JP2009219266A - Storage circuit - Google Patents

Storage circuit Download PDF

Info

Publication number
JP2009219266A
JP2009219266A JP2008061146A JP2008061146A JP2009219266A JP 2009219266 A JP2009219266 A JP 2009219266A JP 2008061146 A JP2008061146 A JP 2008061146A JP 2008061146 A JP2008061146 A JP 2008061146A JP 2009219266 A JP2009219266 A JP 2009219266A
Authority
JP
Japan
Prior art keywords
capacitor
electrode
switch
voltage
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008061146A
Other languages
Japanese (ja)
Other versions
JP4828558B2 (en
Inventor
Mamoru Ugajin
守 宇賀神
Kenji Suzuki
賢司 鈴木
Norio Sato
昇男 佐藤
Kazuyoshi Ono
一善 小野
Mitsuru Harada
充 原田
Hiroshi Kuwabara
啓 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2008061146A priority Critical patent/JP4828558B2/en
Publication of JP2009219266A publication Critical patent/JP2009219266A/en
Application granted granted Critical
Publication of JP4828558B2 publication Critical patent/JP4828558B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To input a micro current generated by a minimum generator and to supply a post-stage circuit with power by efficiently storing charges. <P>SOLUTION: A storage circuit has a first capacity connected to an input terminal for the micro current to store charges, an electric-field detection type switch connected to the first capacity and goes off when the storage voltage of the first capacity is V1 or less and goes on when the storage voltage of the first capacity is V2 (V2>V1) or more. The storage circuit further has a second capacity which is connected to the electric-field detection type switch and is further connected to the first capacity to store charges input from the first capacity when the switch is on. The storage circuit further has an output control means containing an electronic circuit switch connected between the second capacity and an output terminal, turns off the electronic circuit switch when the storage voltage of the second capacity is V3 or less, turns on the electronic circuit switch when the storage voltage of the second capacity is V4 (V2>V4>V3) or more and supplies the post-stage circuit connected at the output terminal with power by charges stored in the second capacity. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、MEMS(Micro Electric Mechanical System) 発電機などの発電量の小さい極小発電機で発生させた微小電流を効率よく蓄電し、後段回路に電力供給する蓄電回路に関する。   The present invention relates to a storage circuit that efficiently stores a minute current generated by a minimal generator with a small amount of power generation such as a MEMS (Micro Electric Mechanical System) generator and supplies power to a subsequent circuit.

ユビキタス情報社会の実現に向けて、センサを備えた多数の情報発信端末により構成されるセンサネットワークの研究開発が進んでいる。これらの情報発信端末はメンテナンスフリーであることが求められており、その課題の一つにバッテリーフリー化、すなわち情報発信端末自身が発電機をもち、電池を不要とする構成が必要になっている。   To realize a ubiquitous information society, research and development of a sensor network composed of a large number of information transmission terminals equipped with sensors is progressing. These information transmission terminals are required to be maintenance-free, and one of the challenges is to make the battery free, that is, the information transmission terminal itself has a generator and no battery is required. .

一方、情報発信端末の小型化に伴って発電機も極小化する必要があるが、そのような極小発電機として振動や熱などの生活空間エネルギーを電気エネルギーに変換するものがある。例えば、MEMS技術等により製作されるエレクトレットの振動を電流に変換するMEMS発電機は、その大きさが数十μmから数mmで、大きさにより1〜数十nA程度の電流を発生する。しかし、このような微小電流は後段回路の駆動電力として十分でないので、その電荷を効率よく蓄電する技術が必要になる。   On the other hand, it is necessary to minimize the generator with the miniaturization of the information transmission terminal, but there is one that converts living space energy such as vibration and heat into electric energy as such a minimal generator. For example, a MEMS generator that converts the vibration of an electret manufactured by MEMS technology into a current has a size of several tens of μm to several mm, and generates a current of about 1 to several tens of nA depending on the size. However, since such a minute current is not sufficient as driving power for the subsequent circuit, a technique for efficiently storing the electric charge is required.

図4は、従来の蓄電回路の構成例を示す(特許文献1)。
図4において、蓄電回路は、入力端子21を介して極小発電機(図外)に接続される第1のスイッチ22、出力端子24を介して後段回路(図外)に接続される第2のスイッチ23、第1のスイッチ22と第2のスイッチ23間に接続されて入力端子から入力する電荷を蓄積する容量25、容量25の蓄電電圧に応じて第1のスイッチ22および第2のスイッチ23をオンオフ制御するスイッチ制御部26により構成される。スイッチ制御部26は、容量25の蓄電電圧を抵抗分圧して取り出す抵抗R1,R2と、基準電圧発生回路27と、容量25の蓄電電圧と基準電圧Vref とを比較する比較回路28により構成され、比較回路28の出力により第1のスイッチ22および第2のスイッチ23のオンオフが相補的に制御される。
FIG. 4 shows a configuration example of a conventional power storage circuit (Patent Document 1).
In FIG. 4, the power storage circuit includes a first switch 22 connected to a minimal generator (not shown) via an input terminal 21, and a second switch connected to a subsequent circuit (not shown) via an output terminal 24. A switch 23, a capacitor 25 that is connected between the first switch 22 and the second switch 23 and stores charges input from the input terminal, and the first switch 22 and the second switch 23 according to the stored voltage of the capacitor 25 It is comprised by the switch control part 26 which carries out on-off control. The switch control unit 26 includes resistors R1 and R2 for dividing and dividing the storage voltage of the capacitor 25 by resistance, a reference voltage generation circuit 27, and a comparison circuit 28 that compares the storage voltage of the capacitor 25 and the reference voltage Vref. The on / off of the first switch 22 and the second switch 23 is complementarily controlled by the output of the comparison circuit 28.

この電源回路は次のように動作する。まず、第1のスイッチ22がオン、第2のスイッチ23がオフの状態で、入力端子21に接続される極小発電機から容量25に電荷が蓄積される。容量25の蓄電電圧は、抵抗R1,R2で抵抗分圧されて比較回路28の入力電圧となり、基準電圧発生回路27の基準電圧Vref と比較される。比較回路28の入力電圧が基準電圧Vref を超え、比較回路28がこれを検知すると、第1のスイッチ22をオフ、第2のスイッチ23をオンにする制御信号を出力する。これにより、容量25に蓄積された電荷が第2のスイッチ23を介して、出力端子24から後段回路に駆動電力として供給される。   This power supply circuit operates as follows. First, charges are accumulated in the capacitor 25 from the minimal generator connected to the input terminal 21 with the first switch 22 turned on and the second switch 23 turned off. The storage voltage of the capacitor 25 is divided by resistors R1 and R2 to become the input voltage of the comparison circuit 28, and is compared with the reference voltage Vref of the reference voltage generation circuit 27. When the input voltage of the comparison circuit 28 exceeds the reference voltage Vref and the comparison circuit 28 detects this, a control signal for turning off the first switch 22 and turning on the second switch 23 is output. As a result, the electric charge accumulated in the capacitor 25 is supplied as drive power from the output terminal 24 to the subsequent circuit via the second switch 23.

後段回路に駆動電力が供給されると、電源回路の容量25に蓄えられた電荷が消費され、容量25の蓄電電圧が低下する。容量25の蓄電電圧が低下して比較回路28の入力電圧が基準電圧Vref を下回り、比較回路28がこれを検知すると、第1のスイッチ22をオン、第2のスイッチ23をオフにする制御信号を出力する。これにより、電源回路から後段回路への電源供給は停止し、容量25は再び入力端子21から供給される電荷を蓄積する動作に入る。   When driving power is supplied to the subsequent circuit, the charge stored in the capacitor 25 of the power supply circuit is consumed, and the stored voltage of the capacitor 25 decreases. When the storage voltage of the capacitor 25 decreases and the input voltage of the comparison circuit 28 falls below the reference voltage Vref, and the comparison circuit 28 detects this, a control signal for turning on the first switch 22 and turning off the second switch 23. Is output. As a result, the power supply from the power supply circuit to the subsequent circuit is stopped, and the capacitor 25 enters the operation of accumulating the charge supplied from the input terminal 21 again.

なお、比較回路28の入力電圧が基準電圧Vref を超えたことを比較回路28が検知するときの入力電圧と、基準電圧Vref を下回ったことを比較回路28が検知するときの入力電圧との間には、所定のヒステリシスが存在する。   It should be noted that the input voltage when the comparison circuit 28 detects that the input voltage of the comparison circuit 28 exceeds the reference voltage Vref and the input voltage when the comparison circuit 28 detects that the input voltage is lower than the reference voltage Vref. Has a predetermined hysteresis.

図5は、基準電圧発生回路27および比較回路28の回路構成例を示す。
図において、電源と接地間に縦に接続された4つのトランジスタ(mmr11,mpr11,mpr12,mpr13) により、温度・電源電圧にほとんど依存しない基準電圧を発生する基準電圧発生回路27が構成される。ここに示すその他の回路により比較回路28が構成される。比較回路28の入力電圧は、差動トランジスタ対(mn11,mn12) の一方のトランジスタmn11のゲート端子を接続される。基準電圧発生回路27で得られる基準電圧は、差動トランジスタ対(mn11,mn12) の他方のトランジスタmn12のゲート端子に接続される。また、差動トランジスタ対(mn11,mn12) には、クロスカップル接続のトランジスタ対(mp11,mp12) とダイオード接続のトランジスタ対(mp21,mp22) が負荷として接続される。比較回路28の入力電圧と基準電圧との比較結果出力は、トランジスタmp11,mp22 のゲート端子からバッファ回路を構成するトランジスタmp3,mn3 を介して取り出される。これらのクロスカップル接続トランジスタ対(mp11,mp12) とダイオード接続トランジスタ対(mp21,mp22) のサイズ比(ゲート幅比)を調整することにより、比較回路28のヒステリシス電圧を調整することができる。
特開2008−017459号公報
FIG. 5 shows a circuit configuration example of the reference voltage generation circuit 27 and the comparison circuit 28.
In the figure, a reference voltage generation circuit 27 that generates a reference voltage almost independent of temperature and power supply voltage is constituted by four transistors (mmr11, mpr11, mpr12, mpr13) vertically connected between the power supply and the ground. The comparison circuit 28 is configured by other circuits shown here. The input voltage of the comparison circuit 28 is connected to the gate terminal of one transistor mn11 of the differential transistor pair (mn11, mn12). The reference voltage obtained by the reference voltage generation circuit 27 is connected to the gate terminal of the other transistor mn12 of the differential transistor pair (mn11, mn12). In addition, a cross-coupled transistor pair (mp11, mp12) and a diode-connected transistor pair (mp21, mp22) are connected to the differential transistor pair (mn11, mn12) as loads. The comparison result output between the input voltage of the comparison circuit 28 and the reference voltage is taken out from the gate terminals of the transistors mp11 and mp22 through the transistors mp3 and mn3 constituting the buffer circuit. The hysteresis voltage of the comparison circuit 28 can be adjusted by adjusting the size ratio (gate width ratio) between the cross-coupled transistor pair (mp11, mp12) and the diode-connected transistor pair (mp21, mp22).
JP 2008-017459 A

特許文献1に記載の蓄電回路は、高精度な基準電圧発生回路27とヒステリシスのある比較回路28を用いることにより電荷を蓄積しているが、基準電圧発生回路27および比較回路28でそれぞれ1μA程度の電流が消費される。すなわち、これらの消費電流を上回る入力があったときに容量25に電荷が蓄積されるので、上記のMEMS発電機などの極小発電機で発生するnAクラスの微小電流はこれらの回路で全て消費されてしまい、容量25に電荷を蓄積することができない。   The power storage circuit described in Patent Document 1 stores charges by using a high-accuracy reference voltage generation circuit 27 and a comparison circuit 28 having hysteresis. The reference voltage generation circuit 27 and the comparison circuit 28 each have a charge of about 1 μA. Current is consumed. That is, since charges are accumulated in the capacitor 25 when there is an input exceeding these consumption currents, all of the minute current of nA class generated in the above-mentioned minimal generator such as the MEMS generator is consumed by these circuits. As a result, charges cannot be accumulated in the capacitor 25.

本発明は、極小発電機で発生させた微小電流を入力し、電荷を効率よく蓄電して後段回路に電力供給することができる蓄電回路を提供することを目的とする。   An object of the present invention is to provide a power storage circuit that can input a minute current generated by a micro-generator, efficiently store charges, and supply power to a subsequent circuit.

本発明の蓄電回路は、微小電流が入力する入力端子に接続され、電荷を蓄積する第1の容量と、第1の容量に接続され、第1の容量の蓄電電圧が第1の電圧V1以下のときにオフとなり、第2の電圧V2(V2>V1)以上のときにオンとなる電界検知型スイッチと、電界検知型スイッチに接続され、電界検知型スイッチがオンのときに第1の容量に接続して第1の容量から入力する電荷を蓄積する第2の容量と、第2の容量と出力端子との間に接続される電子回路スイッチを含み、第2の容量の蓄電電圧と基準電圧とを比較し、第2の容量の蓄電電圧が第3の電圧V3以下のときに電子回路スイッチをオフとし、第4の電圧V4(V2>V4>V3)以上のときに電子回路スイッチをオンとし、出力端子に接続された後段回路に第2の容量に蓄積された電荷による電力供給を行う出力制御手段とを備える。   The power storage circuit of the present invention is connected to an input terminal to which a minute current is input, and is connected to a first capacitor for accumulating charges and a first capacitor, and a storage voltage of the first capacitor is equal to or lower than the first voltage V1. And an electric field detection type switch that is turned off when the voltage is equal to or higher than the second voltage V2 (V2> V1) and a first capacitor that is connected to the electric field detection type switch and that is turned on. A second capacitor for storing charges inputted from the first capacitor, and an electronic circuit switch connected between the second capacitor and the output terminal, and the storage voltage of the second capacitor and the reference The electronic circuit switch is turned off when the storage voltage of the second capacitor is equal to or lower than the third voltage V3, and the electronic circuit switch is turned off when the voltage is equal to or higher than the fourth voltage V4 (V2> V4> V3). Turn on the second capacitor in the subsequent circuit connected to the output terminal. And an output control means for supplying power by the accumulated charge.

電界検知型スイッチは、第1の容量に接続されかつ弾性体に保持される電極1と、第2の容量に接続される電極2と、所定の電位に設定される電極3とを備え、弾性体と電極2と電極3を1つの基板に固定して電極1と電極2,3間を中空に保持し、第1の容量の蓄電電圧に応じた電極1と電極3との間の電界の大きさと弾性体の撓みの関係により電極1と電極2が接触または非接触となる構成である。   The electric field detection type switch includes an electrode 1 connected to a first capacitor and held by an elastic body, an electrode 2 connected to a second capacitor, and an electrode 3 set to a predetermined potential, and is elastic. The body, the electrode 2 and the electrode 3 are fixed to one substrate, and the space between the electrode 1 and the electrodes 2 and 3 is held hollow, and the electric field between the electrode 1 and the electrode 3 corresponding to the storage voltage of the first capacity The electrode 1 and the electrode 2 are in contact or non-contact with each other depending on the relationship between the size and the bending of the elastic body.

電界検知型スイッチは、電極3が接地電位、または電極3と電極2が同電位、または電極3が負電位に設定される構成である。   The electric field detection type switch has a configuration in which the electrode 3 is set to the ground potential, the electrode 3 and the electrode 2 are set to the same potential, or the electrode 3 is set to the negative potential.

本発明の蓄電回路は、電荷蓄積時の蓄電電圧をゼロパワーで検知する電界検知型スイッチにより電圧制御される第1の容量と、電子回路スイッチを含む出力制御手段により高精度に電圧制御される第2の容量をカスケードに接続する構成により、MEMS発電機などの発電量の小さい極小発電機からの微小電流を効率よく蓄積し、かつ出力電圧を高精度に制御して後段回路に電力供給することができる。   The power storage circuit of the present invention is voltage-controlled with high precision by a first capacitor that is voltage-controlled by an electric field detection type switch that detects a stored voltage at the time of charge accumulation at zero power, and an output control means including an electronic circuit switch. The configuration in which the second capacitor is connected in cascade efficiently accumulates a minute current from a small generator with a small amount of power generation such as a MEMS generator, and supplies power to the subsequent circuit by controlling the output voltage with high accuracy. be able to.

図1は、本発明の蓄電回路の実施形態を示す。 図において、入力端子11、電界検知型スイッチ12、電子回路スイッチ13、出力端子14の順に接続される。第1の容量15は、第1の端子が入力端子11に接続され、第2の端子が固定電位(ここでは接地電位)に接続される。第2の容量16は、第1の端子が電界検知型スイッチ12を介して第1の容量15の第1の端子とカスケードに接続され、第2の端子が固定電位(ここでは接地電位)に接続される。また、第2の容量16の第1の端子と出力端子14が電子回路スイッチ13を介して接続される。スイッチ制御部17は、第2の容量16の蓄電電圧をモニタし、電子回路スイッチ13のオンオフを制御する。   FIG. 1 shows an embodiment of a power storage circuit of the present invention. In the figure, an input terminal 11, an electric field detection type switch 12, an electronic circuit switch 13, and an output terminal 14 are connected in this order. The first capacitor 15 has a first terminal connected to the input terminal 11 and a second terminal connected to a fixed potential (here, a ground potential). The second capacitor 16 has a first terminal connected in cascade with the first terminal of the first capacitor 15 via the electric field detection type switch 12, and the second terminal is set to a fixed potential (here, a ground potential). Connected. Further, the first terminal of the second capacitor 16 and the output terminal 14 are connected via the electronic circuit switch 13. The switch control unit 17 monitors the stored voltage of the second capacitor 16 and controls on / off of the electronic circuit switch 13.

入力端子11には極小発電機(図外)が接続され、極小発電機で発電された微小電流が入力し、その電荷が第1の容量15に徐々に蓄積する。第1の容量15の蓄電電圧がV1以下のときは電界検知型スイッチ12はオフであり、第2の容量16には電流が流れない。第1の容量15に電荷が蓄積して蓄電電圧がV2(V2>V1)以上になると、電界検知型スイッチ12がオンになって第1の容量15から第2の容量16に電流が流れ、電荷が移動する。そして、第1の容量15の蓄電電圧が低下してV1以下になると電界検知型スイッチ12がオフになり、入力端子11から入力する微小電流による電荷の蓄積を再開する。   A very small generator (not shown) is connected to the input terminal 11, a minute current generated by the minimal generator is input, and the electric charge is gradually accumulated in the first capacitor 15. When the storage voltage of the first capacitor 15 is equal to or lower than V1, the electric field detection switch 12 is off, and no current flows through the second capacitor 16. When electric charge accumulates in the first capacitor 15 and the storage voltage becomes V2 (V2> V1) or higher, the electric field detection switch 12 is turned on, and a current flows from the first capacitor 15 to the second capacitor 16, The charge moves. When the stored voltage of the first capacitor 15 decreases to V1 or less, the electric field detection type switch 12 is turned off, and charge accumulation due to a minute current input from the input terminal 11 is resumed.

図2は、電界検知型スイッチ12の構成例を示す。図2(1) は電界検知型スイッチ12の断面概略構成を示し、図2(2) 〜(4) は3つの電極間の接続形態を示す。   FIG. 2 shows a configuration example of the electric field detection type switch 12. FIG. 2 (1) shows a schematic cross-sectional configuration of the electric field detection type switch 12, and FIGS. 2 (2) to 2 (4) show connection forms between the three electrodes.

図2において、電界検知型スイッチ12は、第1の容量15に接続されかつ弾性体121に保持される電極1と、第2の容量16に接続される電極2と、所定の電位に設定される電極3とを備える。弾性体121と電極2と電極3が1つの絶縁基板122に固定され、電極間が中空の構造になっており、MEMS技術などにより製造される。   In FIG. 2, the electric field detection switch 12 is set to a predetermined potential, with the electrode 1 connected to the first capacitor 15 and held by the elastic body 121, the electrode 2 connected to the second capacitor 16. The electrode 3 is provided. The elastic body 121, the electrode 2 and the electrode 3 are fixed to one insulating substrate 122, and the space between the electrodes has a hollow structure, and is manufactured by MEMS technology or the like.

第1の容量15の電荷の蓄積による蓄電電圧に応じた電極1と、所定電位の電極3との間の電位差に応じた電界の大きさと弾性体21の撓みの関係により、電極1と電極2が接触または非接触となる構成である。すなわち、第1の容量15に電荷が蓄積すると、その蓄電電圧に応じて電極1と電極3との間に電界が発生し、電極1と電極3が引きつけあう。第1の容量15の蓄電電圧がV2以上になり、電極1と電極3との間の電界の強さが所定値以上になると、電極1と電極2が接触し、第1の容量15から第2の容量16に電流が流れる。一方、第1の容量15の蓄電電圧がV1以下になり、電極1と電極3との間の電界の強さが所定値以下になると、電極1と電極2が離れ、第1の容量15から第2の容量16に電流が流れなくなる。   Depending on the relationship between the magnitude of the electric field according to the potential difference between the electrode 1 corresponding to the stored voltage due to the accumulation of electric charge in the first capacitor 15 and the electrode 3 having a predetermined potential and the deflection of the elastic body 21, the electrode 1 and the electrode 2 Is configured to be in contact or non-contact. That is, when electric charge is accumulated in the first capacitor 15, an electric field is generated between the electrode 1 and the electrode 3 in accordance with the stored voltage, and the electrode 1 and the electrode 3 attract each other. When the stored voltage of the first capacitor 15 becomes V2 or more and the strength of the electric field between the electrode 1 and the electrode 3 becomes a predetermined value or more, the electrode 1 and the electrode 2 come into contact with each other, and the first capacitor 15 A current flows through the second capacitor 16. On the other hand, when the stored voltage of the first capacitor 15 becomes V 1 or less and the strength of the electric field between the electrode 1 and the electrode 3 becomes a predetermined value or less, the electrode 1 and the electrode 2 are separated from the first capacitor 15. No current flows through the second capacitor 16.

図2(2) に示す電極間の接続関係では、電極3を接地電位に接続し、第1の容量15の蓄電電圧そのものがスイッチのオンオフ制御に用いられる。図2(3) に示す電極間の接続関係では、電極2と電極3を接続し、第1の容量15の蓄電電圧と第2の容量16の蓄電電圧の差分がスイッチのオンオフ制御に用いられる。図2(4) に示す電極間の接続関係では、電極3と接地電位間に負の電圧を印加しており、第1の容量15の蓄電電圧が小さい場合でもスイッチのオンオフ制御が可能な構成になっている。   In the connection relationship between the electrodes shown in FIG. 2 (2), the electrode 3 is connected to the ground potential, and the stored voltage itself of the first capacitor 15 is used for on / off control of the switch. In the connection relationship between the electrodes shown in FIG. 2 (3), the electrodes 2 and 3 are connected, and the difference between the storage voltage of the first capacitor 15 and the storage voltage of the second capacitor 16 is used for on / off control of the switch. . In the connection relationship between the electrodes shown in FIG. 2 (4), a negative voltage is applied between the electrode 3 and the ground potential, and the switch can be turned on / off even when the stored voltage of the first capacitor 15 is small. It has become.

このような電界検知型スイッチ12は、電極間の電圧と電極間の接続動作の関係にヒステリシスをもつ。すなわち、電極1と電極2が非接続状態から接続状態になる第1の容量15の蓄電電圧V2は、電極1と電極2が接続状態から非接続状態になる第1の容量15の蓄電電圧V1よりも大きい。   Such an electric field detection switch 12 has hysteresis in the relationship between the voltage between the electrodes and the connection operation between the electrodes. That is, the storage voltage V2 of the first capacitor 15 at which the electrode 1 and the electrode 2 are switched from the non-connected state to the connected state is the stored voltage V1 of the first capacitor 15 at which the electrode 1 and the electrode 2 are switched from the connected state to the non-connected state. Bigger than.

電界検知型スイッチ12がオンになって第1の容量15から第2の容量16に流れる電流は、スイッチ制御部17で消費される電流より桁違いに大きく、余剰の電荷が第2の容量16に蓄積される。スイッチ制御部17は、第2の容量16の蓄電電圧を高精度にモニタしており、それがV3以下のときは電子回路スイッチ13はオフであり、出力端子14に電流は出力されない。第2の容量16に電荷が蓄積して蓄電電圧がV4(V2>V4>V3)以上になると、電子回路スイッチ13をオンにして第2の容量16から出力端子14を介して後段回路に一定電圧の電力を供給する。そして、第2の容量16の蓄電電圧が低下してV3以下になると電子回路スイッチ13がオフになる。   The current flowing from the first capacitor 15 to the second capacitor 16 when the electric field detection switch 12 is turned on is orders of magnitude larger than the current consumed by the switch control unit 17, and surplus charges are in the second capacitor 16. Accumulated in. The switch control unit 17 monitors the stored voltage of the second capacitor 16 with high accuracy, and when it is V3 or less, the electronic circuit switch 13 is off and no current is output to the output terminal 14. When electric charge accumulates in the second capacitor 16 and the storage voltage becomes V4 (V2> V4> V3) or higher, the electronic circuit switch 13 is turned on and is fixed from the second capacitor 16 to the subsequent circuit via the output terminal 14. Supply voltage power. When the storage voltage of the second capacitor 16 decreases to V3 or less, the electronic circuit switch 13 is turned off.

ここで、電界検知型スイッチ12がオンになる、すなわち電極1と電極2が接続状態になる第1の容量15の蓄電電圧V2は、電界検知型スイッチ12を構成する弾性体21の弾性力に依存し、製造プロセスバラツキや温度の影響を受けて変動する。例えば、第1の容量15の蓄電電圧が設定値V2より低いときに電界検知型スイッチ12がオンになると、第1の容量15から第2の容量16に十分な電荷が移動せず、第2の容量16の蓄電電圧が電子回路スイッチ13をオンにする設定電圧V4に達しないことが想定される。そのため、電界検知型スイッチ12をオンにする第1の容量15の蓄電電圧V2は、その変動要因による誤差分だけ高めに設定する。すなわち、第1の容量15の蓄電電圧は多少高くなっても問題はないので、低い電圧で電界検知型スイッチ12がオンにならないように設定する。   Here, the electric storage voltage V2 of the first capacitor 15 in which the electric field detection switch 12 is turned on, that is, the electrode 1 and the electrode 2 are connected, is caused by the elastic force of the elastic body 21 constituting the electric field detection switch 12. Depends on the manufacturing process variation and temperature. For example, if the electric field detection switch 12 is turned on when the storage voltage of the first capacitor 15 is lower than the set value V2, sufficient charge does not move from the first capacitor 15 to the second capacitor 16, and the second It is assumed that the stored voltage of the capacitor 16 does not reach the set voltage V4 for turning on the electronic circuit switch 13. Therefore, the storage voltage V2 of the first capacitor 15 that turns on the electric field detection switch 12 is set higher by an error due to the variation factor. That is, there is no problem even if the stored voltage of the first capacitor 15 is slightly increased. Therefore, the electric field detection switch 12 is set so as not to be turned on at a low voltage.

また、電界検知型スイッチ12は、電極1と電極3間の電圧を電極間にかかる電界で検知する構成であり、スイッチがオフの状態(第1の容量15に電荷を蓄積している状態)では電力を全く消費しない特徴がある。   The electric field detection type switch 12 is configured to detect the voltage between the electrode 1 and the electrode 3 by an electric field applied between the electrodes, and the switch is in an off state (a state where electric charge is accumulated in the first capacitor 15). Then, there is a feature that does not consume power at all.

図3は、電子回路スイッチ13およびスイッチ制御部17の構成例を示す。
図3において、スイッチ制御部17は、図4に示す従来の構成と同様に抵抗R1,R2、基準電圧発生回路27および比較回路28により構成される。基準電圧発生回路27は、製造プロセスや環境温度によらず一定の基準電圧Vref を出力する。比較回路28は、第2の容量16の蓄電電圧を抵抗R1,R2で抵抗分割した値が基準電圧Vref を超えたときに電子回路スイッチ13をオンとし、基準電圧Vref を下回ったときに電子回路スイッチ13をオフに制御する。なお、電子回路スイッチ13がオンになる比較回路28の入力電圧と、オフになる比較回路28の入力電圧との間には、例えば 0.1V程度のヒステリシスが存在し、これにより後段回路の電源電圧範囲を設定する。このヒステリシスをもつ比較回路28および基準電圧発生回路27は、図5に示す従来のトランジスタ回路により実現される。
FIG. 3 shows a configuration example of the electronic circuit switch 13 and the switch control unit 17.
In FIG. 3, the switch control unit 17 includes resistors R1 and R2, a reference voltage generation circuit 27, and a comparison circuit 28 as in the conventional configuration shown in FIG. The reference voltage generation circuit 27 outputs a constant reference voltage Vref regardless of the manufacturing process and the environmental temperature. The comparison circuit 28 turns on the electronic circuit switch 13 when the value obtained by dividing the storage voltage of the second capacitor 16 by the resistors R1 and R2 exceeds the reference voltage Vref, and turns on the electronic circuit when the value falls below the reference voltage Vref. The switch 13 is controlled to be turned off. Note that there is a hysteresis of, for example, about 0.1 V between the input voltage of the comparison circuit 28 at which the electronic circuit switch 13 is turned on and the input voltage of the comparison circuit 28 at which the electronic circuit switch 13 is turned off. Set the range. The comparison circuit 28 and the reference voltage generation circuit 27 having hysteresis are realized by the conventional transistor circuit shown in FIG.

ところで、電界検知型スイッチ12がオンになり、第2の容量16の蓄電電圧が上昇して電子回路スイッチ13がオンになると、第2の容量16から出力端子14を介して後段回路に電力が供給されるが、このとき電界検知型スイッチ12がオフになるタイミングは遅れてもよい。その場合、出力端子14に、入力端子11、第1の容量15および第2の容量16が接続されることになるが、後段回路への電力供給にはなんら支障はない。その後、電界検知型スイッチ12がオフになると、再び第1の容量15に電荷が蓄積される動作に戻る。   By the way, when the electric field detection type switch 12 is turned on and the storage voltage of the second capacitor 16 is increased and the electronic circuit switch 13 is turned on, power is supplied from the second capacitor 16 to the subsequent circuit via the output terminal 14. However, the timing at which the electric field detection switch 12 is turned off at this time may be delayed. In that case, the input terminal 11, the first capacitor 15, and the second capacitor 16 are connected to the output terminal 14, but there is no problem in supplying power to the subsequent circuit. Thereafter, when the electric field detection switch 12 is turned off, the operation returns to the operation of accumulating charges in the first capacitor 15 again.

本発明の蓄電回路の実施形態を示す図。The figure which shows embodiment of the electrical storage circuit of this invention. 電界検知型スイッチ12の構成例を示す図。The figure which shows the structural example of the electric field detection type switch 12. FIG. 電子回路スイッチ13およびスイッチ制御部17の構成例を示す図。The figure which shows the structural example of the electronic circuit switch 13 and the switch control part 17. FIG. 従来の蓄電回路の構成例を示す図。The figure which shows the structural example of the conventional electrical storage circuit. 基準電圧発生回路27および比較回路28の回路構成例を示す図。FIG. 4 is a diagram showing a circuit configuration example of a reference voltage generation circuit 27 and a comparison circuit 28.

符号の説明Explanation of symbols

11 入力端子
12 電界検知型スイッチ
13 電子回路スイッチ
14 出力端子
15 第1の容量
16 第2の容量
17 スイッチ制御部
27 基準電圧発生回路
28 比較回路
DESCRIPTION OF SYMBOLS 11 Input terminal 12 Electric field detection type switch 13 Electronic circuit switch 14 Output terminal 15 1st capacity | capacitance 16 2nd capacity | capacitance 17 Switch control part 27 Reference voltage generation circuit 28 Comparison circuit

Claims (3)

微小電流が入力する入力端子に接続され、電荷を蓄積する第1の容量と、
前記第1の容量に接続され、前記第1の容量の蓄電電圧が第1の電圧V1以下のときにオフとなり、第2の電圧V2(V2>V1)以上のときにオンとなる電界検知型スイッチと、
前記電界検知型スイッチに接続され、前記電界検知型スイッチがオンのときに前記第1の容量に接続して前記第1の容量から入力する電荷を蓄積する第2の容量と、
前記第2の容量と出力端子との間に接続される電子回路スイッチを含み、前記第2の容量の蓄電電圧と基準電圧とを比較し、前記第2の容量の蓄電電圧が第3の電圧V3以下のときに電子回路スイッチをオフとし、第4の電圧V4(V2>V4>V3)以上のときに電子回路スイッチをオンとし、出力端子に接続された後段回路に前記第2の容量に蓄積された電荷による電力供給を行う出力制御手段と
を備えたことを特徴とする蓄電回路。
A first capacitor that is connected to an input terminal to which a minute current is input and stores electric charge;
An electric field detection type connected to the first capacitor and turned off when the storage voltage of the first capacitor is lower than or equal to the first voltage V1, and turned on when higher than or equal to the second voltage V2 (V2> V1). A switch,
A second capacitor connected to the electric field detection type switch and connected to the first capacitor when the electric field detection type switch is turned on to store charges inputted from the first capacitance;
An electronic circuit switch connected between the second capacitor and the output terminal, comparing the storage voltage of the second capacitor with a reference voltage, and the storage voltage of the second capacitor being a third voltage; The electronic circuit switch is turned off when V3 or less, and the electronic circuit switch is turned on when it is equal to or higher than the fourth voltage V4 (V2>V4> V3), and the second circuit is connected to the second stage circuit connected to the output terminal. An electrical storage circuit comprising: output control means for supplying power by using the accumulated electric charge.
請求項1に記載の蓄電回路において、
前記電界検知型スイッチは、前記第1の容量に接続されかつ弾性体に保持される電極1と、前記第2の容量に接続される電極2と、所定の電位に設定される電極3とを備え、弾性体と電極2と電極3を1つの基板に固定して電極1と電極2,3間を中空に保持し、前記第1の容量の蓄電電圧に応じた電極1と電極3との間の電界の大きさと弾性体の撓みの関係により電極1と電極2が接触または非接触となる構成である
ことを特徴とする蓄電回路。
The power storage circuit according to claim 1,
The electric field detection type switch includes an electrode 1 connected to the first capacitor and held by an elastic body, an electrode 2 connected to the second capacitor, and an electrode 3 set to a predetermined potential. The elastic body, the electrode 2 and the electrode 3 are fixed to a single substrate, and the space between the electrode 1 and the electrodes 2 and 3 is held hollow, and the electrode 1 and the electrode 3 corresponding to the storage voltage of the first capacitor An electric storage circuit, wherein the electrode 1 and the electrode 2 are in contact with each other or not in contact with each other depending on the relationship between the magnitude of the electric field and the bending of the elastic body.
請求項1に記載の蓄電回路において、
前記電界検知型スイッチは、前記電極3が接地電位、または前記電極3と前記電極2が同電位、または前記電極3が負電位に設定される構成である
ことを特徴とする蓄電回路。
The power storage circuit according to claim 1,
The electric field detection switch has a configuration in which the electrode 3 is set to a ground potential, the electrode 3 and the electrode 2 are set to the same potential, or the electrode 3 is set to a negative potential.
JP2008061146A 2008-03-11 2008-03-11 Power storage circuit Expired - Fee Related JP4828558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008061146A JP4828558B2 (en) 2008-03-11 2008-03-11 Power storage circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008061146A JP4828558B2 (en) 2008-03-11 2008-03-11 Power storage circuit

Publications (2)

Publication Number Publication Date
JP2009219266A true JP2009219266A (en) 2009-09-24
JP4828558B2 JP4828558B2 (en) 2011-11-30

Family

ID=41190584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008061146A Expired - Fee Related JP4828558B2 (en) 2008-03-11 2008-03-11 Power storage circuit

Country Status (1)

Country Link
JP (1) JP4828558B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011188610A (en) * 2010-03-08 2011-09-22 Nippon Telegr & Teleph Corp <Ntt> Power accumulation circuit
WO2016132658A1 (en) * 2015-02-18 2016-08-25 ソニー株式会社 Electrostatic actuator, switch device, electric power supply device, and program

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6373835A (en) * 1986-09-12 1988-04-04 株式会社ユアサコーポレーション Dc source system
JPH0879984A (en) * 1994-09-06 1996-03-22 Ritsuku:Kk Charging circuit
JPH10304585A (en) * 1997-04-25 1998-11-13 Tdk Corp Charging apparatus
JPH1175322A (en) * 1997-08-29 1999-03-16 S I I R D Center:Kk Charging control circuit
JP2003298434A (en) * 2002-03-28 2003-10-17 Taiyo Musen Co Ltd Power unit for radio buoy
JP2008017459A (en) * 2006-06-05 2008-01-24 Nippon Telegr & Teleph Corp <Ntt> Radio transmitter
JP2008041378A (en) * 2006-08-04 2008-02-21 Seiko Epson Corp Mems switch and manufacturing method of mems switch

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6373835A (en) * 1986-09-12 1988-04-04 株式会社ユアサコーポレーション Dc source system
JPH0879984A (en) * 1994-09-06 1996-03-22 Ritsuku:Kk Charging circuit
JPH10304585A (en) * 1997-04-25 1998-11-13 Tdk Corp Charging apparatus
JPH1175322A (en) * 1997-08-29 1999-03-16 S I I R D Center:Kk Charging control circuit
JP2003298434A (en) * 2002-03-28 2003-10-17 Taiyo Musen Co Ltd Power unit for radio buoy
JP2008017459A (en) * 2006-06-05 2008-01-24 Nippon Telegr & Teleph Corp <Ntt> Radio transmitter
JP2008041378A (en) * 2006-08-04 2008-02-21 Seiko Epson Corp Mems switch and manufacturing method of mems switch

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011188610A (en) * 2010-03-08 2011-09-22 Nippon Telegr & Teleph Corp <Ntt> Power accumulation circuit
WO2016132658A1 (en) * 2015-02-18 2016-08-25 ソニー株式会社 Electrostatic actuator, switch device, electric power supply device, and program
US10418918B2 (en) 2015-02-18 2019-09-17 Sony Corporation Electrostatic actuator, switch device and power supply device

Also Published As

Publication number Publication date
JP4828558B2 (en) 2011-11-30

Similar Documents

Publication Publication Date Title
JP6018980B2 (en) Free standing power system
US8710911B2 (en) Charge pump circuit and power-supply method for dynamically adjusting output voltage
CN101218735A (en) Step-down switching regulator, its control circuit, and electronic device using same
US20110127980A1 (en) Voltage converting circuit and method thereof
JP2009211667A (en) Constant voltage circuit
US20130020880A1 (en) Energy Storage Circuit
JP2011223829A (en) Control circuit for negative voltage charge pump circuit, negative voltage charge pump circuit, and electronic device and audio system each employing them
JP2011096210A (en) Voltage regulator
CN110475190B (en) MEMS sensor and starting circuit
JP6926982B2 (en) Power control circuit and energy harvesting device
KR101731652B1 (en) Voltage regulator
JP5605177B2 (en) Control circuit, electronic device and power supply control method
JP4828558B2 (en) Power storage circuit
CN103941793B (en) Constant voltage circuit and analog electronic clock
JP2017174336A (en) Power supply circuit
JP6527106B2 (en) Power supply circuit
CN203422692U (en) Low dropout regulator and soft start circuit of low dropout regulator
JP4908019B2 (en) Switching regulator
JP2019110218A (en) Semiconductor device, sensor terminal, and control method for semiconductor device
US7876000B2 (en) Power path control circuit
US11714107B2 (en) Voltage divider circuit, a negative feedback circuit, and a power-on reset circuit
CN112462836B (en) POK circuit with delay function applied to LDO (Low dropout regulator) and LDO circuit
JP2006158043A (en) Power controller
JP2019208340A (en) Semiconductor device
JP5367621B2 (en) Power storage circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees