JP2009216677A - Reflecting sensor - Google Patents

Reflecting sensor Download PDF

Info

Publication number
JP2009216677A
JP2009216677A JP2008063590A JP2008063590A JP2009216677A JP 2009216677 A JP2009216677 A JP 2009216677A JP 2008063590 A JP2008063590 A JP 2008063590A JP 2008063590 A JP2008063590 A JP 2008063590A JP 2009216677 A JP2009216677 A JP 2009216677A
Authority
JP
Japan
Prior art keywords
infrared light
light receiving
light emitting
infrared
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008063590A
Other languages
Japanese (ja)
Inventor
Yoshiteru Umetani
吉輝 梅谷
Hiroyuki Fukaya
広之 深谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Electron Co Ltd
Original Assignee
Honda Electron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Electron Co Ltd filed Critical Honda Electron Co Ltd
Priority to JP2008063590A priority Critical patent/JP2009216677A/en
Publication of JP2009216677A publication Critical patent/JP2009216677A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the number of elements while enabling to detect by each infrared ray spot light unit, in a reflecting sensor using an infrared ray. <P>SOLUTION: In the reflecting sensor, it is assumed that the number of infrared ray emitting elements 21 are m1 in a light emitting part 20 side, the dividing ratio of a first lens system 22 of the light emitting system side are n1, the number of infrared ray receiving elements 31 in a light receiving part 30 side are m2, and the dividing ratio of a second lens system 32 of the light receiving side are n2 (m1≠m2, n1≠n2), the relation between the number of the infrared ray emission elements 21 being m1 and the dividing ratio n1 of the first lens system 22 of the light emission side and the number of the infrared ray receiving element 31 being m2 andthe dividing ratio n2 of the second lens system 32 are made m1×n1=m2×n2. Where, if both the infrared ray emission elements 21 and the infrared ray receiving elements 31 are ≥2, and in the first lens system 22 and the second lens system 32, the compound eyes of ≥2 in the dividing ratio are used, each of infrared ray emission element 21 is alternatively scan driven in a prescribed order and the light receiving signal out putted from each infrared receiving element 32 is monitored individually. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えば自動ドアの無目部分もしくは天井部分取り付けられて、その出入り口付近の床面を監視エリアとする赤外線を利用した反射型センサに関し、さらに詳しく言えば、上記監視エリアに存在する物体(人)を、その位置情報を含めて精度良く検出する技術に関するものである。   The present invention relates to a reflection type sensor using infrared rays, for example, attached to an invisible part or a ceiling part of an automatic door and using a floor near the entrance and exit as a monitoring area, and more specifically, an object existing in the monitoring area. The present invention relates to a technique for accurately detecting (person) including its position information.

自動ドアセンサには、超音波式、重量を検知する踏圧マット式および光学式(反射型)などがあり、それぞれ一長一短であるが、監視エリアを明確に設定し得ること、また、製品価格が比較的安価であることから、赤外線を用いた反射型センサが一般的に多く採用されている。   Automatic door sensors include the ultrasonic type, the pressure mat type that detects weight, and the optical type (reflective type). Each has advantages and disadvantages, but the monitoring area can be set clearly, and the product price is relatively low. In general, many reflective sensors using infrared rays are employed because of their low cost.

図7に例えば自動ドア用途としての反射型センサの第1従来例を示す。この自動ドア用反射型センサ1Cにおいては、送信側としての赤外線発光素子21を有する発光部20と、受信側としての赤外線受光素子31を有する受光部30とを備えており、赤外線を介して送受信が行われる。   FIG. 7 shows a first conventional example of a reflection type sensor for use as an automatic door, for example. The automatic door reflection sensor 1C includes a light emitting unit 20 having an infrared light emitting element 21 as a transmitting side and a light receiving unit 30 having an infrared light receiving element 31 as a receiving side, and transmits and receives via infrared rays. Is done.

発光部20と受光部30は、図示しない例えば自動ドアの無目部分もしくは天井付近に配置される筐体10内の回路基板11に並置され、筐体10内にはさらに、発光部側20と受光部30側のそれぞれに対応する第1レンズ系22と、第2レンズ系32が備えられている。   The light emitting unit 20 and the light receiving unit 30 are juxtaposed on a circuit board 11 in the casing 10 that is arranged in the vicinity of an unillustrated automatic door or near the ceiling (not shown). A first lens system 22 and a second lens system 32 corresponding to each of the light receiving unit 30 side are provided.

この第1従来例では、発光側の第1レンズ系22と受光側の第2レンズ系32には、それぞれ単眼レンズ22a,32aが用いられており、また、赤外線発光素子21,赤外線受光素子31ともに4素子(赤外線発光素子21a〜21d,赤外線受光素子31a〜31d)としている。なお、各赤外線発光素子21a〜21dを区別する必要がない場合には、その参照符号を21とし、同様に、各赤外線受光素子31a〜31dを区別する必要がない場合には、その参照符号を31とする。   In the first conventional example, monocular lenses 22a and 32a are used for the first lens system 22 on the light emitting side and the second lens system 32 on the light receiving side, respectively, and the infrared light emitting element 21 and the infrared light receiving element 31 are used. Both are four elements (infrared light emitting elements 21a to 21d, infrared receiving elements 31a to 31d). In addition, when it is not necessary to distinguish each infrared light emitting element 21a-21d, the reference code | symbol is set to 21, Similarly, when it is not necessary to distinguish each infrared light receiving element 31a-31d, the reference code | symbol is used. 31.

赤外線発光素子21a〜21d,赤外線受光素子31a〜31dともに回路基板11上に横一列(図7において左右方向)に等間隔に実装されており、自動ドアの出入り口近傍の床面を監視エリアAとして、赤外線発光素子21a〜21dから第1レンズ系22を介して監視エリアA上に赤外線スポット光SPa〜SPdが一列状態に照射される。なお、赤外線発光素子21a〜21dの実線図示の各光軸には、参照符号23a〜23dを付している。   The infrared light emitting elements 21a to 21d and the infrared light receiving elements 31a to 31d are mounted on the circuit board 11 in a horizontal row (horizontal direction in FIG. 7) at equal intervals, and the floor surface near the entrance / exit of the automatic door is used as the monitoring area A. The infrared spotlights SPa to SPd are irradiated in a line from the infrared light emitting elements 21a to 21d onto the monitoring area A through the first lens system 22. Reference numerals 23a to 23d are assigned to the optical axes of the infrared light emitting elements 21a to 21d shown by solid lines.

これに対して、赤外線受光素子31a〜31dは、鎖線図示の各光軸33a〜33dが監視エリアA上で赤外線発光素子21a〜21dの各光軸23a〜23dと一致するように、その素子間隔および/または第2レンズ系32の傾きなどが調整される。   On the other hand, the infrared light receiving elements 31a to 31d are arranged so that the optical axes 33a to 33d shown in chain lines coincide with the optical axes 23a to 23d of the infrared light emitting elements 21a to 21d on the monitoring area A. And / or the inclination of the second lens system 32 is adjusted.

これにより、赤外線発光素子21a〜21dによる各赤外線スポット光SPa〜SPdと、赤外線受光素子31a〜31dのスポット状の受光領域RPa〜RPdとが重なり合い、赤外線発光素子21aから出射される赤外線が赤外線受光素子31aに受光され、同様にして、21bと31b,21cと31c,21dと31dとの間で、それぞれ赤外線の授受が行われる。   Thereby, each infrared spot light SPa-SPd by the infrared light emitting elements 21a-21d overlaps the spot-shaped light receiving areas RPa-RPd of the infrared light receiving elements 31a-31d, and the infrared light emitted from the infrared light emitting element 21a is received by infrared light. The light is received by the element 31a, and similarly, infrared rays are exchanged between 21b and 31b, 21c and 31c, and 21d and 31d.

図7に示す例では、説明の便宜上、赤外線発光素子21a〜21dと赤外線受光素子31a〜31dの一列分のみの組を示しているが、実際の監視エリアAにおいては、図8に示すように、自動ドアの出入り口近傍の床面に、多列の監視エリアA1〜A4が設定される(例えば、特許文献1参照)。   In the example shown in FIG. 7, for convenience of explanation, a set of only one row of the infrared light emitting elements 21 a to 21 d and the infrared light receiving elements 31 a to 31 d is shown, but in the actual monitoring area A, as shown in FIG. Multi-row monitoring areas A1 to A4 are set on the floor near the doorway of the automatic door (see, for example, Patent Document 1).

監視エリアA内に、物体(人や小動物、その他に荷台等が含まれるが、以下の説明では「人」を想定する)が存在する場合と非存在の場合とで、各赤外線受光素子31a〜31dでの受光量が変化するため、制御部では、その受光量の変化に基づいてドアエンジン(ともに図示しない)を駆動させてドアの開閉を制御する。   In the monitoring area A, each infrared light receiving element 31a˜ is present depending on whether or not an object (a person, a small animal, etc. includes a loading platform, etc., but “person” is assumed in the following description) is present. Since the amount of light received at 31d changes, the control unit controls the opening and closing of the door by driving a door engine (both not shown) based on the change in the amount of received light.

ところで、監視エリアA内における人の存在,非存在の判断のみならず、最近では、監視エリアAから赤外線スポット光単位での画素的な情報を得て、例えば監視エリアA内における人の位置を検知したり、自動ドアに対する人の接近・離反を判断したり、また、各種のノイズによる誤作動を防止することが行われている。   By the way, not only the presence / absence determination of a person in the monitoring area A, but recently, pixel-like information in the infrared spot light unit is obtained from the monitoring area A, for example, the position of the person in the monitoring area A is determined. Detecting, judging the approaching / leaving of a person with respect to an automatic door, and preventing malfunction due to various noises are performed.

このような画素的な情報を得るには、制御部では、赤外線発光素子21a〜21dを所定の順序にしたがって交代的に走査駆動しながら、赤外線受光素子31a〜31dから出力されるすべての受光信号(受光部30の受光レベル)を監視するようにしている。   In order to obtain such pixel-like information, the control unit alternately scans and drives the infrared light emitting elements 21a to 21d according to a predetermined order, and receives all the light reception signals output from the infrared light receiving elements 31a to 31d. The light reception level of the light receiving unit 30 is monitored.

これにより、例えば、赤外線発光素子21bの点灯時に受光部30の受光レベルが所定の閾値を超えた場合には、赤外線スポット光SPbの位置に人がいると判断できる。   Thereby, for example, when the light receiving level of the light receiving unit 30 exceeds a predetermined threshold when the infrared light emitting element 21b is turned on, it can be determined that there is a person at the position of the infrared spot light SPb.

しかしながら、上記第1従来例では、監視エリアAを図7において左右方向に広げようとする場合には、それに応じて発光部20側,受光部30側ともに素子数を増やさなければならず、その分、コストアップになる、という問題がある。   However, in the first conventional example, when the monitoring area A is to be expanded in the horizontal direction in FIG. 7, the number of elements must be increased on both the light emitting unit 20 side and the light receiving unit 30 side accordingly. There is a problem that the cost increases.

素子数を削減する方法として、レンズ系に分割レンズ(複眼レンズ)を用いる方法が知られている。図9にレンズ系に分割レンズを採用した第2従来例に係る例えば自動ドア用途の反射型センサ1Dを示す。なお、この第2従来例の説明において、上記第1従来例と実質的に同一の構成要素には同じ参照符号を用いる。   As a method for reducing the number of elements, a method using a split lens (compound eye lens) in a lens system is known. FIG. 9 shows a reflective sensor 1D for use in an automatic door, for example, according to a second conventional example in which a split lens is used in the lens system. In the description of the second conventional example, the same reference numerals are used for components that are substantially the same as those in the first conventional example.

この自動ドア用反射型センサ1Dでは、一例として、発光部20,受光部30ともに2素子(赤外線発光素子21a,21b;赤外線受光素子31a,31b)とし、これに伴って、発光側の第1レンズ系22と受光側の第2レンズ系32に、それぞれ分割比「2」の2分割レンズ22b,32bを用いている。   In this automatic door reflection type sensor 1D, as an example, both the light emitting unit 20 and the light receiving unit 30 have two elements (infrared light emitting elements 21a and 21b; infrared light receiving elements 31a and 31b). For the lens system 22 and the second lens system 32 on the light receiving side, two-divided lenses 22b and 32b having a division ratio of “2” are used.

これによれば、図9において2分割レンズ22b,32bの各左側レンズ部分をL,各右側レンズ部分をRとして、発光部20内の一方の赤外線発光素子21aから出射される赤外線は2分割レンズ22bにより光軸23aLの赤外光と光軸23aRの赤外光とに分割され、赤外線発光素子21aから監視エリアAに2つの赤外線スポット光SPaL,SPaRが照射される。   According to this, in FIG. 9, each left lens portion of the two-divided lenses 22b and 32b is L, and each right lens portion is R, and the infrared rays emitted from one infrared light emitting element 21a in the light emitting unit 20 are divided into two divided lenses. The infrared light of the optical axis 23aL and the infrared light of the optical axis 23aR are divided by 22b, and two infrared spot lights SPaL and SPaR are irradiated to the monitoring area A from the infrared light emitting element 21a.

同様にして、発光部20内の他方の赤外線発光素子21bから出射される赤外線は2分割レンズ22bにより光軸23bLの赤外光と光軸23bRの赤外光とに分割され、赤外線発光素子21bから監視エリアAに2つの赤外線スポット光SPbL,SPbRが照射される。   Similarly, the infrared light emitted from the other infrared light emitting element 21b in the light emitting unit 20 is divided into infrared light having an optical axis 23bL and infrared light having an optical axis 23bR by the two-divided lens 22b, and the infrared light emitting element 21b. To the monitoring area A is irradiated with two infrared spot lights SPbL and SPbR.

これに対して、受光部30側の一方の赤外線受光素子31aの光軸(受光軸)は、2分割レンズ32bにより2つの光軸33aL,33aRに分割され、これら各光軸33aL,33aRは監視エリアA上で、赤外線発光素子21aの各光軸23aL,23aRと一致するように調整される。なお、各光軸の位置調整(位置合わせ)は、例えばレンズ系の傾きや移動により行うことができる。   On the other hand, the optical axis (light receiving axis) of one infrared light receiving element 31a on the light receiving unit 30 side is divided into two optical axes 33aL and 33aR by the two-divided lens 32b, and these optical axes 33aL and 33aR are monitored. On the area A, adjustment is made so as to coincide with the optical axes 23aL and 23aR of the infrared light emitting element 21a. The position adjustment (position alignment) of each optical axis can be performed, for example, by tilting or moving the lens system.

これにより、赤外線受光素子31aは、2つの受光領域RPaL,RPaRを持ち、これら各受光領域RPaL,RPaRが監視エリアA上で赤外線発光素子21aによる赤外線スポット光SPaL,SPaRと重ねられる。   Accordingly, the infrared light receiving element 31a has two light receiving areas RPaL and RPaR, and these light receiving areas RPaL and RPaR are superimposed on the infrared spot light SPaL and SPaR by the infrared light emitting element 21a on the monitoring area A.

同様に、受光部30側の他方の赤外線受光素子31bの光軸は、2分割レンズ32bにより2つの光軸33bL,33bRに分割され、これら各光軸33bL,33bRは監視エリアA上で、赤外線発光素子21bの各光軸23bL,23bRと一致するように調整される。   Similarly, the optical axis of the other infrared light receiving element 31b on the light receiving unit 30 side is divided into two optical axes 33bL and 33bR by the two-divided lens 32b, and these optical axes 33bL and 33bR are infrared rays on the monitoring area A. Adjustment is made so as to coincide with the optical axes 23bL and 23bR of the light emitting element 21b.

これにより、赤外線受光素子31bは、2つの受光領域RPbL,RPbRを持ち、これら各受光領域RPbL,RPbRが監視エリアA上で赤外線発光素子21bによる赤外線スポット光SPbL,SPbRと重ねられる。   Thereby, the infrared light receiving element 31b has two light receiving areas RPbL and RPbR, and these light receiving areas RPbL and RPbR are superimposed on the infrared spot light SPbL and SPbR by the infrared light emitting element 21b on the monitoring area A.

このように、第2従来例に係る自動ドア用反射型センサ1Dによれば、一方の赤外線発光素子21aから出射される赤外線は2つの赤外光に分割されて監視エリアAに照射され、それぞれの反射光が一方の赤外線受光素子31aにて受光される。   Thus, according to the reflective sensor 1D for automatic doors according to the second conventional example, the infrared light emitted from one infrared light emitting element 21a is divided into two infrared lights and irradiated to the monitoring area A, respectively. Reflected light is received by one of the infrared light receiving elements 31a.

また、他方の赤外線発光素子21bから出射される赤外線は2つの赤外光に分割されて監視エリアAに照射され、それぞれの反射光が他方の赤外線受光素子31bにて受光されることになるため、上記第1従来例と比べて、素子数が半分でありながら同一面積の監視エリアAを上記第1従来例と同数の赤外線スポット光で、すなわち同じ信頼性のもとで監視することができる。   In addition, the infrared light emitted from the other infrared light emitting element 21b is divided into two infrared lights and irradiated to the monitoring area A, and each reflected light is received by the other infrared light receiving element 31b. As compared with the first conventional example, the monitoring area A having the same area as the first conventional example can be monitored with the same number of infrared spot lights as the first conventional example, that is, with the same reliability. .

しかしながら、第2従来例では、上記第1従来例のように各赤外線スポット光単位での検知ができない、という問題がある。   However, in the second conventional example, there is a problem that detection in units of each infrared spot light cannot be performed as in the first conventional example.

すなわち、赤外線発光素子21a,21bを交代的に点灯させたとしても、赤外線発光素子21aからは2つのの赤外線スポット光SPaL,SPaRが同時に照射され、また、赤外線発光素子21bからは2つのの赤外線スポット光SPbL,SPbRが同時に照射される。   That is, even if the infrared light emitting elements 21a and 21b are alternately turned on, two infrared spot lights SPaL and SPaR are simultaneously irradiated from the infrared light emitting element 21a, and two infrared rays are emitted from the infrared light emitting element 21b. Spot lights SPbL and SPbR are irradiated simultaneously.

したがって、例えば赤外線発光素子21aの点灯時に、これと対をなす赤外線受光素子31aの受光レベルがドア開の閾値レベルを超えたとしても、赤外線スポット光SPaL,SPaRのいずれかで人が検知されたかまでは判断できない。   Therefore, for example, when the infrared light emitting element 21a is turned on, even if the light receiving level of the infrared light receiving element 31a paired with the infrared light emitting element 21a exceeds the threshold value for opening the door, whether or not a person has been detected by either the infrared spot light SPaL or SPaR I cannot judge until.

特開2007−271537号公報JP 2007-271537 A

したがって、本発明の課題は、赤外線を利用した反射型センサにおいて、各赤外線スポット光単位での検知を可能にしつつ、素子数を削減できるようにすることにある。   Accordingly, an object of the present invention is to enable the detection of each infrared spot light unit and reduce the number of elements in a reflective sensor using infrared rays.

上記課題を解決するため、本発明は、赤外線発光素子を含む発光部および赤外線受光素子を含む受光部と、上記赤外線発光素子に駆動信号を出力するとともに、上記赤外線受光素子から出力される受光信号に基づいて制御用信号を生成する制御部とを備え、所定の床面を監視エリアとして、上記発光部より発光側の第1レンズ系を介して上記監視エリアに複数の赤外線スポット光を所定の配列で照射し、上記各赤外線スポット光の上記監視エリアからの反射光を受光側の第2レンズ系を介して上記受光部で受光する反射型センサにおいて、上記発光部側における上記赤外線発光素子の個数をm1、上記発光側の第1レンズ系の分割比をn1(m1,n1は1以上の正の整数)とし、上記受光部側における上記赤外線受光素子の個数をm2、上記受光側の第2レンズ系の分割比をn2(m2,n2は1以上の正の整数。ただし、m1≠m2,n1≠n2)として、上記赤外線発光素子の個数m1および上記発光側の第1レンズ系の分割比n1と、上記赤外線受光素子の個数m2および上記受光側の第2レンズ系の分割比n2との関係を、m1×n1=m2×n2(ただし、n1>n2でのn1/n2,n1<n2でのn2/n1の各除算値が割り切れる場合、および上記各除算値が割り切れないときでもn1,n2に1以外の公約数が存在する場合を除く)とすることを特徴としている。   In order to solve the above problems, the present invention provides a light emitting unit including an infrared light emitting element, a light receiving unit including an infrared light receiving element, a drive signal to the infrared light emitting element, and a light receiving signal output from the infrared light receiving element. And a control unit that generates a control signal based on a predetermined floor surface as a monitoring area, and a plurality of infrared spot lights are transmitted to the monitoring area through the first lens system on the light emission side from the light emitting unit. In a reflective sensor that irradiates in an array and receives reflected light from the monitoring area of each infrared spot light by the light receiving unit through the second lens system on the light receiving side, the infrared light emitting element on the light emitting unit side The number is m1, the division ratio of the first lens system on the light emitting side is n1 (m1, n1 is a positive integer of 1 or more), and the number of the infrared light receiving elements on the light receiving side is m2. The division ratio of the second lens system on the light receiving side is n2 (m2, n2 are positive integers of 1 or more, provided that m1 ≠ m2, n1 ≠ n2), and the number m1 of the infrared light emitting elements and the first light emitting side first. The relationship between the division ratio n1 of the lens system and the number m2 of the infrared light receiving elements and the division ratio n2 of the second lens system on the light receiving side is expressed as m1 × n1 = m2 × n2 (where n1 / N1> n2) (where n2 / n1 <n2 where n2 / n1 <n2 is divisible, and n1 and n2 have a common divisor other than 1 even when each of the divided values is not divisible)) Yes.

本発明において、上記発光側の第1レンズ系に分割比1の単眼レンズを用いる場合、上記制御部は、上記m1個の赤外線発光素子を所定の順序で交代的に走査駆動するとともに、上記m2個の赤外線受光素子から出力される受光信号を監視する。   In the present invention, when a monocular lens having a division ratio of 1 is used for the first lens system on the light emitting side, the control unit alternately scans and drives the m1 infrared light emitting elements in a predetermined order, and the m2 The light reception signal output from each infrared light receiving element is monitored.

本発明において、上記受光側の第2レンズ系に分割比1の単眼レンズを用いる場合、上記制御部は、上記m1個の赤外線発光素子を同時に駆動するとともに、上記m2個の赤外線受光素子から出力される各受光信号を監視する。   In the present invention, when a monocular lens having a division ratio of 1 is used for the second lens system on the light receiving side, the control unit simultaneously drives the m1 infrared light emitting elements and outputs from the m2 infrared light receiving elements. Each received light signal is monitored.

本発明において、上記赤外線発光素子の個数m1および上記赤外線受光素子の個数m2がともに2以上であり、かつ、上記発光側の第1レンズ系および上記受光側の第2レンズ系にそれぞれ分割比2以上の複眼レンズを用いる場合、上記制御部は、上記m1個の各赤外線発光素子を所定の順序で交代的に走査駆動するとともに、上記m2個の各赤外線受光素子から出力される受光信号を個別的に監視する。   In the present invention, the number m1 of the infrared light emitting elements and the number m2 of the infrared light receiving elements are both 2 or more, and the split ratio is 2 for each of the first lens system on the light emitting side and the second lens system on the light receiving side. When the above compound eye lens is used, the control unit alternately scans and drives the m1 infrared light emitting elements in a predetermined order, and individually receives the light reception signals output from the m2 infrared light receiving elements. Monitor.

本発明によれば、発光部側における赤外線発光素子の個数をm1、発光側の第1レンズ系の分割比をn1(m1,n1は1以上の正の整数)とし、受光部側における赤外線受光素子の個数をm2、受光側の第2レンズ系の分割比をn2(m2,n2は1以上の正の整数。ただし、m1≠m2,n1≠n2)として、赤外線発光素子の個数m1および発光側の第1レンズ系の分割比n1と、赤外線受光素子の個数m2および受光側の第2レンズ系の分割比n2との関係を、m1×n1=m2×n2(ただし、n1>n2でのn1/n2,n1<n2でのn2/n1の各除算値が割り切れる場合、および各除算値が割り切れないときでもn1,n2に1以外の公約数が存在する場合を除く)とすることにより、上記第1従来例に比べて発光部側もしくは受光部側の素子数を半分以下に減らすことができる。   According to the present invention, the number of infrared light emitting elements on the light emitting unit side is m1, the division ratio of the first lens system on the light emitting side is n1 (m1 and n1 are positive integers of 1 or more), and infrared light reception on the light receiving unit side. Assuming that the number of elements is m2 and the division ratio of the second lens system on the light receiving side is n2 (m2, n2 are positive integers of 1 or more, where m1 ≠ m2, n1 ≠ n2), the number of infrared light emitting elements m1 and light emission The relationship between the division ratio n1 of the first lens system on the side, the number m2 of infrared light receiving elements, and the division ratio n2 of the second lens system on the light reception side is expressed as m1 × n1 = m2 × n2 (where n1> n2 n1 / n2, n1 <n2 when each division value of n2 / n1 is divisible, and even when each division value is not divisible, there is a case where a common divisor other than 1 exists in n1, n2). Compared to the first conventional example, the light emitting part side Alternatively, the number of elements on the light receiving unit side can be reduced to half or less.

発光側の第1レンズ系に分割比1の単眼レンズを用いる場合には、m1個の赤外線発光素子を所定の順序で交代的に走査駆動するとともに、m2個の赤外線受光素子から出力される受光信号を監視することにより、上記第1従来例と同じく、各赤外線スポット光単位での検知が可能となる。   When a monocular lens having a division ratio of 1 is used for the first lens system on the light emission side, m1 infrared light emitting elements are alternately scanned and driven in a predetermined order, and light received from the m2 infrared light receiving elements is received. By monitoring the signal, detection can be performed in units of each infrared spotlight as in the first conventional example.

また、受光側の第2レンズ系に分割比1の単眼レンズを用いる場合には、m1個の赤外線発光素子を同時に駆動するとともに、m2個の赤外線受光素子から出力される各受光信号を監視することにより、上記第1従来例と同じく、各赤外線スポット光単位での検知が可能となる。   When a monocular lens having a division ratio of 1 is used for the second lens system on the light receiving side, m1 infrared light emitting elements are simultaneously driven and each light receiving signal output from the m2 infrared light receiving elements is monitored. As a result, as in the first conventional example, detection in units of each infrared spot light is possible.

また、赤外線発光素子の個数m1および赤外線受光素子の個数m2がともに2以上であり、かつ、発光側の第1レンズ系および受光側の第2レンズ系にそれぞれ分割比2以上の複眼レンズを用いる場合には、m1個の各赤外線発光素子を所定の順序で交代的に走査駆動するとともに、m2個の各赤外線受光素子から出力される受光信号を個別的に監視することにより、上記第1従来例と同じく、各赤外線スポット光単位での検知が可能となる。   The number m1 of the infrared light emitting elements and the number m2 of the infrared light receiving elements are both 2 or more, and compound eye lenses having a division ratio of 2 or more are used for the first lens system on the light emitting side and the second lens system on the light receiving side, respectively. In this case, the m1 infrared light emitting elements are alternately scanned and driven in a predetermined order, and the light receiving signals output from the m2 infrared light receiving elements are individually monitored, whereby the first conventional technique described above. As in the example, detection can be performed in units of each infrared spot light.

次に、図1ないし図6により、本発明のいくつかの実施形態について説明する。図1は本発明の第1実施形態に係る反射型センサの構成を示す模式図、図2は第1実施形態における制御部を示す模式図、図3は本発明の第2実施形態に係る反射型センサの構成を示す模式図、図4は第2実施形態における制御部を示す模式図、図5は本発明の第3実施形態に係る反射型センサの発光部側および受光部側の構成を示す模式図、図6は本発明の第4実施形態に係る反射型センサの発光部側および受光部側の構成を示す模式図である。   Next, several embodiments of the present invention will be described with reference to FIGS. FIG. 1 is a schematic diagram showing a configuration of a reflective sensor according to the first embodiment of the present invention, FIG. 2 is a schematic diagram showing a control unit in the first embodiment, and FIG. 3 is a reflection according to the second embodiment of the present invention. FIG. 4 is a schematic diagram showing a control unit in the second embodiment. FIG. 5 is a schematic diagram showing the configuration of the light emitting unit side and the light receiving unit side of the reflective sensor according to the third embodiment of the present invention. FIG. 6 is a schematic diagram showing the configuration of the light emitting unit side and the light receiving unit side of the reflective sensor according to the fourth embodiment of the present invention.

なお、本発明の反射型センサは、自動ドアの開閉制御用のほかに、例えば特定の建物,部屋もしくは場所に対する入退出者(物体)の検知やその人数を計数する場合などにも用いることができるが、以下に説明する各実施形態では、いずれも用途を自動ドアの開閉制御用としている。また、この実施形態の説明において、先の図7および図9で説明した上記従来例と実質的に同一の構成要素には、それと同じ参照符号を用いる。   The reflective sensor according to the present invention can be used not only for automatic door opening / closing control, but also for detecting an entry / exit person (object) with respect to a specific building, room or place and counting the number of persons. However, in each of the embodiments described below, the application is used for automatic door opening / closing control. Further, in the description of this embodiment, the same reference numerals are used for constituent elements that are substantially the same as those of the conventional example described above with reference to FIGS.

まず、図1および図2により、本発明の第1実施形態に係る反射型センサ1Aについて説明する。この第1実施形態は請求項1,2に対応している。   First, a reflective sensor 1A according to a first embodiment of the present invention will be described with reference to FIGS. This first embodiment corresponds to claims 1 and 2.

この自動ドア用反射型センサ1Aでは、赤外線受光素子31の個数をm2、受光側の第2レンズ系32の分割比をn2として、発光側の第1レンズ系22に分割比1の単眼レンズ22aを用い、赤外線発光素子21の個数をm2×n2とし、かつ、制御部12にて、m2×n2個の赤外線発光素子21を所定の順序で交代的に走査駆動するとともに、m2個の赤外線受光素子31から出力される受光信号を常時監視する。   In the automatic door reflection type sensor 1A, the number of infrared light receiving elements 31 is m2, the division ratio of the second lens system 32 on the light receiving side is n2, and the monocular lens 22a having a division ratio of 1 is set on the first lens system 22 on the light emitting side. , The number of infrared light emitting elements 21 is set to m2 × n2, and the control unit 12 alternately scans and drives m2 × n2 infrared light emitting elements 21 in a predetermined order, and receives m2 infrared light receiving elements. The light reception signal output from the element 31 is constantly monitored.

図1の例では、発光部20の赤外線発光素子21を4素子(赤外線発光素子21a〜21d)とし、これに対して、受光部30の赤外線受光素子31を2素子(赤外線受光素子31a,31b)とし、発光側の第1レンズ系22に単眼レンズ22aを用い、受光側の第2レンズ系32に分割比「2」の2分割レンズ(複眼レンズ)32bを用いている。   In the example of FIG. 1, the infrared light emitting elements 21 of the light emitting unit 20 are four elements (infrared light emitting elements 21a to 21d), while the infrared light receiving elements 31 of the light receiving unit 30 are two elements (infrared light receiving elements 31a and 31b). ), A monocular lens 22a is used for the first lens system 22 on the light emitting side, and a two-divided lens (compound lens) 32b with a division ratio of “2” is used for the second lens system 32 on the light receiving side.

制御部12には、CPU(中央演算処理ユニット)もしくはマイクロコンピュータなどが用いられてよい。制御部12は、赤外線発光素子21に駆動信号を出力するとともに、赤外線受光素子31から出力される受光信号と所定の閾値とを比較して自動ドアの開閉信号を生成する。   The control unit 12 may be a CPU (Central Processing Unit) or a microcomputer. The control unit 12 outputs a drive signal to the infrared light emitting element 21 and compares the light reception signal output from the infrared light receiving element 31 with a predetermined threshold value to generate an automatic door opening / closing signal.

なお、図示されていないが、赤外線受光素子31から出力される受光信号は、A/D変換器を介して制御部12に入力され、また、赤外線発光素子21に対する駆動信号は、発光ドライバ回路に与えられる。   Although not shown, the light reception signal output from the infrared light receiving element 31 is input to the control unit 12 via the A / D converter, and the drive signal for the infrared light emitting element 21 is sent to the light emitting driver circuit. Given.

赤外線発光素子21a〜21d、赤外線受光素子31a,31dは、ともに回路基板11上に横一列(図1において左右方向)に所定の間隔で実装されており、赤外線発光素子21a〜21dから第1レンズ系22の単眼レンズ22aを介して監視エリアA上に赤外線スポット光SPa〜SPdが一列状態に照射される。なお、参照符号23a〜23dは赤外線発光素子21a〜21dの各光軸である。   The infrared light emitting elements 21a to 21d and the infrared light receiving elements 31a and 31d are both mounted on the circuit board 11 in a horizontal row (in the left-right direction in FIG. 1) at a predetermined interval, and the first lens from the infrared light emitting elements 21a to 21d. Infrared spot lights SPa to SPd are irradiated in a line on the monitoring area A through the monocular lens 22a of the system 22. Reference numerals 23a to 23d are optical axes of the infrared light emitting elements 21a to 21d.

これに対して、受光部30側の一方の赤外線受光素子31aの光軸(受光軸)は、2分割レンズ32bにより2つの光軸33aL,33aRに分割され、これら各光軸33aL,33aRは監視エリアA上で、赤外線発光素子21a,21cの各光軸23a,23cと一致するように調整される。なお、各光軸の位置調整(位置合わせ)は、例えばレンズ系の傾きや移動により行うことができる。   On the other hand, the optical axis (light receiving axis) of one infrared light receiving element 31a on the light receiving unit 30 side is divided into two optical axes 33aL and 33aR by the two-divided lens 32b, and these optical axes 33aL and 33aR are monitored. On the area A, the infrared light emitting elements 21a and 21c are adjusted to coincide with the optical axes 23a and 23c. The position adjustment (position alignment) of each optical axis can be performed, for example, by tilting or moving the lens system.

これにより、赤外線受光素子31aは、2つの受光領域RPaL,RPaRを持ち、これら各受光領域RPaL,RPaRが、監視エリアA上でそれぞれ赤外線発光素子21cによる赤外線スポット光SPcと赤外線発光素子21aによる赤外線スポット光SPaと重ねられる。   Thereby, the infrared light receiving element 31a has two light receiving areas RPaL and RPaR, and these light receiving areas RPaL and RPaR are infrared spot light SPc by the infrared light emitting element 21c and infrared light by the infrared light emitting element 21a on the monitoring area A, respectively. It is superimposed on the spot light SPa.

同様に、受光部30側の他方の赤外線受光素子31bの光軸は、2分割レンズ32bにより2つの光軸33bL,33bRに分割され、これら各光軸33bL,33bRは監視エリアA上で、赤外線発光素子21b,21dの各光軸23b,23dと一致するように調整される。   Similarly, the optical axis of the other infrared light receiving element 31b on the light receiving unit 30 side is divided into two optical axes 33bL and 33bR by the two-divided lens 32b, and these optical axes 33bL and 33bR are infrared rays on the monitoring area A. Adjustment is made so as to coincide with the optical axes 23b and 23d of the light emitting elements 21b and 21d.

これにより、赤外線受光素子31bは、2つの受光領域RPbL,RPbRを持ち、これら各受光領域RPbL,RPbRが、監視エリアA上でそれぞれ赤外線発光素子21dによる赤外線スポット光SPdと赤外線発光素子21bによる赤外線スポット光SPbと重ねられる。   Thereby, the infrared light receiving element 31b has two light receiving regions RPbL and RPbR, and these light receiving regions RPbL and RPbR are infrared spot light SPd by the infrared light emitting element 21d and infrared light by the infrared light emitting element 21b on the monitoring area A, respectively. Superposed with the spot light SPb.

これにより、赤外線発光素子21a,21cから出射される赤外光は、ともに一方の赤外線受光素子31aにて受光され、赤外線発光素子21b,21dから出射される赤外光は、ともに他方の赤外線受光素子31bにて受光される。   Thereby, both infrared light emitted from the infrared light emitting elements 21a and 21c is received by one infrared light receiving element 31a, and both infrared light emitted from the infrared light emitting elements 21b and 21d are received by the other infrared light receiving element. Light is received by the element 31b.

図2に示すように、制御部12は、各赤外線発光素子21a〜21dに対して駆動信号を出力し、各赤外線発光素子21a〜21dを順次交代的に駆動する。これにより、各赤外線発光素子21a〜21dは、例えば21a→21b→21c→21d→21a…のようにサイクリック的に点灯する。   As shown in FIG. 2, the control unit 12 outputs a drive signal to each of the infrared light emitting elements 21a to 21d, and sequentially drives each of the infrared light emitting elements 21a to 21d. Thereby, each infrared light emitting element 21a-21d lights cyclically like 21a-> 21b-> 21c-> 21d-> 21a ..., for example.

また、制御部12は、各赤外線受光素子31a,31bから出力される受光信号を受光部30全体の受光信号として常時監視し、あらかじめ設定されているドア開の閾値と比較する。   Moreover, the control part 12 always monitors the light reception signal output from each infrared light receiving element 31a, 31b as a light reception signal of the whole light-receiving part 30, and compares it with the preset threshold value of the door opening.

これによれば、例えば赤外線発光素子21bの点灯時に、受光部30の受光レベルが閾値を超えた場合には、赤外線発光素子21bによる赤外線スポット光SPbの位置に人が侵入したと判断することができる。   According to this, for example, when the light receiving level of the light receiving unit 30 exceeds the threshold value when the infrared light emitting element 21b is turned on, it is determined that a person has entered the position of the infrared spot light SPb by the infrared light emitting element 21b. it can.

この第1実施形態では、上記したように、赤外線受光素子31の個数をm2、受光側の第2レンズ系32の分割比をn2として、赤外線発光素子21の数がm2×n2個と決められることから、例えば赤外線受光素子31が3個で、受光側の第2レンズ系32に3分割レンズが用いられる場合には、赤外線発光素子21の数は9個となる。   In the first embodiment, as described above, the number of the infrared light receiving elements 31 is m2, the division ratio of the second lens system 32 on the light receiving side is n2, and the number of the infrared light emitting elements 21 is determined to be m2 × n2. Therefore, for example, when there are three infrared light receiving elements 31 and a three-divided lens is used for the second lens system 32 on the light receiving side, the number of infrared light emitting elements 21 is nine.

逆に言えば、例えば赤外線発光素子21を6個使用する場合、受光側の第2レンズ系32に2分割レンズを使用するならば、赤外線受光素子31の個数は3個でよく、また、受光側の第2レンズ系32に3分割レンズを使用するならば、赤外線受光素子31の個数は2個でよいことになる。   In other words, for example, if six infrared light emitting elements 21 are used, and if a two-divided lens is used for the second lens system 32 on the light receiving side, the number of infrared light receiving elements 31 may be three. If a three-division lens is used for the second lens system 32 on the side, the number of infrared light receiving elements 31 may be two.

次に、図3および図4により、本発明の第2実施形態に係る自動ドア用反射型センサ1Bについて説明する。この第2実施形態は請求項1,3に対応している。   Next, referring to FIG. 3 and FIG. 4, the automatic door reflection type sensor 1B according to the second embodiment of the present invention will be described. This second embodiment corresponds to claims 1 and 3.

この自動ドア用反射型センサ1Bでは、赤外線発光素子21の個数をm1、発光側の第1レンズ系22の分割比をn1として、受光側の第2レンズ系32に分割比1の単眼レンズ32aを用い、赤外線受光素子31の個数をm1×n1とし、かつ、制御部12にて、m1個の赤外線発光素子21を同時に駆動するとともに、m1×n1個の赤外線受光素子31から出力される各受光信号を好ましくは所定の順序で交代的に走査監視する。   In the automatic door reflective sensor 1B, the number of infrared light emitting elements 21 is m1, the division ratio of the first lens system 22 on the light emitting side is n1, and the monocular lens 32a having a division ratio of 1 is set on the second lens system 32 on the light receiving side. , The number of the infrared light receiving elements 31 is set to m1 × n1, and the control unit 12 simultaneously drives the m1 infrared light emitting elements 21 and outputs each of the m1 × n1 infrared light receiving elements 31. The received light signal is preferably scanned and monitored alternately in a predetermined order.

図3の例では、発光部20の赤外線発光素子21を2素子(赤外線発光素子21a,21b)とし、これに対して、受光部30の赤外線受光素子31を4素子(赤外線受光素子31a〜31d)とし、発光側の第1レンズ系22に2分割レンズ22bを用い、受光側の第2レンズ系32に単眼レンズ32aを用いている。   In the example of FIG. 3, the infrared light emitting element 21 of the light emitting unit 20 has two elements (infrared light emitting elements 21 a and 21 b), and the infrared light receiving element 31 of the light receiving unit 30 has four elements (infrared light receiving elements 31 a to 31 d). ), The split lens 22b is used for the first lens system 22 on the light emitting side, and the monocular lens 32a is used for the second lens system 32 on the light receiving side.

赤外線発光素子21a,21b、赤外線受光素子31a〜31dは、ともに回路基板11上に横一列(図1において左右方向)に所定の間隔で実装されており、発光部20内の一方の赤外線発光素子21aから出射される赤外線は2分割レンズ22bにより光軸23aLの赤外光と光軸23aRの赤外光とに分割され、赤外線発光素子21aから監視エリアAに2つの赤外線スポット光SPaL,SPaRが照射される。   The infrared light emitting elements 21a and 21b and the infrared light receiving elements 31a to 31d are mounted on the circuit board 11 in a horizontal row (in the left-right direction in FIG. 1) at predetermined intervals, and one of the infrared light emitting elements in the light emitting unit 20 is mounted. The infrared light emitted from 21a is divided into infrared light having an optical axis 23aL and infrared light having an optical axis 23aR by a two-divided lens 22b, and two infrared spot lights SPaL and SPaR are emitted from the infrared light emitting element 21a to the monitoring area A. Irradiated.

同様にして、発光部20内の他方の赤外線発光素子21bから出射される赤外線は2分割レンズ22bにより光軸23bLの赤外光と光軸23bRの赤外光とに分割され、赤外線発光素子21bから監視エリアAに2つの赤外線スポット光SPbL,SPbRが照射される。   Similarly, the infrared light emitted from the other infrared light emitting element 21b in the light emitting unit 20 is divided into infrared light having an optical axis 23bL and infrared light having an optical axis 23bR by the two-divided lens 22b, and the infrared light emitting element 21b. To the monitoring area A is irradiated with two infrared spot lights SPbL and SPbR.

これに対して、赤外線受光素子31a〜31dは、鎖線図示の各光軸33a〜33dが監視エリアA上で赤外線発光素子21a,21bのそれぞれ2分割された各光軸23aR,23bR,23aL,23bLと一致するように、その素子間隔および/または第2レンズ系32の単眼レンズ32aの傾きなどが調整される。   In contrast, the infrared light receiving elements 31a to 31d have optical axes 23aR, 23bR, 23aL, and 23bL in which the optical axes 33a to 33d shown in chain lines are divided into two of the infrared light emitting elements 21a and 21b on the monitoring area A, respectively. And / or the inclination of the monocular lens 32a of the second lens system 32 and the like are adjusted.

これにより、赤外線発光素子21a,21bによる各赤外線スポット光SPaR,SPbR,SPaL,SPbLと、赤外線受光素子31a〜31dのスポット状の受光領域RPa〜RPdとが重なり合い、赤外線発光素子21aから出射される赤外線が赤外線受光素子31a,31cに受光され、赤外線発光素子21bから出射される赤外線が赤外線受光素子31b,31dに受光される。   Thereby, each infrared spot light SPaR, SPbR, SPaL, SPbL by the infrared light emitting elements 21a, 21b overlaps with the spot-like light receiving areas RPa-RPd of the infrared light receiving elements 31a-31d, and emitted from the infrared light emitting element 21a. Infrared light is received by the infrared light receiving elements 31a and 31c, and infrared light emitted from the infrared light emitting element 21b is received by the infrared light receiving elements 31b and 31d.

図4に示すように、この自動ドア用反射型センサ1Bにおいて、制御部12は、2つの赤外線発光素子21a,21bに対して同時に駆動信号与え、各赤外線発光素子21a,21bを同時に点灯させる。   As shown in FIG. 4, in this automatic door reflection type sensor 1B, the control unit 12 simultaneously applies drive signals to the two infrared light emitting elements 21a and 21b, and lights the infrared light emitting elements 21a and 21b simultaneously.

これに対して、受光部30の各赤外線受光素子31a〜31dから出力される受光信号は、制御部12に個別的に入力される。制御部12では、各赤外線受光素子31a〜31dごとに個別的に入力される受光信号を所定の順序、例えば31a→31b→31c→31d→31a…のようにサイクリック的に走査監視する。   On the other hand, the light receiving signals output from the infrared light receiving elements 31 a to 31 d of the light receiving unit 30 are individually input to the control unit 12. The control unit 12 cyclically monitors and monitors the light reception signals individually input for each of the infrared light receiving elements 31a to 31d in a predetermined order, for example, 31a → 31b → 31c → 31d → 31a.

これによれば、例えば赤外線受光素子31bの走査時に、その受光レベルがドア開の閾値を超えた場合には、赤外線受光素子31bの受光領域RPb(赤外線スポット光SPbRに対応)の位置に人が侵入したと判断することができる。   According to this, for example, when the light receiving level exceeds the door opening threshold during scanning of the infrared light receiving element 31b, a person is placed at the position of the light receiving region RPb (corresponding to the infrared spot light SPbR) of the infrared light receiving element 31b. It can be determined that an intrusion has occurred.

なお、赤外線受光素子31a〜31dから出力される各受光信号を上記のようにサイクリック的に走査監視することなく、個別的に監視することによっても、赤外線スポット光単位で監視することができる。   In addition, it is possible to monitor each received light signal output from the infrared light receiving elements 31a to 31d in units of infrared spot light by individually monitoring the light receiving signals without cyclic scanning monitoring as described above.

この第2実施形態では、上記したように、赤外線発光素子21の個数をm1、発光側の第1レンズ系22の分割比をn1として、赤外線受光素子31の数がm1×n1個と決められることから、例えば赤外線発光素子21が3個で、発光側の第1レンズ系22に3分割レンズが用いられる場合には、赤外線受光素子21の数は9個となる。   In the second embodiment, as described above, the number of infrared light receiving elements 31 is determined to be m1 × n1, where m1 is the number of infrared light emitting elements 21 and n1 is the division ratio of the first lens system 22 on the light emitting side. Therefore, for example, when there are three infrared light emitting elements 21 and a three-division lens is used for the first lens system 22 on the light emitting side, the number of infrared light receiving elements 21 is nine.

逆に言えば、例えば赤外線受光素子31を6個とする場合、発光側の第1レンズ系22に2分割レンズを使用するならば、赤外線発光素子21の数は3個でよく、また、発光側の第2レンズ系22に3分割レンズを使用するならば、赤外線発光素子21の数は2個でよいことになる。   In other words, for example, when the number of the infrared light receiving elements 31 is six and the split lens is used for the first lens system 22 on the light emitting side, the number of the infrared light emitting elements 21 may be three, and If a three-divided lens is used for the second lens system 22 on the side, the number of infrared light emitting elements 21 may be two.

次に、図5,図6により、本発明の第3実施形態および第4実施形態に係る自動ドア用反射型センサについて説明する。この第3実施形態および第4実施形態は、いずれも請求項1,4に対応している。なお、図5,図6においては、便宜的に発光部20と受光部30とを図(a),(b)に分けて図解し、また、作図の都合上、上記第1,第2実施形態で説明した筐体、回路基板、制御部等はその図示を省略している。   Next, referring to FIGS. 5 and 6, a reflective sensor for an automatic door according to a third embodiment and a fourth embodiment of the present invention will be described. Both the third embodiment and the fourth embodiment correspond to claims 1 and 4. 5 and 6, for convenience, the light emitting unit 20 and the light receiving unit 30 are illustrated separately in FIGS. 5A and 5B. For convenience of drawing, the first and second embodiments are described. The casing, circuit board, control unit, and the like described in the embodiment are not shown.

図5(a),(b)を参照して、第3実施形態では、発光部20の赤外線発光素子21を2素子(赤外線発光素子21a,21b)とし、発光側の第1レンズ系22に分割比「3」の3分割レンズ(複眼レンズ)22cを用い、これに対して、受光部30の赤外線受光素子31を3素子(赤外線受光素子31a〜31c)とし、受光側の第2レンズ系32に分割比「2」の2分割レンズ(複眼レンズ)32bを用いている。   With reference to FIGS. 5A and 5B, in the third embodiment, the infrared light emitting element 21 of the light emitting section 20 is composed of two elements (infrared light emitting elements 21a and 21b), and the first lens system 22 on the light emitting side is provided. A three-division lens (compound eye lens) 22c having a division ratio of “3” is used. On the other hand, the infrared light receiving element 31 of the light receiving unit 30 is made of three elements (infrared light receiving elements 31a to 31c), and the second lens system on the light receiving side. A two-divided lens (compound eye lens) 32 b having a division ratio “2” is used as 32.

図5(a)に示すように、発光部20内の一方の赤外線発光素子21aから出射される赤外線は、3分割レンズ22cにより3分割され、監視エリアAに赤外線発光素子21aによる3つの赤外線スポット光SPaが照射される。   As shown in FIG. 5A, the infrared light emitted from one infrared light emitting element 21a in the light emitting unit 20 is divided into three by a three-divided lens 22c, and three infrared spots by the infrared light emitting element 21a are formed in the monitoring area A. Light SPa is irradiated.

同様にして、他方の赤外線発光素子21bから出射される赤外線も、3分割レンズ22cにより3分割され、監視エリアAに赤外線発光素子21bによる3つの赤外線スポット光SPbが照射される。   Similarly, the infrared light emitted from the other infrared light emitting element 21b is also divided into three by the three-divided lens 22c, and the three infrared spot lights SPb from the infrared light emitting element 21b are irradiated to the monitoring area A.

このようにして、2つの赤外線発光素子21a,21bにより、監視エリアAに6つの赤外線スポット光が照射されることになるが、この場合、好ましくは赤外線発光素子21aによる赤外線スポット光SPaと赤外線発光素子21bによる赤外線スポット光SPbが、図5(a)において、左からSPb→SPaの順に交互に並ぶようにする。   In this way, six infrared spot lights are irradiated to the monitoring area A by the two infrared light emitting elements 21a and 21b. In this case, preferably, the infrared spot light SPa and the infrared light emission by the infrared light emitting element 21a are emitted. Infrared spot light SPb by the element 21b is alternately arranged in the order of SPb → SPa from the left in FIG.

これに対して、図5(b)に示すように、受光部30内の赤外線受光素子31aは、その光軸が2分割レンズ32bにより2分割されるため、監視エリアAに2つの受光領域RPaを持つことになる。   On the other hand, as shown in FIG. 5 (b), the infrared light receiving element 31a in the light receiving unit 30 has its optical axis divided into two by the two-divided lens 32b. Will have.

同様に、赤外線受光素子31b,31cの各光軸も2分割レンズ32bにより2分割されるため、赤外線受光素子31bは、監視エリアAに2つの受光領域RPbを持ち、赤外線受光素子31cも、監視エリアAに2つの受光領域RPcを持つことになる。   Similarly, since the optical axes of the infrared light receiving elements 31b and 31c are also divided into two by the two-divided lens 32b, the infrared light receiving element 31b has two light receiving regions RPb in the monitoring area A, and the infrared light receiving element 31c is also monitored. The area A has two light receiving regions RPc.

このようにして、監視エリアAに3つの赤外線受光素子31a〜31cによる6つの受光領域が設定されるが、図5(b)において、赤外線受光素子31a〜31cの並び順を左から31a→31b→31cとした場合、それらの受光領域の並び順を好ましくは左からRPc→RPb→RPa→RPc→RPb→RPaとして、赤外線スポット光列SPb→SPa→SPb→SPa→SPb→SPaとそれぞれ重なり合うようにする。この第3実施形態における赤外線スポット光と受光領域との対応関係を次の表1に示す。   In this way, six light receiving areas by the three infrared light receiving elements 31a to 31c are set in the monitoring area A. In FIG. 5B, the arrangement order of the infrared light receiving elements 31a to 31c is 31a → 31b from the left. In the case of 31c, the arrangement order of the light receiving regions is preferably RPc → RPb → RPa → RPc → RPb → RPa from the left so that the infrared spot light trains SPb → SPa → SPb → SPa → SPb → SPa overlap each other. To. The correspondence relationship between the infrared spot light and the light receiving area in the third embodiment is shown in Table 1 below.

Figure 2009216677
Figure 2009216677

これから分かるように、一方の赤外線発光素子21aから出射された赤外線スポット光SPaは、受光領域RPb,RPc,Rpaにそれぞれ照射され、その反射光が各赤外線受光素子31a〜31cにて受光される。   As can be seen, the infrared spot light SPa emitted from one infrared light emitting element 21a is applied to the light receiving regions RPb, RPc, and Rpa, and the reflected light is received by the infrared light receiving elements 31a to 31c.

同じく、他方の赤外線発光素子21bから出射された赤外線スポット光SPbも、受光領域RPc,RPa,Rpbにそれぞれ照射され、その反射光が各赤外線受光素子31a〜31cにて受光される。   Similarly, the infrared spot light SPb emitted from the other infrared light emitting element 21b is also applied to the light receiving regions RPc, RPa, and Rpb, and the reflected light is received by the infrared light receiving elements 31a to 31c.

しかしながら、表1に示す赤外線スポット光と受光領域との組み合わせにおいて、同じ組み合わせが存在しないため、赤外線発光素子21a,21bを交互に駆動し、赤外線受光素子31a〜31cから出力される受光信号を個別的に監視することにより、各赤外線スポット光単位で人を検知をすることができる。   However, since the same combination does not exist in the combination of the infrared spot light and the light receiving area shown in Table 1, the infrared light emitting elements 21a and 21b are driven alternately, and the light receiving signals output from the infrared light receiving elements 31a to 31c are individually set. By monitoring automatically, a person can be detected in each infrared spot light unit.

一例として、赤外線発光素子21aの点灯時に、例えば赤外線受光素子31cの受光信号が低レベルから高レベルに転じた場合には、表1において、SPaとRPcの組み合わせの箇所、すなわち図5の監視エリアAにおいて、左から4スポット目の位置に人が存在していると判断することができる。   As an example, when the infrared light emitting element 21a is turned on, for example, when the light reception signal of the infrared light receiving element 31c changes from a low level to a high level, in Table 1, the combination of SPa and RPc, that is, the monitoring area in FIG. In A, it can be determined that a person is present at the position of the fourth spot from the left.

別の例として、赤外線発光素子21bの点灯時に、例えば赤外線受光素子31bの受光信号が低レベルから高レベルに転じた場合には、表1において、SPbとRPbの組み合わせの箇所、すなわち図5の監視エリアAにおいて、左から5スポット目の位置に人が存在していると判断することができる。   As another example, when the infrared light emitting element 21b is turned on, for example, when the light reception signal of the infrared light receiving element 31b changes from a low level to a high level, in Table 1, the combination of SPb and RPb, that is, in FIG. In the monitoring area A, it can be determined that a person is present at the fifth spot from the left.

次に、図6(a),(b)を参照して、第4実施形態では、発光部20の赤外線発光素子21を4素子(赤外線発光素子21a〜21d)とし、発光側の第1レンズ系22に分割比「3」の3分割レンズ(複眼レンズ)22cを用い、これに対して、受光部30の赤外線受光素子31を3素子(赤外線受光素子31a〜31c)とし、受光側の第2レンズ系32に分割比「4」の4分割レンズ(複眼レンズ)32dを用いている。   Next, referring to FIGS. 6A and 6B, in the fourth embodiment, the infrared light emitting element 21 of the light emitting unit 20 is composed of four elements (infrared light emitting elements 21a to 21d), and the first lens on the light emitting side. A three-division lens (compound eye lens) 22c having a division ratio of “3” is used for the system 22, and the infrared light receiving element 31 of the light receiving unit 30 is composed of three elements (infrared light receiving elements 31a to 31c). The two-lens system 32 uses a four-divided lens (compound lens) 32d having a division ratio of “4”.

図6(a)に示すように、発光部20内の赤外線発光素子21a〜21dから出射される赤外線は、それぞれ3分割レンズ22cにより3分割され、これにより、監視エリアAには、赤外線発光素子21aによる3つの赤外線スポット光SPa,赤外線発光素子21bによる3つの赤外線スポット光SPb,赤外線発光素子21cによる3つの赤外線スポット光SPc,赤外線発光素子21dによる3つの赤外線スポット光SPdが照射される。   As shown in FIG. 6A, the infrared rays emitted from the infrared light emitting elements 21a to 21d in the light emitting unit 20 are each divided into three by a three-divided lens 22c. Three infrared spot light SPa by 21a, three infrared spot light SPb by infrared light emitting element 21b, three infrared spot light SPc by infrared light emitting element 21c, and three infrared spot light SPd by infrared light emitting element 21d are irradiated.

したがって、赤外線発光素子21a〜21dを同時に点灯した場合、監視エリアAには、12個の赤外線スポット光が同時に照射されることになるが、図6(a)において、赤外線発光素子21a〜21dの並び順を左から21a→21b→21c→21dとした場合、それらの赤外線スポット光の並び順を好ましくは左からSPd→SPc→SPb→SPaの繰り返しとする。   Therefore, when the infrared light emitting elements 21a to 21d are simultaneously turned on, the 12 infrared spot lights are simultaneously irradiated to the monitoring area A. In FIG. 6A, the infrared light emitting elements 21a to 21d are irradiated. When the arrangement order is 21a → 21b → 21c → 21d from the left, the arrangement order of the infrared spot lights is preferably the repetition of SPd → SPc → SPb → SPa from the left.

これに対して、図6(b)に示すように、受光部30内の赤外線受光素子31aは、その光軸が4分割レンズ32bにより4分割されるため、監視エリアAに4つの受光領域RPaを持つことになる。   On the other hand, as shown in FIG. 6B, the infrared light receiving element 31a in the light receiving unit 30 is divided into four light receiving regions RPa in the monitoring area A because its optical axis is divided into four by a four-divided lens 32b. Will have.

同様に、赤外線受光素子31b,31cの各光軸も4分割レンズ32dにより4分割されるため、赤外線受光素子31bは、監視エリアAに4つの受光領域RPbを持ち、赤外線受光素子31cも、監視エリアAに4つの受光領域RPcを持つことになる。   Similarly, since each optical axis of the infrared light receiving elements 31b and 31c is also divided into four by the four-divided lens 32d, the infrared light receiving element 31b has four light receiving regions RPb in the monitoring area A, and the infrared light receiving element 31c is also monitored. The area A has four light receiving regions RPc.

このようにして、監視エリアAに3つの赤外線受光素子31a〜31cによる12個の受光領域が設定されるが、図6(b)において、赤外線受光素子31a〜31cの並び順を左から31a→31b→31cとした場合、それらの受光領域の並び順を好ましくは左からRPc→RPb→RPaの繰り返しとして、上記赤外線スポット光列SPd→SPc→SPb→SPaの繰り返しとそれぞれ重なり合うようにする。この第4実施形態における赤外線スポット光と受光領域との対応関係を次の表2に示す。   In this way, 12 light receiving areas by the three infrared light receiving elements 31a to 31c are set in the monitoring area A. In FIG. 6B, the arrangement order of the infrared light receiving elements 31a to 31c from the left is 31a → In the case of 31b → 31c, the arrangement order of these light receiving areas is preferably repeated from the left from RPc → RPb → RPa so as to overlap with the repetition of the infrared spot light trains SPd → SPc → SPb → SPa. The correspondence relationship between the infrared spot light and the light receiving area in the fourth embodiment is shown in Table 2 below.

Figure 2009216677
Figure 2009216677

これから分かるように、赤外線発光素子21aから出射された赤外線スポット光SPaは、受光領域RPc,RPb,Rpaにそれぞれ照射され、その反射光が各赤外線受光素子31a〜31cにて受光される。   As can be seen, the infrared spot light SPa emitted from the infrared light emitting element 21a is applied to the light receiving regions RPc, RPb, and Rpa, and the reflected light is received by the infrared light receiving elements 31a to 31c.

同じく、赤外線発光素子21bから出射された赤外線スポット光SPbは、受光領域RPa,RPc,Rpbに、赤外線発光素子21cから出射された赤外線スポット光SPcは、受光領域RPb,RPa,Rpcに、また、赤外線発光素子21dから出射された赤外線スポット光SPdは、受光領域RPc,RPb,Rpaに照射され、それらの各反射光がそれぞれ赤外線受光素子31a〜31cにて受光される。   Similarly, the infrared spot light SPb emitted from the infrared light emitting element 21b is incident on the light receiving areas RPa, RPc, Rpb, the infrared spot light SPc emitted from the infrared light emitting element 21c is incident on the light receiving areas RPb, RPa, Rpc, and The infrared spot light SPd emitted from the infrared light emitting element 21d is applied to the light receiving regions RPc, RPb, and Rpa, and each reflected light thereof is received by the infrared light receiving elements 31a to 31c.

このように、赤外線発光素子21a〜21dから出射された赤外光は、それぞれ赤外線受光素子31a〜31cにて受光されるが、表2に示す赤外線スポット光と受光領域との組み合わせにおいて、同じ組み合わせは存在しない。   As described above, the infrared light emitted from the infrared light emitting elements 21a to 21d is received by the infrared light receiving elements 31a to 31c, respectively. However, in the combination of the infrared spot light and the light receiving area shown in Table 2, the same combination is used. Does not exist.

したがって、この第4実施形態においても、赤外線発光素子21a〜21dを交代的に走査駆動(スキャン点灯)し、赤外線受光素子31a〜31cから出力される受光信号を個別的に監視することにより、各赤外線スポット光単位で人を検知をすることができる。   Therefore, also in the fourth embodiment, the infrared light emitting elements 21a to 21d are alternately scanned and driven (scanning lighting), and the light receiving signals output from the infrared light receiving elements 31a to 31c are individually monitored, A person can be detected in units of infrared spot light.

一例として、赤外線発光素子21aの点灯時に、例えば赤外線受光素子31aの受光信号が低レベルから高レベルに転じた場合には、表1において、SPaとRPaの組み合わせの箇所、すなわち図6の監視エリアAにおいて、一番右端のスポット光の位置で人が検知されたと判断することができる。   As an example, when the infrared light emitting element 21a is turned on, for example, when the light reception signal of the infrared light receiving element 31a changes from a low level to a high level, in Table 1, the combination of SPa and RPa, that is, the monitoring area in FIG. In A, it can be determined that a person is detected at the rightmost spot light position.

別の例として、赤外線発光素子21bの点灯時に、例えば赤外線受光素子31cの受光信号が低レベルから高レベルに転じた場合には、表1において、SPbとRPcの組み合わせの箇所、すなわち図6の監視エリアAにおいて、左から7スポット目の位置に人が存在していると判断することができる。   As another example, when the infrared light emitting element 21b is turned on, for example, when the light reception signal of the infrared light receiving element 31c changes from a low level to a high level, in Table 1, the combination of SPb and RPc, that is, in FIG. In the monitoring area A, it can be determined that a person is present at the seventh spot from the left.

このように、第3実施形態および第4実施形態によれば、各赤外線スポット光単位での検知を可能としながら、上記第1,第2実施形態よりも、さらに素子数を減らすことができる。   As described above, according to the third and fourth embodiments, the number of elements can be further reduced as compared with the first and second embodiments while enabling detection in units of each infrared spot light.

本発明の第1実施形態に係る自動ドア用途の反射型センサの構成を示す模式図。The schematic diagram which shows the structure of the reflective sensor of the automatic door use which concerns on 1st Embodiment of this invention. 上記第1実施形態における制御部を示す模式図。The schematic diagram which shows the control part in the said 1st Embodiment. 本発明の第2実施形態に係る自動ドア用途の反射型センサの構成を示す模式図。The schematic diagram which shows the structure of the reflection type sensor for the automatic door use which concerns on 2nd Embodiment of this invention. 上記第2実施形態における制御部を示す模式図。The schematic diagram which shows the control part in the said 2nd Embodiment. 本発明の第3実施形態に係る反射型センサの(a)発光部側の構成を示す模式図,(b)受光部側の構成を示す模式図。The schematic diagram which shows the structure by the side of (a) light emission part of the reflection type sensor which concerns on 3rd Embodiment of this invention, (b) The light reception part side. 本発明の第4実施形態に係る反射型センサの(a)発光部側の構成を示す模式図,(b)受光部側の構成を示す模式図。(A) The schematic diagram which shows the structure by the side of the light emission part of the reflective sensor which concerns on 4th Embodiment of this invention, (b) The schematic diagram which shows the structure by the side of a light-receiving part. 第1従来例に係る自動ドア用反射型センサの構成を示す模式図。The schematic diagram which shows the structure of the reflection type sensor for automatic doors which concerns on a 1st prior art example. 監視エリアを多列配置とした例を示す模式図。The schematic diagram which shows the example which made the monitoring area multi-line arrangement. 第2従来例に係る自動ドア用反射型センサの構成を示す模式図。The schematic diagram which shows the structure of the reflection type sensor for automatic doors which concerns on a 2nd prior art example.

符号の説明Explanation of symbols

1A,1B 自動ドア用反射型センサ
10 筐体
11 回路基板
12 制御部
20 発光部
21(21a〜21d) 赤外線発光素子
22 第1レンズ系
22a 単眼レンズ
22b 2分割レンズ
23c 3分割レンズ
30 受光部
31(31a〜31d) 赤外線受光素子
32 第2レンズ系
32a 単眼レンズ
32b 2分割レンズ
32d 4分割レンズ
A 監視エリア
DESCRIPTION OF SYMBOLS 1A, 1B Reflective sensor for automatic doors 10 Housing | casing 11 Circuit board 12 Control part 20 Light emission part 21 (21a-21d) Infrared light emitting element 22 1st lens system 22a Monocular lens 22b Two-division lens 23c Three-division lens 30 Light-receiving part 31 (31a to 31d) Infrared light receiving element 32 Second lens system 32a Monocular lens 32b Two-division lens 32d Four-division lens A Monitoring area

Claims (4)

赤外線発光素子を含む発光部および赤外線受光素子を含む受光部と、上記赤外線発光素子に駆動信号を出力するとともに、上記赤外線受光素子から出力される受光信号に基づいて制御用信号を生成する制御部とを備え、所定の床面を監視エリアとして、上記発光部より発光側の第1レンズ系を介して上記監視エリアに複数の赤外線スポット光を所定の配列で照射し、上記各赤外線スポット光の上記監視エリアからの反射光を受光側の第2レンズ系を介して上記受光部で受光する反射型センサにおいて、
上記発光部側における上記赤外線発光素子の個数をm1、上記発光側の第1レンズ系の分割比をn1(m1,n1は1以上の正の整数)とし、上記受光部側における上記赤外線受光素子の個数をm2、上記受光側の第2レンズ系の分割比をn2(m2,n2は1以上の正の整数。ただし、m1≠m2,n1≠n2)として、
上記赤外線発光素子の個数m1および上記発光側の第1レンズ系の分割比n1と、上記赤外線受光素子の個数m2および上記受光側の第2レンズ系の分割比n2との関係を、m1×n1=m2×n2(ただし、n1>n2でのn1/n2,n1<n2でのn2/n1の各除算値が割り切れる場合、および上記各除算値が割り切れないときでもn1,n2に1以外の公約数が存在する場合を除く)とすることを特徴とする反射型センサ。
A light emitting unit including an infrared light emitting element, a light receiving unit including an infrared light receiving element, and a control unit that outputs a drive signal to the infrared light emitting element and generates a control signal based on the light reception signal output from the infrared light receiving element A plurality of infrared spot lights are irradiated in a predetermined arrangement to the monitoring area via the first lens system on the light emission side from the light emitting unit, with a predetermined floor surface as a monitoring area, In the reflective sensor that receives the reflected light from the monitoring area at the light receiving unit via the second lens system on the light receiving side,
The number of the infrared light emitting elements on the light emitting unit side is m1, the division ratio of the first lens system on the light emitting side is n1 (m1, n1 are positive integers of 1 or more), and the infrared light receiving element on the light receiving unit side. M2 and the division ratio of the second lens system on the light receiving side is n2 (m2, n2 are positive integers of 1 or more, where m1 ≠ m2, n1 ≠ n2),
The relationship between the number m1 of the infrared light emitting elements and the division ratio n1 of the first lens system on the light emitting side and the number m2 of the infrared light receiving elements and the division ratio n2 of the second lens system on the light receiving side is expressed as m1 × n1. = M2 × n2 (where n1 / n2, where n1> n2, and n2 / n1 where n1 <n2 is divisible, and even when each of the above divided values is not divisible, n1 and n2 are other than 1) A reflection type sensor characterized in that the number is not included).
上記発光側の第1レンズ系に分割比1の単眼レンズを用いる場合、上記制御部は、上記m1個の赤外線発光素子を所定の順序で交代的に走査駆動するとともに、上記m2個の赤外線受光素子から出力される受光信号を監視することを特徴とする請求項1に記載の反射型センサ。   When a monocular lens having a division ratio of 1 is used for the first lens system on the light emitting side, the control unit alternately scans and drives the m1 infrared light emitting elements in a predetermined order, and the m2 infrared light receiving elements. The reflection type sensor according to claim 1, wherein the light reception signal output from the element is monitored. 上記受光側の第2レンズ系に分割比1の単眼レンズを用いる場合、上記制御部は、上記m1個の赤外線発光素子を同時に駆動するとともに、上記m2個の赤外線受光素子から出力される各受光信号を監視することを特徴とする請求項1に記載の反射型センサ。   When a monocular lens having a division ratio of 1 is used for the second lens system on the light receiving side, the control unit simultaneously drives the m1 infrared light emitting elements and outputs each light received from the m2 infrared light receiving elements. The reflective sensor according to claim 1, wherein the signal is monitored. 上記赤外線発光素子の個数m1および上記赤外線受光素子の個数m2がともに2以上であり、かつ、上記発光側の第1レンズ系および上記受光側の第2レンズ系にそれぞれ分割比2以上の複眼レンズを用いる場合、上記制御部は、上記m1個の各赤外線発光素子を所定の順序で交代的に走査駆動するとともに、上記m2個の各赤外線受光素子から出力される受光信号を個別的に監視することを特徴とする請求項1に記載の反射型センサ。   A compound eye lens in which the number m1 of the infrared light emitting elements and the number m2 of the infrared light receiving elements are both 2 or more, and each of the first lens system on the light emitting side and the second lens system on the light receiving side has a division ratio of 2 or more. When the control unit is used, the control unit alternately scans and drives the m1 infrared light emitting elements in a predetermined order, and individually monitors the light reception signals output from the m2 infrared light receiving elements. The reflective sensor according to claim 1.
JP2008063590A 2008-03-13 2008-03-13 Reflecting sensor Withdrawn JP2009216677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008063590A JP2009216677A (en) 2008-03-13 2008-03-13 Reflecting sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008063590A JP2009216677A (en) 2008-03-13 2008-03-13 Reflecting sensor

Publications (1)

Publication Number Publication Date
JP2009216677A true JP2009216677A (en) 2009-09-24

Family

ID=41188674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008063590A Withdrawn JP2009216677A (en) 2008-03-13 2008-03-13 Reflecting sensor

Country Status (1)

Country Link
JP (1) JP2009216677A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163980A (en) * 2010-02-10 2011-08-25 Toshiba Lighting & Technology Corp Sensor device
JP2015017990A (en) * 2010-03-17 2015-01-29 旭光電機株式会社 Object detection device
JP2015129742A (en) * 2013-12-04 2015-07-16 オプテックス株式会社 Active type object detection sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163980A (en) * 2010-02-10 2011-08-25 Toshiba Lighting & Technology Corp Sensor device
JP2015017990A (en) * 2010-03-17 2015-01-29 旭光電機株式会社 Object detection device
JP2015129742A (en) * 2013-12-04 2015-07-16 オプテックス株式会社 Active type object detection sensor

Similar Documents

Publication Publication Date Title
US8115162B2 (en) Sliding door apparatus and elevator including an obstruction detection system
US6756910B2 (en) Sensor for automatic doors
KR101529804B1 (en) Sensor for automatic door
US20030075675A1 (en) Monitoring method and optoelectronic sensor
JP4091131B2 (en) Assembly of sliding door safety detection system
EP1808825A3 (en) Image reading apparatus
CN107487676A (en) Detection and control system for elevator operation
JP2007315761A (en) Reflection characteristic measuring device
JP2011020656A (en) Platform door confirmation system
US11460328B2 (en) Distance measuring device and method thereof for seeking distance measuring starting point
JP2009216677A (en) Reflecting sensor
KR20170006505A (en) Obstacle detection apparatus and obstacle detection system for screen-door using it
WO2009150982A1 (en) Door system
JP2010197334A (en) Reflective sensor for automatic door
JP5289463B2 (en) Sliding door device and elevator
JP2006350765A (en) Human detector
US20230028749A1 (en) Lidar with multi-range channels
JP2009222386A (en) Reflection sensor
KR102188933B1 (en) obstacle detection and monitoring system
JP2004279127A (en) Light curtain
WO2020021699A1 (en) Display device
KR20210055435A (en) Camera system for internal monitoring of the vehicle
JP6314686B2 (en) Image display input device
EP2881756B1 (en) Active object detection sensor
JP2011195313A (en) Door system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110607