JP2009218486A - Method of manufacturing solid electrolytic capacitor - Google Patents

Method of manufacturing solid electrolytic capacitor Download PDF

Info

Publication number
JP2009218486A
JP2009218486A JP2008062685A JP2008062685A JP2009218486A JP 2009218486 A JP2009218486 A JP 2009218486A JP 2008062685 A JP2008062685 A JP 2008062685A JP 2008062685 A JP2008062685 A JP 2008062685A JP 2009218486 A JP2009218486 A JP 2009218486A
Authority
JP
Japan
Prior art keywords
lead wire
support
capacitor
electrolytic capacitor
solid electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008062685A
Other languages
Japanese (ja)
Inventor
Masao Hinazuru
政男 雛鶴
Makoto Nakano
誠 中野
Fumio Kida
文夫 木田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2008062685A priority Critical patent/JP2009218486A/en
Publication of JP2009218486A publication Critical patent/JP2009218486A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid electrolytic capacitor improving productivity with a good yield. <P>SOLUTION: A plurality of T notches are formed in a plate like supporting equipment 4, a lead 2 of a capacitor element 3 is placed at the center of each T notch placed adjoining the other notches, and a portion folded is further pressure bonded to wrap around the lead 2. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、固体電解コンデンサの製造方法に関し、特に支持具に接続した複数個のコンデンサ素子を陽極酸化処理等する固体電解コンデンサの製造方法に関する。   The present invention relates to a method for manufacturing a solid electrolytic capacitor, and more particularly to a method for manufacturing a solid electrolytic capacitor in which a plurality of capacitor elements connected to a support are anodized.

近年、コンピュータ・携帯電話・ゲーム機等に代表されるデジタル機器の高性能化、高機能化に伴いコンピュータのマザーボード、サーバー等のMPUやメモリーの高速化・高周波化が進んでおり、機器に搭載される電子部品の固体電解コンデンサおいても低ESR特性が要求されている。   In recent years, with increasing performance and functionality of digital devices such as computers, mobile phones, and game consoles, MPUs and memories of computer motherboards, servers, etc. have been increasing in speed and frequency, and are being installed in devices. Even in a solid electrolytic capacitor of an electronic component, low ESR characteristics are required.

図2は固体電解コンデンサに用いるコンデンサ素子を示す斜視図である。タンタル、アルミニウム、チタン、ニオブなどの弁作用を有する金属粉末からなる成形体1に、同じく弁金属からなる陽極引出線(以後リード線と称す)2が植立されてコンデンサ素子3が形成される。   FIG. 2 is a perspective view showing a capacitor element used for the solid electrolytic capacitor. A capacitor element 3 is formed by planting an anode lead wire (hereinafter referred to as a lead wire) 2 made of a valve metal on a molded body 1 made of a metal powder having a valve action such as tantalum, aluminum, titanium, niobium or the like. .

一般にコンデンサ素子を同時に複数個の処理を実施する為に、金属からなる平板状の支持具に、コンデンサ素子に植立されたリード線の先端部を溶接等の方法で接続し、誘電体層となる酸化皮膜を形成、固体電解質層となる二酸化マンガン層、陰極層となるカーボン層、銀ペースト層を形成し、コンデンサ素子外周部を陰極部、リード線を陽極部とし、陽極及び陰極の電極引出しフレームに配置接続されるまで、コンデンサ素子は支持具に接続された状態で用いられる。   In general, in order to perform a plurality of processes simultaneously on a capacitor element, the tip of a lead wire planted on the capacitor element is connected to a flat plate support made of metal by a method such as welding, and the dielectric layer and An oxide film, a manganese dioxide layer as a solid electrolyte layer, a carbon layer as a cathode layer, and a silver paste layer, a cathode portion as the outer periphery of the capacitor element, and an anode portion as the lead wire, and lead out of the anode and cathode The capacitor element is used in a state of being connected to the support until it is arranged and connected to the frame.

ここで全般的な固体電解コンデンサの製造方法について説明する。図2に示すようにコンデンサ素子は、タンタル等の弁作用金属粉末にバインダーを添加し造粒を行い、リード線2を植立した状態で加圧・成形して所定の形状の成形体1を形成し、単位コンデンサ素子とする。このコンデンサ素子3を高真空中で高温にて焼成してコンデンサ素子のリード線付多孔質焼結体を形成する。図3〜8は固体電解コンデンサの製造途中工程を示し、図3は支持具にコンデンサ素子を接続する工程の斜視図、図4は誘電体層形成工程の模式図、図5は陰極層形成後のコンデンサ素子の断面摸式図、図6は陽陰極引出し工程の斜視図、図7は樹脂モールド外装工程の模式図、図8は引出し端子成形工程の摸式図を示す。多孔質焼結体からなる複数のコンデンサ素子を図3に示すように平板状の支持具4にリード線2を介して吊り下げた状態に上部電極13と下部電極14により接続し、次に図4に示すようにコンデンサ素子3を化成処理槽内の化成液5中に浸漬して、化成液5中の陰極板6と平板状の支持具4との間に電圧を印加することによりコンデンサ素子3の表面に誘電体となる酸化皮膜を形成する。続いて、硝酸マンガン溶液への浸漬と熱処理を繰り返し行なって、図5に示すように酸化皮膜表面に固体電解質である二酸化マンガン(MnO2 )層7を形成する。その二酸化マンガン層7上に、カーボン層8、銀ペースト層9を順次形成し、最外層に陰極部を有するコンデンサ素子3を形成する。次に、図6に示すようにコンデンサ素子3に植立されたリード線、及びコンデンサ素子外周の陰極部のそれぞれに電極引き出しリードフレーム10を配置し、陽極外部リードは溶接等の手段により接続し、コンデンサ素子外周の陰極部に陰極外部リードを導電性接着剤等で接続した後、図7に示すようにリードフレーム10の一部を除く全体をエポキシ樹脂11によって外装し、さらに図8に示すようにエポキシ樹脂被覆部から露出したリードフレームを切断・折曲によりそれぞれ陽陰極とし固体電解コンデンサ12を完成する。 Here, a general method for manufacturing a solid electrolytic capacitor will be described. As shown in FIG. 2, the capacitor element is formed by adding a binder to a valve action metal powder such as tantalum, granulating, and pressing and molding the lead wire 2 in a planted state to form a molded body 1 having a predetermined shape. The unit capacitor element is formed. The capacitor element 3 is baked at a high temperature in a high vacuum to form a porous sintered body with a lead wire of the capacitor element. 3 to 8 show the process of manufacturing the solid electrolytic capacitor, FIG. 3 is a perspective view of the process of connecting the capacitor element to the support, FIG. 4 is a schematic diagram of the dielectric layer forming process, and FIG. FIG. 6 is a perspective view of the positive cathode extraction process, FIG. 7 is a schematic view of the resin mold exterior process, and FIG. 8 is a schematic view of the extraction terminal molding process. As shown in FIG. 3, a plurality of capacitor elements made of a porous sintered body are connected to a plate-like support 4 via a lead wire 2 by means of an upper electrode 13 and a lower electrode 14, and then 4, the capacitor element 3 is immersed in the chemical conversion solution 5 in the chemical conversion treatment tank, and a voltage is applied between the cathode plate 6 and the flat support 4 in the chemical conversion solution 5 to thereby form the capacitor element. An oxide film serving as a dielectric is formed on the surface of 3. Subsequently, immersion in a manganese nitrate solution and heat treatment are repeated to form a manganese dioxide (MnO 2 ) layer 7 as a solid electrolyte on the surface of the oxide film as shown in FIG. On the manganese dioxide layer 7, a carbon layer 8 and a silver paste layer 9 are sequentially formed, and a capacitor element 3 having a cathode portion as an outermost layer is formed. Next, as shown in FIG. 6, an electrode lead frame 10 is arranged on each of the lead wire planted on the capacitor element 3 and the cathode portion on the outer periphery of the capacitor element, and the anode external lead is connected by means such as welding. Then, after connecting the cathode external lead to the cathode part on the outer periphery of the capacitor element with a conductive adhesive or the like, the whole except for a part of the lead frame 10 is covered with an epoxy resin 11 as shown in FIG. 7, and further shown in FIG. Thus, the solid electrolytic capacitor 12 is completed by using the lead frame exposed from the epoxy resin coating portion as a cathode by cutting and bending.

ここで、平板状の支持具に複数のコンデンサ素子を接続する方法においては、コンデンサ特性を向上させる技術が種々開示されている。   Here, in the method of connecting a plurality of capacitor elements to a flat support, various techniques for improving capacitor characteristics are disclosed.

例えば特許文献1にコンデンサ素子複数個を、金属製の横バー(支持具ともいう)に対して、当該各コンデンサ素子から一体的に突出する陽極端子棒(リード線ともいう)を溶接にて固着することによって、横バーの長手方向に適宜ピッチの間隔で装着した状態で、コンデンサ素子を、絶縁層形成用の処理液及び各種陰極層形成用の処理液に浸漬するようにした固体電解コンデンサの製造方法が開示されている。   For example, in Patent Document 1, a plurality of capacitor elements are fixed to a metal horizontal bar (also referred to as a support) by welding anode terminal bars (also referred to as lead wires) integrally protruding from the capacitor elements. Thus, the solid electrolytic capacitor in which the capacitor element is immersed in the treatment liquid for forming the insulating layer and the various treatment liquids for forming the cathode layer in a state where the capacitor elements are mounted at appropriate pitch intervals in the longitudinal direction of the horizontal bar. A manufacturing method is disclosed.

また特許文献2に板状材(支持具ともいう)の反りに対応する方法として細長の板状体に連続溶接するコンデンサ素子面が板状体長手方向と直角方向の位置ずれを補正する方法が開示されている。   Patent Document 2 discloses a method for correcting the displacement of the capacitor element surface continuously welded to the elongated plate-like body in the direction perpendicular to the longitudinal direction of the plate-like body as a method corresponding to the warp of the plate-like material (also referred to as a support). It is disclosed.

さらに、特許文献3にステンレスの薄い板材(支持具ともいう)とタンタル線(リード線ともいう)の溶接を行う際、それぞれの材料の融点(ステンレス約1500℃、タンタル約3000℃)に差があるために溶接条件が非常に難しく、溶接条件の変動が頻繁に起こり、ステンレスの薄い板材の反りや、タンタル線との溶接強度が落ちることを防ぐため電極を回転する方法が開示されている。   Furthermore, in Patent Document 3, when welding a thin stainless steel plate (also called a support) and a tantalum wire (also called a lead wire), there is a difference in the melting point of each material (stainless steel about 1500 ° C., tantalum about 3000 ° C.). For this reason, there is disclosed a method of rotating an electrode in order to prevent welding conditions from being very difficult, fluctuations in the welding conditions frequently occurring, and warping of a thin plate of stainless steel and welding strength with a tantalum wire from being lowered.

一方、例えば特許文献4には、リード線と成形体との接合面積を大きくする技術が提案されている。リード線の形状は厚みを規定した箔形状である陽極線、あるいは箔の表面に凸凹を形成し更に接触面積を多くする方法とリード線埋設部でリード線に複数の貫通孔を設ける方法は特性向上に有効とされている。   On the other hand, for example, Patent Document 4 proposes a technique for increasing the bonding area between a lead wire and a molded body. The shape of the lead wire is a foil shape with a specified thickness, or the method of forming irregularities on the surface of the foil to further increase the contact area and the method of providing multiple through holes in the lead wire in the lead wire embedded part It is effective for improvement.

特開平06−163331号公報Japanese Patent Laid-Open No. 06-163331 特開平09−239547号公報JP 09-239547 A 特開平07−323378号公報JP 07-323378 A 特開2000−012387号公報JP 2000-012387 A

従来技術によると、リード線埋設部の金属粉末とリード線との接触面積との増大によりコンデンサ特性(ESR)は向上するが、断面積を増大させたリード線と異種材質の板材である平板状の支持具との接合は融点の違いから抵抗溶接では接続部からコンデンサ素子が脱落するなど困難を極めていた。   According to the prior art, the capacitor characteristic (ESR) is improved by increasing the contact area between the metal powder and the lead wire in the lead wire embedded portion, but the plate shape is a plate material of a different material from the lead wire having an increased cross-sectional area. Due to the difference in melting point, it was extremely difficult to join the support to the support tool because the capacitor element dropped out of the connection part by resistance welding.

また、複数個のコンデンサ素子が溶接不均一な状態で、平板状の支持具に接合されていると後工程の酸化皮膜、二酸化マンガン層形成、カーボン層、銀ペースト層形成工程等で更に溶接部分に負荷にかかり、コンデンサ素子が脱落し歩留まり低下を招く恐れがあった。   In addition, if a plurality of capacitor elements are welded in a non-uniform state and joined to a flat plate-like support, the welded portion is further welded in the subsequent oxide film, manganese dioxide layer formation, carbon layer, silver paste layer formation step, etc. As a result, the capacitor element may fall off and the yield may be reduced.

一般に平板状の支持具はステンレスあるいはアルミ板等からなり、弁作用金属からなるリード線とは異種金属で、2つの金属の抵抗溶接の場合、一定条件のもとに融点の低い材料の溶融がおこり、融点の高い材料はあたかも溶融したように、融点の低い材料にめり込む状態で固着するが引き剥がし等の応力を加えたとき、数Nの応力ではがれる。   In general, the flat plate support is made of stainless steel or aluminum plate, etc., and the lead wire made of valve action metal is a dissimilar metal. In resistance welding of two metals, melting of a material having a low melting point is performed under certain conditions. As a result, as if the material having a high melting point is melted, the material adheres to the material having a low melting point, but is peeled off by a stress of several N when stress such as peeling is applied.

以上の状況にあって、本発明の課題は、高容量で高周波特性に優れ、低ESR等特性が向上し、歩留まりがよく生産性が向上した固体電解コンデンサの製造方法を提供することにある。   Under the circumstances described above, an object of the present invention is to provide a method of manufacturing a solid electrolytic capacitor having high capacity, excellent high frequency characteristics, improved characteristics such as low ESR, good yield, and improved productivity.

上記課題を解決するため、本発明の固体電解コンデンサの製造方法は、コンデンサ素子を平板状の支持具に整列して接続し、誘電体層、固体電解質層を形成する固体電解コンデンサの製造方法において、前記平板状の支持具の下辺部に複数のT字状の切欠きを設け、前記コンデンサ素子に植立されたリード線を前記切欠きの間に配置し、前記リード線を包み込むように前記支持具の下辺部を折りたたみ圧着する工程を含むことを特徴とする。   In order to solve the above-described problems, a method of manufacturing a solid electrolytic capacitor according to the present invention includes a method of manufacturing a solid electrolytic capacitor in which capacitor elements are aligned and connected to a flat support, and a dielectric layer and a solid electrolyte layer are formed. A plurality of T-shaped notches are provided on the lower side of the flat plate-shaped support, and lead wires planted in the capacitor element are disposed between the notches so as to wrap the lead wires. The method includes a step of folding and pressing the lower side portion of the support.

また、本発明の固体電解コンデンサの製造方法は、コンデンサ素子を平板状の支持具に整列して接続し、誘電体層、固体電解質層を形成する固体電解コンデンサの製造方法において、前記平板状の支持具の下辺部に複数の切曲げ部を設け、前記コンデンサ素子に植立されたリード線を前記切曲げ部に挿入、圧着する工程を含むことを特徴とする。   The solid electrolytic capacitor manufacturing method of the present invention is a method of manufacturing a solid electrolytic capacitor in which a capacitor element is aligned and connected to a flat support, and a dielectric layer and a solid electrolyte layer are formed. The method includes a step of providing a plurality of cut and bent portions on a lower side portion of the support, and inserting and crimping a lead wire planted on the capacitor element into the cut and bent portion.

また、本発明の固体電解コンデンサの製造方法は、前記リード線を前記支持具に圧着した後、圧着部の前記リード線を前記支持具に溶接する工程を含んでもよい。   The method for manufacturing a solid electrolytic capacitor of the present invention may include a step of welding the lead wire of the crimping portion to the support tool after the lead wire is pressure-bonded to the support tool.

また、本発明の固体電解コンデンサの製造方法は、前記リード線を前記支持具に圧着した後、圧着部近傍の前記リード線を前記支持具に溶接する工程を含んでもよい。   In addition, the method for manufacturing a solid electrolytic capacitor of the present invention may include a step of welding the lead wire in the vicinity of the crimping portion to the support tool after the lead wire is pressure-bonded to the support tool.

さらに、本発明の固体電解コンデンサの製造方法は、コンデンサ素子を平板状の支持具に整列して接続し、誘電体層、固体電解質層を形成する固体電解コンデンサの製造方法において、前記平板状の支持具の下辺部に、前記コンデンサ素子に植立されたリード線を配置し、前記リード線上に当て板を配置し、前記リード線に沿って当て板を曲げた後、前記当て板と前記支持具を溶接する工程を含むことを特徴とする。   Furthermore, the method for producing a solid electrolytic capacitor of the present invention is the method for producing a solid electrolytic capacitor in which capacitor elements are aligned and connected to a plate-shaped support, and a dielectric layer and a solid electrolyte layer are formed. A lead wire planted on the capacitor element is disposed on the lower side of the support, a contact plate is disposed on the lead wire, the contact plate is bent along the lead wire, and then the support plate and the support The method includes the step of welding the tool.

本発明によれば、平板状の支持具とリード線との接続部において、リード線の周囲を支持具の材料で覆うため、引張り、引き剥がし、ねじりの応力に対しても、より堅固な接続状態を維持でき、リード線の断面積の大小あるいは形状によらず支持具に安定した接続ができる。   According to the present invention, since the periphery of the lead wire is covered with the material of the support tool at the connection portion between the flat plate-like support tool and the lead wire, the connection is more robust against the stress of pulling, peeling, and twisting. The state can be maintained, and a stable connection can be made to the support regardless of the cross-sectional area or shape of the lead wire.

次に、本発明の実施の形態について図面を参照して説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1は、本発明の実施の形態1の支持具の下辺部をリード線上に折りたたみ圧着した模式図を示し、図9〜11は本発明の実施の形態1の支持具にコンデンサ素子を接続する工程を示し、図9は切欠きを設けた支持具にコンデンサ素子に植立されたリード線を配置する工程の正面図を示し、図10は支持具の下辺部をリード線側に折り曲げる工程、図10(a)は正面図、図10(b)は、図10(a)のA−A線断面図を示し、図11は支持具の下辺部をリード線上に折りたたみ圧着する工程、図11(a)は正面図、図11(b)は、図11(a)のA−A線断面図を示す。図9に示すように、アルミニウム、ステンレスなどの金属からなる平板状の支持具4の下辺部にT字状の切欠きをプレス、切削、エッチング等により連続して設ける。切欠きの数は支持具に配置するコンデンサ素子3の数より1箇所多く、等間隔で設けるのが望ましい。次に弁作用金属粉末にバインダーを添加し造粒を行い、この造粒された金属粉末と同一のリード線を用いてリード線を植立した状態で加圧・成形・焼結して所定の形状のコンデンサ素子3(図2参照)を形成し、リード線2を互いに隣接するT字状の切欠きの中央部に配置する。
(Embodiment 1)
FIG. 1 shows a schematic diagram in which the lower side portion of the support according to the first embodiment of the present invention is folded and crimped onto a lead wire, and FIGS. 9 to 11 connect the capacitor element to the support according to the first embodiment of the present invention. FIG. 9 shows a front view of the step of placing the lead wire planted in the capacitor element on the support provided with a notch, and FIG. 10 shows the step of bending the lower side of the support to the lead wire side, 10A is a front view, FIG. 10B is a cross-sectional view taken along the line AA in FIG. 10A, and FIG. 11 is a process of folding and crimping the lower side portion of the support onto the lead wire. (A) is a front view, FIG.11 (b) shows the sectional view on the AA line of Fig.11 (a). As shown in FIG. 9, a T-shaped notch is continuously provided in the lower side portion of the flat support 4 made of a metal such as aluminum or stainless steel by pressing, cutting, etching or the like. The number of notches is preferably one more than the number of capacitor elements 3 arranged on the support, and is preferably provided at equal intervals. Next, a binder is added to the valve action metal powder and granulated, and the lead wire is planted using the same lead wire as the granulated metal powder, and then pressed, molded and sintered to a predetermined A capacitor element 3 having a shape (see FIG. 2) is formed, and the lead wire 2 is disposed at the center of adjacent T-shaped notches.

次に、図10に示すようにコンデンサ素子3のリード線2の配置位置を中心に、支持具の隣接するT字状切欠きの残り部分(逆T字部となる)である下辺部をリード線側に折り曲げる。さらに図11に示すようにリード線2の外周を支持具の下辺部で包み込むように両端から折りたたみリード線を圧着する(図1参照)。   Next, as shown in FIG. 10, the lower side portion, which is the remaining portion of the T-shaped notch adjacent to the support (becomes an inverted T-shaped portion), is led around the position where the lead wire 2 of the capacitor element 3 is disposed. Bend to the wire side. Furthermore, as shown in FIG. 11, the folding lead wire is crimped from both ends so that the outer periphery of the lead wire 2 is wrapped by the lower side of the support (see FIG. 1).

(実施の形態2)
図13は、本発明の実施の形態2の支持具にコンデンサ素子を接続する工程を示し、図13(a)は正面図、図13(b)は、図13(a)のA−A線断面図を示す。平板状の支持具4の下辺部に複数の切曲げ部(ルーバ、ランス、ブリッジともいう)をプレス等により設ける。切曲げ部の深さはリード線が容易に挿入できる程度であるとよい。図13に示すように、支持具4の切曲げ部にコンデンサ素子3のリード線2を挿入した後、支持具のリード線周囲の切曲げ部を圧着する。
(Embodiment 2)
13A and 13B show a process of connecting a capacitor element to the support according to the second embodiment of the present invention. FIG. 13A is a front view, and FIG. 13B is an AA line in FIG. A cross-sectional view is shown. A plurality of cut and bent portions (also referred to as louvers, lances, and bridges) are provided on the lower side of the flat support 4 by pressing or the like. The depth of the cut and bent portion is preferably such that the lead wire can be easily inserted. As shown in FIG. 13, after the lead wire 2 of the capacitor element 3 is inserted into the cut and bent portion of the support tool 4, the cut and bent portion around the lead wire of the support tool is crimped.

(実施の形態3)
図14は、本発明の実施の形態3の支持具にコンデンサ素子を接続する工程を示し、図14(a)は正面図、図14(b)は側面図を示す。本実施の形態は上記実施の形態1または実施の形態2において支持具に圧着したリード線をさらに溶接により接続するものである。即ち、支持具の下辺部においてリード線を圧着した後、図14に示すように圧着部近傍のリード線2を上部電極13および下部電極14により支持具4に溶接する。溶接箇所はリード線2と支持具4の圧着部の近傍であれば上側でもよいし下側でもよい。尚、ここでは、電極を上下に配置した抵抗溶接のダイレクト方式を示したが溶接方式はこの方式には限らない。
(Embodiment 3)
FIG. 14 shows a process of connecting a capacitor element to the support according to Embodiment 3 of the present invention, FIG. 14 (a) is a front view, and FIG. 14 (b) is a side view. In the present embodiment, the lead wire crimped to the support in the first embodiment or the second embodiment is further connected by welding. That is, after the lead wire is crimped at the lower side portion of the support tool, the lead wire 2 in the vicinity of the crimp portion is welded to the support tool 4 by the upper electrode 13 and the lower electrode 14 as shown in FIG. The welding location may be on the upper side or the lower side as long as it is in the vicinity of the crimping portion of the lead wire 2 and the support 4. Here, the direct method of resistance welding in which the electrodes are arranged vertically is shown, but the welding method is not limited to this method.

(実施の形態4)
図15は、本発明の実施の形態4の支持具にコンデンサ素子を接続する工程を示し、図15(a)は正面図、図15(b)は側面図を示す。本実施の形態は上記実施の形態1または実施の形態2において支持具に圧着したリード線をさらに圧着部上で溶接により接続するものである。即ち、支持具の下辺部においてリード線を圧着した後、図15に示すように圧着部においてリード線2と支持具4を上部電極13および下部電極14により溶接する。
(Embodiment 4)
FIG. 15 shows a process of connecting a capacitor element to the support according to Embodiment 4 of the present invention, FIG. 15 (a) is a front view, and FIG. 15 (b) is a side view. In the present embodiment, the lead wire crimped to the support in the first embodiment or the second embodiment is further connected to the crimping portion by welding. That is, after the lead wire is crimped at the lower side portion of the support, the lead wire 2 and the support 4 are welded by the upper electrode 13 and the lower electrode 14 at the crimp portion as shown in FIG.

(実施の形態5)
図16は、本発明の実施の形態5の支持具にコンデンサ素子を接続する工程を示し、図16(a)は正面図、図16(b)は、リード線上に当て板を配置する図16(a)のA−A線断面図、図16(c)は、当て板を曲げる図16(a)のA−A線断面図、図16(d)は、当て板と支持具を溶接する図16(a)のA−A線断面図を示す。本実施の形態においては、図16(b)に示すように平板状の支持具4にコンデンサ素子のリード線2を配置し、平板状の支持具4と同一の材料の当て板15を配置する。次に図16(c)に示すように上面よりリード線2に沿って当て板15を曲げる。その後、図16(d)に示すように当て板15と平板状の支持具4を上部電極13および下部電極14により溶接する。
(Embodiment 5)
FIG. 16 shows a process of connecting a capacitor element to the support according to the fifth embodiment of the present invention, FIG. 16 (a) is a front view, and FIG. 16 (b) is a drawing in which a contact plate is arranged on a lead wire. 16A is a cross-sectional view taken along the line AA in FIG. 16A, and FIG. 16C is a cross-sectional view taken along the line AA in FIG. 16A, and FIG. AA line sectional view of Drawing 16 (a) is shown. In the present embodiment, as shown in FIG. 16B, the lead wire 2 of the capacitor element is disposed on the flat support 4 and the contact plate 15 made of the same material as that of the flat support 4 is disposed. . Next, as shown in FIG. 16C, the contact plate 15 is bent along the lead wire 2 from the upper surface. Thereafter, as shown in FIG. 16 (d), the contact plate 15 and the flat support 4 are welded by the upper electrode 13 and the lower electrode 14.

アルミニウムからなる厚さ0.5mmの平板状の支持具の下辺部にT字状の切欠きを等間隔にプレスにより設ける。次に弁作用金属粉末にバインダーを添加し造粒を行い、この造粒された金属粉末と同一のリード線を用いてリード線を植立した状態で加圧・成形・焼結したコンデンサ素子を形成し、リード線を互いに隣接するT字状の切欠きの中央部に配置した。リード線は断面が短径0.35mm、長径1.35mmの楕円形状のリード線を用いた。   T-shaped notches are provided at equal intervals on the lower side of a flat plate-like support made of aluminum having a thickness of 0.5 mm by pressing. Next, a binder element is added to the valve action metal powder, granulated, and a capacitor element that is pressed, molded, and sintered in a state where the lead wire is planted using the same lead wire as the granulated metal powder. The lead wire was formed and arranged at the center of the T-shaped notch adjacent to each other. As the lead wire, an elliptical lead wire having a minor axis of 0.35 mm and a major axis of 1.35 mm was used.

次に、リード線の配置位置を中心に、支持具の隣接するT字状切欠きの残り部分である下辺部を折り曲げた後、リード線先端の2.0mmを支持具の下辺部で包み込むように両端から折りたたみリード線を圧着した。   Next, after folding the lower side, which is the remaining portion of the adjacent T-shaped notch of the support, with the lead wire disposed at the center, 2.0 mm of the tip of the lead is wrapped in the lower side of the support Folded lead wires were crimped from both ends.

(比較例)
実施例で用いた支持具に切欠きを設けずに実施例で用いたのと同様のコンデンサ素子に植立したリード線を支持具に抵抗溶接で接続した。
(Comparative example)
A lead wire planted on the same capacitor element as used in the example was connected to the support by resistance welding without providing a notch in the support used in the example.

(接続強度測定)
図12は接続強度測定を示す模式図である。引っ張り強度は支持具に接続したコンデンサ素子を図12に示すようにコンデンサ素子の下側に引張った際のコンデンサ素子3が支持具4から接続が外れた時に加えられた力とした。曲げ強度は支持具に接続したコンデンサ素子を図12に示すように支持具に垂直な方向でコンデンサ素子を押した際のコンデンサ素子3が支持具4から接続が外れた時に加えられた力とした。表1に実施例、比較例それぞれ10個について引張強度および曲げ強度を測定した結果を示す。
(Connection strength measurement)
FIG. 12 is a schematic diagram showing connection strength measurement. The tensile strength was defined as the force applied when the capacitor element 3 connected to the support was disconnected from the support 4 when the capacitor element 3 was pulled downward as shown in FIG. The bending strength is the force applied when the capacitor element 3 is disconnected from the support tool 4 when the capacitor element is pushed in the direction perpendicular to the support tool as shown in FIG. . Table 1 shows the results of measuring the tensile strength and bending strength of 10 examples and comparative examples.

Figure 2009218486
Figure 2009218486

実施例の引張強度は従来の比較例の溶接に比べ、平均でおよそ15N強く、曲げ強度は30Nと安定した強度が得られた。また実施例により支持具に接続したコンデンサ素子について誘電体層形成工程を行なった後、容量(CV)測定した結果、従来と同一であり溶接による接続と本発明による接続についてコンデンサ素子との導通接続にはなんら問題はなかった。   The tensile strength of the example was about 15N stronger on average than the welding of the conventional comparative example, and the bending strength was stable at 30N. In addition, after performing the dielectric layer forming process on the capacitor element connected to the support according to the embodiment, the capacitance (CV) measurement results are the same as in the prior art, and the connection by welding and the connection according to the present invention are electrically connected to the capacitor element. There was no problem.

なお、実施例においては断面が楕円形状のリード線について記載したが、リード線形状には特にこの形状に限らず、公知技術に用いられる丸形状等を用いてもよい。   In the embodiment, the lead wire having an elliptical cross section is described. However, the lead wire shape is not particularly limited to this shape, and a round shape used in a known technique may be used.

本発明の実施の形態1の支持具の下辺部をリード線上に折りたたみ圧着した模式図。The schematic diagram which carried out the crimping | compression-bonding of the lower side part of the support tool of Embodiment 1 of this invention on a lead wire. 固体電解コンデンサに用いるコンデンサ素子を示す斜視図。The perspective view which shows the capacitor | condenser element used for a solid electrolytic capacitor. 固体電解コンデンサの製造途中工程の支持具にコンデンサ素子を接続する工程の斜視図。The perspective view of the process of connecting a capacitor | condenser element to the support tool in the middle of manufacture of a solid electrolytic capacitor. 固体電解コンデンサの製造途中工程の誘電体層形成工程の模式図。The schematic diagram of the dielectric material layer formation process of the process in the middle of manufacture of a solid electrolytic capacitor. 固体電解コンデンサの製造途中工程の陰極層形成後のコンデンサ素子の断面摸式図。The cross-sectional schematic diagram of the capacitor | condenser element after the cathode layer formation of the process in the middle of manufacture of a solid electrolytic capacitor. 固体電解コンデンサの製造途中工程の陽陰極引出し工程の斜視図。The perspective view of the positive electrode extraction process of the middle process of manufacture of a solid electrolytic capacitor. 固体電解コンデンサの製造途中工程の樹脂モールド外装工程の模式図。The schematic diagram of the resin mold exterior process of the manufacture process of a solid electrolytic capacitor. 固体電解コンデンサの製造途中工程の端子成形工程の摸式図。The schematic diagram of the terminal shaping | molding process of the manufacturing process of a solid electrolytic capacitor. 本発明の実施の形態1の支持具にコンデンサ素子を接続する工程の切欠きを設けた支持具にコンデンサ素子に植立されたリード線を配置する工程の正面図。The front view of the process of arrange | positioning the lead wire planted to the capacitor | condenser element to the support which provided the notch of the process of connecting a capacitor | condenser element to the support of Embodiment 1 of this invention. 本発明の実施の形態1の支持具にコンデンサ素子を接続する工程の支持具の下辺部をリード線側に折り曲げる工程を示す図、図10(a)は正面図、図10(b)は、図10(a)のA−A線断面図。The figure which shows the process of bending the lower side part of the support tool of the process of connecting a capacitor | condenser element to the support tool of Embodiment 1 of this invention to the lead wire side, FIG.10 (a) is a front view, FIG.10 (b) AA line sectional view of Drawing 10 (a). 本発明の実施の形態1の支持具にコンデンサ素子を接続する工程の支持具の下辺部をリード線上に折りたたみ圧着する工程を示す図、図11(a)は正面図、図11(b)は、図1(a)のA−A線断面図。The figure which shows the process of folding and crimping | bonding the lower side part of the support tool on a lead wire of the process of connecting a capacitor | condenser element to the support tool of Embodiment 1 of this invention, FIG.11 (a) is a front view, FIG.11 (b) is FIG. The AA sectional view taken on the line of Fig.1 (a). 接続強度測定を示す模式図。The schematic diagram which shows connection strength measurement. 本発明の実施の形態2の支持具にコンデンサ素子を接続する工程を示す図、図13(a)は正面図、図13(b)は、図13(a)のA−A線断面図。The figure which shows the process of connecting a capacitor | condenser element to the support tool of Embodiment 2 of this invention, Fig.13 (a) is a front view, FIG.13 (b) is the sectional view on the AA line of Fig.13 (a). 本発明の実施の形態3の支持具にコンデンサ素子を接続する工程を示す図、図14(a)は正面図、図14(b)は側面図。The figure which shows the process of connecting a capacitor | condenser element to the support tool of Embodiment 3 of this invention, Fig.14 (a) is a front view, FIG.14 (b) is a side view. 本発明の実施の形態4の支持具にコンデンサ素子を接続する工程を示す図、図15(a)は正面図、図15(b)は側面図。The figure which shows the process of connecting a capacitor | condenser element to the support tool of Embodiment 4 of this invention, Fig.15 (a) is a front view, FIG.15 (b) is a side view. 本発明の実施の形態5の支持具にコンデンサ素子を接続する工程を示す図、図16(a)は正面図、図16(b)は、リード線上に当て板を配置する図16(a)のA−A線断面図、図16(c)は、当て板を曲げる図16(a)のA−A線断面図、図16(d)は、当て板と支持具を溶接する図16(a)のA−A線断面図。The figure which shows the process of connecting a capacitor | condenser element to the support tool of Embodiment 5 of this invention, FIG.16 (a) is a front view, FIG.16 (b) is FIG.16 (a) which arrange | positions a contact plate on a lead wire. FIG. 16C is a cross-sectional view taken along the line AA of FIG. 16A, and FIG. 16D is a cross-sectional view taken along the line A-A of FIG. The AA sectional view taken on the line of a).

符号の説明Explanation of symbols

1 成形体
2 リード線
3 コンデンサ素子
4 支持具
5 化成液
6 陰極板
7 二酸化マンガン層
8 カーボン層
9 銀ペースト層
10 リードフレーム
11 エポキシ樹脂
12 固体電解コンデンサ
13 上部電極
14 下部電極
15 当て板
DESCRIPTION OF SYMBOLS 1 Molded body 2 Lead wire 3 Capacitor element 4 Support tool 5 Chemical conversion liquid 6 Cathode plate 7 Manganese dioxide layer 8 Carbon layer 9 Silver paste layer 10 Lead frame 11 Epoxy resin 12 Solid electrolytic capacitor 13 Upper electrode 14 Lower electrode 15

Claims (5)

コンデンサ素子を平板状の支持具に整列して接続し、誘電体層、固体電解質層を形成する固体電解コンデンサの製造方法において、前記平板状の支持具の下辺部に複数のT字状の切欠きを設け、前記コンデンサ素子に植立されたリード線を前記切欠きの間に配置し、前記リード線を包み込むように前記支持具の下辺部を折りたたみ圧着する工程を含むことを特徴とする固体電解コンデンサの製造方法。   In a method of manufacturing a solid electrolytic capacitor in which capacitor elements are aligned and connected to a flat support member to form a dielectric layer and a solid electrolyte layer, a plurality of T-shaped cuts are formed on the lower side of the flat support member. Providing a notch, placing a lead wire planted in the capacitor element between the notches, and folding and crimping a lower side portion of the support so as to wrap the lead wire. Manufacturing method of electrolytic capacitor. コンデンサ素子を平板状の支持具に整列して接続し、誘電体層、固体電解質層を形成する固体電解コンデンサの製造方法において、前記平板状の支持具の下辺部に複数の切曲げ部を設け、前記コンデンサ素子に植立されたリード線を前記切曲げ部に挿入、圧着する工程を含むことを特徴とする固体電解コンデンサの製造方法。   In a method for manufacturing a solid electrolytic capacitor in which a capacitor element is aligned and connected to a flat support and a dielectric layer and a solid electrolyte layer are formed, a plurality of bent portions are provided on a lower side of the flat support. A method of manufacturing a solid electrolytic capacitor comprising the steps of inserting and crimping a lead wire planted on the capacitor element into the cut and bent portion. 前記リード線を前記支持具に圧着した後、圧着部の前記リード線を前記支持具に溶接する工程を含むことを特徴とする請求項1又は2に記載の固体電解コンデンサの製造方法。   The method for manufacturing a solid electrolytic capacitor according to claim 1, further comprising a step of welding the lead wire of the crimping portion to the support tool after the lead wire is crimped to the support tool. 前記リード線を前記支持具に圧着した後、圧着部近傍の前記リード線を前記支持具に溶接する工程を含むことを特徴とする請求項1又は2に記載の固体電解コンデンサの製造方法。   The method for manufacturing a solid electrolytic capacitor according to claim 1, further comprising a step of welding the lead wire in the vicinity of the crimping portion to the support tool after the lead wire is crimped to the support tool. コンデンサ素子を平板状の支持具に整列して接続し、誘電体層、固体電解質層を形成する固体電解コンデンサの製造方法において、前記平板状の支持具の下辺部に、前記コンデンサ素子に植立されたリード線を配置し、前記リード線上に当て板を配置し、前記リード線に沿って当て板を曲げた後、前記当て板と前記支持具を溶接する工程を含むことを特徴とする固体電解コンデンサの製造方法。   In a method of manufacturing a solid electrolytic capacitor in which a capacitor element is aligned and connected to a flat support, and a dielectric layer and a solid electrolyte layer are formed, the capacitor element is planted on a lower side of the flat support. A solid plate comprising: a step of arranging the lead wire, placing a contact plate on the lead wire, bending the contact plate along the lead wire, and welding the contact plate and the support. Manufacturing method of electrolytic capacitor.
JP2008062685A 2008-03-12 2008-03-12 Method of manufacturing solid electrolytic capacitor Withdrawn JP2009218486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008062685A JP2009218486A (en) 2008-03-12 2008-03-12 Method of manufacturing solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008062685A JP2009218486A (en) 2008-03-12 2008-03-12 Method of manufacturing solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JP2009218486A true JP2009218486A (en) 2009-09-24

Family

ID=41190049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008062685A Withdrawn JP2009218486A (en) 2008-03-12 2008-03-12 Method of manufacturing solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2009218486A (en)

Similar Documents

Publication Publication Date Title
US8780529B2 (en) Solid electrolytic capacitor, and method of manufacturing the same
CN103295786B (en) Solid electrolytic capacitor
US8325466B2 (en) Solid electrolytic capacitor with bent terminal and method of manufacturing same
JP2006190965A (en) Solid electrolytic capacitor with bottom-surface terminals, manufacturing method therefor, and lead frame for use therein
JP2009266931A (en) Solid-state electrolytic capacitor
JP6705641B2 (en) Solid electrolytic capacitor
JP2011049225A (en) Solid electrolytic capacitor
JP2007081069A (en) Chip type solid electrolytic capacitor, terminals, and method for manufacturing them
US10655241B2 (en) Electrode foil production method and capacitor production method
JP4761463B2 (en) Capacitor anode body manufacturing method and apparatus
JP4817458B2 (en) Solid electrolytic capacitor
KR102127816B1 (en) Tantalum capacitor and method of preparing the same
US8753409B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP5049106B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2011014663A (en) Solid electrolytic capacitor
JP2009218486A (en) Method of manufacturing solid electrolytic capacitor
JP2008311583A (en) Solid electrolytic capacitor, and its manufacturing method
JP6647124B2 (en) Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor
JP4352802B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2009253020A (en) Solid electrolytic capacitor
JP4756649B2 (en) Surface mount thin capacitors
JP4285346B2 (en) Manufacturing method of solid electrolytic capacitor
CN110447085B (en) Solid electrolytic capacitor and method for manufacturing the same
JP4596939B2 (en) Manufacturing method of three-terminal solid electrolytic capacitor element
JP5642508B2 (en) Surface mount thin capacitors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101110

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120209