JP2009220279A - Exterior wood - Google Patents

Exterior wood Download PDF

Info

Publication number
JP2009220279A
JP2009220279A JP2008063941A JP2008063941A JP2009220279A JP 2009220279 A JP2009220279 A JP 2009220279A JP 2008063941 A JP2008063941 A JP 2008063941A JP 2008063941 A JP2008063941 A JP 2008063941A JP 2009220279 A JP2009220279 A JP 2009220279A
Authority
JP
Japan
Prior art keywords
wood
resin
hole
penetration hole
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008063941A
Other languages
Japanese (ja)
Inventor
Akira Makita
章 蒔田
Yuichi Akabori
裕一 赤堀
Yoko Osada
陽子 長田
Satoshi Fukuda
聡史 福田
Fumihito Asada
文仁 浅田
Yasuhisa Sasaki
康寿 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAINIHON WOOD PRESERVING CO LT
DAINIHON WOOD-PRESERVING CO Ltd
Nagoya University NUC
Aichi Prefecture
Original Assignee
DAINIHON WOOD PRESERVING CO LT
DAINIHON WOOD-PRESERVING CO Ltd
Nagoya University NUC
Aichi Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAINIHON WOOD PRESERVING CO LT, DAINIHON WOOD-PRESERVING CO Ltd, Nagoya University NUC, Aichi Prefecture filed Critical DAINIHON WOOD PRESERVING CO LT
Priority to JP2008063941A priority Critical patent/JP2009220279A/en
Publication of JP2009220279A publication Critical patent/JP2009220279A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exterior wood which can hardly be broken even when a load is applied in the thickness direction while regularly boring a penetration hole, can be surely provided with improved durability and mechanical strength, and can be used as a high quality deck material. <P>SOLUTION: The exterior wood 1 has a plurality of penetration holes 10 bored in the thickness direction, and is impregnated with a resin. The penetration holes 10 are aligned in a line at predetermined intervals in the width direction, and a plurality of lines L<SB>1</SB>are bored at predetermined intervals in the lengthwise direction. The individual lines L<SB>1</SB>are inclined at a predetermined angle θ to the straight line L<SB>0</SB>in parallel with the width direction. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、耐久性や機械的強度などを高めるために、樹脂を含浸して圧縮されたエクステリア用の木材に関する。   The present invention relates to an exterior wood that has been impregnated with a resin and compressed in order to increase durability, mechanical strength, and the like.

エクステリア材は屋外に施工される構造物であり、外構材とも称される。当該エクステリア材は、日夜大きな気温、気象の変化に曝されるため、耐久性が問題になる。特に直射日光、昼夜の寒暖差、高湿、降雨、紫外線などは構造物の材質や装飾を変化させてしまう原因であり、こまめにメンテナンスをしないと簡単に劣化、変色、剥離などしてしまう。これらは意匠性の低下だけでなく、万が一の事故につながる危険性もある。   Exterior materials are structures that are constructed outdoors and are also called exterior materials. Since the exterior material is exposed to large temperature and weather changes day and night, durability is a problem. In particular, direct sunlight, temperature difference between day and night, high humidity, rainfall, ultraviolet rays, etc. are the causes of changing the material and decoration of the structure, and if they are not frequently maintained, they will easily deteriorate, discolor, and peel off. These have not only a decline in design but also a risk of accidents.

このような背景から、近年ではエクステリア材としてセラミックや金属製の無機質製、又はプラスチック製のものが多用されつつある。しかし、これらの材料は木材のような暖かみや柔らかみが感じられず、且つ廃棄の場合も処理が困難であることが問題となる。したがって、本来的には、暖かみ等を有し且つ廃棄の問題も少ない木材をエクステリア材として使用することが望まれる。しかし、木材はセラミックや金属等と比べて機械的強度が低く、日光や風雨等の環境の他、シロアリや腐朽菌による劣化も生じ易い。また、防火性の問題もある。つまり、木材をそのままエクステリア材として使用しても、金属製等のエクステリア材に比べて耐候性、耐水性、防腐性、防虫性、耐光性などの耐久性や、寸法安定性及び難燃性不足が指摘される。   Against this background, in recent years, ceramic, metal, inorganic, or plastic materials are being frequently used as exterior materials. However, there is a problem that these materials do not feel warmth and softness like wood and are difficult to process even in the case of disposal. Therefore, it is inherently desirable to use wood as an exterior material that has warmth and the like and has few disposal problems. However, wood has a lower mechanical strength than ceramics and metals, and is susceptible to deterioration due to termites and decaying bacteria in addition to environments such as sunlight and wind and rain. There is also a fireproof problem. In other words, even if wood is used as an exterior material as it is, durability such as weather resistance, water resistance, antiseptic properties, insect resistance, light resistance, dimensional stability and flame resistance are insufficient compared to metal or other exterior materials Is pointed out.

そのうえ、例えばデッキ材など、人や重量物などの大きな荷重が作用し得るようなエクステリア材には、高い機械的強度も必要となる。そこで従来では、エクステリア材を木製とする場合、特にデッキ材では、機械的強度が比較的高い硬質木材が使用されていた。このような硬質木材としては、ウリン、イペ、ジャラ、ボンゴシなどの外国産の輸入木材が使用されている。しかし、輸入木材は現在枯渇や伐採制限により高騰しつつあり、廉価な国産木材への代替が望まれている。環境的な側面からも植林木の有効利用が望ましい。しかし、例えば日本における代表的な植林木であるスギ材は、軟質で強度が低く、耐腐朽性や耐候性等も十分とは言えず、そのままではデッキ材などのようなエクステリア材として代替が難しい。   In addition, high mechanical strength is also required for exterior materials that can be subjected to large loads such as people and heavy loads, such as deck materials. Therefore, conventionally, when the exterior material is made of wood, hard wood having a relatively high mechanical strength has been used particularly for the deck material. As such hard timber, foreign imported timber such as urine, ipe, jara and bongosi is used. However, imported timber is currently soaring due to depletion and logging restrictions, and an alternative to inexpensive domestic timber is desired. Effective use of planted trees is desirable from the environmental aspect. However, for example, cedar wood, which is a typical plantation tree in Japan, is soft and low in strength, and cannot be said to be sufficiently resistant to decay or weather, and as such is difficult to replace as an exterior material such as deck material. .

そこで、軟質なスギ材などに樹脂を含浸させて耐久性や機械的強度などを向上させた木材が特許文献1や特許文献2に提案されており、本願発明の発明者の1人も自らこのような技術を非特許文献1に公開している。特許文献1のエクステリア材は、特定のフェノール樹脂を含浸させた複数枚の単板を熱圧成形した木質材料とすることで、耐候性、耐水性などを向上させている。特許文献2では、各種木材に珪酸化合物を含浸させてゲル化すると共に、燃焼抑制剤やシランカップリング剤及び反応性樹脂化合物を含浸させることで、難燃性、寸法安定性、防腐性、防虫性、及び強度を向上させており、木材に対して珪酸化合物などを良好に浸透させるための浸透孔を穿設している。この浸透孔は、レーザー加工やドリル等の木工加工によって穿設でき、貫通孔でも非貫通孔でもよいとされている。また、浸透孔の穿設方向は、板目に対して交差し、かつ繊維方向に直交する厚み方向が好ましいとされ、縦横等間隔で規則正しく板目面全体に亘って複数個穿設されている。反応性樹脂化合物としては、ポリウレタン系樹脂、ポリアクリルウレタン系樹脂、エポキシ系樹脂、シリコーン系樹脂、ユリア系樹脂、メラミン系樹脂、フェノール系樹脂、レゾルシノール系樹脂などの熱硬化性樹脂が挙げられる。   Therefore, woods in which durability and mechanical strength are improved by impregnating a soft cedar material with a resin have been proposed in Patent Document 1 and Patent Document 2, and one of the inventors of the present invention himself / herself Such a technique is disclosed in Non-Patent Document 1. The exterior material of Patent Document 1 improves the weather resistance, water resistance, and the like by using a wood material obtained by hot-pressing a plurality of single plates impregnated with a specific phenol resin. In Patent Document 2, various types of wood are impregnated with a silicate compound and gelled, and by impregnating with a combustion inhibitor, a silane coupling agent, and a reactive resin compound, flame retardancy, dimensional stability, antiseptic properties, and insect protection The penetration hole for making a silicate compound etc. penetrate | invade favorably to wood is improved. This penetration hole can be drilled by woodworking such as laser processing or drilling, and may be a through hole or a non-through hole. In addition, the perforation direction of the penetration hole is preferably a thickness direction that intersects the plate and is orthogonal to the fiber direction, and a plurality of holes are regularly formed over the entire plate surface at equal intervals in the vertical and horizontal directions. . Examples of the reactive resin compound include thermosetting resins such as polyurethane resins, polyacrylurethane resins, epoxy resins, silicone resins, urea resins, melamine resins, phenol resins, and resorcinol resins.

さらに非特許文献1では、無垢材へ浸透孔を穿設したことによる生産性の向上を利用して、水溶性のフェノール樹脂を含浸させた穿孔木材を熱プレスした圧密木材としている。そして、樹脂による圧密木材の変形固定に着目して、浸透孔の穿設ピッチ及び個数が異なる2種類の木材を用意し、浸透孔の穿設ピッチ及び個数の相違による物性変化について検討している。各浸透孔は直径φ=1.3mmであり、板厚R=38mmのスギ心材に対して、木目に対して直角に裏面から表面に向けて深さ35mmで穿設してある。また、図7に示すように浸透孔10の穿設位置に規則性があり、幅方向(短手方向)と平行にそれぞれ10mm間隔と15mm間隔で一列に並べられ、且つ、各列が長さ方向(長手方向)に10mm間隔及び15mm間隔でそれぞれ並設されている。長さ方向に隣接する各列同士は、半ピッチずつズレている。ピッチ15mmの木材における浸透孔の穿設個数は49個/100cmであり、ピッチ10mmの木材における浸透孔の穿設個数は100個/100cmである。 Further, in Non-Patent Document 1, a perforated wood impregnated with a water-soluble phenol resin is used as a compacted wood that is hot-pressed by utilizing the improvement in productivity due to the perforation holes formed in the solid material. Then, paying attention to the deformation and fixing of consolidated wood by resin, two kinds of wood with different penetration pitch and number of penetration holes are prepared, and changes in physical properties due to the difference of penetration pitch and number of penetration holes are examined. . Each penetration hole has a diameter φ = 1.3 mm, and is drilled at a depth of 35 mm from the back surface to the front surface at a right angle to the grain of a cedar core material having a plate thickness R = 38 mm. Further, as shown in FIG. 7, there is regularity in the positions where the permeation holes 10 are drilled, and they are arranged in a row parallel to the width direction (short direction) at intervals of 10 mm and 15 mm, respectively, and each row has a length. It is arranged in parallel in the direction (longitudinal direction) at intervals of 10 mm and 15 mm. The columns adjacent in the length direction are shifted by a half pitch. The number of penetration holes in a wood with a pitch of 15 mm is 49/100 cm 2 , and the number of penetration holes in a wood with a pitch of 10 mm is 100/100 cm 2 .

製造方法としては、液中圧縮法や減圧浸透法により樹脂を含浸させたものを、圧縮して余分な樹脂を搾り出したうえで乾燥してから、圧縮率50%にまで圧縮した状態で熱プレスすることでフェノール樹脂を硬化させ、圧縮率50%の改質木材を得ている。そして、それぞれの質量増加率から穿設個数が多いほど樹脂浸透率(樹脂含浸量)が高いこと、及び煮沸回復率から穿設個数が多いほど寸法安定性が高いことが確認できている。   As a manufacturing method, what is impregnated with a resin by a submerged compression method or a reduced pressure infiltration method is compressed after pressing to squeeze out excess resin, and then compressed to a compression rate of 50%. By doing so, the phenol resin is cured, and a modified wood having a compression rate of 50% is obtained. It has been confirmed that the greater the number of drilled holes, the higher the number of drilled holes, and the higher the number of drilled holes, and the higher the number of drilled holes, the higher the dimensional stability.

特開平8−168451号公報JP-A-8-168451 特開2006−346902号公報JP 2006-346902 A 2006年11月9〜10日開催の2006年度日本木材学会中部支部大会 講演要旨集 第16号、P58〜59、「穿孔加工が木材への樹脂注入量に及ぼす影響」2006 Annual Meeting of the Japanese Wood Society Chubu Branch, November 9-10, 2006, Abstracts, No. 16, P58-59, “Effect of drilling on the amount of resin injected into wood”

特許文献1では、単にフェノール樹脂を含浸させているのみなので樹脂含浸量が少なく、改質効果すなわち耐久性や機械的強度の向上に限界があり、圧縮する場合の寸法安定性も劣る。これに対し特許文献2や非特許文献1では、複数の浸透孔を穿設しているので、樹脂含浸量が向上する。しかも、各浸透孔は規則的に配設されているので、均一含浸も可能である。しかし、特許文献2では、シリカゲルを含浸させることを前提としているので、含浸させた後に圧縮しておらず、圧密化による機械的強度のさらなる向上は図られていない。これに対し非特許文献1では、樹脂含浸後に木材を圧密化しているので、生産性を向上しながら機械的強度もより向上できている。   In Patent Document 1, since only a phenol resin is impregnated, the amount of resin impregnation is small, there is a limit to the improvement effect, that is, the improvement of durability and mechanical strength, and the dimensional stability when compressed is also poor. In contrast, in Patent Document 2 and Non-Patent Document 1, since a plurality of permeation holes are formed, the resin impregnation amount is improved. In addition, since the permeation holes are regularly arranged, uniform impregnation is also possible. However, since Patent Document 2 is premised on impregnation with silica gel, it is not compressed after impregnation and further improvement in mechanical strength by consolidation is not achieved. On the other hand, in Non-Patent Document 1, since the wood is consolidated after the resin impregnation, the mechanical strength can be further improved while improving the productivity.

しかし、特許文献2や非特許文献1では、図7に示すように、幅方向に並設された浸透孔10の各列Lが、幅方向と平行となっている。これでは、各浸透孔の配設パターンが整然となり過ぎ、長さ方向における各浸透孔間の間隔も一定となるので、例えばデッキ材に上方から荷重が加わった場合など、エクステリア材の厚み方向に曲げ荷重が加わった場合、幅方向に並設された浸透孔の各列が切れ目のように働き、当該部分において木材が破損し易くなってしまう。また、非特許文献1では各浸透孔のピッチ(単位面積当たりの穿設個数)に着目しているのみであって、圧縮率や浸透孔の深さと直径との関係などの観点からの評価はしておらず、より確実に耐久性や機械的強度の向上を図るための条件が十分ではなかった。   However, in Patent Document 2 and Non-Patent Document 1, as shown in FIG. 7, each row L of the permeation holes 10 arranged in parallel in the width direction is parallel to the width direction. In this case, the arrangement pattern of the permeation holes is too orderly, and the interval between the permeation holes in the length direction is constant, so that, for example, when a load is applied to the deck material from above, the thickness direction of the exterior material is increased. When a bending load is applied, each row of permeation holes arranged in parallel in the width direction works like a cut, and the wood is easily damaged at the portion. Further, Non-Patent Document 1 only focuses on the pitch of each permeation hole (the number of perforations per unit area), and the evaluation from the viewpoint of the relationship between the compression rate and the depth and diameter of the permeation hole is as follows. The conditions for improving the durability and mechanical strength more reliably were not sufficient.

また、特許文献1、2や非特許文献1では、デッキ材として使用した場合については特に考慮されておらず、デッキ材に特有の問題点に対する改良や付加価値は成されていない。   Further, in Patent Documents 1 and 2 and Non-Patent Document 1, no particular consideration is given to the case where it is used as a deck material, and no improvement or added value for problems peculiar to the deck material is made.

そこで、本発明は上記課題を解決するものであって、浸透孔を規則的に穿設しながら厚み方向に荷重が加わっても破損し難く、確実に耐久性や機械的強度の向上が可能であると共に、高品質なデッキ材としても使用できるエクステリア用木材を提供する。   Therefore, the present invention solves the above-mentioned problems, and it is difficult to break even when a load is applied in the thickness direction while regularly penetrating the permeation holes, and it is possible to reliably improve durability and mechanical strength. In addition, we provide exterior wood that can be used as high-quality deck materials.

本発明は、厚み方向に穿設された複数の浸透孔を有し、樹脂が含浸されているエクステリア用木材であって、前記浸透孔は、幅方向に所定間隔毎に一列に並設され、各列が長さ方向に所定間隔毎に複数列並設されるように規則的に穿設されており、前記各列が、幅方向に平行な直線に対して所定の角度で傾斜していることを特徴とする。   The present invention is an exterior wood having a plurality of permeation holes drilled in the thickness direction and impregnated with resin, the permeation holes are arranged in a row at predetermined intervals in the width direction, Each row is regularly drilled so that a plurality of rows are arranged in parallel in the length direction at predetermined intervals, and each row is inclined at a predetermined angle with respect to a straight line parallel to the width direction. It is characterized by that.

前記樹脂が熱硬化性樹脂であって、原寸に対して所定量厚み方向に圧縮された状態、すなわち圧密化された状態で固定化されており、その際、樹脂を含浸させた圧縮前の密度(g/cm)と、圧縮前の厚みに対する圧縮後の厚みの寸法比(圧縮後寸法/圧縮前寸法)(以下、圧縮前後の厚み寸法比、又は単に厚み寸法比ということがある)との関係が、圧縮前の密度/厚み寸法比<1の関係を満たすようにする。 The resin is a thermosetting resin, and is fixed in a state compressed in a thickness direction by a predetermined amount with respect to the original size, that is, in a compacted state, and in this case, the density before compression impregnated with the resin (G / cm 3 ) and the ratio of the thickness after compression to the thickness before compression (size after compression / size before compression) (hereinafter, sometimes referred to as the thickness ratio before and after compression, or simply the thickness dimension ratio) To satisfy the relationship of density / thickness ratio before compression <1.

前記浸透孔が裏面から表面に向けて穿設された非貫通孔である場合において、浸透孔の深さを5mm以下とする場合は、浸透孔の直径を0.7mm以上2.0mm以下とし、浸透孔の深さを5mmを超え15mm以下とする場合は、浸透孔の直径を1.0mm以上2.0mm以下とし、浸透孔の深さを15mmを超え35mm以下とするの場合は、浸透孔の直径を1.3mm以上2.0mm以下とし、浸透孔の深さを35mmを超え45mm以下とする場合は、浸透孔の直径を1.5mm以上2.0mm以下とする。一方、前記浸透孔が表面から裏面にかけて貫通する貫通孔である場合は、該浸透孔の直径を4mm以上5mm以下とする。このようなエクステリア材は、種々の構造物として使用できるが、中でもデッキ材として使用することが好ましい。   In the case where the penetration hole is a non-through hole drilled from the back surface to the surface, when the penetration hole depth is 5 mm or less, the penetration hole diameter is 0.7 mm or more and 2.0 mm or less, When the depth of the penetration hole is more than 5 mm and 15 mm or less, the diameter of the penetration hole is 1.0 mm or more and 2.0 mm or less, and when the penetration hole depth is more than 15 mm and 35 mm or less, the penetration hole In the case where the diameter is 1.3 mm or more and 2.0 mm or less and the depth of the penetration hole is more than 35 mm and 45 mm or less, the penetration hole diameter is 1.5 mm or more and 2.0 mm or less. On the other hand, when the penetration hole is a through-hole penetrating from the front surface to the back surface, the penetration hole has a diameter of 4 mm or more and 5 mm or less. Although such an exterior material can be used as various structures, it is preferable to use it as a deck material.

本発明によれば、幅方向に延びる各列が、幅方向と平行な直線に対して所定の角度で傾斜しているので、各浸透孔は一定の規則性を有しながらも整然となり過ぎることがなく、厚み方向に大きな荷重が作用した場合でも、明確な破断線と得る幅方向と平行な直線が形成されないので、破損の可能性を低減できる。   According to the present invention, each row extending in the width direction is inclined at a predetermined angle with respect to a straight line parallel to the width direction, so that each permeation hole is too regular while having a certain regularity. Even when a large load is applied in the thickness direction, a clear break line and a straight line parallel to the width direction are not formed, so that the possibility of breakage can be reduced.

樹脂を含浸させた圧縮前の密度と圧縮前後の厚み寸法比すなわち圧縮率との関係が所定の条件を満たすように設定してあれば、木材に割れなどの欠損が生じることを避けられる。また、浸透孔の深さに応じてその直径を適切に設定してあれば、割れなどの欠損が生じることをより避けられる。浸透孔が直径4〜5mmの貫通孔となっていれば、例えばデッキ材のように水平に施工した場合に、降雨、散水、露などによって表面に水分が溜まっても、貫通孔を通して排水できる。すなわち、浸透孔を排水孔としても兼用できる。これにより、施工後の乾燥時間も短縮されるので、腐朽抑制による長寿命化や転倒防止に寄与する。   If the relationship between the density before compression impregnated with the resin and the thickness dimension ratio before and after compression, that is, the compression ratio, is set so as to satisfy a predetermined condition, it is possible to avoid occurrence of defects such as cracks in the wood. Moreover, if the diameter is appropriately set according to the depth of the permeation hole, it is possible to avoid the occurrence of defects such as cracks. If the permeation hole is a through hole having a diameter of 4 to 5 mm, for example, when it is installed horizontally like a deck material, it can be drained through the through hole even if moisture accumulates on the surface due to rain, water spray, dew, etc. That is, the penetration hole can also be used as a drainage hole. Thereby, since the drying time after construction is also shortened, it contributes to prolonging the life by preventing decay and preventing falling.

このようなエクステリア用木材をデッキ材として使用すれば、上記全ての効果をデッキ材に特有の問題や物性等に対応した効果として最大限利用でき、品質の高いデッキ材とすることができる。   If such an exterior wood is used as a deck material, all the above effects can be utilized to the maximum as effects corresponding to the problems and physical properties peculiar to the deck material, and a high-quality deck material can be obtained.

以下、適宜図面を参照しながら本発明の実施の形態について説明する。図1に、木材1の裏面斜視図を示す。図2は、浸透孔10の配設パターンである。図1及び図2に示すように、本発明は、エクステリア材(外構材)用として使用される木材1に、複数の浸透孔10が穿設されており、熱可塑性樹脂を含浸させたうえで熱プレスして圧密化されている。なお、図1には浸透孔10の一部のみを図示している。   Hereinafter, embodiments of the present invention will be described with reference to the drawings as appropriate. In FIG. 1, the back surface perspective view of the timber 1 is shown. FIG. 2 shows an arrangement pattern of the permeation holes 10. As shown in FIGS. 1 and 2, in the present invention, a plurality of permeation holes 10 are formed in a wood 1 used as an exterior material (exterior material) and impregnated with a thermoplastic resin. It is consolidated by hot pressing. FIG. 1 shows only a part of the permeation hole 10.

木材としては特に限定されることなく、種々の樹種を使用できる。具体的には、アガチス、アサメラ、アスペン、アニグレ、アピトン、アフリカパドウク、アフリカンマホガニー、アフロルモシア、アボジラ、アムーラ、アルトガルプス、アルダー、アルモン、アンベロイ、イエローシダー、レッドシダー、ペンシルシダー、イエローステルキュリア、イエローポプラ、イゲム、イペ、イロコ、インチア、インチュレ、ウイロー、ウエンジ、ウオールナット、ウリン、エボジア、エボニー、エルム、エヨン、オクメ、オバンコル、オフン、オベチュ、カイン、カナリューム、カプール、カメレレ、ガラムート、カランタス、ガム、花梨、カロフィルム、キレット、杉、ヌマ杉、雲杉、レバノン杉、南洋杉、台湾杉、米杉、グランドファー、クリンキーバイン、クルイン、ゲロンガン、ケンパス、コーディア、ゴールデンエルム、黒檀、コットンウッド、コテイペ、グムノキ、ササフラス、サテンジャラ、シカモア、サペリ、ジェルトン、シカモア、シタン、シロカスプルス、シュリアンバツ、ジョンコン、シルキーオーク、シルバーハート、シロタガヤ、スコッチバイン、スロアネラ、スプルース、セセンドック、セプター、ゼブラウッド、セペチール、セランガンカチャ、セランガンバツ、セルチス、センゴンゴンラウト、センゴンラウト、ソノケリン、ソフトメープル、ダークレッドメランチ、ターミリア、ダイゾックス、台湾檜、タウン、ターミナリア、鉄刀木、ダグラスファー、ダフリカ、ダンタ、チーク、チェリー、チトラ、チャンバカ、中国ナラ、チューリップウッド、チンウィン、テレンタン、チュレ、ナーラ、チーク、南洋桐、ニヤトーウォール、バスウッド、ローズウッド、ノーブルファー、バーケラ、ハードメープル、バーチ、バーブルハート、バーリニア、バオロッサ、ハカランダ、バクチカン、ハックベリー、パドウク、パラゴム、パリサンダー、バイキライ、ビーカン、ビーチ、ビテックス、ヒッコリー、ビヌアン、ピメロデンドロン、ビンタンゴール、フーブパイン、ファルカタ、フィリピンマホガニー、ブビンガ、プライ、ブラックチェリー、ブランチョネラ、米檜、米栂、米ヒバ、米樅、紅桧、ヘムロック、ペルポック、エゾ松、カラ松、トド松、アカ松、クロ松、琉球松、朝鮮松、カリビア松、ラジアタ松、紅松、ポドカルプス、ポプラ、ホワイトアッシュ、ホワイトオーク、ホワイトシリス、ホワイトセラヤ、ホワイトファー、ホワイトメランチ、ボンゴシ、マコレ、マホガニー、マラス、マヤビス、マンガシロノ、マンソニア、ミルキーバイン、ミレンシア、マンソニア、メープル、メラピ、メルサワ、メルボウ、モアビ、モラベ、モレイラ、モンキーポッド、タブラ、ラミン、ラング、リンデン、レッドウッド、レッドオーク、レッドガム、レッソメランチ、ローソンサイプレス、ヤン、ワワなどを挙げることができる。   The wood is not particularly limited, and various tree species can be used. Specifically, Agatis, Asamera, Aspen, Anigre, Apiton, African Paduk, African Mahogany, Aflorumsia, Abdullah, Amura, Altgarpus, Alder, Almon, Ambeloy, Yellow Cedar, Red Cedar, Pencil Cedar, Yellow Stercuria, Yellow Poplar, Igem, Ipe, Iroko, Inchia, Intur, Willow, Wenji, Walnut, Ulin, Ebodia, Ebony, Elm, Aeyoung, Okume, Obancol, Ohon, Obecchu, Cain, Canalum, Kapoor, Chamelere, Garamut, Carantas, Gum , Karin, Carofilm, Killet, Cedar, Numa cedar, Cloud cedar, Lebanon cedar, Southern cedar, Taiwan cedar, Rice cedar, Grandfir, Clinky vine, Kruin, Gerongan, Kempas, Cordia Larden Elm, Ebony, Cottonwood, Cotepe, Gumnoki, Sasafras, Satin Jara, Sycamore, Sapele, Gelton, Sycamore, Sitan, Siroka Spruce, Shrienbatu, Jonkon, Silky Oak, Silver Heart, Shirotagaya, Scotch Vine, Sloanela, Spruce, Sesendoc Zebra Wood, Sepetir, Selangan Katya, Selangan Batu, Serchis, Sengon Grunt, Sengon Laut, Sonokerin, Soft Maple, Dark Red Meranti, Termilia, Daizox, Taiwan Saddle, Town, Terminaria, Tetsutoki, Douglas Fir, Dafrika, Danta , Teak, Cherry, Chitra, Chamba, Chinese oak, Tulipwood, Chinwin, Terentan, Chure, Nara, Teak, Nanyang Tung, D Toe Wall, Basswood, Rosewood, Noble Fur, Barkera, Hard Maple, Birch, Barble Heart, Berlina, Bao Rossa, Hacaranda, Bakuchikan, Hackberry, Padouq, Para rubber, Paris Thunder, Baikirai, Becan, Beach, Vitex, Hickory, Vinouan, Pimelodendron, Bintangor, Hoop Pine, Falkata, Philippine Mahogany, Bubinga, Ply, Black Cherry, Blanchoneella, Rice Bran, Rice Bran, Rice Hiba, Rice Bran, Sockeye, Hemlock, Perpock, Ezo Pine, Karamatsu, Todo Pine, red pine, black pine, Ryukyu pine, Korean pine, Caribbean pine, radiata pine, red pine, podocalpus, poplar, white ash, white oak, white sirija, white celaya, white fur, white melanchi, bo Ngoshi, Makore, Mahogany, Maras, Mayabis, Manga Silono, Mansonia, Milky Vine, Millencia, Mansonia, Maple, Merapi, Mersawa, Melbow, Moabi, Morave, Moreira, Monkey Pod, Tabla, Ramin, Lang, Linden, Redwood, Red Examples include oak, red gum, lessome lunch, Lawson Cypress, Yang, and Wawa.

本発明では、詳しくは後述するが、樹脂を含浸させたうえで圧密化していることで強度が向上する。したがって、例えばウリン、イペ、ジャラ、ボンゴシ、セランガン、バツなどの硬質木材よりも、例えばダグラスファー(米松)、レッドウッド(欧州赤松)、カラマツ、アカ松などの松類、米ヒバ、米栂、ヒノキ、及び杉類のような軟質木材を使用した方がより効果が大きく好ましい。一般的に、針葉樹は広葉樹よりも軟質である。軟質木材の中でも、環境などの面から輸入木材よりも例えばスギ、アカ松、ヒノキなどの国産木材が好ましい。さらに、軟質な国産木材の中でも、植林木の有効利用の観点からスギが好ましい。   In this invention, although mentioned later in detail, intensity | strength improves by being consolidated after impregnating resin. Therefore, for example, rather than hard wood such as urine, ipe, jallah, bongoshi, selangan, x, pine, such as Douglas fir (Yonematsu), redwood (European red pine), larch, red pine, rice hiba, rice bran, The use of soft wood such as cypress and cedar is more effective and preferable. In general, conifers are softer than hardwoods. Among soft timber, domestic timber such as cedar, red pine, and cypress is preferable to imported timber from the viewpoint of the environment. Furthermore, among soft domestic timber, cedar is preferable from the viewpoint of effective utilization of planted trees.

本発明の木材は、屋外においてインテリアのように装飾性、機能性、娯楽性の意味合いが大きいエクステリア材として使用される。その形態は、集成材や、LVL(単板積層材)、合板などの木質材料でも構わないが、一本の原木から角材や板材として直接必要な寸法に切り出した無垢材が好ましい。本来的に樹脂が含浸し難い木材に対して樹脂含浸性能を向上させることを目的としているからである。木材の表面に現れる木目は、柾目でも板目でも構わないが、板目が現れるように切り出して(板取りして)おくことが好ましい。柾目は、板目と比べて収縮や変形が少なく強度が高い点で有利であるが、高価である。そのうえ、本発明では浸透孔を中心に樹脂を含浸させるので、浸透孔を厚み方向に穿設した場合、浸透孔が木目と平行になるので、夏目と冬目とに亘って均等に含浸し難くなる。板目であれば低コストであると共に、本発明の効果を最大限利用できる。木目が板目の場合、浸透孔は木目に対して交差する方向となり、木目が柾目の場合は、浸透孔は木目に対して略平行となる。エクステリア材としては、デッキ、テラス、ロッキングチェア、テーブル、門扉、車庫、カーポート、塀、柵、及び垣根などがある。これらの中でも、耐久性に加えて高い強度が必要となる、図3に示すようなデッキ材100として使用することが好ましい。   The wood of the present invention is used as an exterior material having a great significance in terms of decorativeness, functionality, and entertainment, such as interiors, outdoors. The form may be a laminated wood, a woody material such as LVL (single plate laminate), or plywood, but a solid material cut directly from a single raw wood into a necessary size as a square or plate is preferred. This is because the purpose is to improve the resin impregnation performance for wood which is inherently difficult to impregnate with resin. The grain appearing on the surface of the wood may be either a square or a grain, but it is preferable to cut out (cut) the grain so that the grain appears. The mesh is advantageous in that it has less shrinkage and deformation and higher strength than the plate, but is expensive. In addition, since the resin is impregnated around the permeation hole in the present invention, when the permeation hole is formed in the thickness direction, the permeation hole is parallel to the wood grain, so that it is difficult to impregnate evenly over the summer and winter eyes. Become. If it is a plate, the cost is low and the effects of the present invention can be utilized to the maximum. When the grain is a wood grain, the penetration hole is in a direction intersecting the grain, and when the grain is a half grain, the penetration hole is substantially parallel to the grain. Exterior materials include decks, terraces, rocking chairs, tables, gates, garages, carports, fences, fences, and fences. Among these, it is preferable to use as a deck material 100 as shown in FIG. 3 which requires high strength in addition to durability.

含浸させる樹脂としては、フェノール系樹脂、エポキシ系樹脂、メラミン系樹脂、ユリア系樹脂、アミノ樹脂、グリオキザール樹脂、ポリウレタン系樹脂、ポリアクリルウレタン系樹脂、及びレゾルシノール系樹脂などの熱硬化性樹脂が挙げられる。また、植物由来のリグリンを使用することもできる。中でも、良好な寸法安定性を得られるフェノール樹脂、アミノ樹脂、グリオキザール樹脂が好ましい。これらは1種のみを単独で用いてもよく、2種以上を混合使用してもよい。なお、必要に応じて適宜硬化剤も含浸させておく。さらにれらの中でも、低分子水溶性フェノール樹脂が好ましい。低分子のフェノール樹脂であれば浸透性が良く、細胞壁内へも良好に浸透していく。その分子量としては、150〜300程度、好ましくは180〜250程度である。フェノール樹脂は、フェノール類とアルデヒド類の反応により得られる樹脂であり、フェノール類としては、フェノール、クレゾール、キシレノール、エチルフェノール、プロピルフェノール、ブチルフェノール等のアルキルフェノール、石炭系および石油系フェノール類、カシューナット殻液、レゾルシン、ビスフェノール類等を挙げることができる。アルデヒド類としては、ホルムアルデヒド、パラホルムアルデヒド、トリオキサン、環状ホルマール、ヘキサメチレンテトラミン、フルフラール、高級アルデヒド等を例示できる。フェノール樹脂として、上記の組合せの中でも、フェノールとホルムアルデヒドとの反応で得られる樹脂が好ましく用いられる。   Examples of the resin to be impregnated include thermosetting resins such as phenol resins, epoxy resins, melamine resins, urea resins, amino resins, glyoxal resins, polyurethane resins, polyacryl urethane resins, and resorcinol resins. It is done. Plant-derived ligrin can also be used. Among these, phenol resins, amino resins, and glyoxal resins that can obtain good dimensional stability are preferable. These may be used alone or in combination of two or more. If necessary, a curing agent is also impregnated appropriately. Among these, a low-molecular water-soluble phenol resin is preferable. A low molecular weight phenolic resin has good permeability and penetrates well into the cell wall. The molecular weight is about 150 to 300, preferably about 180 to 250. Phenol resins are resins obtained by the reaction of phenols and aldehydes. Phenols include alkyl phenols such as phenol, cresol, xylenol, ethylphenol, propylphenol, and butylphenol, coal-based and petroleum-based phenols, and cashew nuts. Examples thereof include shell liquid, resorcin, and bisphenols. Examples of aldehydes include formaldehyde, paraformaldehyde, trioxane, cyclic formal, hexamethylenetetramine, furfural, and higher aldehydes. Among the above combinations, a resin obtained by a reaction between phenol and formaldehyde is preferably used as the phenol resin.

図2に示すように、浸透孔は木材の平面方向に亘って全体的に穿設する。樹脂含浸量の偏在を避けるためである。穿設方向は、図1に示すように、厚み方向へ穿設する。これにより、浸透孔は木材の繊維方向とも直交する。浸透孔は、厚み方向であれば傾斜していても構わないが、好ましくは垂直に穿設する。浸透孔が傾斜していると、木材を厚み方向に圧縮した際に、横ひずみによって破損し易くなる。浸透孔を非貫通孔とする場合は、意匠性を考慮して裏面から表面に向けて穿設する。浸透孔が裏面から表面に向けて穿設された非貫通孔であれば、表面に孔が存在しないので意匠性が良い。非貫通孔とする場合は、できるだけ深く穿設することが好ましい。具体的には、木材の厚みに対する浸透孔の深さが、少なくとも50%以上、好ましくは80%以上、より好ましくは90%以上である。木材の厚みに対する浸透孔の深さが50%未満では、表層部分における樹脂含浸量が少なくなってしまう。木材の厚みに対する浸透孔の深さが90%以上あれば、厚み方向において樹脂含浸量が少ない部分は殆ど生じない。   As shown in FIG. 2, the permeation hole is entirely drilled over the plane direction of the wood. This is to avoid uneven distribution of the resin impregnation amount. The drilling direction is drilled in the thickness direction as shown in FIG. Thereby, the penetration hole is orthogonal to the fiber direction of the wood. The permeation hole may be inclined as long as it is in the thickness direction, but is preferably formed vertically. When the permeation hole is inclined, the wood is easily damaged by lateral strain when the wood is compressed in the thickness direction. When the penetration hole is a non-through hole, the back surface is drilled from the back surface in consideration of design. If the penetration hole is a non-through hole drilled from the back surface to the surface, the surface has no holes, and the design is good. When using non-through holes, it is preferable to drill as deeply as possible. Specifically, the depth of the penetration hole with respect to the thickness of the wood is at least 50% or more, preferably 80% or more, more preferably 90% or more. If the depth of the permeation hole with respect to the thickness of the wood is less than 50%, the resin impregnation amount in the surface layer portion is reduced. If the depth of the permeation hole with respect to the thickness of the wood is 90% or more, a portion with a small amount of resin impregnation in the thickness direction hardly occurs.

浸透孔の穿設個数は、単位面積(100cm)当たり少なくとも40個以上とする。浸透孔の穿設個数が40個/100cm未満では、樹脂含浸量が少なくなって耐久性の向上などの改質効果を十分に得られず、圧縮した際の寸法安定性も悪化する。樹脂含浸量は、浸透孔の穿設個数に比例して増大するので、浸透孔の穿設個数は多いほど好ましいが、あまりに多いと逆に強度が低下してしまうので、浸透孔の直径にもよるが、浸透孔の穿設個数の上限は200個/100cm程度とする。好ましくは、50〜150個/100cm程度である。浸透孔の穿設個数が50個/100cm以上であれば、木材を良好に改質でき、樹種によっては飽和含浸量に近い量の樹脂を含浸させることもできる。樹脂含浸量が多い程、耐候性、耐水性、防腐性、防虫性、耐光性などの耐久性や、寸法安定性、難燃性、及び機械的強度の向上効果も大きくなる。スギ材を使用する場合は、50〜70個/100cm程度が最も好ましい。スギ材では、浸透孔の穿設個数が70個/100cm程度で樹脂含浸量が飽和するからである。浸透孔は、ドリル加工により穿設してもよいし、例えば炭酸ガスレーザーなどのレーザー加工によって穿設してもよい。 The number of penetration holes is at least 40 per unit area (100 cm 2 ). When the number of perforated holes is less than 40/100 cm 2 , the amount of resin impregnation is reduced, and a modification effect such as improvement in durability cannot be obtained sufficiently, and the dimensional stability when compressed is deteriorated. Since the amount of resin impregnation increases in proportion to the number of perforated holes, the larger the number of perforated holes, the better. However, the upper limit of the number of perforated holes is about 200/100 cm 2 . Preferably, it is about 50 to 150 pieces / 100 cm 2 . If the number of penetrating holes is 50/100 cm 2 or more, the wood can be modified well, and depending on the tree species, an amount of resin close to the saturated impregnation amount can be impregnated. As the resin impregnation amount increases, the durability, such as weather resistance, water resistance, antiseptic properties, insect repellent properties, and light resistance, and the effect of improving dimensional stability, flame retardancy, and mechanical strength also increase. When using a cedar material, about 50-70 pieces / 100cm < 2 > is the most preferable. This is because, in the cedar material, the resin impregnation amount is saturated when the number of perforated holes is about 70/100 cm 2 . The penetration hole may be drilled or may be drilled by laser processing such as a carbon dioxide laser.

浸透孔の穿設パターンは、図2に示すように、幅方向に所定間隔(横ピッチ)毎に一列に並設し、かつ各列が長さ方向に所定間隔(縦ピッチ)毎に複数列並設されるように規則的に穿設する。樹脂を全体的に均一に含浸させるためである。このとき重要なのが、幅方向に平行な直線Lに対して各列L1を所定の角度θで傾斜させておく。これにより、長さ方向における各浸透孔間の距離が不規則となり、厚み方向に大きな荷重が作用した場合でも破損し難くなる。各列Lの傾斜角度θは特に限定されないが、幅方向に平行な直線Lに対して0°を超え45°以下とすることが好ましい。傾斜角度θが45°を超えても大きな問題は無いが、逆方向からみた傾斜角度が結局45°以下となり得るからである。図1で言えば、幅方向に平行な直線Lに対する各列Lの傾斜角度θを左上がりの角度で見ているが、同時に右上がりの列Lも存在することになり、このときのLの傾斜角度は45°を超えている。より好ましくは、幅方向に平行な直線Lに対する各列Lの傾斜角度θが5°〜30°であり、さらに好ましくは10°〜20°である。なお、長さ方向に隣接する各列同士における浸透孔の幅方向穿設位置は、互いに半ピッチ分ずつすらしてある。横ピッチP(幅方向における浸透孔間距離)、縦ピッチP(各列間距離)、及びズレ寸法Q(幅方向に隣接する浸透孔間の長さ方向距離)は特に制限されず、浸透孔の穿設個数及び各列Lの傾斜角度θが上記条件を満たす範囲で、かつ各浸透孔間の長さ方向距離が均一とならないように、適宜設定すればよい。横ピッチPと縦ピッチPとは同じであっても良いし、異ならせてあっても良い。好ましくはP=Pとする。 As shown in FIG. 2, the perforation holes are arranged in a line at predetermined intervals (horizontal pitch) in the width direction, and each row has a plurality of lines at predetermined intervals (vertical pitch) in the length direction. Drill regularly so that they are arranged side by side. This is because the resin is uniformly impregnated as a whole. What is important at this time is that each row L 1 is inclined at a predetermined angle θ with respect to a straight line L 0 parallel to the width direction. Thereby, the distance between each penetration hole in a length direction becomes irregular, and even when a big load acts on the thickness direction, it becomes difficult to break. The inclination angle θ is not particularly limited columns L 1, is preferably not more than 45 ° beyond the 0 ° relative to the straight line L 0 parallel to the width direction. Even if the inclination angle θ exceeds 45 °, there is no major problem, but the inclination angle viewed from the opposite direction can eventually be 45 ° or less. In terms of Figure 1, but looking at the inclination angle θ of each column L 1 at an angle of left-side up against the straight line L 0 parallel to the width direction, it will also be present column L 2 right-up at the same time, this time the inclination angle of the L 2 exceeds 45 °. More preferably, an inclination angle θ is 5 ° to 30 ° in each column L 1 for straight L 0 parallel to the width direction, more preferably 10 ° to 20 °. In addition, the width direction drilling positions of the permeation holes in the rows adjacent to each other in the length direction are even a half pitch each other. The horizontal pitch P 1 (distance between penetration holes in the width direction), the vertical pitch P 2 (distance between each row), and the displacement dimension Q (length direction distance between penetration holes adjacent in the width direction) are not particularly limited, as bored number and angle of inclination of each row L 1 penetration hole θ is not above conditions are satisfied, and a uniform longitudinal distance between the penetration holes may be appropriately set. It may be the same as the horizontal pitch P 1 and the vertical pitch P 2, may be each other varied. Preferably, P 1 = P 2 is set.

ここで、浸透孔を穿設する際に重要な要素として、浸透孔の深さと直径との関係である。具体的には、浸透孔の深さが5mm以下の場合は、該浸透孔の直径を0.7mm以上2.0mm以下とする。浸透孔の深さが5mmを超え15mm以下の場合は、該浸透孔の直径を1.0mm以上2.0mm以下とする。浸透孔の深さが15mmを超え35mm以下の場合は、該浸透孔の直径を1.3mm以上2.0mm以下とする。浸透孔の深さが35mmを超え45mm以下の場合は、該浸透孔の直径を1.5mm以上2.0mm以下とする。浸透孔の深さが45mmを超える場合は、該浸透孔の直径を2.0mmより大きくする。浸透孔の深さに対してその直径が上記条件より小さいと、圧縮した際に浸透孔周辺に欠損が生じることがあるからである。逆に、浸透孔の深さに対してその直径が上記条件より大きいと、木材に対する浸透孔全体の空間率が高くなって強度が低下し、破損し易くなる。また、浸透孔を貫通孔とする場合は、浸透孔の直径を4.0mm以上5.0mm以下とする。貫通孔とした場合に浸透孔の直径が4.0mm未満であれば、樹脂含浸によって貫通孔が閉塞されてしまい、排水機能が阻害されるか失われるからである。一方、貫通孔とした場合に浸透孔の直径が5.0mmを越えると、排水機能の面では有利だが、強度が大きく低下してしまう。   Here, as an important element when the permeation hole is formed, the relationship between the depth and the diameter of the permeation hole. Specifically, when the penetration hole has a depth of 5 mm or less, the penetration hole has a diameter of 0.7 mm or more and 2.0 mm or less. When the depth of the penetration hole is more than 5 mm and 15 mm or less, the penetration hole has a diameter of 1.0 mm or more and 2.0 mm or less. When the depth of the penetration hole is more than 15 mm and not more than 35 mm, the diameter of the penetration hole is set to 1.3 mm or more and 2.0 mm or less. When the depth of the penetration hole is more than 35 mm and 45 mm or less, the penetration hole has a diameter of 1.5 mm or more and 2.0 mm or less. When the depth of the penetration hole exceeds 45 mm, the diameter of the penetration hole is made larger than 2.0 mm. This is because if the diameter is smaller than the above condition with respect to the depth of the penetration hole, a defect may occur around the penetration hole when compressed. On the other hand, if the diameter of the permeation hole is larger than the above condition, the space ratio of the entire permeation hole with respect to the wood is increased, the strength is lowered, and breakage easily occurs. Moreover, when making a penetration hole into a penetration hole, the diameter of a penetration hole shall be 4.0 mm or more and 5.0 mm or less. This is because if the diameter of the through hole is less than 4.0 mm when the through hole is formed, the through hole is blocked by resin impregnation and the drainage function is hindered or lost. On the other hand, if the diameter of the permeation hole exceeds 5.0 mm in the case of a through hole, the drainage function is advantageous, but the strength is greatly reduced.

本発明では、浸透孔が穿設された木材に樹脂を含浸させるのみでよいが、さらに、その他の添加剤も含浸させておくことで、付加価値を付与して高品質な木材を得ることができる。具体的には、樹脂と共に又は樹脂含浸前に防腐・防蟻剤や着色剤を含浸させることができる。防腐・防蟻剤とは、防腐効果と防蟻効果とを兼ね備えた薬剤であり、水系のものが好ましい。防腐・防蟻剤をも含浸させることで、樹脂含浸による防腐性、防蟻性の向上に加えて、さらに防腐性、防蟻性が向上する。水系の防腐・防蟻剤としては、フェノール類・無機フッ化物系、アルキルアンモニウム化合物系、銅・アゾール化合物系等の有機系や、ポリデン塩、グリン塩等の無機定着型、硼砂等の硼素系が例示できる。また、例えばトリアゾール系、ピレスロイド系等の油性の防腐・防蟻剤でもエマルション化することで水系として使用可能であり、これらに限定されるものではない。上記水系の防腐・防蟻剤の固形分含有量が、樹脂含浸前の木材重量に対して0.5〜10重量%となるように含浸させることが好ましい。防腐・防蟻剤の固形分含有量が樹脂含浸前の木材重量に対して0.5重量%未満では、当該防腐・防蟻剤を含浸させる効果が良好に発現し難い。一方、防腐・防蟻剤の固形分含有量が樹脂含浸前の木材重量に対して10重量%を越えても、基本的には樹脂を含浸させることである程度防腐・防蟻性が向上しているので、含浸量に対する防腐・防蟻性の向上率が低くなり、コストの無駄となる。   In the present invention, it is only necessary to impregnate the wood with the perforated holes, but it is also possible to obtain high quality wood by adding value by impregnating other additives. it can. Specifically, it can be impregnated with a preservative / anticide or a colorant together with the resin or before the resin impregnation. The antiseptic / anticidal agent is an agent that has both antiseptic and ant-preventing effects, and is preferably water-based. By impregnating with an antiseptic / anticidal agent, in addition to the improvement of the antiseptic property and the ant-proofing property due to the resin impregnation, the antiseptic property and the ant-proofing property are further improved. Water-based antiseptic / anticidal agents include organic compounds such as phenols, inorganic fluorides, alkylammonium compounds, copper and azole compounds, inorganic fixing types such as polyden salts and glycine salts, and boron types such as borax. Can be illustrated. Further, for example, oil-based antiseptic / anticidal agents such as triazoles and pyrethroids can be used as an aqueous system by emulsification, but are not limited thereto. It is preferable to impregnate so that the solid content of the water-based antiseptic / anticidal agent is 0.5 to 10% by weight based on the weight of the wood before impregnation with the resin. When the solid content of the antiseptic / anticidal agent is less than 0.5% by weight based on the weight of the wood before impregnation with the resin, the effect of impregnating the antiseptic / anticidal agent is hardly exhibited. On the other hand, even if the solid content of the antiseptic / anticidal agent exceeds 10% by weight with respect to the weight of the wood before impregnation with the resin, the impregnation of the resin is basically improved to some extent by impregnating the resin. Therefore, the improvement rate of antiseptic / anticidal properties with respect to the amount of impregnation becomes low, and costs are wasted.

染料や顔料は、求められる木材の色彩に応じて適宜選択的に含浸させればよい。また、樹脂としてフェノール樹脂を含浸させる場合、該フェノール樹脂を含浸させる前に、フェノール樹脂との反応により発色する金属塩溶液を含浸させることもできる。フェノール樹脂との反応により発色する金属塩としては、芳香族カルボン酸やリン酸のアルカリ金属塩等が挙げられる。金属塩の含浸量は、発色性と樹脂含浸の阻害性とを考慮しながら、適宜設定すればよい。その目安としては、金属塩の固形分含有量が、樹脂含浸前の木材重量に対して0.5〜10重量%程度である。0.5重量%未満では、発色が殆ど確認されない。一方、10重量%を越えると、先に含浸される金属塩の含浸量が多くなって、その後に含浸させるフェノール樹脂の含浸量が低減してしまう。これらの着色剤を含浸させておけば、木材を任意の色に着色でき、品質を向上できる。   Dyes and pigments may be appropriately and selectively impregnated according to the required wood color. Moreover, when impregnating a phenol resin as resin, before impregnating this phenol resin, it can also be impregnated with the metal salt solution which develops color by reaction with a phenol resin. Examples of the metal salt that develops color by reaction with the phenol resin include aromatic carboxylic acids and alkali metal salts of phosphoric acid. What is necessary is just to set the amount of metal salt impregnation suitably considering the coloring property and the inhibition of resin impregnation. As a standard, the solid content of the metal salt is about 0.5 to 10% by weight with respect to the weight of the wood before impregnation with the resin. If it is less than 0.5% by weight, almost no color development is confirmed. On the other hand, if it exceeds 10% by weight, the amount of the metal salt impregnated first increases, and the amount of phenol resin impregnated thereafter is reduced. If these colorants are impregnated, the wood can be colored in any color and the quality can be improved.

特に、本発明のエクステリア材をデッキ材として使用する場合は、図4に示すように、木材表面に凹凸20を形成しておくことが好ましい。降雨や散水などによってデッキ材表面に水分が付与されても、木材表面の凹凸が滑り止めとして機能する。凹凸の形状は、滑り止め機能を発揮し得る形状であれば特に限定されず、前後又は左右両端に亘る直線状又は波状の帯(突条)としたり、スポット的に突出又は陥没する山又は凹みとしたり、表面全体に亘って多数連続する山谷としたりできる。中でも、前後(長さ方向)又は左右(幅方向)両端に亘って形成された帯状の凹凸とすることが好ましい。これによれば、木材の側面から凹部に溜まった水分を排水できる。このとき、各浸透孔は表裏両面に開口する貫通孔11とすることが好ましい。浸透孔を貫通孔11とすることで、当該貫通孔11からも水分を裏面側へ排水できる。   In particular, when the exterior material of the present invention is used as a deck material, it is preferable to form irregularities 20 on the wood surface as shown in FIG. Even if moisture is applied to the surface of the deck material due to rainfall or watering, the unevenness on the surface of the wood functions as a slipper. The shape of the unevenness is not particularly limited as long as it can exhibit an anti-slip function, and is a linear or wavy belt (projection) extending in the front-rear direction or the left and right ends, or a peak or depression that protrudes or sinks in spots. Or a number of continuous valleys over the entire surface. Especially, it is preferable to set it as the strip | belt-shaped unevenness | corrugation formed over the front-back (length direction) or right-and-left (width direction) both ends. According to this, the water | moisture content collected in the recessed part can be drained from the side surface of wood. At this time, each penetration hole is preferably a through-hole 11 that opens on both the front and back surfaces. By using the through hole as the through hole 11, moisture can be drained from the through hole 11 to the back side.

次に、エクステリア材の代表的な製造方法について説明する。所定寸法に板取りした無垢材に対し、板目及び繊維方向と直交するように所定寸法及び個数の浸透孔を上記配設条件にて厚み方向に穿設したうえで、樹脂を含浸させる。樹脂を含浸させる前に、水分率が8%以下となる程度にまで乾燥させておくことが好ましい。必要に応じて乾燥させた後、公知の方法にて樹脂を含浸させる。含浸させる樹脂は、水又は有機溶媒に溶融させた溶液状が好ましいが、水に分散させた分散液でもよい。含浸方法は、木材を樹脂溶液に浸漬した状態で、減圧又は圧縮した状態としてから常圧(大気圧)含浸させる方法、加圧状態で含浸させる方法、又はこれらの組み合わせにより行える。好ましくは、減圧又は圧縮した状態としてから、加圧状態で含浸させる。   Next, a typical method for manufacturing an exterior material will be described. A solid material cut into a predetermined dimension is impregnated with a resin after having perforated holes of a predetermined dimension and number in the thickness direction under the above-mentioned arrangement conditions so as to be orthogonal to the grain and fiber direction. Before impregnating the resin, it is preferable to dry the resin so that the moisture content is 8% or less. After drying as necessary, the resin is impregnated by a known method. The resin to be impregnated is preferably in the form of a solution melted in water or an organic solvent, but may be a dispersion liquid dispersed in water. The impregnation method can be performed by immersing wood in a resin solution, reducing the pressure or compressing the material, and then impregnating at normal pressure (atmospheric pressure), impregnating under pressure, or a combination thereof. Preferably, the impregnation is performed under a reduced pressure or a compressed state and then under a pressurized state.

減圧する場合は真空容器内で行う。圧縮はプレス機によって行い、浸透孔の穿設方向即ち厚み方向に圧縮する。減圧又は圧縮することで、木材中の空気や水分が排出除去されるので、その後常圧又は加圧状態とすることで、樹脂が木材の導管や細胞壁内部にまで浸透しやすくなる。常圧又は減圧状態から加圧状態で含浸させる場合は、気体を反応容器内に注入して加圧したり、加熱により加圧したり、両者の組み合わせでもよい。加圧することで、木材の導管や細胞壁の内部にまで強制的に樹脂を含浸させることができる。加圧条件としては、0.4〜2.2MPa程度、好ましくは0.5〜1.5MPa程度とすればよい。軟質木材であれば比較的低圧でも良好に含浸させられるが、硬質木材の場合は比較的高圧とする。木材を樹脂溶液に浸漬すると、樹脂溶液は、主として各浸透孔の内周面から浸透孔を中心に繊維方向に沿って所定の範囲で含浸していく。   When reducing the pressure, it is carried out in a vacuum vessel. The compression is performed by a press machine and is compressed in the perforation hole forming direction, that is, in the thickness direction. Since the air and moisture in the wood are discharged and removed by reducing or compressing, the resin can easily penetrate into the wood conduit and the cell wall by setting the pressure to a normal pressure or pressurized state thereafter. In the case of impregnation from a normal pressure or a reduced pressure state to a pressurized state, gas may be injected into the reaction vessel and pressurized, or pressurized by heating, or a combination of both. By applying pressure, the resin can be forcibly impregnated into the wood conduit and cell walls. The pressurizing condition is about 0.4 to 2.2 MPa, preferably about 0.5 to 1.5 MPa. Soft wood can be satisfactorily impregnated even at a relatively low pressure, but hard wood is at a relatively high pressure. When wood is immersed in the resin solution, the resin solution is impregnated in a predetermined range mainly along the fiber direction from the inner peripheral surface of each penetration hole to the center of the penetration hole.

樹脂を十分に含浸できたところで、熱プレスする前に、余分な液体を除去しておく。余分な液体には、水や有機溶媒のほか、液状の樹脂も含まれる。後の熱圧工程においてガスの発生量を低減するためである。余分な液体の除去は乾燥することで行えるが、乾燥する前に木材をプレス機により圧縮することが好ましい。木材を圧縮することで、余分な液体を強制的に搾り出すことができる。ここでの圧縮はあくまで余分な液体の除去が目的なので、圧縮量は比較的小さくてよく、後の熱圧工程と同等若しくはそれより小さくしておく。あまり圧縮量が大きいと、せっかく良好に含浸させた樹脂が必要以上に搾り出されるからである。圧縮によってある程度余分な液体を強制除去できたところで、確実に水分や有機溶媒を除去するために、乾燥する。乾燥は、常温乾燥でも加熱乾燥でもよい。乾燥時間を短縮化できる点で、加熱乾燥が好ましい。その際の加熱温度は、少なくとも常温(室温)以上熱硬化樹脂の硬化温度未満とする。例えば、30〜70℃程度が好ましい。   When the resin has been sufficiently impregnated, excess liquid is removed before hot pressing. The excess liquid includes liquid resin in addition to water and organic solvents. This is to reduce the amount of gas generated in the subsequent hot pressing process. Although the excess liquid can be removed by drying, it is preferable to compress the wood with a press before drying. By compressing the wood, excess liquid can be forced out. Since the compression here is intended only to remove excess liquid, the amount of compression may be relatively small, and is equal to or smaller than the subsequent hot-pressing step. This is because if the amount of compression is too large, the resin impregnated satisfactorily will be squeezed more than necessary. When excessive liquid has been forcibly removed to some extent by compression, it is dried to reliably remove moisture and organic solvents. Drying may be room temperature drying or heat drying. Heat drying is preferable in that the drying time can be shortened. The heating temperature at that time is at least normal temperature (room temperature) and lower than the curing temperature of the thermosetting resin. For example, about 30-70 degreeC is preferable.

樹脂を含浸させた木材を十分に乾燥できたら、次いで熱プレスにより木材組織を厚み方向に圧密化する。木材を圧密化することで密度が上がり、強度がさらに向上する。このとき重要なのが、圧縮率である。具体的には、樹脂を含浸させた圧縮前の密度(g/cm)と、圧縮前の厚みに対する圧縮後の厚みの寸法比(圧縮後寸法/圧縮前寸法)との関係が、次式
圧縮前の密度/厚み寸法比<1・・・・(1)
の関係を満たすように設定する。式(1)で表される関係が1より大きくなると、圧密化の際に木材が破損するおそれがあるからである。例えば、樹脂を含浸させた圧縮前の木材の密度が0.3g/cmであれば、圧縮前後の厚み寸法比(圧縮後寸法/圧縮前寸法)を0.3より大きくする。換言すれば、圧縮率((圧縮前寸法−圧縮後寸法)/圧縮前寸法)×100を70%より小さくする。同様に、樹脂を含浸させた圧縮前の木材の密度が0.5g/cmであれば、厚み寸法比を0.5より大きく(圧縮率を50%より小さく)する。上記圧縮条件において圧縮した状態で加熱(熱プレス)して熱硬化性樹脂を硬化させることで、木材を当該寸法にて固定化する。このときの加熱温度は、少なくとも熱硬化性樹脂の硬化温度以上とする。具体的には、130℃程度以上とすればよい。
When the wood impregnated with the resin can be sufficiently dried, the wood structure is then consolidated in the thickness direction by hot pressing. By densifying the wood, the density is increased and the strength is further improved. What is important at this time is the compression ratio. Specifically, the relationship between the density before compression impregnated with resin (g / cm 3 ) and the dimensional ratio of the thickness after compression to the thickness before compression (size after compression / size before compression) is Density / thickness dimension ratio before compression <1 (1)
Set to satisfy the relationship. This is because if the relationship represented by formula (1) is greater than 1, the wood may be damaged during consolidation. For example, if the density of the wood before compression impregnated with the resin is 0.3 g / cm 3 , the thickness dimension ratio (post-compression dimension / pre-compression dimension) before and after compression is made larger than 0.3. In other words, the compression rate ((size before compression−size after compression) / size before compression) × 100 is made smaller than 70%. Similarly, if the density of the wood before compression impregnated with the resin is 0.5 g / cm 3 , the thickness dimension ratio is made larger than 0.5 (compression ratio is made smaller than 50%). The wood is fixed at the dimensions by heating (hot pressing) in a compressed state under the compression conditions to cure the thermosetting resin. The heating temperature at this time is at least the curing temperature of the thermosetting resin. Specifically, the temperature may be about 130 ° C. or higher.

なお、この木材をデッキ材用として使用するために表面に凹凸を設ける場合は、表面に凹凸のある金型により熱プレスするだけでよい。当該表面に凹凸を有する金型で熱プレスすることで、金型の凹凸が良好に木材表面に転写される。また、含浸工程、乾燥工程、圧密化工程などにおいて木材をプレスする場合、金型と木材との間にガスや液体の流路を確保するために、金属メッシュ等を介在させることが好ましい。金属メッシュは、木材の表裏両面に介在させても良いし、片面のみに介在させてもよい。片面のみに介在させる場合は、浸透孔の開口を有する裏面に介在させることが好ましい。   In addition, when providing unevenness on the surface in order to use this wood for deck material, it is only necessary to hot press with a mold having unevenness on the surface. By heat-pressing with a mold having irregularities on the surface, the irregularities of the mold are transferred to the wood surface satisfactorily. Further, when pressing wood in the impregnation step, drying step, consolidation step, etc., it is preferable to interpose a metal mesh or the like in order to ensure a gas or liquid flow path between the mold and the wood. The metal mesh may be interposed on both the front and back sides of the wood, or may be interposed only on one side. When it interposes only on one side, it is preferable to interpose on the back surface which has the opening of a penetration hole.

(実施例)
<穿設個数と含浸量との関係>
次に、本発明の具体的な実施例について説明する。まず、浸透孔の穿設個数と含浸量との関係について評価した。無欠点のスギ心材(長さ500mm、厚み38mm、幅100mm)の気乾材を用いて、穿設個数がそれぞれ異なる6種類の木材1〜6を用意した。木材1〜6の浸透孔は、全て裏面からドリルによって深さ35mm(厚みに対して約92%の深さ)、直径1.3mmの非貫通孔として穿設した。各木材における浸透孔の配設条件を表1に示す。なお、表1中の各英字符号は、図2を参照。
(Example)
<Relationship between the number of drilled holes and the amount of impregnation>
Next, specific examples of the present invention will be described. First, the relationship between the number of penetration holes and the amount of impregnation was evaluated. Six types of woods 1 to 6 having different numbers of drilling holes were prepared using an air-drying material having a defect-free cedar core (length 500 mm, thickness 38 mm, width 100 mm). The penetration holes of the woods 1 to 6 were all drilled as non-through holes with a diameter of 35 mm (depth of about 92% with respect to the thickness) and a diameter of 1.3 mm by drilling from the back surface. Table 1 shows the arrangement conditions of the permeation holes in each wood. Refer to FIG. 2 for each alphabetic code in Table 1.

Figure 2009220279
Figure 2009220279

樹脂は、水溶性フェノール樹脂(アイカ工業社製 PX−341)を蒸発残分20%まで水で希釈した。そして、各木材を含浸槽内で30分減圧した後、十分量の樹脂水溶液を注入して浸漬し、大気圧に解放して1時間溶液中に保持してから取り出した。樹脂を含浸させた後の木材重量から樹脂含浸前の重量を引いた値を体積で割って、含浸率(kg/m)を求めた。その結果を図5に示す。 As the resin, a water-soluble phenol resin (PX-341 manufactured by Aika Industry Co., Ltd.) was diluted with water to an evaporation residue of 20%. Each wood was depressurized in an impregnation tank for 30 minutes, and then a sufficient amount of an aqueous resin solution was poured and immersed therein, released to atmospheric pressure, held in the solution for 1 hour, and then taken out. The value obtained by subtracting the weight before impregnation from the weight of the wood after impregnation with the resin was divided by the volume to obtain the impregnation rate (kg / m 3 ). The result is shown in FIG.

図5の結果から、浸透孔が多い程、樹脂含浸率すなわち含浸量が多くなることがわかる。浸透孔の穿設個数が70個/100cmと100個/100cmとでは、樹脂含浸率の差が殆ど無いことから、スギ材の場合、浸透孔の穿設個数が70個/100cm程度で樹脂の含浸量が飽和することがわかった。これにより、スギ材の場合は浸透孔の穿設個数が50〜70個/100cmが好ましいことがわかった。 From the results of FIG. 5, it can be seen that the greater the number of penetration holes, the greater the resin impregnation rate, that is, the amount of impregnation. The drilled number of penetration holes 70 pieces / 100 cm 2 and 100/100 cm 2, since the difference in the resin impregnation ratio is little, if the cedar, drilled number of penetration holes of about 70/100 cm 2 It was found that the amount of resin impregnation was saturated. Thereby, in the case of a cedar material, it turned out that the number of perforation holes drilled is preferably 50 to 70/100 cm 2 .

<強度試験>
次に、浸透孔の配設パターンの相違による強度変化について検討した。強度試験には、浸透孔の穿設個数が好ましい範囲にある50個/100cmの木材4と、70個/100cmの木材6とを使用した。上記のように樹脂を含浸させた木材4及び木材6を、平板プレスにて圧縮率50%で圧縮して余分な液体を搾り出した後、50℃の恒温乾燥機中で20時間乾燥させた。次いで、140℃で圧縮率50%に1時間保持してフェノール樹脂を硬化させて木材の寸法固定した。また、浸透孔の穿設個数が50個/100cmの比較例1と、70個/100cmの比較例2も作製した。比較例1及び比較例2における幅方向に並設された浸透孔の各列Lは、図4に示すように幅方向と平行とした。製造条件は木材4及び木材6と同様である。
<Strength test>
Next, the change in strength due to the difference in the arrangement pattern of the permeation holes was examined. In the strength test, 50 pieces / 100 cm 2 of wood 4 and 70 pieces / 100 cm 2 of wood 6 in which the number of perforated holes was within a preferable range were used. The wood 4 and wood 6 impregnated with the resin as described above were compressed with a flat plate press at a compression rate of 50% to squeeze out excess liquid, and then dried in a constant temperature dryer at 50 ° C. for 20 hours. Subsequently, the phenol resin was cured by holding at a compression rate of 50% for 1 hour at 140 ° C. to fix the size of the wood. Further, Comparative Example 1 having 50/100 cm 2 permeation holes and Comparative Example 2 having 70/100 cm 2 were also produced. Each row L of permeation holes arranged in parallel in the width direction in Comparative Example 1 and Comparative Example 2 was parallel to the width direction as shown in FIG. The manufacturing conditions are the same as those for the wood 4 and the wood 6.

木材4、木材6、比較例1、比較例2を、JIS Z2101「木材の試験方法」に規定されている曲げ試験方法に基づいて、浸透孔の開口を有する裏面を引張面とした中央集中負荷により、曲げ応力(曲げ強度)を測定した。その結果を図6に示す。   Central concentrated load using wood 4, wood 6, comparative example 1 and comparative example 2 as a tensile surface on the back surface with an opening of a permeation hole based on the bending test method defined in JIS Z2101 “Testing Method of Wood” Was used to measure bending stress (bending strength). The result is shown in FIG.

図6の結果から、浸透孔の穿設個数が多いほど曲げ応力(曲げ強度)が高かった。これは、浸透孔の穿設個数が多いほど樹脂含浸量が多くなることに基づいている。そのうえで、各木材と各比較例とを対比すると、各列Lを傾斜させた木材の方が、各列Lが幅方向に平行となっている比較例より曲げ強度が高くなっていた。これにより、同じ浸透孔の穿設個数でも、幅方向の各列Lを傾斜させることで強度が高くなることがわかった。   From the results of FIG. 6, the bending stress (bending strength) was higher as the number of perforated holes was increased. This is based on the fact that the greater the number of penetration holes, the greater the amount of resin impregnation. In addition, when each wood and each comparative example were compared, the bending strength of the wood in which each row L was inclined was higher than that of the comparative example in which each row L was parallel to the width direction. As a result, it was found that the strength was increased by inclining each row L in the width direction even with the same number of perforated holes.

<浸透孔の深さと直径の関係>
次に、浸透孔の深さと直径との関係について検討した。上記と同じ木材に対して、深さ5mm、15mm、35mm、45mmの非貫通孔、及び貫通孔をそれぞれ穿設し、各深さの浸透孔の直径を段階的に変化させたときに、上記と同じ条件で樹脂を含浸し圧密化処理をしたときの木材の状態を目視にて観察した。そのときの穿設深さと直径条件、及び観察結果を表2に示す。なお、各状態判定の基準は次の通りである。
○:特に欠損は生じていない、貫通孔の場合は浸透孔が閉塞されていない
×:欠損が生じている、貫通孔の場合は浸透孔が閉塞している
<Relationship between penetration depth and diameter>
Next, the relationship between the depth and diameter of the penetration hole was examined. With respect to the same wood as described above, when a non-through hole having a depth of 5 mm, 15 mm, 35 mm, and 45 mm and a through hole are respectively drilled, and the diameter of the penetration hole of each depth is changed stepwise, the above The state of the wood when the resin was impregnated and compacted under the same conditions as above was visually observed. Table 2 shows the drilling depth, diameter conditions, and observation results. The criteria for determining each state are as follows.
○: No defect has occurred. In the case of a through hole, the permeation hole is not blocked. ×: A defect has occurred. In the case of a through hole, the permeation hole is blocked.

Figure 2009220279
Figure 2009220279

表2の結果から、いずれの穿設深さにおいても、その直径が大きい方が圧密化処理後の木材状態が良好となる傾向にあることがわかった。また、穿設深さが深くなるに伴い、直径の下限が大きくなる傾向にあることもわかった。これらの傾向から、浸透孔の深さが5mm以下の場合は浸透孔の直径を0.7mm以上、浸透孔の深さが5mmを超え15mm以下の場合は浸透孔の直径を1.0mm以上、浸透孔の深さが15mmを超え35mm以下の場合は浸透孔の直径を1.3mm以上、浸透孔の深さが35mmを超え45mm以下の場合は浸透孔の直径を1.5mm以上、貫通孔の場合は浸透孔の直径を4mm以上、にそれぞれすることが好ましいことがわかった。一方、浸透孔の直径が大きすぎても木材の強度が低下してしまうので、非貫通孔の場合はその直径の上限は2.0mm程度が好ましく、貫通孔の場合は5.0mm程度が好ましい。   From the results shown in Table 2, it was found that at any drilling depth, the larger the diameter, the better the wood condition after consolidation. It was also found that the lower limit of the diameter tends to increase as the drilling depth increases. From these tendencies, the penetration hole diameter is 0.7 mm or more when the penetration hole depth is 5 mm or less, and the penetration hole diameter is 1.0 mm or more when the penetration hole depth is more than 5 mm and 15 mm or less, When the penetration hole depth exceeds 15 mm and 35 mm or less, the penetration hole diameter is 1.3 mm or more. When the penetration hole depth is more than 35 mm and 45 mm or less, the penetration hole diameter is 1.5 mm or more. In this case, it has been found that it is preferable to set the diameter of the permeation hole to 4 mm or more. On the other hand, if the diameter of the penetration hole is too large, the strength of the wood will decrease, so the upper limit of the diameter is preferably about 2.0 mm in the case of a non-through hole, and about 5.0 mm in the case of a through hole. .

<密度と圧縮率との関係>
次に、圧密化処理の際の密度と圧縮率との関係について検討した。上記木材4に対して、樹脂含浸量を異ならせて圧密化処理前(圧縮前)の密度が表3に示す値のときに、圧縮前の厚みに対する圧縮後の厚みの寸法比、すなわち圧縮率を段階的に変化させた状態で固定化したときの木材の状態を目視にて観察した。樹脂を含浸させた圧縮前の密度、圧縮前後の厚み寸法比(圧縮後寸法/圧縮前寸法)、圧縮率((圧縮前寸法−圧縮後寸法)/圧縮前寸法)×100、及び観察結果を表3に示す。
<Relationship between density and compression ratio>
Next, the relationship between the density and the compressibility during the consolidation process was examined. When the density before resin compaction (before compression) is the value shown in Table 3 with different resin impregnation amounts for the wood 4, the dimensional ratio of the thickness after compression to the thickness before compression, that is, the compression ratio The state of the wood when it was fixed in a state where was changed stepwise was visually observed. Density before compression impregnated with resin, thickness ratio before and after compression (size after compression / size before compression), compression rate ((size before compression−size after compression) / size before compression) × 100, and observation results Table 3 shows.

Figure 2009220279
Figure 2009220279

表3の結果から、樹脂を含浸させた圧縮前の密度と圧縮前後の厚み寸法比との関係(圧縮前の密度/厚み寸法比)が、1未満となることが好ましいことがわかった。これにより、樹脂を含浸させた圧縮前の密度と圧縮前の厚みに対する圧縮後の厚みの寸法比との関係が、圧縮前の密度/厚み寸法比<1を満たすように設定することが好ましいことが導き出せた。   From the results in Table 3, it was found that the relationship between the density before compression impregnated with the resin and the thickness dimension ratio before and after compression (density before compression / thickness dimension ratio) is preferably less than 1. Accordingly, it is preferable that the relationship between the density before compression impregnated with the resin and the dimensional ratio of the thickness after compression to the thickness before compression satisfies the density / thickness dimensional ratio before compression <1. Could be derived.

エクステリア用木材の裏面斜視図である。It is a back surface perspective view of exterior wood. 浸透孔の穿設位置パターンを示す概念図である。It is a conceptual diagram which shows the drilling position pattern of an osmotic hole. デッキ材の外観図である。It is an external view of a deck material. デッキ材として使用する場合に好適な形態の断面図である。It is sectional drawing of a form suitable when using as a deck material. 浸透孔の穿設個数と含浸量との関係を示すグラフである。It is a graph which shows the relationship between the number of perforation holes, and the amount of impregnation. 浸透孔の穿設個数及びパターンと曲げ応力との関係を示す棒グラフである。It is a bar graph which shows the relationship between the number and the pattern of permeation holes, and bending stress. 従来の浸透孔の穿設位置パターンを示す概念図である。It is a conceptual diagram which shows the drilling position pattern of the conventional penetration hole.

符号の説明Explanation of symbols

1 木材
10 浸透孔(非貫通孔)
11 浸透孔(貫通孔)
20 凹凸
L 幅方向に並設された浸透孔の列
幅方向と平行な基準線
傾斜して幅方向に並設された浸透孔の列
θ Lに対するLの傾斜角度
1 Wood 10 Penetration hole (non-through hole)
11 Penetration hole (through hole)
20 uneven inclination angle of the L 1 for the columns theta L 0 L-width direction juxtaposed intrusion pore column L 0 width direction parallel to the reference line L 1 inclined juxtaposed in the width direction intrusion pore

Claims (5)

厚み方向に穿設された複数の浸透孔を有し、樹脂が含浸されているエクステリア用木材であって、
前記浸透孔は、幅方向に所定間隔毎に一列に並設され、各列が長さ方向に所定間隔毎に複数列並設されるように規則的に穿設されており、
前記各列が、幅方向に平行な直線に対して所定の角度で傾斜していることを特徴とするエクステリア用木材。
An exterior wood having a plurality of permeation holes drilled in the thickness direction and impregnated with resin,
The permeation holes are regularly arranged in a row at predetermined intervals in the width direction, and each row is regularly drilled so that a plurality of rows are arranged in parallel in the length direction at predetermined intervals.
The exterior wood is characterized in that each row is inclined at a predetermined angle with respect to a straight line parallel to the width direction.
前記樹脂が熱硬化性樹脂であって、
原寸に対して所定量厚み方向に圧縮された状態で固定化されており、
樹脂を含浸させた圧縮前の密度(g/cm3)と、圧縮前の厚みに対する圧縮後の厚みの寸法比(圧縮後寸法/圧縮前寸法)との関係が、次式
圧縮前の密度/厚み寸法比<1
の関係を満たす、請求項1に記載のエクステリア用木材。
The resin is a thermosetting resin,
It is fixed in a state compressed in the thickness direction by a predetermined amount with respect to the original size,
The relationship between the density before compression impregnated with resin (g / cm 3 ) and the ratio of the thickness after compression to the thickness before compression (size after compression / size before compression) is expressed by the following formula: density before compression / Thickness dimension ratio <1
The exterior wood according to claim 1, satisfying the relationship:
前記浸透孔が、裏面から表面に向けて穿設された非貫通孔であり、
浸透孔の深さが5mm以下の場合は、浸透孔の直径が0.7mm以上2.0mm以下であり、
浸透孔の深さが5mmを超え15mm以下の場合は、浸透孔の直径が1.0mm以上2.0mm以下であり、
浸透孔の深さが15mmを超え35mm以下の場合は、浸透孔の直径が1.3mm以上2.0mm以下であり、
浸透孔の深さが35mmを超え45mm以下の場合は、浸透孔の直径が1.5mm以上2.0mm以下である、請求項1または請求項2に記載のエクステリア用木材。
The permeation hole is a non-through hole drilled from the back to the surface;
When the depth of the penetration hole is 5 mm or less, the diameter of the penetration hole is 0.7 mm or more and 2.0 mm or less,
When the depth of the penetration hole is more than 5 mm and 15 mm or less, the diameter of the penetration hole is 1.0 mm or more and 2.0 mm or less,
When the depth of the penetration hole is more than 15 mm and 35 mm or less, the diameter of the penetration hole is 1.3 mm or more and 2.0 mm or less,
The exterior wood according to claim 1 or 2, wherein when the depth of the penetration hole is more than 35 mm and 45 mm or less, the diameter of the penetration hole is 1.5 mm or more and 2.0 mm or less.
前記浸透孔が、表面から裏面にかけて貫通する貫通孔であり、
該浸透孔の直径が4mm以上5mm以下である、請求項1または請求項2に記載のエクステリア用木材。
The penetration hole is a through-hole penetrating from the front surface to the back surface;
The exterior wood according to claim 1 or 2, wherein the diameter of the permeation hole is 4 mm or more and 5 mm or less.
デッキ材として使用される、請求項1ないし請求項4のいずれかに記載のエクステリア用木材。

The exterior wood according to any one of claims 1 to 4, which is used as a deck material.

JP2008063941A 2008-03-13 2008-03-13 Exterior wood Pending JP2009220279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008063941A JP2009220279A (en) 2008-03-13 2008-03-13 Exterior wood

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008063941A JP2009220279A (en) 2008-03-13 2008-03-13 Exterior wood

Publications (1)

Publication Number Publication Date
JP2009220279A true JP2009220279A (en) 2009-10-01

Family

ID=41237621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008063941A Pending JP2009220279A (en) 2008-03-13 2008-03-13 Exterior wood

Country Status (1)

Country Link
JP (1) JP2009220279A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018089967A (en) * 2016-12-01 2018-06-14 株式会社 江間忠ホールディングス Functionalized wood and method for producing the same
US20190284778A1 (en) * 2018-03-15 2019-09-19 Hubbell Incorporated Lightweight molded cover

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1071608A (en) * 1996-08-29 1998-03-17 Tesac Corp Wood product having its surface structure modified and method of modifying wood surface structure
JPH11151703A (en) * 1997-11-19 1999-06-08 Mywood Kk Manufacture of modified timber
JP2002120204A (en) * 2000-10-17 2002-04-23 Michio Kashima Method for manufacturing modified lumber
JP2002326206A (en) * 2001-05-02 2002-11-12 Misawa Homes Co Ltd Incising cutting tool and method for incising processing for lumber using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1071608A (en) * 1996-08-29 1998-03-17 Tesac Corp Wood product having its surface structure modified and method of modifying wood surface structure
JPH11151703A (en) * 1997-11-19 1999-06-08 Mywood Kk Manufacture of modified timber
JP2002120204A (en) * 2000-10-17 2002-04-23 Michio Kashima Method for manufacturing modified lumber
JP2002326206A (en) * 2001-05-02 2002-11-12 Misawa Homes Co Ltd Incising cutting tool and method for incising processing for lumber using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012042991; Satoshi Fukuta, et al.: ''Manufacture of compressed wood fixed by phenolic resin impregnation through drilled holes.'' The Japan Wood Reseach Society Vol.54, p.100-106, 一般社団法人日本木材学会 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018089967A (en) * 2016-12-01 2018-06-14 株式会社 江間忠ホールディングス Functionalized wood and method for producing the same
US20190284778A1 (en) * 2018-03-15 2019-09-19 Hubbell Incorporated Lightweight molded cover
US11873613B2 (en) * 2018-03-15 2024-01-16 Hubbell Incorporated Lightweight molded cover

Similar Documents

Publication Publication Date Title
Asif Sustainability of timber, wood and bamboo in construction
EP1858678B1 (en) Method for producing wood-base materials
Winandy et al. Improving the utility, performance, and durability of wood-and bio-based composites
EP2637829B1 (en) Ships containing thermally modified and impregnated wood or wood-based material
CN101214667A (en) Veneer pressurization gumming enhancement type composite container floor and manufacturing method thereof
US20090263617A1 (en) Panel containing bamboo
EP2944461B1 (en) Method for making a panel of laminated veneer lumber and/or laminated veneer board for outdoor usage
KR101042482B1 (en) The product method of comprssion timber in carbon reinforcement, comprssion timber and comprssion penel
CA2723923C (en) Method of forming a reconstituted wood block
JP2010214703A (en) Method for joining wood by finger joint, and wood joined by the same
DE102016122762A1 (en) Process for modifying lignocellulose-containing products and production of wood-based materials therefrom, and lignocellulose-containing products obtainable in this way
JP2009220279A (en) Exterior wood
US20070077445A1 (en) Panel containing bamboo and fungicide
CN111155739A (en) Composite floor and manufacturing process thereof
Ramful Evaluation of the Mechanical Properties of Bambusa Bamboo Laminates through Destructive Testing
Vukas et al. Heat treated wood
CN104589440A (en) Preparation process of flame-retardant and anti-corrosion fast-growing modified material for wood building structure
KR20180127864A (en) Method for manufacturing compressed wood having improved dimensional stability
CN104476648A (en) Process method for improving solid wood furniture plate performance
JP3315647B2 (en) Veneer laminate
DE202015103204U1 (en) Plywood with specified veneer orientation
WO2018160112A1 (en) Structural element and method for its manufacture
Cheng Reducing the surface checking of deck-boards exposed to natural weathering: effects of wood species and surface profiling
Cao Effects of thermo-mechanical modification on mechanical properties and water resistance of plantation-grown Vietnamese acacia (Acacia mangium) and rubberwood (Hevea brasiliensis)
US20230047182A1 (en) A method for improving durability and weatherability of timber by engineering layers

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110301

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121019

A02 Decision of refusal

Effective date: 20130219

Free format text: JAPANESE INTERMEDIATE CODE: A02