JP2009220082A - Manufacturing method for water vapor reforming catalyst for lpg, and water vapor reforming catalyst for lpg - Google Patents

Manufacturing method for water vapor reforming catalyst for lpg, and water vapor reforming catalyst for lpg Download PDF

Info

Publication number
JP2009220082A
JP2009220082A JP2008070577A JP2008070577A JP2009220082A JP 2009220082 A JP2009220082 A JP 2009220082A JP 2008070577 A JP2008070577 A JP 2008070577A JP 2008070577 A JP2008070577 A JP 2008070577A JP 2009220082 A JP2009220082 A JP 2009220082A
Authority
JP
Japan
Prior art keywords
reforming catalyst
lpg
catalyst
compound
steam reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008070577A
Other languages
Japanese (ja)
Other versions
JP5119019B2 (en
Inventor
Tatsuki Ishihara
達己 石原
Osamu Makino
理 牧野
Masataka Kajiwara
昌高 梶原
Tatsuhiko Hashimoto
辰彦 橋本
Seiichi Fujikawa
静一 藤川
Takayuki Yoshikawa
隆行 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Iwatani International Corp
Original Assignee
Kyushu University NUC
Iwatani International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Iwatani International Corp filed Critical Kyushu University NUC
Priority to JP2008070577A priority Critical patent/JP5119019B2/en
Publication of JP2009220082A publication Critical patent/JP2009220082A/en
Application granted granted Critical
Publication of JP5119019B2 publication Critical patent/JP5119019B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Catalysts (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water vapor reforming catalyst for a liquefied petroleum gas being excellent in activity at a low temperature area. <P>SOLUTION: A mixture solution in which a ruthenium compound becoming an active metal and a nickel compound becoming an additive are dissolved and a suspension in which a powdery aerosil alumina becoming a catalyst carrier is suspended are mixed, and after the mixture is dried, it is granulated to a granular form and the granulated substance is subjected to reduction treatment by a hydrogen gas stream under a temperature atmosphere of a predetermined or higher. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、液化石油ガス(LPG)の水蒸気改質に使用するのに適した触媒の製造方法及び触媒に関し、特に低温領域での活性に優れたLPG用水蒸気改質触媒の製造方法及び触媒を提供するものである。   The present invention relates to a catalyst production method and a catalyst suitable for use in steam reforming of liquefied petroleum gas (LPG), and more particularly, to a method for producing a steam reforming catalyst for LPG and a catalyst excellent in activity in a low temperature region. It is to provide.

ルテニウム含有の触媒は、高活性且つ低スチーム/カーボン比の運転条件下でも耐炭素析出性に優れるという優れた触媒性能を示すことから、近年、炭化水素の水蒸気改質に多用されている。   Ruthenium-containing catalysts have been widely used for steam reforming of hydrocarbons in recent years because they exhibit excellent catalytic performance such as high activity and excellent carbon deposition resistance even under low steam / carbon ratio operating conditions.

ルテニウム含有触媒に関しては、ジルコニア担体にルテニウムを担持させた触媒(特許文献1)や、アルミナを担体とし、ジルコニアゾルを前駆体とするジルコニアを助触媒として坦持してなり、かつルテニウムを活性成分として含有してなる触媒(特許文献2)、あるいは、ルテニウム化合物、ジルコニウム化合物及びアルカリ土類金属または希土類元素の化合物を含有する溶液を担体に接触させることにより、ルテニウム成分を担体上でジルコニウム成分の近傍に高分散状態に担持させたもの(特許文献3)等が提案されている。
特開平2−002879号公報 特開平5−220397号公報 特開平8−196907号公報
Regarding the ruthenium-containing catalyst, a catalyst in which ruthenium is supported on a zirconia support (Patent Document 1), or zirconia having alumina as a support and zirconia sol as a precursor is supported as a co-catalyst, and ruthenium is an active component. Or a solution containing a ruthenium compound, a zirconium compound, and an alkaline earth metal or rare earth element compound is brought into contact with the support, whereby the ruthenium component is converted to the zirconium component on the support. A device (Patent Document 3) or the like carried in a highly dispersed state in the vicinity has been proposed.
JP-A-2-002879 Japanese Patent Laid-Open No. 5-220397 JP-A-8-196907

炭化水素、特に液化石油ガスの水蒸気改質により水素製造を行う場合、製造プロセスの省エネルギー化・高耐久性が望まれる。従来の改質触媒では、その平衡組成を超えた水素濃度の改質ガスを得るのは難しいとされ、所定の高濃度水素の改質ガスを得るためには、600℃を超える温度領域で改質を行う必要があるととともに、システムの閉塞化を引き起こす炭素析出を抑制するために、スチーム/カーボン(S/C)比を3.0以上にする必要がある。その結果、改質のための投入熱量を少なくして省エネルギー化を図ることが難しい。また、水素分離膜型改質器においては、600℃を超えると、分離膜の耐久性が著しく低下するという問題がある。   When hydrogen production is carried out by steam reforming of hydrocarbons, particularly liquefied petroleum gas, energy saving and high durability of the production process are desired. With conventional reforming catalysts, it is difficult to obtain a reformed gas with a hydrogen concentration exceeding its equilibrium composition. In order to obtain a reformed gas with a predetermined high concentration of hydrogen, the reformed catalyst is modified in a temperature range exceeding 600 ° C. In addition, the steam / carbon (S / C) ratio needs to be 3.0 or more in order to suppress the carbon deposition that causes the blockage of the system. As a result, it is difficult to save energy by reducing the amount of heat input for reforming. Further, in the hydrogen separation membrane reformer, when the temperature exceeds 600 ° C., there is a problem that the durability of the separation membrane is remarkably lowered.

このような点に着目して、本発明は、低温領域で活性に優れた液化石油ガス用の水蒸気改質触媒を提供することを目的とする。   In view of such a point, an object of the present invention is to provide a steam reforming catalyst for liquefied petroleum gas having excellent activity in a low temperature region.

上記の目的を達成するために、請求項1に記載の本発明は、LPG用水蒸気改質触媒の製造するにあたり、活性金属となるルテニウム化合物と添加物となるニッケル化合物と溶解させた混合液と触媒担体となる粉体のアエロジルアルミナを懸濁させた懸濁液とを混合させ、この混合物を乾燥させた後、顆粒状に整粒し、この整粒したものを所定温度以上の温度雰囲気下で水素ガス気流により還元処理したことを特徴としている。   In order to achieve the above object, according to the present invention described in claim 1, in the production of a steam reforming catalyst for LPG, a ruthenium compound serving as an active metal, a nickel compound serving as an additive, and a mixed solution dissolved therein This is mixed with a suspension of powdered aerosil alumina in the form of a catalyst carrier, dried, and then granulated into granules. It is characterized by being reduced by a hydrogen gas stream.

また、請求項2に記載の発明は、請求項1の構成に加えて、ニッケル化合物とともに第2添加物としてリチウム化合物を添加してアエロジルアルミナを溶液に溶解混合させるようにしたことを特徴とし、請求項3に記載の発明は、請求項1または2に記載した発明でのルテニウム化合物の混合割合が0.5〜1.0wt%、ニッケル化合物の混合割合が0.5〜1.0wt%であることを特徴としている。   The invention described in claim 2 is characterized in that, in addition to the structure of claim 1, a lithium compound is added as a second additive together with a nickel compound so that aerosil alumina is dissolved and mixed in the solution. In the invention of claim 3, the mixing ratio of the ruthenium compound in the invention of claim 1 or 2 is 0.5 to 1.0 wt%, the mixing ratio of the nickel compound is 0.5 to 1.0 wt%. It is characterized by being.

本発明は、活性金属となるルテニウム化合物と添加物となるニッケル化合物と溶解させた混合液と触媒担体となる粉体のアエロジルアルミナを懸濁させた懸濁液とを混合させ、この混合液を乾燥・整粒し、所定温度以上の温度雰囲気で水素ガスによる還元処理を施して、LPG用水蒸気改質触媒を得るようにしていることから、活性金属をより高分散の状態で担体に坦持させることができる。   In the present invention, a ruthenium compound serving as an active metal, a nickel compound serving as an additive, and a mixed solution are mixed with a suspension obtained by suspending powdered aerosil alumina serving as a catalyst carrier. Since it is dried and sized and subjected to reduction treatment with hydrogen gas in a temperature atmosphere above a predetermined temperature to obtain a steam reforming catalyst for LPG, the active metal is supported on the support in a more highly dispersed state. Can be made.

上述の方法で形成された本発明のLPG用水蒸気改質触媒では、水蒸気改質の逐次反応としておきる一酸化炭素及び二酸化炭素のメタン化を抑制することができ、従来の改質触媒を用いた水蒸気改質の平衡組成よりも高い濃度の水素を得ることができる。このことから、より低い温度で改質を行うことができるようになり、改質工程での投入熱量の低減を図ることができ、省エネルギーを図ることができるとともに、改質器に用いている水素分離膜への熱のダメージを減少化させて、水素分離膜の長寿命化を図ることができる。   In the steam reforming catalyst for LPG of the present invention formed by the above-described method, methanation of carbon monoxide and carbon dioxide that occurs as a sequential reaction of steam reforming can be suppressed, and a conventional reforming catalyst is used. A hydrogen concentration higher than the equilibrium composition of steam reforming can be obtained. As a result, reforming can be performed at a lower temperature, the amount of input heat in the reforming process can be reduced, energy can be saved, and hydrogen used in the reformer can be reduced. It is possible to reduce the heat damage to the separation membrane and extend the life of the hydrogen separation membrane.

また、上述の方法で形成された本発明のLPG用水蒸気改質触媒では、従来の触媒よりも小さなS/C比で改質することができることから、蒸気化のために要する熱量を小さくすることができ、省エネルギーを図ることができる。   In addition, since the steam reforming catalyst for LPG of the present invention formed by the above-described method can be reformed with a smaller S / C ratio than the conventional catalyst, the amount of heat required for vaporization can be reduced. Can save energy.

さらに、上述の方法で形成された本発明のLPG用水蒸気改質触媒では、空間速度(SV)値を上げると水素濃度を上げることができる。これにより、触媒量の削減も見込むことができる。   Furthermore, in the steam reforming catalyst for LPG of the present invention formed by the above method, the hydrogen concentration can be increased by increasing the space velocity (SV) value. Thereby, reduction of the catalyst amount can also be expected.

図1は、本発明に係るLPG用水蒸気改質触媒製造方法の手順を説明するフローである。
まず、活性金属であるルテニウム化合物と添加物であるニツケル化合物とをイオン交換水に溶解させる操作(S1)と、担体となる表面積100cm/g程度の粉体からなるアエロジルアルミナをイオン交換水に懸濁させた後に一旦沸騰させ、しかる後に所定温度(80℃)程度に冷却する操作(S2)とを並行して行う。
FIG. 1 is a flowchart illustrating the procedure of a method for producing a steam reforming catalyst for LPG according to the present invention.
First, an operation (S1) of dissolving a ruthenium compound as an active metal and a nickel compound as an additive in ion-exchanged water, and aerosil alumina consisting of powder having a surface area of about 100 cm 2 / g as ion-exchanged water are used as ion-exchanged water. After the suspension, the operation of boiling once and then cooling to a predetermined temperature (80 ° C.) or so (S2) is performed in parallel.

次に、ルテニウム化合物とニツケル化合物が溶解しているイオン交換水と、アエロジルアルミナを懸濁させた後に一旦沸騰し、さらに冷却させたイオン交換水とを混合し(S3)、この混合溶液を蒸発させて固結させる(S4)。   Next, the ion-exchanged water in which the ruthenium compound and the nickel compound are dissolved, and the ion-exchanged water once boiled and suspended after suspending the Aerosil alumina are further mixed (S3), and the mixed solution is evaporated. To be consolidated (S4).

ついで、固結した固結物をさらに60℃程度の温度で加熱乾燥させ(S5)、乾燥物を顆粒状に整粒する(S6)。   Next, the solidified product is further heated and dried at a temperature of about 60 ° C. (S5), and the dried product is granulated (S6).

この整粒された顆粒状物をさらに、550℃以上の温度雰囲気のもとで水素ガスを2時間流して還元処理を施し(S7)、LPG用水蒸気改質触媒を得る。   The sized granule is further subjected to a reduction treatment by flowing hydrogen gas for 2 hours under an atmosphere at a temperature of 550 ° C. or higher (S7) to obtain an LPG steam reforming catalyst.

ルテニウム化合物としての塩化ルテニウムを0.24088gとニッケル化合物としての硝酸ニッケルとを0.50558gを50mlのイオン交換水に溶解させたものを用意する。他方、9.8gのアエロジルアルミナを250mlのイオン交換水に懸濁させたのちに一旦沸騰させ、しかる後、80℃程度に冷却したものを用意する。   A solution prepared by dissolving 0.25088 g of ruthenium chloride as a ruthenium compound and 0.55585 g of nickel nitrate as a nickel compound in 50 ml of ion exchange water is prepared. On the other hand, 9.8 g of aerosil alumina is suspended in 250 ml of ion exchange water and then boiled, and then cooled to about 80 ° C. is prepared.

このルテニウム化合物とニッケル化合物とを溶解してなるイオン交換水と、アエロジルアルミナを懸濁後、加熱−冷却した溶液とを混合して、充分攪拌混合したのち、水分を蒸発させて、ルテニウム化合物とニッケル化合物とをアエロジルアルミナに分散させた状態で固結する。   The ion-exchanged water obtained by dissolving the ruthenium compound and the nickel compound is mixed with the heated and cooled solution after suspending the aerosil alumina, and after sufficiently stirring and mixing, the water is evaporated and the ruthenium compound and The nickel compound is consolidated in a state of being dispersed in aerosil alumina.

水分を蒸発させた固結物を60℃程度の温度に設定した乾燥器内で6時間乾燥させた後、粒径1.4〜2.0mm程度の顆粒状に整粒する。この整粒したものを600℃以上の温度雰囲気内で40cc/min程度の流速に設定した水素ガスと5時間作用させて、還元処理して触媒を得る。この触媒の組成としては、活性金属のルテニウムが1wt%、添加物であるニツケルが1wt%含まれたものとなっている。なお、この還元処理時に、ルテニウムとニッケルとが合金化しているとおもわれる。   The solidified product obtained by evaporating moisture is dried in a drier set at a temperature of about 60 ° C. for 6 hours, and then sized into granules having a particle size of about 1.4 to 2.0 mm. This sized product is allowed to act for 5 hours with hydrogen gas set at a flow rate of about 40 cc / min in an atmosphere at a temperature of 600 ° C. or higher to obtain a catalyst. The composition of this catalyst is 1 wt% of the active metal ruthenium and 1 wt% of the additive nickel. It is assumed that ruthenium and nickel are alloyed during the reduction treatment.

図2は、水蒸気改質器の試験装置である。
この試験装置は、内部に改質触媒(1)を収容する内筒(2)と、この内筒(2)を加熱すヒータ(3)とで構成してあり、内筒(2)の内部に触媒ストッパー(4)をストッパー支持筒(5)を介して支持することで、改質触媒収容部(6)を形成している。図中符号(7)は改質触媒収容部(6)の流入側に充填した石英ウール、符号(8)は導出ガス路(9)に配置した再凝縮装置、符号(10)は触媒層の温度を検出する熱電対で構成した温度検出器、符号(11)は内筒外の温度を検出する温度検出器である。なお、前記触媒ストッパー(4)とストッパー支持筒(5)とは、いずれもステンレス製メッシュ板で構成してある。
FIG. 2 is a test apparatus for a steam reformer.
This test apparatus is comprised of an inner cylinder (2) that houses the reforming catalyst (1) and a heater (3) that heats the inner cylinder (2). The reforming catalyst accommodating portion (6) is formed by supporting the catalyst stopper (4) via the stopper support cylinder (5). In the figure, symbol (7) is quartz wool filled on the inflow side of the reforming catalyst housing (6), symbol (8) is a recondensing device arranged in the outlet gas passage (9), and symbol (10) is the catalyst layer. A temperature detector constituted by a thermocouple for detecting the temperature, reference numeral (11), is a temperature detector for detecting the temperature outside the inner cylinder. The catalyst stopper (4) and the stopper support cylinder (5) are both made of a stainless steel mesh plate.

上述の方法で作成した水蒸気改質用触媒を上記試験装置に充填し、プロパンガスと水蒸気とを、空間速度:2,000/h、圧力:0.53MPaG、S/C:2.8の条件を維持した試験装置に温度変化させて流通させ、導出した水素ガスの濃度を測定した。その結果を表1に示す。
比較例として、粒状アルミナを担体とし、活性金属として5%のルテニウムを含む触媒を使用した場合について、導出した水素ガスの濃度を測定した。ちなみに、同じ温度条件下での平衡状態での水素ガス濃度とも比較した。
The steam reforming catalyst prepared by the above-mentioned method is filled in the test apparatus, and propane gas and steam are mixed under the conditions of space velocity: 2,000 / h, pressure: 0.53 MPaG, S / C: 2.8. The concentration of the derived hydrogen gas was measured by changing the temperature through a test apparatus that maintained the temperature. The results are shown in Table 1.
As a comparative example, the concentration of the derived hydrogen gas was measured when a catalyst containing granular alumina as a carrier and 5% ruthenium as an active metal was used. Incidentally, the hydrogen gas concentration in the equilibrium state under the same temperature condition was also compared.

Figure 2009220082
Figure 2009220082

そして、経過時間と水素濃度との関係を図3に示す。   FIG. 3 shows the relationship between the elapsed time and the hydrogen concentration.

この結果、本発明に係る触媒では、各温度帯で1〜1.5%程度水素濃度が上がっていることが確認できた。ちなみに、導出ガスでの一酸化炭素濃度が本発明触媒を使用したものでは、平衡状態での一酸化炭素濃度よりも、約1%程度高い値を示した。これは、本発明に係る触媒がメタネーション反応を抑制しているためと考えられる。   As a result, in the catalyst according to the present invention, it was confirmed that the hydrogen concentration was increased by about 1 to 1.5% in each temperature zone. Incidentally, the carbon monoxide concentration in the derived gas using the catalyst of the present invention showed a value about 1% higher than the carbon monoxide concentration in the equilibrium state. This is probably because the catalyst according to the present invention suppresses the methanation reaction.

以上の結果、同等の水素濃度を得るのに、本発明に係る触媒では処理温度の低温化を図ることができる。そして、処理温度の低温化は投入熱量の削減に寄与できる上、水素分離膜の耐久性を向上を図ることができる。
また、本発明に係る触媒では、ルテニウム含有量が従来のルテニウム含有触媒に較べて1/5程度となっているので、高価なルテニウムの量を削減することができる。
As a result, in order to obtain an equivalent hydrogen concentration, the catalyst according to the present invention can reduce the processing temperature. And lowering the treatment temperature can contribute to the reduction of the input heat amount, and the durability of the hydrogen separation membrane can be improved.
Further, in the catalyst according to the present invention, the ruthenium content is about 1/5 as compared with the conventional ruthenium-containing catalyst, so that the amount of expensive ruthenium can be reduced.

また、空間速度の水素濃度に与える影響を調べるために、空間速度を変化させ、処理温度:600℃、圧力:0.53MPaG、S/C:2.8の条件を維持した試験装置に温度変化させて流通させ、導出した水素ガスの濃度を測定した。その結果を表2に示す。   In order to investigate the effect of the space velocity on the hydrogen concentration, the space velocity was changed, and the temperature change was made in a test apparatus that maintained the conditions of processing temperature: 600 ° C., pressure: 0.53 MPaG, S / C: 2.8. The concentration of the derived hydrogen gas was measured. The results are shown in Table 2.

Figure 2009220082
Figure 2009220082

この結果、従来のルテニウム含有水蒸気改質用触媒を用いた場合には、空間速度に変化にかかわらず、水素濃度は一定であるのに対し、本発明に係る触媒では、空間速度が上昇すると、水素濃度が上昇することが確認された。これにより、同等の水素濃度を得るのに、触媒量を削減でき、水蒸気改質に要する費用のコストダウンを図ることができる。   As a result, when the conventional ruthenium-containing steam reforming catalyst is used, the hydrogen concentration is constant regardless of the change in the space velocity, whereas in the catalyst according to the present invention, when the space velocity increases, It was confirmed that the hydrogen concentration increased. Thereby, in order to obtain the equivalent hydrogen concentration, the amount of catalyst can be reduced, and the cost required for steam reforming can be reduced.

上記の実施例では、触媒の組成として、活性金属のルテニウムが1wt%、添加物であるニツケルが1wt%含んだものについて説明したが、ルテニウムの混合割合としては0.5〜1.0wt%、ニッケル化合物の混合割合が0.5〜1.0wt%の範囲であれば、上述の作用効果を奏することができる。また、第2の添加物として、リチウム化合物を上限0.5wt%程度添加するようにしても良い。   In the above embodiment, the composition of the catalyst includes 1 wt% of the active metal ruthenium and 1 wt% of the additive nickel, but the mixing ratio of ruthenium is 0.5 to 1.0 wt%, When the mixing ratio of the nickel compound is in the range of 0.5 to 1.0 wt%, the above-described effects can be achieved. Further, as the second additive, a lithium compound may be added at an upper limit of about 0.5 wt%.

本発明は、液化石油ガスを原料とする水素製造技術に利用することができる。   The present invention can be used for hydrogen production technology using liquefied petroleum gas as a raw material.

本発明に係るLPG用水蒸気改質触媒製造方法の手順を説明するフローである。It is a flow explaining the procedure of the steam reforming catalyst manufacturing method for LPG which concerns on this invention. 水蒸気改質器の試験装置を示す図である。It is a figure which shows the test apparatus of a steam reformer. 水素濃度と経過時間との関係を示すグラフである。It is a graph which shows the relationship between hydrogen concentration and elapsed time.

Claims (6)

活性金属となるルテニウム化合物と添加物となるニッケル化合物と溶解させた混合液と触媒担体となる粉体のアエロジルアルミナを懸濁させた懸濁液とを混合させ、この混合物を乾燥させた後、顆粒状に整粒し、この整粒したものを所定温度以上の温度雰囲気下で水素ガス気流により還元処理したことを特徴とするLPG用水蒸気改質触媒の製造方法。   A ruthenium compound as an active metal, a nickel compound as an additive, a mixed solution and a suspension in which aerosil alumina of powder as a catalyst carrier is suspended are mixed, and after drying this mixture, A process for producing a steam reforming catalyst for LPG, characterized in that the granulated particles are sized and the sized particles are reduced by a hydrogen gas stream in a temperature atmosphere of a predetermined temperature or higher. ニッケル化合物とともに第2添加物としてリチウム化合物を添加してアエロジルアルミナを溶液に溶解混合させるようにした請求項1に記載のLPG用水蒸気改質触媒の製造方法。   The method for producing a steam reforming catalyst for LPG according to claim 1, wherein a lithium compound is added as a second additive together with the nickel compound, and aerosil alumina is dissolved and mixed in the solution. ルテニウム化合物の混合割合が0.5〜1.0wt%、ニッケル化合物の混合割合が0.5〜1.0wt%である請求項1または2に記載のLPG用水蒸気改質触媒の製造方法。   The method for producing a steam reforming catalyst for LPG according to claim 1 or 2, wherein the mixing ratio of the ruthenium compound is 0.5 to 1.0 wt%, and the mixing ratio of the nickel compound is 0.5 to 1.0 wt%. リチウム化合物の混合割合が0.1〜0.5wt%である請求項2に記載のLPG用水蒸気改質触媒の製造方法。   The method for producing a steam reforming catalyst for LPG according to claim 2, wherein the mixing ratio of the lithium compound is 0.1 to 0.5 wt%. ルテニウム化合物が塩化ルテニウムであり、ニッケル化合物が硝酸ニッケルである請求項1〜4に記載のLPG用水蒸気改質触媒の製造方法。   The method for producing a steam reforming catalyst for LPG according to claim 1, wherein the ruthenium compound is ruthenium chloride and the nickel compound is nickel nitrate. 触媒担体となるアエロジルアルミナに活性金属となるルテニウム化合物と添加物となるニッケル化合物とを担持させてなるLPG用水蒸気改質触媒。   A steam reforming catalyst for LPG, in which a ruthenium compound serving as an active metal and a nickel compound serving as an additive are supported on aerosil alumina serving as a catalyst carrier.
JP2008070577A 2008-03-19 2008-03-19 Method for producing steam reforming catalyst for LPG Active JP5119019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008070577A JP5119019B2 (en) 2008-03-19 2008-03-19 Method for producing steam reforming catalyst for LPG

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008070577A JP5119019B2 (en) 2008-03-19 2008-03-19 Method for producing steam reforming catalyst for LPG

Publications (2)

Publication Number Publication Date
JP2009220082A true JP2009220082A (en) 2009-10-01
JP5119019B2 JP5119019B2 (en) 2013-01-16

Family

ID=41237455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008070577A Active JP5119019B2 (en) 2008-03-19 2008-03-19 Method for producing steam reforming catalyst for LPG

Country Status (1)

Country Link
JP (1) JP5119019B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015196605A (en) * 2014-03-31 2015-11-09 Jx日鉱日石エネルギー株式会社 hydrogen supply system and hydrogen station
JP2019034259A (en) * 2017-08-10 2019-03-07 国立研究開発法人物質・材料研究機構 Catalyst for hydrogen production and method for producing the same, and hydrogen production device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08196907A (en) * 1995-01-27 1996-08-06 Idemitsu Kosan Co Ltd Production of ruthenium catalyst and steam reforming method for hydrocarbon employing the catalyst
JP2005298329A (en) * 2004-04-13 2005-10-27 General Electric Co <Ge> Method and apparatus for generating hydrogen gas
JP2006061760A (en) * 2004-08-24 2006-03-09 Toda Kogyo Corp Catalyst for cracking of hydrocarbon and method of manufacturing hydrogen using it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08196907A (en) * 1995-01-27 1996-08-06 Idemitsu Kosan Co Ltd Production of ruthenium catalyst and steam reforming method for hydrocarbon employing the catalyst
JP2005298329A (en) * 2004-04-13 2005-10-27 General Electric Co <Ge> Method and apparatus for generating hydrogen gas
JP2006061760A (en) * 2004-08-24 2006-03-09 Toda Kogyo Corp Catalyst for cracking of hydrocarbon and method of manufacturing hydrogen using it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015196605A (en) * 2014-03-31 2015-11-09 Jx日鉱日石エネルギー株式会社 hydrogen supply system and hydrogen station
JP2019034259A (en) * 2017-08-10 2019-03-07 国立研究開発法人物質・材料研究機構 Catalyst for hydrogen production and method for producing the same, and hydrogen production device

Also Published As

Publication number Publication date
JP5119019B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
Lamoth et al. Supported Ag nanoparticles and clusters for CO oxidation: size effects and influence of the silver–oxygen interactions
Chowdhury et al. Effect of supercritical water gasification treatment on Ni/La2O3-Al2O3-based catalysts
Huberty et al. Ammonia absorption at haber process conditions
CN108554411B (en) Composite carrier loaded nickel-based catalyst for preparing synthesis gas by reforming methane with pressurized carbon dioxide
Zhu et al. Stabilization of Exposed Metal Nanocrystals in High‐Temperature Heterogeneous Catalysis
TW200922692A (en) Catalyst and production process thereof, and chlorine production using the catalyst
WO2016126576A1 (en) Nickel-based catalyst for the decomposition of ammonia
Zhang et al. Perovskite LaNiO3 nanocrystals inside mesostructured cellular foam silica: high catalytic activity and stability for CO2 methanation
JP2008036451A (en) Catalyst support and catalyst for methane reformation and method for preparing the same
Peppel et al. Methods for the Trace Oxygen Removal from Methane‐Rich Gas Streams
JP6566662B2 (en) Ammonia oxidative decomposition catalyst, hydrogen production method and hydrogen production apparatus using ammonia oxidative decomposition catalyst
Derevschikov et al. Sorption properties of lithium carbonate doped CaO and its performance in sorption enhanced methane reforming
JP2005169236A (en) Fuel reforming catalyst
Kim et al. Ultrapermeable Nickel–Cobalt–Manganese/Alumina Inverse Opal as a Coke‐Tolerant and Pressure‐Drop‐Free Catalyst for the Dry Reforming of Methane
US8889588B2 (en) High-durability metal foam-supported catalyst for steam carbon dioxide reforming and method for preparing the same
JP5119019B2 (en) Method for producing steam reforming catalyst for LPG
JPH11179204A (en) Catalyst for methanation of gas containing carbon monoxide and carbon dioxide and its production
Wang et al. Effects of the second metals on the active carbon supported Pt catalysts for HI decomposition in the iodine–sulfur cycle
Kern et al. Adsorption of Nickel Ions on Oxygen‐Functionalized Carbons
Rosso et al. Preferential CO oxidation over Pt/3A zeolite catalysts in H 2-rich gas for fuel cell application
Yang et al. Catalytic combustion of toluene over highly dispersed Pt NPs embedded in porous TiO2 via in situ pyrolysis of MOFs
JP2010229271A (en) Tar decomposition catalyst
Choi et al. Stability of nickel catalyst supported by mesoporous alumina for hydrogen iodide decomposition and hybrid decomposer development in sulfur–iodine hydrogen production cycle
JP2000061307A (en) High dispersion type steam reforming catalyst and method for producing hydrogen
JP2013034937A (en) Method for producing platinum particle, method for producing platinum particle carrying catalyst, and purifying catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121022

R150 Certificate of patent or registration of utility model

Ref document number: 5119019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250