JP2009220468A - Extrusion molding apparatus - Google Patents

Extrusion molding apparatus Download PDF

Info

Publication number
JP2009220468A
JP2009220468A JP2008068791A JP2008068791A JP2009220468A JP 2009220468 A JP2009220468 A JP 2009220468A JP 2008068791 A JP2008068791 A JP 2008068791A JP 2008068791 A JP2008068791 A JP 2008068791A JP 2009220468 A JP2009220468 A JP 2009220468A
Authority
JP
Japan
Prior art keywords
stirring
extrusion
molding material
pins
extrusion hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008068791A
Other languages
Japanese (ja)
Inventor
Kazuya Tsuchimoto
和也 土本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2008068791A priority Critical patent/JP2009220468A/en
Publication of JP2009220468A publication Critical patent/JP2009220468A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an extrusion molding apparatus which can obtain a molded article having high strength in all directions, in which heat is hardly generated, and whose power source can be made compact. <P>SOLUTION: The apparatus comprises a conveyance passage 2 for conveying a molding material, a die 3 arranged in the conveyance passage 2, and a screw 7 for extruding the molding material toward an extrusion hole 4 formed in the die 3, wherein a stirring means 10 is mounted on the tip end of the main shaft of the screw 7. The stirring means 10 is composed of two stirring pins 12, 13 extending nearly along the axial direction of the extrusion hole 4 and crossing each other. When the molding material containing reinforced fibers is pushed into the extrusion hole 4 of the die 3 by the screw 7, force in the rotating direction is simultaneously applied by the two stirring pins 12, 13 and a stirring effect is generated. As a result, the reinforced fibers f mixed in the molding material are present spirally or at random in the molded article C, reinforcing effect is generated not only in the axial direction, but also in the radial direction of the molded article C, thus, the molded article C hard to break in all directions can be obtained. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、押出成形装置に関する。さらに詳しくは、補強繊維を混入した成形材料を、円柱状または円筒状の成形品に形成するために使用される押出成形装置に関する。   The present invention relates to an extrusion molding apparatus. More specifically, the present invention relates to an extrusion molding apparatus used for forming a molding material mixed with reinforcing fibers into a cylindrical or cylindrical molded product.

一般に、触媒、触媒担体、吸着材、乾燥材、調湿材等は、直径1〜20mm、長さ1〜20mm程度の円柱状または円筒形の成形品に成形され、これを反応器に充填して種々の化学反応プロセスに使用される。このような触媒等の成形品を製造するために、従来から押出成形装置が用いられている。   In general, a catalyst, a catalyst carrier, an adsorbent, a drying material, a humidity control material, etc. are formed into a cylindrical or cylindrical molded product having a diameter of about 1 to 20 mm and a length of about 1 to 20 mm, and this is filled into a reactor. Used in various chemical reaction processes. In order to produce such a molded article such as a catalyst, an extrusion molding apparatus has been conventionally used.

上記の成形品は、たとえばアルミナ等の軟質な粘土状材料を用い、これをダイから連続的に押し出して棒状品に成形し、さらに小さく切断して円柱状または円筒状に成形している。   The molded article is made of, for example, a soft clay-like material such as alumina, which is continuously extruded from a die to be formed into a rod-shaped article, and is further cut into a cylindrical shape or a cylindrical shape.

ところで、上記成形品が主材料の粘土状材料のみであると強度が弱く割れやすいため、成形材料に補強繊維を混ぜ込み、強度を向上させることが行われている。ところが、押出成形により製造した成形品は、たとえ補強繊維が分散されていても、床に落すなどの衝撃を加えた場合、簡単に割れてしまうという問題があった。とくに円筒形の成形品では、その軸方向に割れやすかった。なぜならば、図5(B)に示すように、押出成形された成形品Cに含まれる補強繊維fは、成形品Cと同様に押出し方向に向けて揃えられるため、補強繊維が半径方向の強度向上には寄与しなかったからである。   By the way, if the molded product is only the clay-like material as the main material, the strength is weak and it is easy to break, and therefore, reinforcing fibers are mixed into the molding material to improve the strength. However, a molded article produced by extrusion molding has a problem that it is easily broken even when reinforcing fibers are dispersed, when an impact such as dropping on the floor is applied. In particular, a cylindrical molded product was easily broken in the axial direction. This is because, as shown in FIG. 5 (B), the reinforcing fibers f included in the extruded product C are aligned in the extrusion direction in the same manner as the molded product C. Therefore, the reinforcing fibers have a radial strength. This is because it did not contribute to improvement.

特許文献1には、そのような成形品における補強繊維の配向方向を変化させることを考慮した押出成形装置が開示されている。この装置では、スクリュー軸に攪拌手段を取付け、この攪拌手段をダイに形成した押出孔の内部で回転させるように構成している。攪拌手段としては、押出孔内で軸方向に延びる1本のピンと、このピンに対し半径方向に延びる突起を取付けたものが用いられている。この従来技術によれば、押出時に成形材料内の補強繊維がランダムに分散し、機械的強度が向上するとされている。   Patent Document 1 discloses an extrusion molding apparatus that considers changing the orientation direction of reinforcing fibers in such a molded article. In this apparatus, stirring means is attached to a screw shaft, and this stirring means is configured to rotate inside an extrusion hole formed in a die. As the agitation means, one pin that extends in the axial direction within the extrusion hole and a protrusion that extends in the radial direction is attached to this pin. According to this conventional technique, the reinforcing fibers in the molding material are randomly dispersed during extrusion, and the mechanical strength is improved.

しかしながら上記従来技術では、押出孔内で半径方向に延びる突起が回転するが、その突起は成形材料の押出し方向に対し直角方向に存在するので、押出し抵抗が大きく、大きな押出し動力を必要としていた。また、突起が押出し材料の流動を妨げやすいので、発熱量が大きく押出し不良が生じやすかった。   However, in the above prior art, the protrusion extending in the radial direction in the extrusion hole rotates, but the protrusion exists in a direction perpendicular to the extrusion direction of the molding material, so that the extrusion resistance is large and a large extrusion power is required. Further, since the protrusions tend to hinder the flow of the extruded material, the amount of generated heat is large, and extrusion failure is likely to occur.

特開2006−272961JP 2006-272961

本発明は上記事情に鑑み、全方向で強度が高い成形品を得ることができ、しかも発熱が生じにくく、動力源の小型化が可能な押出成形装置を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide an extrusion molding apparatus that can obtain a molded product having high strength in all directions, is less likely to generate heat, and can reduce the size of a power source.

第1発明の押出成形装置は、補強繊維を混入した成形材料を押し出し成形するダイスと、該ダイスに形成された押出孔に向けて成形材料を押し出す搬送手段とを備えた押出成形装置であって、前記搬送手段の主軸の先端に、攪拌手段を取付けており、該攪拌手段は前記押出孔の内部に位置しており、前記攪拌手段は、2本の攪拌ピンからなり、該2本の攪拌ピンが前記押出孔の軸方向にほぼ沿って延び、かつ互いに交差していることを特徴とする。
第2発明の押出成形装置は、第1発明において、前記2本の攪拌ピンが、いずれも、その基端が前記搬送手段の主軸の先端に取付けられ、その先端が前記押出口の出側に向けられており、かつ互いの中間部で交差していることを特徴とする。
第3発明の押出成形装置は、第1発明において、前記2本の攪拌ピンが、いずれも、その基端が前記搬送手段の主軸の先端に取付けられ、その先端が前記押出口の出側に向けられており、かつ互いの基端部で交差していることを特徴とする。
An extrusion molding apparatus according to a first aspect of the present invention is an extrusion molding apparatus provided with a die for extruding a molding material mixed with reinforcing fibers and a conveying means for extruding the molding material toward an extrusion hole formed in the die. The stirring means is attached to the tip of the main shaft of the conveying means, and the stirring means is located inside the extrusion hole, and the stirring means comprises two stirring pins, and the two stirring means The pins extend substantially along the axial direction of the extrusion hole and intersect each other.
The extrusion molding apparatus according to a second aspect of the present invention is the extrusion molding apparatus according to the first aspect, wherein the two agitation pins are both attached at the proximal end to the distal end of the main shaft of the conveying means, and the distal end is on the exit side of the extrusion port. It is directed and crosses in the middle part of each other.
The extrusion molding apparatus according to a third aspect of the present invention is the extrusion molding apparatus according to the first aspect, wherein the two agitation pins are both attached at the base end to the front end of the main shaft of the conveying means, and the front end is on the exit side of the extrusion port. It is directed and crosses at the base end of each other.

第1発明によれば、補強繊維入りの成形材料が搬送手段でダイスの押出孔へ押し込まれると、同時に攪拌手段である2本の攪拌ピンの回転によって攪拌される。しかも、2本の攪拌ピンが交差していると、押出孔内における軸方向の長い領域で攪拌効果が生じるので、成形材料は回転方向の力を受けながら、押出孔から押し出される。このため、成形材料内に混入されている補強繊維も成形品内で螺旋状にあるいはランダム存在することとなり、成形品の軸方向だけでなく半径方向にも補強効果が生じ、全方向で割れにくい成形品が得られる。また、攪拌ピンは押出孔内で、同軸方向に沿って延びているので、成形材料が押出孔内を通過するときの抵抗が小さくなる。このため、発熱による成形不良が生じにくく、押出駆動源も小型化できる。
第2発明によれば、2本の攪拌ピンが互いの中間部で交差しているので、2本の攪拌ピンにおける基端同士の間隔を広くとれ、攪拌抵抗に対する抗力が大きくなる。しかも、押出孔の流路断面内での中心位置から押出孔内周に至る全半径領域で攪拌効果を生じさせることができるため、補強繊維の螺旋状あるいはランダムな配向を行いやすい。また、2本の攪拌ピンは押出孔内を押し出される成形材料の流れに沿っているので、流動抵抗が小さくなる。このため、成形材料の発熱も少なくなり、成形不良が生じにくく、押出駆動源を小型化できる。
第3発明によれば、2本の攪拌ピンが互いの基端部で交差しているので、2本の攪拌ピンにおける先端同士の間隔を広くとれ、大きく攪拌することができる。しかも、押出孔の流路断面内での中心位置から押出孔内周に至る全半径領域で攪拌効果を生じさせることができるため、補強繊維の螺旋状あるいはランダムな配向を行いやすい。また、2本の攪拌ピンは押出孔内を押し出される成形材料の流れに沿っているので、流動抵抗が小さくなる。このため、成形材料の発熱も少なくなり、成形不良が生じにくく、押出駆動源を小型化できる。
According to the first invention, when the molding material containing the reinforcing fibers is pushed into the extrusion hole of the die by the conveying means, it is simultaneously stirred by the rotation of the two stirring pins as the stirring means. In addition, when the two agitating pins intersect, the agitation effect is produced in a long axial region within the extrusion hole, so that the molding material is extruded from the extrusion hole while receiving a force in the rotational direction. For this reason, the reinforcing fibers mixed in the molding material also exist spirally or randomly in the molded product, and a reinforcing effect is generated not only in the axial direction but also in the radial direction of the molded product, and is difficult to crack in all directions. A molded product is obtained. Further, since the stirring pin extends along the coaxial direction in the extrusion hole, the resistance when the molding material passes through the extrusion hole is reduced. For this reason, it is hard to produce the shaping | molding defect by heat_generation | fever and an extrusion drive source can also be reduced in size.
According to the second aspect of the invention, since the two stirring pins intersect each other at the intermediate portion, the distance between the base ends of the two stirring pins can be widened, and the resistance against the stirring resistance is increased. In addition, since the stirring effect can be generated in the entire radius region from the center position in the flow path cross section of the extrusion hole to the inner periphery of the extrusion hole, it is easy to perform spiral or random orientation of the reinforcing fibers. In addition, since the two stirring pins follow the flow of the molding material extruded through the extrusion hole, the flow resistance is reduced. For this reason, the heat generation of the molding material is reduced, molding defects are less likely to occur, and the extrusion drive source can be miniaturized.
According to the third aspect of the invention, since the two agitation pins intersect with each other at the base end portions, the distance between the tips of the two agitation pins can be widened and agitation can be greatly performed. In addition, since the stirring effect can be generated in the entire radius region from the center position in the flow path cross section of the extrusion hole to the inner periphery of the extrusion hole, it is easy to perform spiral or random orientation of the reinforcing fibers. In addition, since the two stirring pins follow the flow of the molding material extruded through the extrusion hole, the flow resistance is reduced. For this reason, the heat generation of the molding material is reduced, molding defects are less likely to occur, and the extrusion drive source can be miniaturized.

つぎに、本発明の実施形態を図面に基づき説明する。
本発明の押出成形装置は、粘土状材料に補強繊維を混入した成形材料を搬送手段により加圧搬送してダイスから押出して成形品を製造する装置である。以下の例では、搬送手段がスクリュー方式の場合を代表として説明するが、成形材料の搬送方式(押出し機構)は、とくに限定されない。
Next, an embodiment of the present invention will be described with reference to the drawings.
The extrusion molding apparatus of the present invention is an apparatus for producing a molded product by pressure-conveying a molding material in which reinforcing fibers are mixed into a clay-like material, and extruding it from a die. In the following example, the case where the conveying means is a screw type will be described as a representative, but the conveying method (extrusion mechanism) of the molding material is not particularly limited.

また、本発明の押出成形装置が成形する成形材料は補強繊維を混入したものであり、混入する補強繊維としては、アルミナ、シリカアルミナ、石英、ガラス、炭化珪素、窒化珪素、ホウ酸アルミニウムなどで、繊維径が0.1〜20μm、繊維長が1〜1000μmの公知のものを例示できるが、これに限るものではない。   The molding material molded by the extrusion molding apparatus of the present invention is a mixture of reinforcing fibers. Examples of the reinforcing fibers to be mixed include alumina, silica alumina, quartz, glass, silicon carbide, silicon nitride, and aluminum borate. In addition, known materials having a fiber diameter of 0.1 to 20 μm and a fiber length of 1 to 1000 μm can be exemplified, but the present invention is not limited thereto.

本発明の押出成形装置の概略を、図1に基づき説明する。
同図において、符号2はスクリューケース等の搬送通路を示している。この搬送通路2内には、中空な筒状の空間が形成されており、この搬送通路2の軸方向の一端にダイス3が設けられている。また、ダイス3の中心には押出孔4が形成されている。
An outline of the extrusion molding apparatus of the present invention will be described with reference to FIG.
In the same figure, the code | symbol 2 has shown conveyance paths, such as a screw case. A hollow cylindrical space is formed in the transport path 2, and a die 3 is provided at one end of the transport path 2 in the axial direction. An extrusion hole 4 is formed in the center of the die 3.

前記搬送通路2には、成形材料を搬送通路2内に供給するホッパー5が設けられている。なお、この例では、ホッパー5を通して成形材料を搬送通路2内に供給しているが、搬送通路2内に成形材料を供給する方法は特に限定されない。   The transport passage 2 is provided with a hopper 5 for supplying a molding material into the transport passage 2. In this example, the molding material is supplied into the conveyance path 2 through the hopper 5, but the method of supplying the molding material into the conveyance path 2 is not particularly limited.

前記搬送通路2内の空間には、搬送手段としてのスクリュー7が配設され、このスクリュー7の基端は、減速機8を介してモータ等の駆動源9に連結されている。
このスクリュー7は主軸7aと羽根7bから構成されたものであり、主軸7aはダイス3に形成された押出孔4と同心に配置されている。
そして、主軸7aの先端には、本発明に係る攪拌手段10が取付けられているが、その詳細は後述する。
A screw 7 as a conveying means is disposed in the space in the conveying passage 2, and the base end of the screw 7 is connected to a drive source 9 such as a motor via a speed reducer 8.
The screw 7 is composed of a main shaft 7 a and blades 7 b, and the main shaft 7 a is disposed concentrically with the extrusion hole 4 formed in the die 3.
And the stirring means 10 which concerns on this invention is attached to the front-end | tip of the main axis | shaft 7a, The detail is mentioned later.

以上のごとき構成であるから、ホッパー5を通して、補強繊維入りの成形材料を搬送通路2内に供給し、スクリュー7を回転させれば、成形材料は加圧されながらダイス3に向かって搬送される。
そして、成形材料は、ダイス3の押出孔4から押出されて、補強繊維入りの円柱状の成形品となって出ていき、円柱状の成形品は所定の長さに切断される。
Since it is the above structure, if the molding material containing a reinforcing fiber is supplied into the conveyance path 2 through the hopper 5 and the screw 7 is rotated, the molding material is conveyed toward the die 3 while being pressurized. .
And a molding material is extruded from the extrusion hole 4 of the die | dye 3, and comes out as a cylindrical molded product containing a reinforcing fiber, and a cylindrical molded product is cut | disconnected by predetermined length.

ところで、上記補強繊維を成形品中で螺旋状あるいはランダムに配向する手段として、本発明では、スクリュー7の主軸7aに取付けられる攪拌手段10を採用している。
つぎに、その攪拌手段10を、図2〜図5に基づき説明する。
By the way, as means for orienting the reinforcing fibers spirally or randomly in the molded product, a stirring means 10 attached to the main shaft 7a of the screw 7 is employed in the present invention.
Next, the stirring means 10 will be described with reference to FIGS.

(第1実施形態)
図2の(A)図は本発明の第1実施形態に係る攪拌手段10とダイス3を示す断面図、(B)図は攪拌手段10の拡大側面図、(C)図は同正面図である。
第1実施形態の攪拌手段10は、ボス部11と2本の攪拌ピン12,13とからなる。ボス部11はスクリュー7の主軸7aとほぼ同じ直径の部材であり、その後端にネジ部11aを備えている。このネジ部11aは主軸7aに攪拌手段10を取付けるための部材である。
(First embodiment)
2A is a sectional view showing the stirring means 10 and the die 3 according to the first embodiment of the present invention, FIG. 2B is an enlarged side view of the stirring means 10, and FIG. 2C is a front view thereof. is there.
The stirring means 10 of the first embodiment includes a boss portion 11 and two stirring pins 12 and 13. The boss portion 11 is a member having substantially the same diameter as the main shaft 7a of the screw 7, and has a screw portion 11a at the rear end thereof. This screw portion 11a is a member for attaching the stirring means 10 to the main shaft 7a.

そして、2本の攪拌ピン12,13は、その基端が前記ボス部11に植設その他の手段で取付けられている。また、2本の攪拌手段12,13とも、押出孔4の出側に向けて、ほぼ軸方向に沿って延びている。この2本の攪拌ピン12,13は、押出孔4の全長にわたって存在する必要はなく、押出孔4の入側から入り途中までの長さでよい。各攪拌ピン12,13の長さは、長いほど攪拌効果が高いが、どの程度の長さにするか、また押出孔4の出側端と攪拌ピン12,13との間の長さをどの程度にするかは、成形材料の性質や補強繊維の混入量などに合わせて選択すればよい。   The proximal ends of the two stirring pins 12 and 13 are attached to the boss portion 11 by implantation or other means. Further, the two stirring means 12 and 13 both extend substantially along the axial direction toward the exit side of the extrusion hole 4. The two stirring pins 12 and 13 do not have to exist over the entire length of the extrusion hole 4, and may have a length from the entry side of the extrusion hole 4 to the middle of entry. The longer the length of each stirring pin 12, 13 is, the higher the stirring effect is. However, how long is the length, and what is the length between the outlet end of the extrusion hole 4 and the stirring pins 12, 13? The degree may be selected according to the properties of the molding material and the amount of reinforcing fibers mixed therein.

前記2本の攪拌ピン12,13は互いの中間部で交差している。換言すれば、側面視でX字状となっている。
図示の実施形態において、各攪拌ピン12,13の軸線に対する交差角θは8°であるが、これより小さくてもよく、大きくてもよい。要は、押出孔4内に挿入でき、成形材料とそれに含まれる補強繊維を攪拌できればよい。
The two agitation pins 12 and 13 intersect each other at an intermediate portion. In other words, it is X-shaped when viewed from the side.
In the illustrated embodiment, the crossing angle θ with respect to the axis of each stirring pin 12, 13 is 8 °, but may be smaller or larger. In short, it can be inserted into the extrusion hole 4 and the molding material and the reinforcing fibers contained therein can be stirred.

本実施形態における2本の攪拌ピン12,13は、互いの中間部で交差しているので、2本の攪拌ピン12,13における基端同士の間隔を広くとれる。換言すれば、先端同士の間隔は狭くなるのであるが、各攪拌ピン12,13の基端にかかる曲げモーメントは小さくなるので、攪拌抵抗に対する抗力が大きいと云える。そして、押出孔4の流路断面内で各攪拌ピン12,13を見てみると、押出孔4の中心位置から押出孔4内周に至る全半径領域で攪拌ピン12,13が存在しているので、これが回転したときの攪拌効果は大きなものとなる。このため、図5(A)に示すように、成形品C内における補強繊維fの向きを、螺旋状あるいはランダムに配向することができる。   Since the two agitation pins 12 and 13 in the present embodiment intersect with each other in the middle, the distance between the base ends of the two agitation pins 12 and 13 can be widened. In other words, the distance between the tips is narrowed, but the bending moment applied to the base ends of the stirring pins 12 and 13 is small, so it can be said that the resistance against stirring resistance is large. When the stir pins 12 and 13 are viewed in the cross section of the extrusion hole 4, the stir pins 12 and 13 are present in the entire radius region from the center position of the push hole 4 to the inner periphery of the push hole 4. Therefore, the stirring effect when this rotates is large. For this reason, as shown to FIG. 5 (A), the direction of the reinforcement fiber f in the molded article C can be oriented helically or at random.

また、本実施形態において、2本の攪拌ピン12,13は押出孔4内を押し出される成形材料の流れに沿っているので、流動抵抗が小さくなる。このため、成形材料の発熱も少なくなり、成形不良が生じにくく、押出駆動源を小型化できる。   Moreover, in this embodiment, since the two stirring pins 12 and 13 are along the flow of the molding material extruded in the extrusion hole 4, flow resistance becomes small. For this reason, the heat generation of the molding material is reduced, molding defects are less likely to occur, and the extrusion drive source can be miniaturized.

(第2実施形態)
図3の(A)図は本発明の第2実施形態に係る攪拌手段10とダイス3を示す断面図、(B)図は攪拌手段10の拡大側面図、(C)図は同正面図である。
第2実施形態の攪拌手段10も、ボス部11と2本の攪拌ピン12,13からなる基本構成は、図2の攪拌手段10と同様である。また、本実施形態の攪拌ピン12,13は、その基端が前記ボス部11に植説その他の手段で取付けられている。また、2本の攪拌手段12,13とも、押出孔4の出側に向けて、ほぼ軸方向に沿って延びている。この2本の攪拌ピン12,13も、押出孔4の全長にわたって存在する必要はなく、押出孔4の入側から入り途中までの長さでよい。各攪拌ピン12,13の長さは、長いほど攪拌効果が高いが、どの程度の長さにするか、また押出孔4の出側端と攪拌ピン12,13との間の長さをどの程度にするかは、成形材料の性質や補強繊維の混入量などに合わせて選択すればよい。
(Second Embodiment)
3A is a sectional view showing the stirring means 10 and the die 3 according to the second embodiment of the present invention, FIG. 3B is an enlarged side view of the stirring means 10, and FIG. 3C is a front view thereof. is there.
The basic configuration of the agitation unit 10 of the second embodiment, which includes the boss portion 11 and the two agitation pins 12 and 13, is the same as that of the agitation unit 10 of FIG. Further, the agitation pins 12 and 13 of the present embodiment have their proximal ends attached to the boss portion 11 by means of meditation or other means. Further, the two stirring means 12 and 13 both extend substantially along the axial direction toward the exit side of the extrusion hole 4. These two stirring pins 12 and 13 do not need to exist over the entire length of the extrusion hole 4, and may have a length from the entry side of the extrusion hole 4 to the middle of entry. The longer the length of each stirring pin 12, 13 is, the higher the stirring effect is. However, how long is the length, and what is the length between the outlet end of the extrusion hole 4 and the stirring pins 12, 13? The degree may be selected in accordance with the properties of the molding material and the amount of reinforcing fibers mixed therein.

前記2本の攪拌ピン12,13は互いの基端部で交差している。換言すれば、側面視で横向きのV字状となっている。
図示の実施形態において、各攪拌ピン12,13の軸線に対する交差角θは6°であるが、これより小さくてもよく、大きくてもよい。要は、押出孔4内に挿入でき、成形材料とそれに含まれる補強繊維を攪拌できればよい。
The two stirring pins 12 and 13 intersect with each other at their base ends. In other words, it has a V-shape that is lateral in a side view.
In the illustrated embodiment, the crossing angle θ with respect to the axis of each stirring pin 12, 13 is 6 °, but may be smaller or larger. In short, it can be inserted into the extrusion hole 4 and the molding material and the reinforcing fibers contained therein can be stirred.

本実施形態における2本の攪拌ピン12,13は、互いの基端部で交差しているので、2本の攪拌ピン12,13における先端同士の間隔を広くとれ、大きく攪拌することができる。そして、押出孔4の流路断面内で各攪拌ピン12,13を見てみると、押出孔4の中心位置から押出孔4内周に至る全半径領域で攪拌ピン12,13が存在しているので、これが回転したときの攪拌効果は大きなものとなる。図5(A)に示すように、成形品C内における補強繊維fの向きを、螺旋状あるいはランダムに配向することができる。   Since the two agitation pins 12 and 13 in the present embodiment intersect with each other at their base ends, the distance between the tips of the two agitation pins 12 and 13 can be widened and agitation can be greatly performed. When the stir pins 12 and 13 are viewed in the cross section of the extrusion hole 4, the stir pins 12 and 13 are present in the entire radius region from the center position of the push hole 4 to the inner periphery of the push hole 4. Therefore, the stirring effect when this rotates is large. As shown in FIG. 5A, the direction of the reinforcing fiber f in the molded product C can be oriented spirally or randomly.

また、本実施形態においても、2本の攪拌ピン12,13は押出孔4内を押し出される成形材料の流れに沿っているので、流動抵抗が小さくなる。このため、成形材料の発熱も少なくなり、成形不良が生じにくく、押出駆動源を小型化できる。   Also in this embodiment, since the two stirring pins 12 and 13 are along the flow of the molding material extruded through the extrusion hole 4, the flow resistance is reduced. For this reason, the heat generation of the molding material is reduced, molding defects are less likely to occur, and the extrusion drive source can be miniaturized.

(第3実施形態)
図4の(A)図は本発明の第3実施形態に係る押出成形装置の要部を示す断面図、(B)図は同正面図である。
本実施形態は複数個の押出孔4を有する押出成形装置である。同図に示すように、主搬送手段27を内蔵する主搬送通路22の先端にはダイス3が設けられている。このダイス3には、複数個の搬送通路2が形成されており、各搬送通路2は正面視で見て円周上に等間隔に配置されていて、各搬送通路2は主搬送通路22に連通している。また、押出孔4が各搬送通路2の先端に形成されている。
(Third embodiment)
4A is a cross-sectional view showing the main part of an extrusion molding apparatus according to the third embodiment of the present invention, and FIG. 4B is a front view thereof.
The present embodiment is an extrusion molding apparatus having a plurality of extrusion holes 4. As shown in the figure, a die 3 is provided at the tip of the main transport passage 22 containing the main transport means 27. A plurality of transport passages 2 are formed in the die 3, and the transport passages 2 are arranged at equal intervals on the circumference when viewed from the front, and the transport passages 2 are connected to the main transport passage 22. Communicate. Further, an extrusion hole 4 is formed at the tip of each transport passage 2.

前記各搬送通路2内には、それぞれ搬送手段であるスクリュー7が配置され、このスクリュー7の主軸先端には前記第1実施形態または第2実施形態の攪拌手段10が取付けられている。
この実施形態では、それぞれの押出孔4でスクリュー7の回転数をそれぞれ異なるように調整して、押出孔4から押出される円柱状または円筒状成形品の長さを異ならせることができる。
A screw 7 as a conveying means is disposed in each conveying passage 2, and the stirring means 10 of the first embodiment or the second embodiment is attached to the tip of the main shaft of the screw 7.
In this embodiment, the length of the cylindrical or cylindrical molded product extruded from the extrusion hole 4 can be varied by adjusting the number of rotations of the screw 7 to be different in each extrusion hole 4.

また、前記図示の各実施形態では、攪拌手段10はスクリュー7の主軸7aに固定的に取付けたものであったが、図4に示すように、主軸7aとは別の軸で個別に回転するようにしてもよい。
この場合、主軸7aの内部に同心状に攪拌手段10用の駆動軸10aを回転自在に挿入し、この駆動軸10aの先端を主軸7aから突出させて攪拌手段10を取付け、駆動軸10aの基端をモータ等の駆動源に連結することで、スクリュー7とは別に回転させることができる。
Further, in each of the illustrated embodiments, the stirring means 10 is fixedly attached to the main shaft 7a of the screw 7. However, as shown in FIG. 4, the stirring means 10 individually rotates on a shaft different from the main shaft 7a. You may do it.
In this case, a drive shaft 10a for the stirring means 10 is rotatably inserted into the main shaft 7a in a concentric manner, and the stirring means 10 is mounted with the tip of the drive shaft 10a protruding from the main shaft 7a. By connecting the end to a driving source such as a motor, the end can be rotated separately from the screw 7.

この実施形態であると、スクリュー7の主軸7aに溝数の異なる攪拌手段10を適宜付け替えて、溝数に適合した回転数で攪拌手段10を回転させることができる。このため、補強繊維や成形材料の性質に合わせた運転が可能となる。また、それぞれの押出孔4から押出される円柱状または円筒状成形品に最適の攪拌を加えるため、攪拌手段10の回転数をスクリュー7の回転数と同じにしたり、あるいは異なるように変えることが可能となる。   In this embodiment, the stirring means 10 having a different number of grooves can be appropriately replaced with the main shaft 7a of the screw 7, and the stirring means 10 can be rotated at a rotational speed suitable for the number of grooves. For this reason, the operation | movement according to the property of a reinforcement fiber and a molding material is attained. Further, in order to add optimum stirring to the columnar or cylindrical molded product extruded from the respective extrusion holes 4, the rotational speed of the stirring means 10 may be made the same as or different from the rotational speed of the screw 7. It becomes possible.

つぎに、本発明の他の実施形態を説明する。
前記第1、第2、第3実施形態では、攪拌手段10は2本の攪拌ピン12,13をX字状や横向きV字状にしたものであったが、これら以外にも、2本の攪拌ピン12,13の交差部分をより基端側へ近づけたものや、より先端側へ近づけたものも、本発明に含まれる。これらの実施形態においても、前記各実施形態とほぼ同様の攪拌効果を奏するものである。
Next, another embodiment of the present invention will be described.
In the first, second, and third embodiments, the stirring means 10 has the two stirring pins 12 and 13 formed in an X shape or a lateral V shape. The present invention includes those in which the intersecting portions of the stirring pins 12 and 13 are closer to the proximal end side and those in which the stirring pins 12 and 13 are closer to the distal end side. In these embodiments as well, substantially the same stirring effect as in the above embodiments is exhibited.

前記各実施形態では、攪拌手段10はボス部11に2本の攪拌ピン12,13を取付けたものであったが、さらにボス部11に円筒成形用のピンを1本取付けてもよい。このピンは前記攪拌ピン12,13よりも長く、中心軸に沿って取付けられる。この実施形態であると、押出し成形時に成形材料が前記ピンのまわりに沿って流れるので、円筒状の成形品を成形しやすくなる。   In each of the embodiments described above, the stirring means 10 has two stirring pins 12 and 13 attached to the boss portion 11, but one cylindrical molding pin may be attached to the boss portion 11. This pin is longer than the stirring pins 12 and 13 and is attached along the central axis. In this embodiment, the molding material flows along the periphery of the pin during extrusion molding, so that it becomes easy to mold a cylindrical molded product.

本発明における上記いずれの実施形態においても、攪拌手段10は押出孔4内でほぼ同軸方向に延びているので、成形材料が押出孔4内を通過するときの抵抗は小さい。このため、成形材料の発熱量が少ないので発熱による成形不良が生じにくい。また、成形材料の流動抵抗が小さいことから、低回転数または低攪拌動力で回転方向の力を加えることができ攪拌手段10の動力源を小型化できる。   In any of the above-described embodiments of the present invention, the stirring means 10 extends in the substantially coaxial direction in the extrusion hole 4, so that the resistance when the molding material passes through the extrusion hole 4 is small. For this reason, since the calorific value of the molding material is small, molding defects due to heat generation are unlikely to occur. Further, since the flow resistance of the molding material is small, a force in the rotational direction can be applied at a low rotational speed or low stirring power, and the power source of the stirring means 10 can be reduced in size.

本発明の押出成形装置の概略断面図である。It is a schematic sectional drawing of the extrusion molding apparatus of this invention. (A)図は本発明の第1実施形態に係る攪拌手段10とダイス3を示す断面図、(B)図は攪拌手段10の拡大側面図、(C)図は同正面図である。(A) The figure is sectional drawing which shows the stirring means 10 and die | dye 3 which concern on 1st Embodiment of this invention, (B) The figure is an expanded side view of the stirring means 10, (C) The figure is the same front view. (A)図は本発明の第2実施形態に係る攪拌手段10とダイス3を示す断面図、(B)図は攪拌手段10の拡大側面図、(C)図は同正面図である。(A) is a sectional view showing a stirring means 10 and a die 3 according to a second embodiment of the present invention, (B) is an enlarged side view of the stirring means 10, and (C) is a front view of the same. (A)図は本発明の第3実施形態に係る押出成形装置の要部を示す断面図、(B)図は同正面図である。(A) The figure is sectional drawing which shows the principal part of the extrusion molding apparatus which concerns on 3rd Embodiment of this invention, (B) The figure is the same front view. (A)図は本発明の押出成形装置で成形した成形品の説明図、(B)図は従来装置で成形した成形品の説明図である。(A) is an explanatory view of a molded product molded by the extrusion molding apparatus of the present invention, and (B) is an explanatory diagram of a molded product molded by a conventional apparatus.

符号の説明Explanation of symbols

1 押出成形装置
2 搬送通路
3 ダイス
4 押出孔
7 スクリュー
10 攪拌手段
12,13 攪拌ピン
DESCRIPTION OF SYMBOLS 1 Extrusion molding apparatus 2 Conveyance path 3 Dies 4 Extrusion hole 7 Screw 10 Stirring means 12, 13 Stirring pin

Claims (3)

補強繊維を混入した成形材料を押し出し成形するダイスと、該ダイスに形成された押出孔に向けて成形材料を押し出す搬送手段とを備えた押出成形装置であって、
前記搬送手段の主軸の先端に、攪拌手段を取付けており、
該攪拌手段は前記押出孔の内部に位置しており、
前記攪拌手段は、2本の攪拌ピンからなり、該2本の攪拌ピンが前記押出孔の軸方向にほぼ沿って延び、かつ互いに交差している
ことを特徴とする押出成形装置。
An extrusion molding apparatus comprising a die for extruding a molding material mixed with reinforcing fibers and a conveying means for extruding the molding material toward an extrusion hole formed in the die,
A stirring means is attached to the tip of the main shaft of the conveying means,
The stirring means is located inside the extrusion hole,
The agitation means comprises two agitation pins, and the two agitation pins extend substantially along the axial direction of the extrusion hole and intersect each other.
前記2本の攪拌ピンが、いずれも、その基端が前記搬送手段の主軸の先端に取付けられ、その先端が前記押出口の出側に向けられており、かつ互いの中間部で交差している
ことを特徴とする請求項1記載の押出成形装置。
Each of the two stirring pins has a proximal end attached to the distal end of the main shaft of the conveying means, the distal end is directed to the exit side of the extrusion port, and intersects at an intermediate portion of each other. The extrusion molding apparatus according to claim 1, wherein
前記2本の攪拌ピンが、いずれも、その基端が前記搬送手段の主軸の先端に取付けられ、その先端が前記押出口の出側に向けられており、かつ互いの基端部で交差している
ことを特徴とする請求項1記載の押出成形装置。
Each of the two stirring pins has a proximal end attached to the distal end of the main shaft of the conveying means, the distal end is directed to the exit side of the extrusion port, and intersects at the proximal end portion of each other. The extrusion molding apparatus according to claim 1, wherein
JP2008068791A 2008-03-18 2008-03-18 Extrusion molding apparatus Pending JP2009220468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008068791A JP2009220468A (en) 2008-03-18 2008-03-18 Extrusion molding apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008068791A JP2009220468A (en) 2008-03-18 2008-03-18 Extrusion molding apparatus

Publications (1)

Publication Number Publication Date
JP2009220468A true JP2009220468A (en) 2009-10-01

Family

ID=41237781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008068791A Pending JP2009220468A (en) 2008-03-18 2008-03-18 Extrusion molding apparatus

Country Status (1)

Country Link
JP (1) JP2009220468A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109109136A (en) * 2018-08-06 2019-01-01 程智道 A kind of dedicated stemming of iron mouth maintenance stirs extrusion device
CN111941601A (en) * 2020-06-30 2020-11-17 杨燕荷 Preparation device and preparation method of multistage pore size distribution material
CN113103611A (en) * 2021-04-13 2021-07-13 大连塑研塑料科技开发有限公司 Multi-shaft rotating extrusion molding three-dimensional net-shaped structure product and molding method and equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109109136A (en) * 2018-08-06 2019-01-01 程智道 A kind of dedicated stemming of iron mouth maintenance stirs extrusion device
CN111941601A (en) * 2020-06-30 2020-11-17 杨燕荷 Preparation device and preparation method of multistage pore size distribution material
CN113103611A (en) * 2021-04-13 2021-07-13 大连塑研塑料科技开发有限公司 Multi-shaft rotating extrusion molding three-dimensional net-shaped structure product and molding method and equipment
CN113103611B (en) * 2021-04-13 2022-06-28 大连塑研塑料科技开发有限公司 Multi-shaft rotating and extrusion molding three-dimensional net-shaped structure product and molding method and equipment

Similar Documents

Publication Publication Date Title
US11752682B2 (en) Extruder screw having paths within the screw, extruder, and extrusion method
US11224991B2 (en) Extruder screw having paths within the screw, extruder, and extrusion method
US11813785B2 (en) Extruder screw having paths within the screw, extruder, and extrusion method
KR102116602B1 (en) Screw for extruder and extruder and extrusion method
CN110480863B (en) Method for producing conductive composite material
JP5219994B2 (en) Clay mill
JP6746278B2 (en) Extruder screw, extruder and extrusion method
JP2006509669A (en) Intermeshing element mixer
JP2009220468A (en) Extrusion molding apparatus
JP2009096004A (en) Kneading device
JP4909958B2 (en) Extruded product
KR20220010521A (en) Carbon fiber composite material containing recycled carbon fiber, molded article and method for producing carbon fiber composite material
JP2009220467A (en) Extrusion molding apparatus
JP2002120271A (en) Screw for twin-screw kneader-extruder
JP2004351930A (en) Multiscrew kneading device and method of kneading material
JP2017105081A (en) Kneading method and kneader
JP6096739B2 (en) Kneading granulator
JP2006272961A (en) Extrusion molding apparatus, method for manufacturing molded article and extrusion-molded article
JP2011088343A (en) Kneading device
JP4928312B2 (en) Extrusion equipment
CN1495001A (en) Heat exchanging mechanism and rotor with the same
JP6134772B1 (en) Pushing device and kneading device
JP2006264973A (en) Wire material parallel winding device
JP2008284852A (en) Continuous kneading method of rubber
CN117681440A (en) Multimode orientation regulation and control and in-situ composite 3D printing twisting mechanism and method