JP2009216514A - Residual stress evaluation system and residual stress measuring method - Google Patents

Residual stress evaluation system and residual stress measuring method Download PDF

Info

Publication number
JP2009216514A
JP2009216514A JP2008060025A JP2008060025A JP2009216514A JP 2009216514 A JP2009216514 A JP 2009216514A JP 2008060025 A JP2008060025 A JP 2008060025A JP 2008060025 A JP2008060025 A JP 2008060025A JP 2009216514 A JP2009216514 A JP 2009216514A
Authority
JP
Japan
Prior art keywords
residual stress
strain
strain gauge
sample
measurement target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008060025A
Other languages
Japanese (ja)
Inventor
Daijiro Fukuda
大二郎 福田
Akira Tanaka
明 田中
Kazuhiro Saito
和宏 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008060025A priority Critical patent/JP2009216514A/en
Publication of JP2009216514A publication Critical patent/JP2009216514A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To evaluate accurately a residual stress, especially an internal residual stress, of a measuring object member. <P>SOLUTION: This system has a strain measuring device 13 for measuring a strain value of a strain gage 12 laminated on the measuring object member 11; a surface residual stress calculation device 14 for calculating a surface residual stress of the measuring object member from the strain value measured by the strain measuring device; a database 15 for storing correlatively data of a surface residual stress and an internal residual stress determined beforehand relative to a sample having a constitution similar to the measuring object member, a welding condition when preparing a sample, a beveling shape of the sample, and a material characteristic of the sample; and an internal residual stress evaluation device 16 for estimating and evaluating the internal residual stress of the measuring object member by being collated with data in the database based on the surface residual stress calculated by the surface residual stress calculation device, the welding condition, the beveling shape and the material characteristic of the measuring object member. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、溶接構造物などの測定対象部材に生じた残留応力を評価する残留応力評価システム、及び測定対象部材に生じた内部残留応力を測定する残留応力測定方法に関する。   The present invention relates to a residual stress evaluation system that evaluates residual stress generated in a measurement target member such as a welded structure, and a residual stress measurement method that measures internal residual stress generated in the measurement target member.

火力・水力機器は、競争力強化におけるコスト、調達の重要度が増しており、従来は溶接施工を極力避けてきた構造物(例えば、タービンロータ等の回転体等)にも、積極的に溶接構造を採用することが検討されている。しかし、これら溶接構造物の信頼性を検討する上では、溶接欠陥、溶接残留応力・溶接変形、溶接熱影響部の材料特性などの問題がある。特に、溶接残留応力については、疲労やバーストへの影響が高いにも拘らず、火力・水力機器について十分に評価法が検討されていないため、溶接残留応力、特に内部残留応力を明らかにし、構造信頼性を確保することが必要となる。   Thermal power and hydraulic power equipment are becoming more cost-effective and more important to procure, and aggressively weld to structures that have conventionally avoided welding as much as possible (for example, rotating bodies such as turbine rotors). Adopting a structure is being considered. However, in examining the reliability of these welded structures, there are problems such as welding defects, welding residual stress / weld deformation, and material characteristics of the heat affected zone. In particular, regarding welding residual stress, although there is a high impact on fatigue and burst, a sufficient evaluation method has not been studied for thermal and hydraulic equipment. It is necessary to ensure reliability.

溶接残留応力の測定方法に関する公知例として、特許文献1及び特許文献2が挙げられる。特許文献1は、部材表面に3軸ひずみゲージを貼り付け、その後、3軸ひずみゲージを貼り付けた表層を放電加工剥離装置によって薄く剥離させることにより、3軸ひずみゲージに現れるひずみ変化から表面残留応力を求める方法である。   Patent Documents 1 and 2 are known examples of known methods for measuring welding residual stress. In Patent Document 1, a triaxial strain gauge is pasted on the surface of a member, and then the surface layer on which the triaxial strain gauge is pasted is peeled thinly by an electric discharge machining stripping device, so that the surface residual from the strain change appearing in the triaxial strain gauge This is a method for obtaining stress.

特許文献2は、特許文献1に加え、ひずみゲージにより測定した解放ひずみから固有ひずみを求め、有限要素法により弾性ひずみ・固有ひずみマトリックスを求めて表面残留応力の最確値を出力する方法である。
特開平10−48069号公報 特開2005−181172号公報
Patent Document 2 is a method that, in addition to Patent Document 1, obtains an inherent strain from the released strain measured by a strain gauge, obtains an elastic strain / intrinsic strain matrix by a finite element method, and outputs the most probable value of the surface residual stress.
JP 10-48069 A JP 2005-181172 A

特許文献1に記載の残留応力測定法は、測定対象部材の表層を薄く剥離させてひずみを解放させる方法であり、表面残留応力の評価に適しているが、測定対象部材の内部残留応力を評価するには剥離を繰り返し行う必要があり、測定に多くの時間を要する。また、内部残留応力を評価するために厚く剥離させる場合には、放電加工機本体や電極の改造が必要となる。   The residual stress measurement method described in Patent Document 1 is a method of releasing the strain by thinly peeling the surface layer of the measurement target member, and is suitable for evaluating the surface residual stress, but evaluating the internal residual stress of the measurement target member. In this case, it is necessary to repeat peeling, and a lot of time is required for measurement. In addition, when peeling away thickly in order to evaluate the internal residual stress, it is necessary to modify the electric discharge machine main body and the electrode.

また、特許文献2に記載の残留応力測定方法は、特許文献1と同様に表面残留応力の評価に適しているが、内部残留応力の評価は困難である。   Moreover, although the residual stress measuring method described in Patent Document 2 is suitable for the evaluation of surface residual stress as in Patent Document 1, it is difficult to evaluate the internal residual stress.

本発明の目的は、上述の事情を考慮してなされたものであり、測定対象部材の残留応力、特に内部残留応力を精度良く評価できる残留応力評価システムを提供することにある。   An object of the present invention is to provide a residual stress evaluation system capable of accurately evaluating the residual stress of a member to be measured, particularly the internal residual stress.

また、本発明の目的は、測定対象部材の内部残留応力を高精度に測定できる残留応力測定方法を提供することにある。   Another object of the present invention is to provide a residual stress measurement method capable of measuring the internal residual stress of a member to be measured with high accuracy.

本発明に係る残留応力評価システムは、測定対象部材にひずみゲージを貼り付けてひずみ初期値を測定した後、前記ひずみゲージを貼り付けた部分を採取し、ひずみを解放して残留応力を算出し評価する残留応力評価システムであって、前記測定対象部材に貼り付けられた前記ひずみゲージのひずみ値を測定するひずみ測定装置と、このひずみ測定装置で測定したひずみ値から前記測定対象部材の表面残留応力を算出する表面残留応力算出装置と、前記測定対象部材と同様な構成の試料について予め求めた表面残留応力及び内部残留応力、前記試料作製時の溶接条件、前記試料の開先形状、並びに前記試料の材料特性などのデータを関連づけて格納したデータベースと、前記表面残留応力算出装置が算出した表面残留応力、前記測定対象部材の溶接条件、開先形状、及び材料特性に基づき、前記データベース内のデータと照合して、前記測定対象部材の内部残留応力を推定し評価する内部残留応力評価装置と、を有することを特徴とするものである。   The residual stress evaluation system according to the present invention measures a strain initial value by attaching a strain gauge to a measurement target member, and then extracts a portion where the strain gauge is attached, calculates the residual stress by releasing the strain. It is a residual stress evaluation system for evaluating, a strain measuring device for measuring a strain value of the strain gauge affixed to the measurement target member, and a surface residue of the measurement target member from the strain value measured by the strain measurement device Surface residual stress calculation device for calculating stress, surface residual stress and internal residual stress obtained in advance for a sample having the same configuration as the measurement target member, welding conditions at the time of sample preparation, groove shape of the sample, and A database that stores data such as material characteristics of a sample in association with each other, a surface residual stress calculated by the surface residual stress calculation device, and the measurement target member An internal residual stress evaluation device that estimates and evaluates internal residual stress of the measurement target member based on welding conditions, groove shape, and material characteristics, and collates with data in the database. Is.

また、本発明に係る残留応力測定方法は、測定対象部材の内部残留応力を測定する残留応力測定方法であって、測定対象部材に異なる深さの穴を複数穿設し、これらの加工穴の底面にひずみゲージをそれぞれ貼り付けてこの加工穴の底面のひずみ初期値を測定し、その後、前記ひずみゲージを貼り付けた部分を採取し、このときの前記ひずみゲージにより測定される解放ひずみから、前記測定対象部材の任意の深さにおける内部残留応力を求めることを特徴とするものである。   The residual stress measurement method according to the present invention is a residual stress measurement method for measuring internal residual stress of a measurement target member. A plurality of holes having different depths are drilled in a measurement target member, and Each strain gauge is attached to the bottom surface to measure the initial strain value of the bottom surface of this processed hole, and then the portion where the strain gauge is attached is collected, from the release strain measured by the strain gauge at this time, The internal residual stress at an arbitrary depth of the measurement target member is obtained.

本発明に係る残留応力評価システムによれば、内部残留応力評価装置が、測定対象部材について算出された表面残留応力から、この測定対象部材の内部残留応力を推定し評価するので、測定対象部材の残留応力、特に内部残留応力を精度良く評価できる。   According to the residual stress evaluation system according to the present invention, the internal residual stress evaluation apparatus estimates and evaluates the internal residual stress of the measurement target member from the surface residual stress calculated for the measurement target member. Residual stress, especially internal residual stress, can be evaluated with high accuracy.

また、本発明に係る残留応力測定方法によれば、測定対象部材に穿設される加工穴の底面のひずみから内部残留応力を求めるので、測定対象部材の内部残留応力を高精度に測定できる。   Further, according to the residual stress measuring method according to the present invention, the internal residual stress is obtained from the strain of the bottom surface of the processed hole drilled in the measurement target member, so that the internal residual stress of the measurement target member can be measured with high accuracy.

以下、本発明を実施するための最良の形態を、図面に基づき説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1は、(A)が本発明に係る残留応力評価システムの一実施形態の構成を示すシステム構成図、(B)が測定対象部材におけるひずみ初期値の測定状況を示す説明図、(C)が測定対象部材における剥離採取部の補修状況を示す説明図である。   1A is a system configuration diagram illustrating a configuration of an embodiment of a residual stress evaluation system according to the present invention, FIG. 1B is an explanatory diagram illustrating a measurement state of an initial strain value in a measurement target member, and FIG. FIG. 6 is an explanatory diagram showing a repair situation of a peeling sampling portion in a measurement target member.

図1に示す残留応力評価システム10は、測定対象部材11にひずみゲージ12を貼り付けてひずみ初期値を測定した後、ひずみゲージ12を貼り付けた部分を採取してひずみを解放し、解放ひずみをひずみゲージ12にて測定し、この解放ひずみから表面残留応力を求め、この表面残留応力に基づいて内部残留応力を求めるものである。この残留応力評価システム10は、前記ひずみゲージ12、ひずみ測定装置としてのひずみ測定器13、表面残留応力算出装置14、データベース15、内部残留応力評価装置16、品質判定装置17、出力装置18、並びに平滑手段としての溶接装置である溶接トーチ19及び切削カッター20を有して構成される。   The residual stress evaluation system 10 shown in FIG. 1 releases a strain by attaching a strain gauge 12 to a measurement target member 11 and measuring an initial strain value, then collecting the portion to which the strain gauge 12 is attached and releasing the strain. Is measured with a strain gauge 12, surface residual stress is determined from the released strain, and internal residual stress is determined based on the surface residual stress. The residual stress evaluation system 10 includes a strain gauge 12, a strain measuring device 13 as a strain measuring device, a surface residual stress calculating device 14, a database 15, an internal residual stress evaluating device 16, a quality determining device 17, an output device 18, and It has a welding torch 19 and a cutting cutter 20 which are welding devices as smoothing means.

測定対象部材11は溶接構造物であり、例えばタービンの溶接ロータなどの溶接製品である。また、ひずみ測定器13は、測定対象部材11に貼り付けられたひずみゲージ12と電線21にて接続されており、ひずみゲージ12のひずみ値を測定する。このひずみ測定器13によって、まず、ひずみゲージ12が貼り付けられた測定対象部材11のひずみ初期値が測定される。   The measurement target member 11 is a welded structure, for example, a welded product such as a welded rotor of a turbine. The strain measuring device 13 is connected to the strain gauge 12 attached to the measurement target member 11 by an electric wire 21 and measures the strain value of the strain gauge 12. First, the strain measuring device 13 measures the initial strain value of the measurement target member 11 to which the strain gauge 12 is attached.

表面残留応力算出装置14は、ひずみゲージ12及びひずみ測定器13にて測定されたひずみ値から測定対象部材11の表面残留応力を算出して測定する。つまり、表面残留応力算出装置14は、測定対象部材11のひずみ初期値がひずみゲージ12及びひずみ測定器13にて測定された後、ひずみゲージ12が貼り付けられた表層11Aが放電加工、ワイヤカットまたは放電研磨加工により剥離して採取されたときに、ひずみゲージ12及びひずみ測定器13により測定されるひずみ変化(つまり解放ひずみ)から、測定対象部材11の表面残留応力を算出する。この表面残留応力の算出には、次の式(1)を用いる。また、このときの表面残留応力の測定方法は、後述の切断法である。
[数1]
σ0=E・ε ……(1)
σ0:表面残留応力、E:弾性係数、ε:解放ひずみ
The surface residual stress calculation device 14 calculates and measures the surface residual stress of the measurement target member 11 from the strain values measured by the strain gauge 12 and the strain measuring device 13. That is, the surface residual stress calculation device 14 is configured such that after the initial strain value of the measurement target member 11 is measured by the strain gauge 12 and the strain measuring device 13, the surface layer 11A to which the strain gauge 12 is attached is subjected to electric discharge machining and wire cutting. Alternatively, the surface residual stress of the member 11 to be measured is calculated from the strain change (that is, the release strain) measured by the strain gauge 12 and the strain measuring instrument 13 when it is peeled off and collected by electric discharge polishing. The following equation (1) is used for calculating the surface residual stress. Moreover, the measuring method of the surface residual stress at this time is the below-mentioned cutting method.
[Equation 1]
σ0 = E · ε (1)
σ0: surface residual stress, E: elastic modulus, ε: release strain

データベース15は、試料22(図2〜図5参照)について予め求めた表面残留応力及び内部残留応力、試料22作製時の溶接条件、試料22の開先形状、並びに試料22の材料特性などのデータを関連づけて格納したものである。ここで、試料22は、測定対象部材11と同様な構成、つまり測定対象部材11と同様な材料と溶接方法などにより作製されたものである。   The database 15 includes data such as surface residual stress and internal residual stress obtained in advance for the sample 22 (see FIGS. 2 to 5), welding conditions at the time of preparing the sample 22, groove shape of the sample 22, and material characteristics of the sample 22. Are stored in association with each other. Here, the sample 22 is manufactured by the same configuration as the measurement target member 11, that is, by the same material and welding method as the measurement target member 11.

また、前記試料22作製時の溶接条件は、溶接入熱量、溶接速度、溶接パス数、溶接棒材料、溶接仕様などである。また、前記試料22の材料特性は、試料22の線膨張係数、比熱、融点温度、相変態特性、組織、弾性係数などである。このデータベース15に格納される試料22の表面残留応力及び内部残留応力の測定方法については後に詳説する。   Moreover, the welding conditions at the time of preparation of the sample 22 are welding heat input, welding speed, number of welding passes, welding rod material, welding specifications, and the like. The material properties of the sample 22 include the linear expansion coefficient, specific heat, melting point temperature, phase transformation characteristics, structure, elastic modulus, and the like of the sample 22. A method for measuring the surface residual stress and the internal residual stress of the sample 22 stored in the database 15 will be described in detail later.

内部残留応力評価装置16は、表面残留応力算出装置14が算出した測定対象部材11の表面残留応力、測定対象部材11の溶接条件、開先形状及び材料特性に基づき、データベース15内のデータと照合して、測定対象部材11の内部残留応力を推定し評価する。つまり、内部残留応力評価装置16は、表面残留応力算出装置14が算出した測定対象部材11の表面残留応力、測定対象部材11の溶接条件、開先形状及び材料特性と、データベース15内のデータとを照合し、表面残留応力算出装置14が算出した測定対象部材11の表面残留応力、測定対象部材11の溶接条件、開先形状及び材料特性に適合する、データベース15内の試料22の表面残留応力、溶接条件、開先形状及び材料特性のデータに関連付けられた試料22の内部残留応力をデータベース15から引き出し、これを測定対象部材11の内部残留応力の推定値とする。   The internal residual stress evaluation device 16 collates with data in the database 15 based on the surface residual stress of the measurement target member 11 calculated by the surface residual stress calculation device 14, the welding conditions, the groove shape, and the material characteristics of the measurement target member 11. Then, the internal residual stress of the measurement target member 11 is estimated and evaluated. That is, the internal residual stress evaluation device 16 includes the surface residual stress of the measurement target member 11 calculated by the surface residual stress calculation device 14, the welding conditions, the groove shape, and the material characteristics of the measurement target member 11, and the data in the database 15. The surface residual stress of the sample 22 in the database 15 that matches the surface residual stress of the measurement target member 11 calculated by the surface residual stress calculation device 14, the welding conditions, the groove shape, and the material characteristics of the measurement target member 11. The internal residual stress of the sample 22 associated with the welding condition, groove shape, and material property data is extracted from the database 15 and is used as the estimated value of the internal residual stress of the measurement target member 11.

品質判定装置17は、内部残留応力評価装置16が推定し評価した測定対象部材11の内部残留応力(またはこの内部残留応力と表面残留応力算出装置14が算出した測定対象部材11の表面残留応力)に基づいて、測定対象部材11の品質の合否を判定する。この品質合否の判定は、設計残留応力に対して残留応力(内部残留応力、または内部残留応力及び表面残留応力)が等しいかまたは低い場合を合(合格)とし、高い場合を否(不合格)とする。また、設定に応じて設計残留応力と測定残留応力が等しい場合に否とすることも可能である。上記設計残留応力値は、溶接条件及び使用材料によって変化するため任意に設定される。   The quality judgment device 17 is the internal residual stress of the measurement target member 11 estimated or evaluated by the internal residual stress evaluation device 16 (or the internal residual stress and the surface residual stress of the measurement target member 11 calculated by the surface residual stress calculation device 14). The quality of the measurement target member 11 is determined based on the above. This quality pass / fail judgment is made when the residual stress (internal residual stress, or internal residual stress and surface residual stress) is equal to or low with respect to the design residual stress (pass), and when it is high (fail). And It is also possible to reject the case where the design residual stress and the measured residual stress are equal depending on the setting. The design residual stress value is arbitrarily set because it varies depending on welding conditions and materials used.

出力装置18は、表面残留応力算出装置14が算出した測定対象部材11の表面残留応力、内部残留応力評価装置16が評価した測定対象部材11の内部残留応力、及び品質判定装置17が判定した品質判定結果を出力する。   The output device 18 includes the surface residual stress of the measurement target member 11 calculated by the surface residual stress calculation device 14, the internal residual stress of the measurement target member 11 evaluated by the internal residual stress evaluation device 16, and the quality determined by the quality determination device 17. Output the judgment result.

溶接トーチ19及び切削カッター20は、表層11Aが剥離された測定対象部材11の剥離採取部11Bを平滑に仕上げるものである。溶接トーチ19は、剥離採取部11Bを溶接補修して肉盛溶接部分11Cを形成し、切削カッター20は、剥離採取部11Bの深さに測定対象部材11の表面を切削加工する。また、溶接トーチ19による溶接補修と切削カッター20による切削とを組み合わせ、例えば溶接トーチ19が溶接補修した肉盛溶接部分11Cを切削カッター20が切削して平滑に加工してもよい。この溶接トーチ19と切削カッター20との補修処理によって、測定対象部材11は残留応力測定後においても製品として使用可能となる。   The welding torch 19 and the cutting cutter 20 are for finishing the peeling sampling part 11B of the measurement target member 11 from which the surface layer 11A has been peeled off smoothly. The welding torch 19 welds and repairs the peeling sampling portion 11B to form the build-up welded portion 11C, and the cutting cutter 20 cuts the surface of the measurement target member 11 to the depth of the peeling sampling portion 11B. Further, welding repair by the welding torch 19 and cutting by the cutting cutter 20 may be combined, and for example, the built-up welded part 11C repaired by the welding torch 19 may be cut by the cutting cutter 20 to be processed smoothly. By the repair process of the welding torch 19 and the cutting cutter 20, the measurement target member 11 can be used as a product even after the residual stress measurement.

次に、データベース15に格納される表面残留応力の測定方法について、溶接部を例として図2〜図4を参照して説明する。データベース15に格納される表面残留応力は、試料22を用い、切断法(図2)、穿孔法(図3)、ザックス法(図4)の少なくとも1つによって算出したものである。   Next, a method for measuring the surface residual stress stored in the database 15 will be described with reference to FIGS. The surface residual stress stored in the database 15 is calculated by using the sample 22 and at least one of the cutting method (FIG. 2), the drilling method (FIG. 3), and the Sachs method (FIG. 4).

切断法は、図2に示すように、試料22の溶接線29上の表面にひずみゲージ23を貼り付けてひずみ初期値を測定した後(図2(A))、この試料22を、図2(B)に示すように、放電加工または電解研磨加工などによって切断して(くりぬいて)ひずみを解放させ、または図2(C)に示すように、試料22をワイヤカットなどにより例えば切断線αで切断してひずみを解放し、このときのひずみ変化(つまり解放ひずみ)をひずみゲージ23及びひずみ測定器(不図示)により測定し、この解放ひずみから式(1)を用いて表面残留応力を算出し測定する方法である。   As shown in FIG. 2, the cutting method is performed by attaching a strain gauge 23 on the surface of the weld line 29 of the sample 22 and measuring the initial strain value (FIG. 2A). As shown in FIG. 2B, the strain is released by cutting (cutting out) by electric discharge machining or electrolytic polishing, or the sample 22 is cut by wire cutting or the like as shown in FIG. The strain is released by cutting with a strain gauge, and the strain change (that is, the release strain) at this time is measured by a strain gauge 23 and a strain measuring instrument (not shown), and the surface residual stress is calculated from the released strain using the equation (1). It is a method of calculating and measuring.

穿孔法は、図3に示すように、試料22の溶接線29上の表面にひずみゲージ23を貼り付けてひずみ初期値を測定した後、この試料22にドリルなどを用いて穴24を穿設してひずみを解放させ、このときのひずみ変化(つまり解放ひずみ)をひずみゲージ23及びひずみ測定器(不図示)により測定し、この解放ひずみから式(1)を用いて表面残留応力を算出し測定する方法である。   In the drilling method, as shown in FIG. 3, after a strain gauge 23 is attached to the surface of the sample 22 on the weld line 29 and the initial strain value is measured, a hole 24 is drilled in the sample 22 using a drill or the like. Then, the strain is released, the strain change (that is, the release strain) at this time is measured by the strain gauge 23 and a strain measuring device (not shown), and the surface residual stress is calculated from the released strain using the equation (1). It is a method of measuring.

ザックス法は、図4に示すように、試料22の溶接線29上の表面にひずみゲージ23を貼り付けてひずみ初期値を測定した後、この試料22を放電加工、電解研磨加工または旋盤加工などを用いて、例えば試料22の内周面22Aを切削してひずみを解放させ、このときのひずみ変化(つまり解放ひずみ)をひずみゲージ23及びひずみ測定器(不図示)により測定し、この解放ひずみから式(1)を用いて表面残留応力を算出し測定する方法である。   In the Sachs method, as shown in FIG. 4, after the strain gauge 23 is attached to the surface of the sample 22 on the weld line 29 and the initial strain value is measured, the sample 22 is subjected to electric discharge machining, electropolishing, lathe machining, or the like. For example, the inner peripheral surface 22A of the sample 22 is cut to release strain, and the strain change (that is, release strain) at this time is measured by a strain gauge 23 and a strain measuring instrument (not shown). From this, the surface residual stress is calculated and measured using equation (1).

次に、データベース15に格納される内部残留応力の測定方法について、図5〜図7を参照して説明する。   Next, a method for measuring the internal residual stress stored in the database 15 will be described with reference to FIGS.

データベース15に格納される内部残留応力は、試料22に異なる深さの穴(加工穴25)を複数穿設し、これらの加工穴25の底面26にひずみゲージ27をそれぞれ貼り付けて、この加工穴25の底面26のひずみ初期値をひずみゲージ27及びひずみ測定器28を用いて測定した後、ひずみゲージ27を貼り付けた部分を採取し、このときのひずみゲージ27及びひずみ測定器28により測定されるひずみ変化(つまり解放ひずみ)から、試料22の任意の深さにおける内部残留応力を算出したデータである。   The internal residual stress stored in the database 15 is obtained by drilling a plurality of holes (processed holes 25) having different depths in the sample 22 and attaching strain gauges 27 to the bottom surfaces 26 of these processed holes 25, respectively. After the initial strain value of the bottom surface 26 of the hole 25 is measured using the strain gauge 27 and the strain measuring device 28, the portion to which the strain gauge 27 is attached is sampled and measured with the strain gauge 27 and the strain measuring device 28 at this time. This is data obtained by calculating the internal residual stress at an arbitrary depth of the sample 22 from the strain change (that is, the release strain).

前記試料22は、軸方向に垂直な溶接線29を具備する軸対称溶接継手、例えば図5に示す円筒形状の突き合せ溶接継手である。この試料22は、複数枚の平板からなる溶接継手であってもよい。そして、この試料22に、複数の加工穴25が、溶接線29に対して平行または垂直に穿設される。溶接線29に対して平行に配列された加工穴25は、溶接線29に沿う熱影響部分の応力分布を測定するのに適し、また、溶接線29に対し垂直に配列された加工穴25は、溶接線29の近傍と溶接線29から離れた位置での応力分布を測定するのに適する。   The sample 22 is an axially symmetric weld joint having a weld line 29 perpendicular to the axial direction, for example, a cylindrical butt weld joint shown in FIG. The sample 22 may be a welded joint composed of a plurality of flat plates. A plurality of processed holes 25 are drilled in the sample 22 in parallel or perpendicular to the weld line 29. The machining holes 25 arranged parallel to the welding line 29 are suitable for measuring the stress distribution of the heat-affected zone along the welding line 29, and the machining holes 25 arranged perpendicular to the welding line 29 are It is suitable for measuring the stress distribution in the vicinity of the welding line 29 and the position away from the welding line 29.

また、加工穴25は、断面が円形または矩形で、底面26が平滑に穿設されたものであり、この加工穴25の断面形状はひずみゲージ27の形状に応じて選択される。更に、加工穴25は、試料22の厚さ方向、例えば図5に示す円筒形状の突き合せ溶接継手の場合には、図6に示すように半径方向に穿設される。試料22に半径方向の加工穴25が穿設されることによって、同方向(半径方向)の残留応力は解放されるが、測定対象である軸方向と周方向の残留応力は解放が軽微であり、従って、加工穴25の穿設によっても残留応力の測定結果への影響を無視できる。   Further, the processed hole 25 has a circular or rectangular cross section, and the bottom surface 26 is smoothly perforated. The cross sectional shape of the processed hole 25 is selected according to the shape of the strain gauge 27. Further, the processing hole 25 is formed in the thickness direction of the sample 22, for example, in the case of the cylindrical butt weld joint shown in FIG. 5, in the radial direction as shown in FIG. By drilling the hole 22 in the radial direction in the sample 22, the residual stress in the same direction (radial direction) is released, but the residual stress in the axial direction and the circumferential direction, which are the measurement targets, is lightly released. Therefore, the influence on the measurement result of the residual stress can be ignored even by drilling the processed hole 25.

加工穴25の底面26へのひずみゲージ27の貼り付けは、図6及び図7に示すひずみゲージ貼付装置30を用いる。このひずみゲージ貼付装置30は、プラスチックフィルム32で覆われた先端部31を具備するものであり、この先端部31に、貼付面33に接着剤が塗布されたひずみゲージ27が取り付けられる。ひずみゲージ貼付装置30の先端部31は、金属材料または非金属材料、好ましくは弾性を有するシリコンゴム等で構成される。また、プラスチックフィルム32は、ひずみゲージ27接着用の前記接着剤によっても接着されることが無いフィルムである。   For attaching the strain gauge 27 to the bottom surface 26 of the processing hole 25, a strain gauge attaching device 30 shown in FIGS. 6 and 7 is used. This strain gauge affixing device 30 comprises a tip 31 covered with a plastic film 32, and a strain gauge 27 having an adhesive applied to a sticking surface 33 is attached to the tip 31. The tip 31 of the strain gauge affixing device 30 is made of a metal material or a non-metal material, preferably elastic silicon rubber or the like. The plastic film 32 is a film that is not bonded even by the adhesive for bonding the strain gauge 27.

この状態で、ひずみゲージ貼付装置30の先端部31を試料22の加工穴25内に挿入し(図7(A))、ひずみゲージ27の貼付面が加工穴25の底面26に位置したときに、ひずみゲージ貼付装置30の先端部31を加工穴25の底面26に押圧して密着させ(図7(B))、その後、ひずみゲージ貼付装置30を加工穴25から引き抜いて(図7(C))、加工穴25の底面26にひずみゲージ27を貼り付ける。このひずみゲージ27は、図6に示すように、電線34を介してひずみ測定器28に接続される。ひずみゲージ27が加工穴25の底面26に貼り付けられた状態で、この底面26のひずみ初期値がひずみゲージ27及びひずみ測定器28により測定される。   In this state, the tip 31 of the strain gauge affixing device 30 is inserted into the machining hole 25 of the sample 22 (FIG. 7A), and the affixing surface of the strain gauge 27 is positioned on the bottom surface 26 of the machining hole 25. The tip 31 of the strain gauge affixing device 30 is pressed and brought into close contact with the bottom surface 26 of the processing hole 25 (FIG. 7B), and then the strain gage affixing device 30 is pulled out from the processing hole 25 (FIG. 7C). )), A strain gauge 27 is attached to the bottom surface 26 of the processing hole 25. As shown in FIG. 6, the strain gauge 27 is connected to a strain measuring device 28 via an electric wire 34. With the strain gauge 27 attached to the bottom surface 26 of the machining hole 25, the initial strain value of the bottom surface 26 is measured by the strain gauge 27 and the strain measuring device 28.

ここで、ひずみゲージ貼付装置30によるひずみゲージ27の貼り付けは、後述のひずみゲージ27Aに対しても同様に適用される。また、このひずみゲージ27Aも、電線34を介してひずみ測定器28に接続される。   Here, the affixing of the strain gauge 27 by the strain gage affixing device 30 is similarly applied to the later-described strain gauge 27A. The strain gauge 27 </ b> A is also connected to the strain measuring device 28 via the electric wire 34.

上述のひずみ初期値の測定後、加工穴25の底面26にひずみゲージ27が貼り付けられた状態で、このひずみゲージ27が貼り付けられた部分である底面26の表層35が、例えば放電加工などにより隔離されて採取される。そして、このときのひずみ値の変化から、ひずみゲージ27及びひずみ測定器28が解放ひずみを測定する。この解放ひずみから次式(2)を用いて、試料22の任意の深さにおける内部残留応力が算出されて測定される。
[数2]
σd=E・ε ……(2)
σd:内部残留応力、E:弾性係数、ε:解放ひずみ
After the above-described initial strain value is measured, the surface layer 35 of the bottom surface 26, which is the portion to which the strain gauge 27 is attached, in a state where the strain gauge 27 is attached to the bottom surface 26 of the machining hole 25, for example, electric discharge machining or the like. And isolated by Then, the strain gauge 27 and the strain measuring device 28 measure the release strain from the change of the strain value at this time. From this released strain, the internal residual stress at an arbitrary depth of the sample 22 is calculated and measured using the following equation (2).
[Equation 2]
σd = E · ε (2)
σd: internal residual stress, E: elastic modulus, ε: release strain

尚、ひずみ初期値の測定後、加工穴25の底面26にひずみゲージ27が貼り付けられた状態で、試料22をワイヤカットなどにより切断し、ひずみゲージ27が貼り付けられた部分である底面26部分のブロック36を採取する。そして、このときのひずみ変化を解放ひずみとしてひずみゲージ27及びひずみ測定器28により測定し、式(2)を用いて、試料22の任意の深さにおける内部残留応力を算出し測定してもよい。   After measurement of the initial strain value, the sample 22 is cut by wire cutting or the like with the strain gauge 27 attached to the bottom surface 26 of the processed hole 25, and the bottom surface 26, which is the portion to which the strain gauge 27 is attached. A portion of block 36 is taken. Then, the strain change at this time is measured as a release strain by the strain gauge 27 and the strain measuring instrument 28, and the internal residual stress at an arbitrary depth of the sample 22 may be calculated and measured using the equation (2). .

また、穿設した加工穴25を基に、さらに深い位置の内部残留応力を測定する場合には、試料22に穿設された加工穴25の底面26の、ひずみゲージ27が貼り付けられた表層35を剥離した後の剥離底面37に他のひずみゲージ27Aを貼り付け、このひずみゲージ27A及びひずみ測定器28により剥離底面37のひずみ初期値を測定する。その後、ひずみゲージ27Aを貼り付けた状態で剥離底面37の表層38を例えば放電加工などで剥離させる。このときのひずみの変化からひずみゲージ27A及びひずみ測定器28が解放ひずみを測定し、この解放ひずみから式(2)を用いて、内部残留応力を算出し測定する。   Further, when measuring the internal residual stress at a deeper position based on the drilled hole 25, the surface layer of the bottom surface 26 of the hole 25 drilled in the sample 22 is attached with a strain gauge 27. The other strain gauge 27A is attached to the peeling bottom surface 37 after peeling 35, and the initial strain value of the peeling bottom surface 37 is measured by the strain gauge 27A and the strain measuring device 28. Thereafter, the surface layer 38 of the peeling bottom surface 37 is peeled off by, for example, electric discharge machining with the strain gauge 27A attached. The strain gauge 27A and the strain measuring instrument 28 measure the release strain from the strain change at this time, and the internal residual stress is calculated from the release strain using the equation (2) and measured.

穿設した加工穴25を基に、さらに深い位置の内部残留応力を測定する他の方法として、試料22に穿設された加工穴25の底面26の、ひずみゲージ27が貼り付けられた表層35を剥離した後に、ドリルなどを用いてさらに深い加工穴39を追加して穿設し、この加工穴39の底面(深い底面)40に他のひずみゲージ27Aを貼り付け、このひずみゲージ27A及びひずみ測定器28により底面40のひずみ初期値を測定する。その後、ひずみゲージ27Aを貼り付けた状態で底面40の表層41を放電加工などにより剥離させる。このときのひずみ値の変化からひずみゲージ27A及びひずみ測定器28が解放ひずみを測定し、この解放ひずみから式(2)を用いて内部残留応力を算出し測定する。   As another method for measuring the internal residual stress at a deeper position based on the drilled hole 25, a surface layer 35 on which a strain gauge 27 is attached to the bottom surface 26 of the hole 25 drilled in the sample 22. After peeling off, a deeper processed hole 39 is further drilled using a drill or the like, and another strain gauge 27A is attached to the bottom surface (deep bottom surface) 40 of the processed hole 39. The initial strain value of the bottom surface 40 is measured by the measuring device 28. Thereafter, the surface layer 41 of the bottom surface 40 is peeled off by electric discharge machining or the like with the strain gauge 27A attached. The strain gauge 27A and the strain measuring device 28 measure the release strain from the change in strain value at this time, and the internal residual stress is calculated from the release strain using the equation (2) and measured.

本実施の形態の残留応力評価システム10は、以上のように構成されたことから次の効果(1)及び(2)を奏する。   Since the residual stress evaluation system 10 of the present embodiment is configured as described above, the following effects (1) and (2) are achieved.

(1)内部残留応力評価装置16は、測定対象部材11について表面残留応力算出装置14が算出した表面残留応力、測定対象部材11の溶接条件、開先形状及び材料特性に基づき、データベース15に格納されたデータ(つまり、測定対象部材11と同様な構成の試料22について予め求めた表面残留応力及び内部残留応力、試料22作製時の溶接条件、試料22の開先形状、並びに試料22の材料特性などのデータ)と照合して、測定対象部材11の内部残留応力を推定し評価する。このため、この残留応力評価システム10によれば、測定対象部材11の残留応力、特に内部残留応力を精度良く評価できる。この結果、溶接構造物の構造信頼性を確保でき、例えば高品質かつ高信頼性の溶接ロータを備えたタービンを製造することができる。   (1) The internal residual stress evaluation device 16 stores in the database 15 based on the surface residual stress calculated by the surface residual stress calculation device 14 for the measurement target member 11, the welding conditions, the groove shape, and the material characteristics of the measurement target member 11. Data (that is, surface residual stress and internal residual stress obtained in advance for the sample 22 having the same configuration as the measurement target member 11, welding conditions at the time of preparing the sample 22, groove shape of the sample 22, and material characteristics of the sample 22) The internal residual stress of the measurement target member 11 is estimated and evaluated. For this reason, according to this residual stress evaluation system 10, the residual stress of the measurement object member 11, especially the internal residual stress can be evaluated with high accuracy. As a result, the structural reliability of the welded structure can be ensured, and for example, a turbine having a high-quality and highly reliable welded rotor can be manufactured.

(2)試料22の任意の深さの内部残留応力は、試料22に異なる深さの加工穴25を複数穿設し、これらの加工穴25の底面26にひずみゲージ27を貼り付け、この底面26のひずみ初期値を測定し、その後、ひずみゲージ27が貼り付けられた部分(表層35またはブロック36)を採取し、このときのひずみゲージ27及びひずみ測定器28により測定される解放ひずみから算出され測定される。この加工穴25を基にさらに深い位置の内部残留応力も、同様にして算出され測定される。この結果、試料22の内部残留応力を高精度に測定することができる。   (2) The internal residual stress at an arbitrary depth of the sample 22 is formed by drilling a plurality of processed holes 25 having different depths in the sample 22 and attaching strain gauges 27 to the bottom surfaces 26 of these processed holes 25. 26, an initial strain value is measured, and then a portion (surface layer 35 or block 36) to which the strain gauge 27 is attached is collected and calculated from the released strain measured by the strain gauge 27 and the strain measuring instrument 28 at this time. And measured. The internal residual stress at a deeper position based on the processed hole 25 is calculated and measured in the same manner. As a result, the internal residual stress of the sample 22 can be measured with high accuracy.

以上、本発明を上記実施の形態に基づいて説明したが、本発明はこれに限定されるものではない。例えば、本実施の形態では、表面残留応力算出装置14による測定対象部材11の表面残留応力の測定は、ひずみゲージ12が貼り付けられた測定対象部材11の表層11Aを剥離し、このときの解放ひずみから算出されるものを述べたが、測定対象部材11の表面を剥離しない非破壊法によって測定対象部材11の表面残留応力を測定してもよい。   As mentioned above, although this invention was demonstrated based on the said embodiment, this invention is not limited to this. For example, in the present embodiment, the measurement of the surface residual stress of the measurement target member 11 by the surface residual stress calculation device 14 is performed by peeling the surface layer 11A of the measurement target member 11 to which the strain gauge 12 is attached and releasing it at this time. Although what was calculated from distortion was described, you may measure the surface residual stress of the measuring object member 11 by the nondestructive method which does not peel the surface of the measuring object member 11. FIG.

(A)は本発明に係る残留応力評価システムの一実施形態の構成を示すシステム構成図、(B)は測定対象部材におけるひずみ初期値の測定状況を説明する説明図、(C)は測定対象部材における剥離採取部の補修状況を説明する説明図。(A) is a system block diagram which shows the structure of one Embodiment of the residual stress evaluation system based on this invention, (B) is explanatory drawing explaining the measurement condition of the distortion initial value in a measuring object member, (C) is a measuring object. Explanatory drawing explaining the repair condition of the peeling sampling part in a member. (A)、(B)及び(C)は各々図1のデータベースに格納される表面残留応力を切断法により測定する状況を示す説明図。(A), (B), and (C) are explanatory drawings which show the condition which measures the surface residual stress each stored in the database of FIG. 1 by a cutting method. 図1のデータベースに格納される表面残留応力を穿孔法により測定する状況を示す説明図。Explanatory drawing which shows the condition which measures the surface residual stress stored in the database of FIG. 1 by the drilling method. 図1のデータベースに加工される表面残留応力をザックス法により測定する状況を示す説明図。Explanatory drawing which shows the condition which measures the surface residual stress processed into the database of FIG. 1 by the Sachs method. 図1のデータベースに格納される内部残留応力を測定する試料を示し、(A)は正面図、(B)は側面図。The sample which measures the internal residual stress stored in the database of FIG. 1 is shown, (A) is a front view, (B) is a side view. 図5の試料を用いて内部残留応力を測定する状況を示し、図5のVI−VI線に沿う断面図。Sectional drawing which shows the condition which measures an internal residual stress using the sample of FIG. 5, and follows the VI-VI line of FIG. (A)、(B)及び(C)は、図5の試料の加工穴にひずみゲージを貼り付ける状況を示す説明図。(A), (B) and (C) are explanatory drawings which show the condition which affixes a strain gauge to the processing hole of the sample of FIG.

符号の説明Explanation of symbols

10 残留応力評価システム
11 測定対象部材
11A 表層
11B 剥離採取部
12 ひずみゲージ
13 ひずみ測定器(ひずみ測定装置)
14 表面残留応力算出装置
15 データベース
16 内部残留応力評価装置
17 品質判定装置
19 溶接トーチ(平滑手段)
20 切削カッター(平滑手段)
22 試料
25 加工穴
26 底面
27、27A ひずみゲージ
29 溶接線
30 ひずみゲージ貼付装置
31 先端部
32 プラスチックフィルム
33 貼付面
35 表層
36 ブロック
37 剥離底面
38 表層
39 加工穴
40 底面(深い底面)
41 表層
DESCRIPTION OF SYMBOLS 10 Residual stress evaluation system 11 Measurement object member 11A Surface layer 11B Peeling sampling part 12 Strain gauge 13 Strain measuring device (strain measuring device)
14 Surface residual stress calculation device 15 Database 16 Internal residual stress evaluation device 17 Quality judgment device 19 Welding torch (smoothing means)
20 Cutting cutter (smoothing means)
22 Sample 25 Processed hole 26 Bottom surface 27, 27A Strain gauge 29 Weld line 30 Strain gauge application device 31 Tip 32 Plastic film 33 Application surface 35 Surface layer 36 Block 37 Peeling surface 38 Surface layer 39 Processing hole 40 Bottom surface (deep bottom surface)
41 Surface

Claims (14)

測定対象部材にひずみゲージを貼り付けてひずみ初期値を測定した後、前記ひずみゲージを貼り付けた部分を採取し、ひずみを解放して残留応力を算出し評価する残留応力評価システムであって、
前記測定対象部材に貼り付けられた前記ひずみゲージのひずみ値を測定するひずみ測定装置と、
このひずみ測定装置で測定したひずみ値から前記測定対象部材の表面残留応力を算出する表面残留応力算出装置と、
前記測定対象部材と同様な構成の試料について予め求めた表面残留応力及び内部残留応力、前記試料作製時の溶接条件、前記試料の開先形状、並びに前記試料の材料特性などのデータを関連づけて格納したデータベースと、
前記表面残留応力算出装置が算出した表面残留応力、前記測定対象部材の溶接条件、開先形状、及び材料特性に基づき、前記データベース内のデータと照合して、前記測定対象部材の内部残留応力を推定し評価する内部残留応力評価装置と、を有することを特徴とする残留応力評価システム。
After measuring the initial strain value by affixing a strain gauge to the measurement target member, the portion where the strain gauge is affixed is collected, the strain is released and the residual stress is calculated and evaluated,
A strain measuring device for measuring a strain value of the strain gauge attached to the measurement target member;
A surface residual stress calculating device for calculating the surface residual stress of the measurement target member from the strain value measured by the strain measuring device;
Data relating to surface residual stress and internal residual stress determined in advance for a sample having the same configuration as the measurement target member, welding conditions at the time of sample preparation, groove shape of the sample, and material characteristics of the sample are stored in association with each other. Database and
Based on the surface residual stress calculated by the surface residual stress calculation device, the welding conditions of the measurement target member, the groove shape, and the material characteristics, the internal residual stress of the measurement target member is determined by collating with the data in the database. An internal residual stress evaluation device for estimating and evaluating the residual stress evaluation system.
前記内部残留応力評価装置が評価した内部残留応力に基づき測定対象部材の品質を判定する品質判定装置を備えたことを特徴とする請求項1に記載の残留応力評価システム。 The residual stress evaluation system according to claim 1, further comprising a quality determination device that determines the quality of the measurement target member based on the internal residual stress evaluated by the internal residual stress evaluation device. 前記表面残留応力算出装置は、測定対象部材のひずみ初期値がひずみゲージ及びひずみ測定装置にて測定された後、前記ひずみゲージが貼り付けられた表層が放電加工、ワイヤカットまたは電解研磨加工により剥離して採取されたときに測定される解放ひずみから、前記測定対象部材の表面残留応力を算出することを特徴とする請求項1に記載の残留応力評価システム。 In the surface residual stress calculation device, after the initial strain value of the measurement target member is measured by a strain gauge and a strain measurement device, the surface layer to which the strain gauge is attached is peeled off by electrical discharge machining, wire cutting, or electrolytic polishing. The residual stress evaluation system according to claim 1, wherein a surface residual stress of the measurement target member is calculated from a release strain measured when the sample is collected. 前記測定対象部材の剥離採取された部分を溶接補修、切削加工、またはこれらの組み合せにより平滑にする平滑手段を備えたことを特徴とする請求項1に記載の残留応力評価システム。 The residual stress evaluation system according to claim 1, further comprising a smoothing unit that smoothes a portion of the measurement object peeled and collected by welding repair, cutting, or a combination thereof. 前記データベースに格納される表面残留応力のデータは、切断法、穿孔法、ザックス法の少なくとも1つによって算出したデータであることを特徴とする請求項1に記載の残留応力評価システム。 The residual stress evaluation system according to claim 1, wherein the surface residual stress data stored in the database is data calculated by at least one of a cutting method, a drilling method, and a Sachs method. 前記データベースに格納される内部残留応力のデータは、測定対象の試料に異なる深さの穴を複数穿設し、これらの加工穴の底面にひずみゲージをそれぞれ貼り付けてこの加工穴の底面のひずみ初期値を測定した後、前記ひずみゲージを貼り付けた部分を採取し、このときの前記ひずみゲージにより測定される解放ひずみから、前記試料の任意の深さにおける内部残留応力を算出したデータであることを特徴とする請求項1に記載の残留応力評価システム。 The internal residual stress data stored in the database is obtained by drilling a plurality of holes with different depths in the sample to be measured, and attaching strain gauges to the bottom surfaces of these processed holes. After measuring the initial value, the portion to which the strain gauge is attached is collected, and the internal residual stress at an arbitrary depth of the sample is calculated from the release strain measured by the strain gauge at this time. The residual stress evaluation system according to claim 1. 前記データベースに格納される内部残留応力のデータは、試料に穿設された加工穴の底面の初期ひずみを測定した後、前記加工穴の前記底面にひずみゲージを貼り付けた状態でこの底面の表層を剥離させて採取し、このときの前記ひずみゲージにより測定される解放ひずみから算出したデータ、
または、試料に穿設された加工穴の底面の初期ひずみを測定した後、前記加工穴の前記底面にひずみゲージを貼り付けた状態で前記試料を切断し、前記ひずみゲージを貼り付けた前記底面部分のブロックを採取し、このときの前記ひずみゲージにより測定される解放ひずみから算出したデータであることを特徴とする請求項6に記載の残留応力評価システム。
The internal residual stress data stored in the database is obtained by measuring the initial strain of the bottom surface of the processed hole drilled in the sample and then applying a strain gauge to the bottom surface of the processed hole. The data calculated from the release strain measured by the strain gauge at this time,
Alternatively, after measuring the initial strain of the bottom surface of the processed hole drilled in the sample, the sample is cut in a state where the strain gauge is applied to the bottom surface of the processed hole, and the bottom surface is attached with the strain gauge. The residual stress evaluation system according to claim 6, wherein the residual stress evaluation system is data calculated from a release strain measured by the strain gauge at the time when a block of a portion is collected.
前記データベースに格納される内部残留応力のデータは、試料に穿設された加工穴の底面の、ひずみゲージが貼り付けられた表層を剥離した後の剥離底面に他のひずみゲージを貼り付け、この他のひずみゲージにより前記剥離底面のひずみ初期値を測定した後、この他のひずみゲージを貼り付けた状態で前記剥離底面の表層を剥離させ、このときの前記他のひずみゲージにより測定される解放ひずみから算出したデータであることを特徴とする請求項6に記載の残留応力評価システム。 The internal residual stress data stored in the database is obtained by attaching another strain gauge to the bottom surface of the processed hole drilled in the sample after peeling the surface layer to which the strain gauge is attached. After measuring the initial strain value of the peeling bottom surface with another strain gauge, the surface layer of the peeling bottom surface is peeled off with the other strain gauge attached, and the release measured by the other strain gauge at this time The residual stress evaluation system according to claim 6, wherein the residual stress evaluation system is data calculated from strain. 前記データベースに格納される内部残留応力のデータは、試料に穿設された加工穴の底面の、ひずみゲージが貼り付けられた表層を剥離した後にさらに深い加工穴を追加して穿設し、この追加した加工穴の深い底面に他のひずみゲージを貼り付け、この他のひずみゲージにより前記深い底面のひずみ初期値を測定した後、この他のひずみゲージを貼り付けた状態で前記深い底面の表層を剥離し、このときの前記他のひずみゲージにより測定される解放ひずみから算出したデータであることを特徴とする請求項6に記載の残留応力評価システム。 The internal residual stress data stored in the database is drilled by adding deeper drilled holes after peeling off the surface layer with the strain gauge attached to the bottom of the drilled holes in the sample. After attaching another strain gauge to the deep bottom surface of the added processing hole and measuring the initial strain value of the deep bottom surface with this other strain gauge, the surface layer of the deep bottom surface with this other strain gauge attached. The residual stress evaluation system according to claim 6, wherein the residual stress evaluation system is data calculated from a release strain measured by the other strain gauge at this time. 前記ひずみゲージは、接着剤で接着されないフィルムで覆われた先端部を具備するひずみゲージ貼付装置の前記先端部に前記ひずみゲージを取り付け、このひずみゲージの貼付面に接着剤を塗布し、試料に穿設した加工穴に前記ひずみゲージ貼付装置の前記先端部を挿入し、前記ひずみゲージが前記加工穴の底面に位置した状態で前記ひずみゲージ貼付装置の前記先端部を前記加工穴の底面に押圧して貼り付けられたことを特徴とする請求項6に記載の残留応力評価システム。 The strain gauge is attached to the tip of the strain gauge attaching device having a tip covered with a film that is not bonded with an adhesive, and an adhesive is applied to the application surface of the strain gauge. Insert the tip of the strain gauge attaching device into the drilled processing hole, and press the tip of the strain gauge attaching device against the bottom of the processing hole in a state where the strain gauge is positioned at the bottom of the processing hole. The residual stress evaluation system according to claim 6, wherein the residual stress evaluation system is attached. 前記加工穴は試料に、断面が円形または矩形で、底面が平滑に穿設されたものであり、この底面にひずみゲージが貼り付けられたことを特徴とする請求項6に記載の残留応力評価システム。 The residual stress evaluation according to claim 6, wherein the processed hole has a circular or rectangular cross section in the sample and has a bottom surface smoothly drilled, and a strain gauge is attached to the bottom surface. system. 前記試料は、軸方向に垂直な溶接線を具備する軸対称溶接継手であり、複数の加工穴が前記溶接線に対して平行または垂直に穿設されたことを特徴とする請求項6に記載の残留応力評価システム。 7. The sample according to claim 6, wherein the sample is an axially symmetric weld joint having a weld line perpendicular to the axial direction, and a plurality of machining holes are drilled parallel or perpendicular to the weld line. Residual stress evaluation system. 前記試料は、複数の平板からなる溶接継手であり、複数の加工穴が溶接線に対して平行または垂直に穿設されたことを特徴とする請求項6に記載の残留応力評価システム。 The residual stress evaluation system according to claim 6, wherein the sample is a welded joint made of a plurality of flat plates, and a plurality of processed holes are drilled parallel or perpendicular to the weld line. 測定対象部材の内部残留応力を測定する残留応力測定方法であって、
測定対象部材に異なる深さの穴を複数穿設し、これらの加工穴の底面にひずみゲージをそれぞれ貼り付けてこの加工穴の底面のひずみ初期値を測定し、
その後、前記ひずみゲージを貼り付けた部分を採取し、このときの前記ひずみゲージにより測定される解放ひずみから、前記測定対象部材の任意の深さにおける内部残留応力を求めることを特徴とする残留応力測定方法。
A residual stress measurement method for measuring internal residual stress of a measurement target member,
Drill a number of holes with different depths in the measurement target member, and attach a strain gauge to the bottom of these holes to measure the initial strain value on the bottom of these holes.
Thereafter, the portion where the strain gauge is attached is collected, and the internal residual stress at an arbitrary depth of the measurement target member is obtained from the release strain measured by the strain gauge at this time. Measuring method.
JP2008060025A 2008-03-10 2008-03-10 Residual stress evaluation system and residual stress measuring method Pending JP2009216514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008060025A JP2009216514A (en) 2008-03-10 2008-03-10 Residual stress evaluation system and residual stress measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008060025A JP2009216514A (en) 2008-03-10 2008-03-10 Residual stress evaluation system and residual stress measuring method

Publications (1)

Publication Number Publication Date
JP2009216514A true JP2009216514A (en) 2009-09-24

Family

ID=41188527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008060025A Pending JP2009216514A (en) 2008-03-10 2008-03-10 Residual stress evaluation system and residual stress measuring method

Country Status (1)

Country Link
JP (1) JP2009216514A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103353360A (en) * 2012-11-14 2013-10-16 西安交通大学 Method for measuring residual stress of welded rotor
JP2015094758A (en) * 2013-11-14 2015-05-18 株式会社神戸製鋼所 Residual stress calculation method
JP2015184118A (en) * 2014-03-24 2015-10-22 株式会社山本金属製作所 Residual stress measurement method and residual stress measurement device
CN107101762A (en) * 2017-05-17 2017-08-29 北京工业大学 A kind of measuring method of round tube inner wall welding residual stress
CN111024288A (en) * 2019-12-31 2020-04-17 西南交通大学 Method for detecting and evaluating residual stress of welding assembly of pipeline connecting head

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103353360A (en) * 2012-11-14 2013-10-16 西安交通大学 Method for measuring residual stress of welded rotor
CN103353360B (en) * 2012-11-14 2015-07-01 西安交通大学 Method for measuring residual stress of welded rotor
JP2015094758A (en) * 2013-11-14 2015-05-18 株式会社神戸製鋼所 Residual stress calculation method
WO2015072391A1 (en) * 2013-11-14 2015-05-21 株式会社神戸製鋼所 Residual stress measuring method
CN105705925A (en) * 2013-11-14 2016-06-22 株式会社神户制钢所 Residual stress measuring method
EP3070447A4 (en) * 2013-11-14 2017-06-28 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Residual stress measuring method
KR101840958B1 (en) 2013-11-14 2018-03-21 가부시키가이샤 고베 세이코쇼 Residual stress measuring method
US10018522B2 (en) 2013-11-14 2018-07-10 Kobe Steel, Ltd. Residual stress measuring method
JP2015184118A (en) * 2014-03-24 2015-10-22 株式会社山本金属製作所 Residual stress measurement method and residual stress measurement device
CN107101762A (en) * 2017-05-17 2017-08-29 北京工业大学 A kind of measuring method of round tube inner wall welding residual stress
CN111024288A (en) * 2019-12-31 2020-04-17 西南交通大学 Method for detecting and evaluating residual stress of welding assembly of pipeline connecting head

Similar Documents

Publication Publication Date Title
Pawar et al. Analysis of hole quality in drilling GLARE fiber metal laminates
CN101539506B (en) Method for measuring welding residual stress
Javadi et al. Taguchi optimization and ultrasonic measurement of residual stresses in the friction stir welding
JP2009216514A (en) Residual stress evaluation system and residual stress measuring method
CN107643141B (en) A kind of method for testing welding heat affected zone residual stress
KR101840958B1 (en) Residual stress measuring method
Sedighi et al. Experimental study of through-depth residual stress in explosive welded Al–Cu–Al multilayer
Fratini et al. An analysis of through-thickness residual stresses in aluminium FSW butt joints
CN103808438A (en) Method for measuring sheet welding residual stress
CN106680200B (en) Method for detecting interface bonding strength of composite material
TW201024008A (en) Drilling tool and method for manufacturing the same
CN106990043B (en) A kind of metal coating interface bond strength measuring device and method
Stegmüller et al. Inductive heating effects on friction surfacing of stainless steel onto an aluminium substrate
CN104155237A (en) Detection method for interface bonding strength of aluminum-steel composite material
CN104296901A (en) Welding residual stress small hole measuring method
JP2009195984A (en) Fastener with welded ultrasonic stress transducer
DE102013013161A1 (en) Method of testing adhesiveness and film strength of surface layer formed on metal substrate used in cylinder crankcase of combustion engine, involves measuring tensile force applied for detaching surface layer from substrate
Rahme et al. Drilling of thick composite material with a small-diameter twist drill
Eslami et al. Electrical and mechanical properties of friction stir welded Al-Cu butt joints
Park et al. Fracture toughness measurements using two single-edge notched bend test methods in a single specimen
CN105547999A (en) Method for measuring bonding strength of metal composite material, sample and sample manufacture method
CN104897320A (en) Method for measuring welding residual stress
Rahmé et al. Effect of adding a woven glass ply at the exit of the hole of CFRP laminates on delamination during drilling
US10078041B2 (en) Flatwise material coupon
Kanerva et al. X-ray diffraction and fracture based analysis of residual stresses in stainless steel–epoxy interfaces with electropolishing and acid etching substrate treatments

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100426