JP2009219194A - Rotary electric machine - Google Patents

Rotary electric machine Download PDF

Info

Publication number
JP2009219194A
JP2009219194A JP2008057884A JP2008057884A JP2009219194A JP 2009219194 A JP2009219194 A JP 2009219194A JP 2008057884 A JP2008057884 A JP 2008057884A JP 2008057884 A JP2008057884 A JP 2008057884A JP 2009219194 A JP2009219194 A JP 2009219194A
Authority
JP
Japan
Prior art keywords
magnetic pole
permanent magnet
coil magnetic
circumferential
divided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008057884A
Other languages
Japanese (ja)
Inventor
Takashi Fukushige
孝志 福重
Shunichi Oshitari
俊一 忍足
Yuki Nakajima
祐樹 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008057884A priority Critical patent/JP2009219194A/en
Publication of JP2009219194A publication Critical patent/JP2009219194A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide technology for preventing and reducing vibration in a rotary electric machine. <P>SOLUTION: A plurality of permanent magnets 5 are arranged in a circumferential direction in a rotor 1 which is freely rotatably pivoted, and a plurality of coil magnetic poles 6 are disposed in the circumferential direction in a stator 4. The rotor 1 rotates by forming a magnetic circuit with the stator 4 that is oppositely arranged across a gap 3 in the rotary electric machine. The coil magnetic pole 6 is divided into a plurality of magnetic poles in a direction perpendicular to a circumferential tangent. A circumferential position of one divided coil magnetic pole 6g in a right-angle direction and that of the other coil magnetic pole 6n in the right angle direction are mutually shifted so that they differ. The permanent magnet 5 is divided into a plurality of magnets in the direction perpendicular to the circumferential tangent. The circumferential position of one divided permanent magnet 5g in the right angle direction and that of the other permanent magnet 5n in the right angle direction are mutually shifted so that they differ. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、回転電機に関し、ロータが軸線方向に変形する面モード振動を防止乃至軽減する制御に関するものである。   The present invention relates to a rotating electrical machine and relates to control for preventing or reducing surface mode vibration in which a rotor is deformed in an axial direction.

電気自動車、ハイブリッド自動車および燃料電池自動車などの動力源として搭載される回転電機にあっては、回転電機の使用回転数領域が、低回転数領域から高回転数領域まで幅広いため、ロータ回転に伴うロータの振動が問題となる。このような問題を解消する発明としては従来、例えば特許文献1に記載のごときものが知られている。
特許文献1に記載の技術は、環状ヨークの内壁にティースを周方向等間隔に配設したしステータ(固定子)と、このステータ中心部の空間に、ティースと僅かな空隙を介して回転自在に支持されたロータとを具えた回転電機において、ティースをスキューさせ、ロータに設けた永久磁石を前記ティースと同方向にスキューさせたものである。
特開2006−254622号公報
In a rotating electrical machine mounted as a power source for an electric vehicle, a hybrid vehicle, a fuel cell vehicle, etc., the rotational speed range of the rotating electrical machine is wide from a low rotational speed region to a high rotational speed region. Rotor vibration is a problem. As an invention for solving such a problem, there has heretofore been known, for example, as described in Patent Document 1.
In the technique described in Patent Document 1, teeth are arranged on the inner wall of the annular yoke at equal intervals in the circumferential direction, and the stator (stator) and the space in the center of the stator are rotatable through the teeth and a slight gap. In the rotating electrical machine including the rotor supported by the rotor, the teeth are skewed, and the permanent magnet provided on the rotor is skewed in the same direction as the teeth.
JP 2006-254622 A

しかし、上記従来のような特許文献1に記載の回転電機にあって、以下に説明するような問題を生ずる。つまり上記従来の技術を採用しても、ロータとステータとが軸線方向に対向配置されたアキシャルギャップ型の回転電機の場合、アキシャルギャップモータ特有の面モード振動を解消することができない。面モード振動とはロータの内径側部位と外径側部位とが軸線方向で異なる位置となるよう変形する振動をいう。
また、ロータとステータとを内径側と外径側にそれぞれ配置した上記従来のようなラジアルギャップ型の回転電機の場合にあってもなお、振動を充分に解消することができない。
However, the rotating electric machine described in Patent Document 1 as described above has the following problems. That is, even if the above-described conventional technique is adopted, in the case of an axial gap type rotating electrical machine in which the rotor and the stator are arranged opposite to each other in the axial direction, the surface mode vibration unique to the axial gap motor cannot be eliminated. The surface mode vibration is vibration that deforms so that the inner diameter side portion and the outer diameter side portion of the rotor are in different positions in the axial direction.
Further, even in the case of the conventional radial gap type rotating electrical machine in which the rotor and the stator are respectively arranged on the inner diameter side and the outer diameter side, vibration cannot be sufficiently eliminated.

本願出願人は、回転電機の振動を効果的に防止することができる技術を提案するものである。   The applicant of the present application proposes a technique that can effectively prevent vibration of a rotating electrical machine.

この目的のため本発明によるアキシャルギャップ型回転電機の交流制御装置は、請求項1に記載のごとく、回転自在に軸支したロータに永久磁石を周方向に複数配設し、ステータにコイル磁極を周方向に複数配設し、前記ロータが、空隙を介して対設されたステータとの間で磁気回路を形成することにより回転する回転電機において、前記永久磁石を、周方向接線と直角方向に複数個に分割し、分割したこれら直角方向一方の永久磁石と直角方向他方の永久磁石の周方向位置が異なるよう相互にずらしたことを特徴としたものである。   For this purpose, an AC controller for an axial gap type rotating electrical machine according to the present invention comprises, as described in claim 1, a plurality of permanent magnets arranged in a circumferential direction on a rotor that is rotatably supported, and a coil magnetic pole is provided on a stator. In a rotating electrical machine that is arranged in a plurality in the circumferential direction and rotates by forming a magnetic circuit between the rotor and a stator that is opposed to a gap, the permanent magnet is arranged in a direction perpendicular to the circumferential tangent. It is divided into a plurality of pieces, and the divided one permanent magnet in the perpendicular direction and the other permanent magnet in the perpendicular direction are shifted from each other so as to have different circumferential positions.

かかる本発明の構成によれば、永久磁石の周方向位置が、一方と他方とで異なるよう相互にずらしたことから、アキシャルギャップ型にあっては、上述した面モード振動を効果的に抑制することができる。また、ラジアルギャップ型にあっても、ステータのコイル磁極をスキューさせることなく、振動を軽減することが可能になる。   According to the configuration of the present invention, since the circumferential position of the permanent magnet is shifted so that it is different between one and the other, the above-described surface mode vibration is effectively suppressed in the axial gap type. be able to. Further, even in the radial gap type, vibration can be reduced without skewing the coil magnetic poles of the stator.

以下、本発明の実施の形態を、図面に示す実施例に基づき詳細に説明する。
図1は本発明の第1実施例になる1ロータ1ステータのアキシャルギャップ型回転電機を、軸線Oとともに模式的に示す斜視図である。また図2は、軸線と直角なII−II平面でステータを切断し、背面側から見たステータの断面図である。また図3は、軸線と直角なIII−III平面でロータを切断し、前面側から見たロータの断面図である。
Hereinafter, embodiments of the present invention will be described in detail based on examples shown in the drawings.
FIG. 1 is a perspective view schematically showing an axial gap type rotating electrical machine having a 1 rotor 1 stator according to a first embodiment of the present invention together with an axis O. FIG. FIG. 2 is a cross-sectional view of the stator as viewed from the back side, with the stator cut along a plane II-II perpendicular to the axis. FIG. 3 is a cross-sectional view of the rotor as seen from the front side, with the rotor cut along a III-III plane perpendicular to the axis.

円盤形状のロータ1は一点鎖線で示す軸線Oに沿って延在するロータ軸2に相対回転不能に結合する。回転自在に支持されるロータ軸2は、ロータ1の両面から垂直方向に延在する。このうち、るロータ1の前面から延びるロータ軸は、ステータ4の中心に設けた孔4hを貫通する。ロータ1の前面は、軸線方向に開いた空隙になるエアギャップ(アキシャルギャップ)3を介して、図示しないモータケースに固定されたステータ4と対向する。   The disk-shaped rotor 1 is coupled to a rotor shaft 2 extending along an axis O indicated by a one-dot chain line so as not to be relatively rotatable. The rotor shaft 2 that is rotatably supported extends in the vertical direction from both surfaces of the rotor 1. Among these, the rotor shaft extending from the front surface of the rotor 1 passes through the hole 4 h provided in the center of the stator 4. The front surface of the rotor 1 is opposed to a stator 4 fixed to a motor case (not shown) through an air gap (axial gap) 3 that is a gap opened in the axial direction.

回転自在に軸支したロータ1に永久磁石5を周方向に複数配設する。ステータ4にコイル磁極6を周方向に複数配設する。ロータ1は、空隙3を介して対設されたステータ4との間で磁気回路を形成することにより回転する。   A plurality of permanent magnets 5 are arranged in the circumferential direction on the rotor 1 that is rotatably supported. A plurality of coil magnetic poles 6 are arranged on the stator 4 in the circumferential direction. The rotor 1 rotates by forming a magnetic circuit with the stator 4 that is opposed to the rotor 1 through the air gap 3.

この第1実施例ではコイル磁極6を、周方向接線と直角方向に複数個に分割する。そして、分割したこれら直角方向一方のコイル磁極と直角方向他方のコイル磁極の周方向位置が異なるよう相互にずらす。具体的には、コイル磁極6を径方向に2個に分割する。そして、2分割したこれら外径側のコイル磁極6gと内径側のコイル磁極6nの周方向位置を図2に示すように相互にずらす。なおこれらコイル磁極6gとコイル磁極6nは同時に通電される同相のコイルである。そして、このずらし量を45°とし、すべてのコイル磁極6につき内径側と外径側で45°ずつ、ずらして配設する。   In this first embodiment, the coil magnetic pole 6 is divided into a plurality of pieces in a direction perpendicular to the circumferential tangent. Then, the divided one coil magnetic pole and the other coil magnetic pole in the perpendicular direction are shifted from each other so that the circumferential positions of the coil magnetic poles are different. Specifically, the coil magnetic pole 6 is divided into two in the radial direction. The circumferential positions of the outer divided coil magnetic pole 6g and the inner coil magnetic pole 6n divided in two are shifted from each other as shown in FIG. The coil magnetic pole 6g and the coil magnetic pole 6n are in-phase coils that are energized simultaneously. The shift amount is set to 45 °, and all the coil magnetic poles 6 are shifted by 45 ° on the inner diameter side and the outer diameter side.

また、永久磁石5を、周方向接線と直角方向に複数個に分割し、分割したこれら直角方向一方の永久磁石と直角方向他方の永久磁石の周方向位置が異なるよう相互にずらす。具体的には、永久磁石5を径方向に2個に分割する。そして、2分割したこれら外径側の永久磁石5gと内径側の永久磁石5nの周方向位置を図3に示すように相互にずらす。そして、永久磁石5n、5g間に接着剤1mを充填し、これら永久磁石5をロータ1に固着させる。   Further, the permanent magnet 5 is divided into a plurality of pieces in the direction perpendicular to the circumferential tangent line, and the divided one permanent magnet and the other permanent magnet in the perpendicular direction are shifted from each other so that the circumferential positions thereof are different. Specifically, the permanent magnet 5 is divided into two in the radial direction. Then, the circumferential positions of the outer permanent magnet 5g and the inner permanent magnet 5n divided in two are shifted from each other as shown in FIG. Then, an adhesive 1 m is filled between the permanent magnets 5 n and 5 g, and the permanent magnets 5 are fixed to the rotor 1.

永久磁石5は、軸線O方向に着磁される。周方向で隣り合う永久磁石5は、N極、S極、N極、S極、・・・と逆の極性を有する。
第1実施例では、永久磁石5をその周方向幅分ずらして、周方向接線と直角方向、すなわち径方向で隣り合う永久磁石同士の極性を相互に逆にする(図3)。これら径方向で隣り合う永久磁石同士は、ロータ1を回転駆動する磁気回路の一部をなす。
The permanent magnet 5 is magnetized in the direction of the axis O. The permanent magnets 5 adjacent in the circumferential direction have the opposite polarity to the N pole, S pole, N pole, S pole,.
In the first embodiment, the permanent magnet 5 is shifted by its circumferential width, and the polarities of the permanent magnets adjacent to each other in the direction perpendicular to the circumferential tangent, that is, in the radial direction are reversed (FIG. 3). These permanent magnets adjacent in the radial direction form a part of a magnetic circuit that rotationally drives the rotor 1.

回転電機のコイル磁極の周方向磁極数をSLとし、永久磁石の周方向極数をPとする。第1実施例の回転電機でコイル磁極6の周方向磁極数は12個であるからSL=12となる。また、永久磁石の周方向極数は8個であるからP=8となる。
第1実施例では、コイル磁極6gとコイル磁極6nの周方向のずらし量を360°/(2|SL−P|)=45°とする(図2)。
Let SL be the number of circumferential magnetic poles of the coil magnetic pole of the rotating electrical machine, and let P be the number of circumferential magnetic poles of the permanent magnet. In the rotating electrical machine of the first embodiment, the number of circumferential magnetic poles of the coil magnetic pole 6 is 12, so SL = 12. Moreover, since the number of poles in the circumferential direction of the permanent magnet is 8, P = 8.
In the first embodiment, the circumferential shift amount of the coil magnetic pole 6g and the coil magnetic pole 6n is 360 ° / (2 | SL−P |) = 45 ° (FIG. 2).

第1実施例が例えば3相交流の場合、周方向にU相、V相、W相と順番にグループ分けされたコイル磁極6に順次通電して、ステータ4のコイル磁極6とロータ1の永久磁石5との間で磁気回路を形成することによりロータ1を回転する。   For example, when the first embodiment is a three-phase alternating current, the coil magnetic poles 6 grouped in order of the U phase, the V phase, and the W phase in the circumferential direction are sequentially energized so that the coil magnetic pole 6 of the stator 4 and the rotor 1 are permanent. The rotor 1 is rotated by forming a magnetic circuit with the magnet 5.

アキシャルギャップ型の回転電機にあっては、大きな面モード振動が発生する潜在モードは|SL−P|次モードである。従来のSL=12、P=8の回転電機にあっては、コイル磁極および永久磁石の周方向位置が全くずれておらず、あるいは、スキューさせたにすぎないため、4次モードの振動が顕著になる。4次モードの振動は、周方向で4箇所が面モード振動の山、4箇所が面モード振動の谷となり、山と谷の偏角は45°となる。   In the axial gap type rotating electrical machine, the latent mode in which large surface mode vibration occurs is the | SL-P | In a conventional rotating electrical machine with SL = 12, P = 8, the circumferential positions of the coil magnetic pole and the permanent magnet are not displaced at all, or are merely skewed, so that the fourth-order mode vibration is remarkable. become. In the fourth-order mode vibration, four places in the circumferential direction are crests of plane mode vibration, four places are troughs of plane mode vibration, and the declination angle between the peaks and troughs is 45 °.

コイル磁極および永久磁石を周方向接線と直角方向に分割し、分割した一方と他方との周方向位置が異なるよう相互にずらした第1実施例によれば、磁気回路を形成時に潜在モードの振動を打ち消すため、面モード振動を効果的に防止することができる。   According to the first embodiment in which the coil magnetic pole and the permanent magnet are divided in a direction perpendicular to the circumferential tangent line, and the divided one and the other are shifted with respect to each other in the circumferential direction, the latent mode vibration is generated when the magnetic circuit is formed. Therefore, surface mode vibration can be effectively prevented.

次に本発明になる第2実施例について説明する。
図4は、第2実施例になる回転電機のロータの、図1(および図5)におけるII−IIの横断面図である。また図5は、図4におけるV−V面の縦断面図であって、ステータの縦断面とともに示す。
この実施例の基本構成は、上述した図2に示す実施例と共通するため、同一部材については、共通する符号を付して説明を省略し、異なる構成について説明する。
Next, a second embodiment according to the present invention will be described.
4 is a cross-sectional view taken along the line II-II in FIG. 1 (and FIG. 5) of the rotor of the rotating electrical machine according to the second embodiment. FIG. 5 is a vertical cross-sectional view of the VV plane in FIG. 4 and is shown together with the vertical cross-section of the stator.
Since the basic configuration of this embodiment is common to the embodiment shown in FIG. 2 described above, the same members are denoted by the same reference numerals, description thereof is omitted, and different configurations will be described.

第2実施例では、内径側と外径側とで永久磁石5の周方向位置をずらす。そして、逆の極性になる内径側と外径側の永久磁石5,5同士をバックヨーク21で結合する。さらに、周方向で隣り合う永久磁石5,5間には、強度に優れ非磁性体からなる高強度非磁性部材22を充填する。これにより、バックヨーク21で結合した永久磁石5,5が磁気回路の一部をなし、周方向で隣り合う永久磁石同士で磁束が短絡することを回避し、ロータの強度を高くする。   In the second embodiment, the circumferential position of the permanent magnet 5 is shifted between the inner diameter side and the outer diameter side. Then, the inner and outer permanent magnets 5 and 5 having opposite polarities are coupled by the back yoke 21. Further, between the permanent magnets 5 and 5 adjacent in the circumferential direction, a high-strength nonmagnetic member 22 made of a nonmagnetic material having excellent strength is filled. As a result, the permanent magnets 5 and 5 coupled by the back yoke 21 form a part of the magnetic circuit, avoiding a short circuit of the magnetic flux between the permanent magnets adjacent in the circumferential direction, and increasing the strength of the rotor.

そして好ましくは図4に示すように、バックヨーク21および高強度非磁性部材22を、軸線Oを中心とする渦巻状に形成する。   Preferably, as shown in FIG. 4, the back yoke 21 and the high-strength nonmagnetic member 22 are formed in a spiral shape with the axis O as the center.

軸線O方向に延在する各コイル磁極6の中程にはコイル7を巻回する。コイル磁極6の先端は、空隙3を介してロータ1と対向する。コイル磁極6の根元は、ロータ1から遠いステータ4の背面側に埋め込まれたヨーク8と結合する。コイル7に通電すると、図5に示すように、コイル磁極6の磁束が、ヨーク8と、空隙3と、永久磁石5とヨーク21とを通過して、磁気回路αを形成する。   A coil 7 is wound in the middle of each coil magnetic pole 6 extending in the direction of the axis O. The tip of the coil magnetic pole 6 faces the rotor 1 with the gap 3 interposed therebetween. The root of the coil magnetic pole 6 is coupled to a yoke 8 embedded on the back side of the stator 4 far from the rotor 1. When the coil 7 is energized, as shown in FIG. 5, the magnetic flux of the coil magnetic pole 6 passes through the yoke 8, the air gap 3, the permanent magnet 5, and the yoke 21 to form a magnetic circuit α.

このような第2実施例によれば、磁気回路αの形成時に潜在モードの振動を打ち消すため、面モード振動を効果的に防止することができる。   According to the second embodiment, since the latent mode vibration is canceled when the magnetic circuit α is formed, the surface mode vibration can be effectively prevented.

次に本発明の第3実施例について説明する。
図6は、第3実施例になる回転電機のステータの、図1におけるII−II平面の横断面図である。また図7は、ロータの、図1におけるIII−III平面の横断面図である。
この第3実施例もステータとロータとを軸方向に対設したアキシャルギャップ型の回転電機に係る。ステータ4では、コイル磁極6を、周方向接線と直角になる径方向に2個に分割する。そして、外径側のコイル磁極6gが空隙3に指向する面積になるギャップ面積と、内径側のコイル磁極6nが空隙3に指向する面積になるギャップ面積とを図6に示すように規定する。つまり、コイル磁極6gのギャップ面積を、コイル磁極6nのギャップ面積よりも小さくする。さらに永久磁石5およびコイル磁極6を渦巻状に形成する。
Next, a third embodiment of the present invention will be described.
6 is a cross-sectional view of the stator of the rotating electrical machine according to the third embodiment, taken along the plane II-II in FIG. 7 is a cross-sectional view of the rotor taken along the III-III plane in FIG.
The third embodiment also relates to an axial gap type rotating electrical machine in which a stator and a rotor are opposed to each other in the axial direction. In the stator 4, the coil magnetic pole 6 is divided into two in the radial direction perpendicular to the circumferential tangent. Then, a gap area in which the outer-diameter side coil magnetic pole 6g is directed to the gap 3 and a gap area in which the inner-diameter side coil magnetic pole 6n is directed to the gap 3 are defined as shown in FIG. That is, the gap area of the coil magnetic pole 6g is made smaller than the gap area of the coil magnetic pole 6n. Further, the permanent magnet 5 and the coil magnetic pole 6 are formed in a spiral shape.

また外径側の永久磁石5gが空隙3に指向する面積になるギャップ面積を、内径側の永久磁石5nが空隙3に指向する面積になるギャップ面積よりも小さくする。   Further, the gap area where the outer permanent magnet 5g is directed to the gap 3 is made smaller than the gap area where the inner permanent magnet 5n is directed to the gap 3.

アキシャルギャップ型の回転電機では、振動の感度であるモードシェープf(r)が、図8の特性図に示すように半径が大きいほど、大きくなる。   In an axial gap type rotating electrical machine, the mode shape f (r), which is the sensitivity of vibration, increases as the radius increases, as shown in the characteristic diagram of FIG.

このような第3実施例によれば、外径側のコイル磁極6gのギャップ面積を、内径側のコイル磁極6nのギャップ面積よりも小さくしたことから、モードシェープの影響を少なくすることが可能となって、面モード振動を防止ないし軽減することが可能になる。
また外径側の永久磁石5gのギャップ面積を、内径側の永久磁石5nのギャップ面積よりも小さくしたことから、モードシェープの影響を少なくすることが可能となって、面モード振動を防止ないし軽減することが可能になる。
According to the third embodiment, since the gap area of the coil pole 6g on the outer diameter side is made smaller than the gap area of the coil pole 6n on the inner diameter side, it is possible to reduce the influence of the mode shape. Thus, the surface mode vibration can be prevented or reduced.
Further, since the gap area of the permanent magnet 5g on the outer diameter side is made smaller than the gap area of the permanent magnet 5n on the inner diameter side, it is possible to reduce the influence of the mode shape and prevent or reduce the surface mode vibration. It becomes possible to do.

具体的には、これら外径側のコイル磁極6gおよび外径側の永久磁石5gの半径はr2である。これら内径側のコイル磁極6nおよび内径側の永久磁石5nの半径はr1である。このためモードシェープf(r)は、外径側のコイル磁極6gおよび永久磁石5gの方が大きい。
しかし、外径側のコイル磁極6gおよび永久磁石5gのギャップ面積は小さいため、これら6g、5gの磁束は、内径側のコイル磁極6nおよび永久磁石5nの磁束よりも小さい。
したがって、ロータ1およびステータ4間の吸引力でバランスを取ることができ、面モード振動を防止ないし軽減することが可能になる。
Specifically, the radius of the outer-diameter side coil magnetic pole 6g and the outer-diameter side permanent magnet 5g is r2. The radius of the coil magnetic pole 6n on the inner diameter side and the permanent magnet 5n on the inner diameter side is r1. For this reason, the mode shape f (r) is larger in the coil magnetic pole 6g on the outer diameter side and the permanent magnet 5g.
However, since the gap area between the coil magnetic pole 6g on the outer diameter side and the permanent magnet 5g is small, the magnetic flux of these 6g and 5g is smaller than the magnetic flux of the coil magnetic pole 6n on the inner diameter side and the permanent magnet 5n.
Therefore, a balance can be achieved by the suction force between the rotor 1 and the stator 4, and surface mode vibration can be prevented or reduced.

次に本発明の第4実施例について説明する。
図9は、第4実施例になる回転電機のステータの、図1におけるII−II平面の横断面図である。この第4実施例もステータとロータとを軸方向に対設したアキシャルギャップ型の回転電機に係る。ステータ4では、コイル磁極6を、周方向接線と直角になる径方向に3個に分割する。そして、外径方向にあるコイル磁極6が空隙3に指向する面積になるギャップ面積を、内径方向にあるコイル磁極6および永久磁石のギャップ面積よりも小さくする。
Next, a fourth embodiment of the present invention will be described.
FIG. 9 is a cross-sectional view of the stator of the rotating electrical machine according to the fourth embodiment, taken along the plane II-II in FIG. The fourth embodiment also relates to an axial gap type rotating electrical machine in which a stator and a rotor are opposed to each other in the axial direction. In the stator 4, the coil magnetic pole 6 is divided into three pieces in the radial direction perpendicular to the circumferential tangent. Then, the gap area where the coil magnetic pole 6 in the outer diameter direction is directed to the gap 3 is made smaller than the gap area between the coil magnetic pole 6 and the permanent magnet in the inner diameter direction.

具体的には、外径側(ステータ中心から×で示すコイル磁極6cの略中央までの距離が半径r5)にあるコイル磁極6cのギャップ面積を、内径側(半径r3)にあるコイル磁極6aのギャップ面積よりも小さくする。さらに、内径側(半径r3)にあるコイル磁極6aのギャップ面積よりも径方向中間(半径r4)にあるコイル磁極6bのギャップ面積よりも小さくする(r5>r4>r3)。この第4実施例では、振動の感度であるモードシェープf(r)が、図10の特性図に示すように半径が大きいほど、大きくなる。   Specifically, the gap area of the coil magnetic pole 6c on the outer diameter side (the distance from the stator center to the approximate center of the coil magnetic pole 6c indicated by x is radius r5) is the gap area of the coil magnetic pole 6a on the inner diameter side (radius r3). It is made smaller than the gap area. Furthermore, it is made smaller than the gap area of the coil magnetic pole 6b in the radial direction middle (radius r4) than the gap area of the coil magnetic pole 6a on the inner diameter side (radius r3) (r5> r4> r3). In this fourth embodiment, the mode shape f (r), which is the sensitivity of vibration, increases as the radius increases, as shown in the characteristic diagram of FIG.

また、コイル磁極6を渦巻状に形成し、径方向中間のコイル磁極6bの周方向位置を、内径側のコイル磁極6aの周方向位置よりも45°ずらす。さらに外径側のコイル磁極6cの周方向位置を、径方向中間のコイル磁極6bの周方向位置よりも45°ずらす。   The coil magnetic pole 6 is formed in a spiral shape, and the circumferential position of the radially intermediate coil magnetic pole 6b is shifted by 45 ° from the circumferential position of the coil magnetic pole 6a on the inner diameter side. Further, the circumferential position of the outer-diameter side coil magnetic pole 6c is shifted by 45 ° from the circumferential position of the radially intermediate coil magnetic pole 6b.

このような第4実施例によれば、外径側のコイル磁極6aのギャップ面積を、内径側のコイル磁極6cのギャップ面積よりも小さくしたことから、モードシェープの影響を少なくすることが可能となって、面モード振動を防止ないし軽減することが可能になる。   According to the fourth embodiment, since the gap area of the coil pole 6a on the outer diameter side is made smaller than the gap area of the coil pole 6c on the inner diameter side, it is possible to reduce the influence of the mode shape. Thus, the surface mode vibration can be prevented or reduced.

さらに内径側のコイル磁極6cのギャップ面積を、径方向中間のコイル磁極6bのギャップ面積よりも小さくしたことから、3個のコイル磁極のなかで中間のコイル磁極6bのギャップ面積が最大となって、ロータ1およびステータ4間の吸引力でバランスを容易に取ることができ、面モード振動を防止ないし軽減することが可能になる。   Further, since the gap area of the coil pole 6c on the inner diameter side is made smaller than the gap area of the coil pole 6b in the radial direction, the gap area of the middle coil pole 6b among the three coil poles is maximized. The balance between the rotor 1 and the stator 4 can be easily balanced, and surface mode vibration can be prevented or reduced.

なお、図示はしなかったが、永久磁石5についても、径方向で3個に分割し、外径側の永久磁石のギャップ面積を、内径側のギャップ面積よりも小さくし、内径側の永久磁石のギャップ面積を、径方向中間の永久磁石のギャップ面積よりも小さくしても、上述の効果を奏する。   Although not shown, the permanent magnet 5 is also divided into three in the radial direction, and the gap area of the permanent magnet on the outer diameter side is made smaller than the gap area on the inner diameter side, so that the permanent magnet on the inner diameter side Even if the gap area is made smaller than the gap area of the permanent magnet in the middle in the radial direction, the above-described effects can be obtained.

これら第1〜第4実施例は本発明の例示であって、本発明はその主旨に逸脱しない範囲において種々変更が加えられうるものである。本発明は、外径方向と内径方向に、ステータとロータを配置したラジアルギャップ型の回転電機にも適用可能である。つまり図11(a)(b)の斜視図に模式的に示すように、コイル磁極6および永久磁石5を、周方向接線βと直角方向γに複数個に分割することは、図11(a)に示すように径方向γにgとnと分割することを意味する。また図11(b)に示すように軸方向Oにgとnと分割することを意味する。   These first to fourth embodiments are exemplifications of the present invention, and the present invention can be variously modified without departing from the gist thereof. The present invention is also applicable to a radial gap type rotating electrical machine in which a stator and a rotor are arranged in an outer diameter direction and an inner diameter direction. That is, as schematically shown in the perspective views of FIGS. 11 (a) and 11 (b), dividing the coil magnetic pole 6 and the permanent magnet 5 into a plurality of portions in the circumferential direction tangent β and the perpendicular direction γ is shown in FIG. ) Means to divide into g and n in the radial direction γ. Moreover, as shown in FIG.11 (b), it means dividing | segmenting into the axial direction O by g and n.

本発明は、ロータ1の表面に永久磁石5を配置してもよいし、内部に永久磁石5を埋め込んでもよい。   In the present invention, the permanent magnet 5 may be disposed on the surface of the rotor 1 or the permanent magnet 5 may be embedded therein.

本発明の第1実施例になる回転電機を示す斜視図である。1 is a perspective view showing a rotating electrical machine according to a first embodiment of the present invention. 同実施例のステータの断面図である。It is sectional drawing of the stator of the Example. 同実施例のロータの断面図である。It is sectional drawing of the rotor of the Example. 本発明の第2実施例になる回転電機のロータの横断面図である。FIG. 6 is a cross-sectional view of a rotor of a rotating electrical machine according to a second embodiment of the present invention. 同実施例の縦断面図である。It is a longitudinal cross-sectional view of the same Example. 本発明の第3実施例になる回転電機のステータの断面図である。It is sectional drawing of the stator of the rotary electric machine which becomes 3rd Example of this invention. 同実施例のロータの断面図である。It is sectional drawing of the rotor of the Example. 同実施例のモードシェープの特性図である。It is a characteristic figure of the mode shape of the Example. 本発明の第4実施例になる回転電機のステータの断面図である。It is sectional drawing of the stator of the rotary electric machine which becomes 4th Example of this invention. 同実施例のモードシェープの特性図である。It is a characteristic figure of the mode shape of the Example. 周方向接線と直角方向に複数個に分割することを説明するための斜視図であり、(a)はアキシャルギャップ型回転電機を、(b)はラジアルギャップ型回転電機である。It is a perspective view for demonstrating dividing | segmenting into a plurality in the direction orthogonal to a circumferential direction tangent, (a) is an axial gap type rotary electric machine, (b) is a radial gap type rotary electric machine.

符号の説明Explanation of symbols

1 回転電機ロータ
2 ロータ軸
3 空隙(エアギャップ)
4 回転電機ステータ
5 永久磁石
6 コイル磁極
7 コイル
8 ヨーク
21 バックヨーク
22 高強度非磁性部材
1 Rotating electrical machine rotor 2 Rotor shaft 3 Air gap (air gap)
4 Rotating electrical machine stator 5 Permanent magnet 6 Coil magnetic pole 7 Coil 8 Yoke 21 Back yoke 22 High-strength nonmagnetic member

Claims (5)

回転自在に軸支したロータに永久磁石を周方向に複数配設し、ステータにコイル磁極を周方向に複数配設し、前記ロータが、空隙を介して対設されたステータとの間で磁気回路を形成することにより回転する回転電機において、
前記コイル磁極を、周方向接線と直角方向に複数個に分割し、分割したこれら直角方向一方のコイル磁極と直角方向他方のコイル磁極の周方向位置が異なるよう相互にずらし、
前記永久磁石を、周方向接線と直角方向に複数個に分割し、分割したこれら直角方向一方の永久磁石と直角方向他方の永久磁石の周方向位置が異なるよう相互にずらしたことを特徴とする回転電機。
A plurality of permanent magnets are arranged in the circumferential direction on a rotor that is rotatably supported, and a plurality of coil magnetic poles are arranged in the circumferential direction on the stator, and the rotor is magnetically coupled with a stator that is opposed to the gap. In a rotating electrical machine that rotates by forming a circuit,
The coil magnetic pole is divided into a plurality of directions perpendicular to the circumferential tangent, and the divided one coil magnetic pole and the other perpendicular to each other are shifted so that the circumferential position of the other coil magnetic pole is different,
The permanent magnet is divided into a plurality of pieces in a direction perpendicular to the circumferential tangent line, and the divided one permanent magnet and the other permanent magnet in the perpendicular direction are shifted from each other so that the circumferential positions thereof are different. Rotating electric machine.
請求項1に記載の回転電機において、前記コイル磁極の周方向磁極数をSLとし、永久磁石の周方向極数をPとし、コイル磁極の周方向のずらし量を360°/(2|SL−P|)としたことを特徴とする回転電機。   2. The rotating electrical machine according to claim 1, wherein the number of circumferential magnetic poles of the coil magnetic pole is SL, the number of circumferential poles of the permanent magnet is P, and the circumferential shift amount of the coil magnetic pole is 360 ° / (2 | SL−). P |). 請求項1または2記載の回転電機において、前記分割した永久磁石を永久磁石の周方向幅分ずらして、前記直角方向で隣り合う永久磁石同士の極性を相互に逆にし、これら隣り合う永久磁石同士が前記磁気回路の一部をなすことを特徴とする回転電機。   3. The rotating electrical machine according to claim 1, wherein the divided permanent magnets are shifted by a circumferential width of the permanent magnets so that the polarities of the permanent magnets adjacent in the perpendicular direction are opposite to each other, and the adjacent permanent magnets are adjacent to each other. Forms a part of the magnetic circuit. 請求項1〜3のいずれか1に記載の回転電機において、
ロータとステータを軸方向に対設したアキシャルギャップ型とし、
前記コイル磁極および前記永久磁石を、周方向接線と直角になる径方向に2個にそれぞれ分割し、
外径側のコイル磁極および永久磁石が前記空隙に指向する面積になるギャップ面積を、内径側のコイル磁極および永久磁石のギャップ面積よりも小さくしたことを特徴とする回転電機。
The rotating electrical machine according to any one of claims 1 to 3,
Axial gap type with rotor and stator facing in the axial direction,
The coil magnetic pole and the permanent magnet are each divided into two in the radial direction perpendicular to the circumferential tangent line,
A rotating electrical machine characterized in that a gap area in which an outer-diameter side coil magnetic pole and a permanent magnet are directed to the gap is smaller than a gap area between an inner-diameter side coil magnetic pole and a permanent magnet.
請求項1〜3のいずれか1に記載の回転電機において、
ロータとステータを軸方向に対設したアキシャルギャップ型とし、
前記コイル磁極および前記永久磁石を、周方向接線と直角になる径方向に3個にそれぞれ分割し、
外径側のコイル磁極および永久磁石が前記空隙に指向する面積になるギャップ面積を、内径側のコイル磁極および永久磁石のギャップ面積よりも小さくし、内径側のコイル磁極および永久磁石のギャップ面積を、径方向中間のコイル磁極および永久磁石のギャップ面積よりも小さくしたことを特徴とする回転電機。
The rotating electrical machine according to any one of claims 1 to 3,
Axial gap type with rotor and stator facing in the axial direction,
The coil magnetic pole and the permanent magnet are each divided into three pieces in the radial direction perpendicular to the circumferential tangent line,
The gap area where the coil magnetic pole and permanent magnet on the outer diameter side are directed to the gap is made smaller than the gap area of the coil magnetic pole and permanent magnet on the inner diameter side, and the gap area between the coil magnetic pole and permanent magnet on the inner diameter side is reduced. An electric rotating machine characterized in that it is smaller than the gap area between the coil pole and the permanent magnet in the middle in the radial direction.
JP2008057884A 2008-03-07 2008-03-07 Rotary electric machine Withdrawn JP2009219194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008057884A JP2009219194A (en) 2008-03-07 2008-03-07 Rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008057884A JP2009219194A (en) 2008-03-07 2008-03-07 Rotary electric machine

Publications (1)

Publication Number Publication Date
JP2009219194A true JP2009219194A (en) 2009-09-24

Family

ID=41190522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008057884A Withdrawn JP2009219194A (en) 2008-03-07 2008-03-07 Rotary electric machine

Country Status (1)

Country Link
JP (1) JP2009219194A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013085462A (en) * 2011-10-10 2013-05-09 Samsung Electronics Co Ltd Motor and rotors for motor
WO2017022021A1 (en) * 2015-07-31 2017-02-09 三菱電機株式会社 Rotor for rotary electric machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013085462A (en) * 2011-10-10 2013-05-09 Samsung Electronics Co Ltd Motor and rotors for motor
US9608484B2 (en) 2011-10-10 2017-03-28 Samsung Electronics Co., Ltd. Motor and rotor of a motor having a plurality of magnet groups
WO2017022021A1 (en) * 2015-07-31 2017-02-09 三菱電機株式会社 Rotor for rotary electric machine
JPWO2017022021A1 (en) * 2015-07-31 2017-08-03 三菱電機株式会社 Rotating electrical machine rotor
CN107852047A (en) * 2015-07-31 2018-03-27 三菱电机株式会社 The rotor of electric rotating machine
CN107852047B (en) * 2015-07-31 2020-06-26 三菱电机株式会社 Rotor of rotating electric machine

Similar Documents

Publication Publication Date Title
US7595575B2 (en) Motor/generator to reduce cogging torque
US9071118B2 (en) Axial motor
JP6503950B2 (en) Rotor and brushless motor
JP5709907B2 (en) Permanent magnet embedded rotary electric machine for vehicles
WO2014115655A1 (en) Rotor and rotating electrical machine equipped with rotor
WO2017073418A1 (en) Permanent magnet motor
WO2013047076A1 (en) Rotating electric machine
JP2007104819A (en) Rotating electric machine
JPWO2013098921A1 (en) Rotor of embedded permanent magnet motor and compressor, blower and refrigeration air conditioner using the same
JP6789451B1 (en) Hybrid field double gap synchronous machine and drive system
JP5609844B2 (en) Electric motor
JP2008148447A (en) Motor for electric power steering device
US11894726B2 (en) Rotating electric machine
JP5869306B2 (en) Rotor and motor
JP6260994B2 (en) Axial gap type motor
JP5944683B2 (en) Rotor and motor
JP2018085877A (en) Rotary electric machine
JP2009219194A (en) Rotary electric machine
JP2012165506A (en) Axial gap motor
JP5379566B2 (en) Brushless motor
JP6201405B2 (en) Rotating electric machine
JP5897939B2 (en) Rotor and motor
JP2013183618A (en) Rotor and motor
JP2005348572A (en) Rotor structure of axial gap rotating electric machine
JP2009278768A (en) Outer rotor type brushless motor

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110510