時間還元処理をした後、窒素でパージした。メチルシクロヘキサン(MCH)にエタノールを組成物全量基準で5mol%添加した原料を実験に用いた。窒素の供給を止め、ガスを流さない状態で反応管の入口からマイクロフィーダーを用いて所定量の原料を供給し、反応温度(反応による吸熱により触媒層に温度分布が生じるため、触媒層出口の温度を反応温度とした)330℃、反応圧力0.1MPa(大気圧)、LHSV=5h−1の条件にて実験を開始し、反応管出口から得られる生成液をガスクロマトグラフで分析しMCHの転化率の経時変化を測定した。実験は1日に数時間行っていったん停止し、再スタートする方法で数日に渡って実施した。停止の際には原料の供給を止めて直ちに反応温度を下げた。再スタートの際には反応温度を上げ始めると同時に原料の供給を開始した。停止と再スタートの間には水素による還元および窒素によるパージは行わなかった。積算通油量0.05L時のMCH転化率および積算通油量0.25L時のMCH転化率を表1に示す。
Example 1
A spherical commercial catalyst having an average diameter of 1.5 mm, in which 0.3% by mass of platinum was supported on a γ-alumina carrier, was designated as Catalyst A. 3 ml of catalyst A was filled in a stainless steel reaction tube having an inner diameter of 8 mm and attached to a fixed bed flow system reactor. As a pretreatment, hydrogen was added at 50 ml / min. After flowing at 300 ° C. for 1 hour, the substrate was purged with nitrogen. A raw material obtained by adding 5 mol% of ethanol to methylcyclohexane (MCH) based on the total amount of the composition was used in the experiment. Stop supplying nitrogen and supply a predetermined amount of raw material from the inlet of the reaction tube using a microfeeder without flowing gas, and the reaction temperature (the temperature distribution in the catalyst layer is generated by the endothermic reaction, so the catalyst layer outlet The experiment was started under conditions of 330 ° C. (reaction temperature), reaction pressure of 0.1 MPa (atmospheric pressure), and LHSV = 5 h −1 , and the product liquid obtained from the reaction tube outlet was analyzed with a gas chromatograph. The change with time of the conversion was measured. The experiment was carried out over several days in a way that was stopped for a few hours a day, then stopped and restarted. When stopping, the supply of raw materials was stopped and the reaction temperature was immediately lowered. At the time of restarting, the reaction temperature started to increase and at the same time, the feed of raw materials was started. There was no hydrogen reduction or nitrogen purge between shutdown and restart. Table 1 shows the MCH conversion rate at an accumulated oil flow rate of 0.05 L and the MCH conversion rate at an accumulated oil flow rate of 0.25 L.

(実施例2)
メチルシクロヘキサンにエタノールを5mol%添加した原料のかわりにメチルシクロヘキサンに2−プロパノールを5mol%添加した原料を用いたほかは実施例1と同様に実験を行った。積算通油量0.05L時のMCH転化率および積算通油量0.25L時のMCH転化率を表1に示す。
(Example 2)
An experiment was conducted in the same manner as in Example 1 except that a raw material in which 5 mol% of 2-propanol was added to methylcyclohexane was used instead of the raw material in which 5 mol% of ethanol was added to methylcyclohexane. Table 1 shows the MCH conversion rate at an accumulated oil flow rate of 0.05 L and the MCH conversion rate at an accumulated oil flow rate of 0.25 L.

(実施例3)
メチルシクロヘキサンにエタノールを5mol%添加した原料のかわりにメチルシクロヘキサンに1−ブタノールを5mol%添加した原料を用いたほかは実施例1と同様に実験を行った。積算通油量0.05L時のMCH転化率および積算通油量0.25L時のMCH転化率を表1に示す。
(Example 3)
An experiment was conducted in the same manner as in Example 1 except that a raw material in which 1 mol of 1-butanol was added to methylcyclohexane was used instead of the raw material in which 5 mol% of ethanol was added to methylcyclohexane. Table 1 shows the MCH conversion rate at an accumulated oil flow rate of 0.05 L and the MCH conversion rate at an accumulated oil flow rate of 0.25 L.

(実施例4)
メチルシクロヘキサンにエタノールを5mol%添加した原料のかわりにメチルシクロヘキサンにイソブチルアルコールを5mol%添加した原料を用いたほかは実施例1と同様に実験を行った。積算通油量0.05L時のMCH転化率および積算通油量0.25L時のMCH転化率を表1に示す。
Example 4
An experiment was conducted in the same manner as in Example 1 except that a raw material in which 5 mol% of isobutyl alcohol was added to methylcyclohexane was used instead of the raw material in which 5 mol% of ethanol was added to methylcyclohexane. Table 1 shows the MCH conversion rate at an accumulated oil flow rate of 0.05 L and the MCH conversion rate at an accumulated oil flow rate of 0.25 L.

(実施例5)
メチルシクロヘキサンにエタノールを5mol%添加した原料のかわりにメチルシクロヘキサンにt-ブチルアルコールを5mol%添加した原料を用いたほかは実施例1と同様に実験を行った。積算通油量0.05L時のMCH転化率および積算通油量0.25L時のMCH転化率を表1に示す。
(Example 5)
An experiment was conducted in the same manner as in Example 1 except that a raw material in which 5 mol% of t-butyl alcohol was added to methylcyclohexane was used instead of the raw material in which 5 mol% of ethanol was added to methylcyclohexane. Table 1 shows the MCH conversion rate at an accumulated oil flow rate of 0.05 L and the MCH conversion rate at an accumulated oil flow rate of 0.25 L.

(実施例6)
メチルシクロヘキサンにエタノールを5mol%添加した原料のかわりにメチルシクロヘキサンに2−プロパノールを1mol%添加した原料を用いたほかは実施例1と同様に実験を行った。積算通油量0.05L時のMCH転化率および積算通油量0.25L時のMCH転化率を表1に示す。
(Example 6)
An experiment was conducted in the same manner as in Example 1 except that a raw material in which 1 mol% of 2-propanol was added to methylcyclohexane was used instead of the raw material in which 5 mol% of ethanol was added to methylcyclohexane. Table 1 shows the MCH conversion rate at an accumulated oil flow rate of 0.05 L and the MCH conversion rate at an accumulated oil flow rate of 0.25 L.

(実施例7)
メチルシクロヘキサンにエタノールを5mol%添加した原料のかわりにメチルシクロヘキサンに2−プロパノールを15mol%添加した原料を用いたほかは実施例1と同様に実験を行った。積算通油量0.05L時のMCH転化率および積算通油量0.25L時のMCH転化率を表1に示す。
(Example 7)
An experiment was conducted in the same manner as in Example 1 except that a raw material in which 15 mol% of 2-propanol was added to methylcyclohexane was used instead of the raw material in which 5 mol% of ethanol was added to methylcyclohexane. Table 1 shows the MCH conversion rate at an accumulated oil flow rate of 0.05 L and the MCH conversion rate at an accumulated oil flow rate of 0.25 L.

(実施例8)
メチルシクロヘキサンにエタノールを5mol%添加した原料のかわりにメチルシクロヘキサンに2−プロパノールを20mol%添加した原料を用いたほかは実施例1と同様に実験を行った。積算通油量0.05L時のMCH転化率および積算通油量0.25L時のMCH転化率を表1に示す。
(Example 8)
An experiment was conducted in the same manner as in Example 1 except that a raw material in which 20 mol% of 2-propanol was added to methylcyclohexane was used instead of the raw material in which 5 mol% of ethanol was added to methylcyclohexane. Table 1 shows the MCH conversion rate at an accumulated oil flow rate of 0.05 L and the MCH conversion rate at an accumulated oil flow rate of 0.25 L.

(実施例9)
メチルシクロヘキサンにエタノールを5mol%添加した原料のかわりにメチルシクロヘキサンにイソプロピルエーテルを5mol%添加した原料を用いたほかは実施例1と同様に実験を行った。積算通油量0.05L時のMCH転化率および積算通油量0.25L時のMCH転化率を表1に示す。
Example 9
An experiment was conducted in the same manner as in Example 1 except that a raw material in which 5 mol% of isopropyl ether was added to methylcyclohexane was used instead of the raw material in which 5 mol% of ethanol was added to methylcyclohexane. Table 1 shows the MCH conversion rate at an accumulated oil flow rate of 0.05 L and the MCH conversion rate at an accumulated oil flow rate of 0.25 L.

(実施例10)
メチルシクロヘキサンにエタノールを5mol%添加した原料のかわりにメチルシクロヘキサンにエチルt−ブチルエーテルを5mol%添加した原料を用いたほかは実施例1と同様に実験を行った。積算通油量0.05L時のMCH転化率および積算通油量0.25L時のMCH転化率を表1に示す。
(Example 10)
An experiment was conducted in the same manner as in Example 1 except that a raw material in which 5 mol% of ethyl t-butyl ether was added to methylcyclohexane was used instead of the raw material in which 5 mol% of ethanol was added to methylcyclohexane. Table 1 shows the MCH conversion rate at an accumulated oil flow rate of 0.05 L and the MCH conversion rate at an accumulated oil flow rate of 0.25 L.

(実施例11)
メチルシクロヘキサンにエタノールを5mol%添加した原料を用いるかわりに、メチルシクロヘキサンと水を別のマイクロフィーダーから反応管入口に供給し、原料に対して水が10mol%になるようにしたほかは実施例1と同様に実験を行った。積算通油量0.05L時のMCH転化率および積算通油量0.25L時のMCH転化率を表1に示す。
(Example 11)
Example 1 except that methylcyclohexane and water were supplied from another microfeeder to the reaction tube inlet instead of using a raw material obtained by adding 5 mol% of ethanol to methylcyclohexane. The experiment was conducted in the same manner as above. Table 1 shows the MCH conversion rate at an accumulated oil flow rate of 0.05 L and the MCH conversion rate at an accumulated oil flow rate of 0.25 L.

(実施例12)
メチルシクロヘキサンにエタノールを5mol%添加した原料のかわりにメチルシクロヘキサンにメタノールを5mol%添加した原料を用いたほかは実施例1と同様に実験を行った。積算通油量0.05L時のMCH転化率および積算通油量0.25L時のMCH転化率を表1に示す。
Example 12
An experiment was conducted in the same manner as in Example 1 except that a raw material in which 5 mol% of methanol was added to methylcyclohexane was used instead of the raw material in which 5 mol% of ethanol was added to methylcyclohexane. Table 1 shows the MCH conversion rate at an accumulated oil flow rate of 0.05 L and the MCH conversion rate at an accumulated oil flow rate of 0.25 L.

(比較例1)
メチルシクロヘキサンにエタノールを5mol%添加した原料のかわりに含酸素化合物を添加していないメチルシクロヘキサンを原料として用いたほかは実施例1と同様に実験を行った。積算通油量0.05L時のMCH転化率および積算通油量0.25L時のMCH転化率を表1に示す。
(Comparative Example 1)
An experiment was conducted in the same manner as in Example 1 except that methylcyclohexane not containing an oxygen-containing compound was used as a raw material instead of the raw material obtained by adding 5 mol% of ethanol to methylcyclohexane. Table 1 shows the MCH conversion rate at an accumulated oil flow rate of 0.05 L and the MCH conversion rate at an accumulated oil flow rate of 0.25 L.

Figure 2009221033
Figure 2009221033

(比較例2)
図1に試作した膜分離反応器を示した。中心部に水素透過部分の長さが12cm、外径10mmのPd系水素分離膜、その周囲に内部フィンを有する熱交換器型触媒(触媒部の長さ12cm、触媒容積24ml)を有するような構成となっている。この膜分離反応器の外周部に図2に示すように触媒燃焼部を有する加熱器を設置し、水素発生システムを試作した。脱水素反応部はトルエンを燃焼させることにより加熱される方式となっている。
この水素発生システムを用いて、メチルシクロヘキサンからの水素生成試験を実施した。燃料のトルエン量を調節することにより反応温度をコントロールしながら、LHSV=7.5h−1、反応温度(触媒部出口の温度を反応温度とした)330℃、反応圧力0.5MPaの条件で実験を行い、反応開始から約2時間で定常状態となった。このときのメチルシクロヘキサン転化率は76%であった。
(Comparative Example 2)
Fig. 1 shows a prototype membrane separation reactor. It has a Pd-based hydrogen separation membrane having a hydrogen permeation portion length of 12 cm and an outer diameter of 10 mm in the center, and a heat exchanger type catalyst (catalyst portion length of 12 cm, catalyst volume of 24 ml) around the periphery. It has a configuration. As shown in FIG. 2, a heater having a catalytic combustion section was installed on the outer periphery of the membrane separation reactor, and a hydrogen generation system was prototyped. The dehydrogenation reaction section is heated by burning toluene.
Using this hydrogen generation system, a hydrogen production test from methylcyclohexane was conducted. While controlling the reaction temperature by adjusting the amount of toluene in the fuel, the experiment was conducted under the conditions of LHSV = 7.5 h −1 , reaction temperature (the temperature at the outlet of the catalyst section was the reaction temperature) 330 ° C., and the reaction pressure was 0.5 MPa. And a steady state was reached in about 2 hours from the start of the reaction. The methylcyclohexane conversion at this time was 76%.

(実施例13)
比較例2に示した水素発生システムで、メチルシクロヘキサンにエタノールを5mol%添加した原料を用いた他は比較例2と同様に実験を行った。このときのメチルシクロヘキサン転化率は85%であった。
(Example 13)
The experiment was performed in the same manner as in Comparative Example 2 except that the hydrogen generation system shown in Comparative Example 2 was used with a raw material obtained by adding 5 mol% of ethanol to methylcyclohexane. The methylcyclohexane conversion at this time was 85%.

比較例2で試作した膜分離反応器の概略図である。3 is a schematic view of a membrane separation reactor experimentally manufactured in Comparative Example 2. FIG. 比較例2で試作した水素発生システムの概略図である。6 is a schematic diagram of a hydrogen generation system prototyped in Comparative Example 2. FIG.

Claims (8)

シクロヘキサン環を有する有機化合物を50mol%以上、かつ含酸素化合物を0.1mol%以上含有してなる、当該シクロヘキサン環の脱水素反応により水素を生成する水素生成用原料組成物。   A raw material composition for generating hydrogen, which contains 50 mol% or more of an organic compound having a cyclohexane ring and 0.1 mol% or more of an oxygen-containing compound, and generates hydrogen by a dehydrogenation reaction of the cyclohexane ring. シクロヘキサン環を有する有機化合物が、シクロヘキサン、テトラリン、デカリンおよびこれらのアルキル置換体から選ばれる少なくとも1種の有機化合物であることを特徴とする請求項1に記載の水素生成用原料組成物。   2. The raw material composition for hydrogen generation according to claim 1, wherein the organic compound having a cyclohexane ring is at least one organic compound selected from cyclohexane, tetralin, decalin, and alkyl-substituted products thereof. 含酸素化合物が、アルコール、エーテルおよび水から選ばれる少なくとも1種の含酸素化合物であることを特徴とする請求項1または2に記載の水素生成用原料組成物。   The hydrogen-containing raw material composition according to claim 1 or 2, wherein the oxygen-containing compound is at least one oxygen-containing compound selected from alcohol, ether and water. アルコールが炭素数2以上のアルコールであることを特徴とする請求項3に記載の水素生成用原料組成物。   4. The raw material composition for hydrogen generation according to claim 3, wherein the alcohol is an alcohol having 2 or more carbon atoms. エーテルのアルキル基が炭素数2以上のアルキル基であることを特徴とする請求項3に記載の水素生成用原料組成物。   4. The raw material composition for hydrogen generation according to claim 3, wherein the ether alkyl group is an alkyl group having 2 or more carbon atoms. 脱水素触媒の存在下、請求項1〜5のいずれかに記載の水素生成用原料組成物を流通させ、シクロヘキサン環を脱水素させることにより水素を発生するとともに脱水素反応生成物を得ることを特徴とする水素の製造方法。   In the presence of a dehydrogenation catalyst, the hydrogen-producing raw material composition according to any one of claims 1 to 5 is circulated to generate hydrogen by dehydrogenating a cyclohexane ring and to obtain a dehydrogenation reaction product. A method for producing hydrogen. 請求項6に記載の方法により得られる水素および脱水素反応生成物、ならびに脱水素反応前の水素生成用原料組成物から選ばれる少なくとも1種を燃焼させ、その燃焼熱を利用して脱水素反応を行うことを特徴とする水素の製造方法。   A hydrogen and dehydrogenation reaction product obtained by the method according to claim 6 and at least one selected from a hydrogen generation raw material composition before the dehydrogenation reaction are combusted, and the dehydrogenation reaction is performed using the combustion heat. A method for producing hydrogen, characterized in that: 請求項6に記載の方法により得られる水素と脱水素反応生成物を膜分離により分離することを特徴とする水素製造システム。   A hydrogen production system, wherein hydrogen obtained by the method according to claim 6 and a dehydrogenation reaction product are separated by membrane separation.
JP2008065144A 2008-03-14 2008-03-14 Raw material composition for hydrogen generation and method for producing hydrogen Active JP5127516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008065144A JP5127516B2 (en) 2008-03-14 2008-03-14 Raw material composition for hydrogen generation and method for producing hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008065144A JP5127516B2 (en) 2008-03-14 2008-03-14 Raw material composition for hydrogen generation and method for producing hydrogen

Publications (2)

Publication Number Publication Date
JP2009221033A true JP2009221033A (en) 2009-10-01
JP5127516B2 JP5127516B2 (en) 2013-01-23

Family

ID=41238232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008065144A Active JP5127516B2 (en) 2008-03-14 2008-03-14 Raw material composition for hydrogen generation and method for producing hydrogen

Country Status (1)

Country Link
JP (1) JP5127516B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011152527A (en) * 2010-01-28 2011-08-11 Hitachi Aic Inc Hydrogen catalyst member
WO2022219822A1 (en) * 2021-04-16 2022-10-20 千代田化工建設株式会社 Hydrogen station and hydrogen generation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06321502A (en) * 1993-05-13 1994-11-22 Kawasaki Heavy Ind Ltd Acceleration of dehydrogen reaction and apparatus therefore
JP2003095603A (en) * 2001-09-26 2003-04-03 Sekisui Chem Co Ltd Hydrogen storage and supply system
JP2003260360A (en) * 2002-03-13 2003-09-16 Toyota Motor Corp Dehydrogenation catalyst and hydrogen gas generating device
JP2004203679A (en) * 2002-12-25 2004-07-22 Tokyo Electric Power Co Inc:The Hydrogen donor and hydrogen storage and transport method using the same
JP2007076992A (en) * 2005-09-16 2007-03-29 Nippon Oil Corp Apparatus for producing hydrogen and fuel cell system using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06321502A (en) * 1993-05-13 1994-11-22 Kawasaki Heavy Ind Ltd Acceleration of dehydrogen reaction and apparatus therefore
JP2003095603A (en) * 2001-09-26 2003-04-03 Sekisui Chem Co Ltd Hydrogen storage and supply system
JP2003260360A (en) * 2002-03-13 2003-09-16 Toyota Motor Corp Dehydrogenation catalyst and hydrogen gas generating device
JP2004203679A (en) * 2002-12-25 2004-07-22 Tokyo Electric Power Co Inc:The Hydrogen donor and hydrogen storage and transport method using the same
JP2007076992A (en) * 2005-09-16 2007-03-29 Nippon Oil Corp Apparatus for producing hydrogen and fuel cell system using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011152527A (en) * 2010-01-28 2011-08-11 Hitachi Aic Inc Hydrogen catalyst member
WO2022219822A1 (en) * 2021-04-16 2022-10-20 千代田化工建設株式会社 Hydrogen station and hydrogen generation method

Also Published As

Publication number Publication date
JP5127516B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
JP6097874B1 (en) Catalysts and processes for thermal neutralization reforming of liquid hydrocarbons
Lin Catalytic valorization of glycerol to hydrogen and syngas
JP5215057B2 (en) Hydrogen production method
Iulianelli et al. Hydrogen production from ethanol via inorganic membrane reactors technology: a review
Fasanya et al. Copper zinc oxide nanocatalysts grown on cordierite substrate for hydrogen production using methanol steam reforming
RU2561986C2 (en) Catalytic system for processes of partial catalytic oxidation with short duration of contact
JP4951352B2 (en) Catalytic reaction between methanol and peroxide.
Al-Fatesh et al. Promotional effect of magnesium oxide for a stable nickel-based catalyst in dry reforming of methane
García et al. Influence of operating variables on the aqueous-phase reforming of glycerol over a Ni/Al coprecipitated catalyst
JP2007099528A (en) Method for producing high purity hydrogen
Basov et al. Membrane catalysis in the dehydrogenation and hydrogen production processes
JP4995461B2 (en) Carbon dioxide reforming method of hydrocarbons by selectively permeable membrane reactor
Yan et al. Hydrogen production by steam reforming of dimethyl ether and CO-PrOx in a metal foam micro-reactor
JP2008081385A (en) Method for producing hydrogen and reaction tube for it
JP2005035842A (en) Hydrogen production system
Chen et al. Hydrogen production via autothermal reforming of ethanol over noble metal catalysts supported on oxides
JP4431338B2 (en) Method for producing hydrogen using thermally conductive catalyst body
JP5127516B2 (en) Raw material composition for hydrogen generation and method for producing hydrogen
JP2007076982A (en) Hydrogen production system and power generation system
JP5102932B2 (en) High purity hydrogen production method
JP2005289652A (en) Method for producing hydrogen and reaction tube
JP5108387B2 (en) Hydrogen production method and hydrogen production reaction tube
JP2005238025A (en) Fuel reforming catalyst and fuel reforming system using the same
JP2007084378A (en) Method for producing hydrogen and apparatus used in the same
JP2007076992A (en) Apparatus for producing hydrogen and fuel cell system using the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100428

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121030

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5127516

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250