JP2009216416A - Internal flaw inspection method of piston - Google Patents

Internal flaw inspection method of piston Download PDF

Info

Publication number
JP2009216416A
JP2009216416A JP2008057588A JP2008057588A JP2009216416A JP 2009216416 A JP2009216416 A JP 2009216416A JP 2008057588 A JP2008057588 A JP 2008057588A JP 2008057588 A JP2008057588 A JP 2008057588A JP 2009216416 A JP2009216416 A JP 2009216416A
Authority
JP
Japan
Prior art keywords
piston
temperature
oil
predetermined
crown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008057588A
Other languages
Japanese (ja)
Other versions
JP5041235B2 (en
Inventor
Hisanori Takama
久典 高馬
Yoshiaki Kajikawa
義明 梶川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008057588A priority Critical patent/JP5041235B2/en
Publication of JP2009216416A publication Critical patent/JP2009216416A/en
Application granted granted Critical
Publication of JP5041235B2 publication Critical patent/JP5041235B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Testing Of Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To simply and easily inspect the internal flaw of a piston by a non-destructive method. <P>SOLUTION: The physical quantity related to the temperature rising speed of a crown surface 10 is measured while injecting a liquid heating medium of a predetermined temperature in an oil flow channel 40 and compared with a predetermined reference value. A heat conducting route becomes long because a region where the internal flaw is present has high heat insulating properties and the temperature rising speeds of the crown surface 10 are different between a defective article and a reference article. Accordingly, by comparing the difference of the temperature rising speed with the reference article, the presence of the internal flaw can be discriminated. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、内燃機関に用いられるピストンの鋳巣などの内部欠陥を、非破壊法によって検査する方法に関する。   The present invention relates to a method for inspecting internal defects such as a hollow of a piston used in an internal combustion engine by a nondestructive method.

近年の自動車においては、地球温暖化の抑制の一環としてエンジンの燃焼効率をさらに向上させることが望まれ、さらなる燃費の向上が課題となっている。   In recent automobiles, it is desired to further improve the combustion efficiency of the engine as part of the suppression of global warming, and further improvement in fuel efficiency has been an issue.

自動車のエンジンにおいて、燃費を向上させるためにはピストン冠部を冷却し、ノッキングを防止して圧縮比を向上させることが有効である。そのため、例えば実開昭59−130020号公報には、ピストン冠部に中空部を形成するとともに、中空部とピストン外部とを連通するオイル流入口とオイル流出口を形成したピストンが記載されている。このピストンによれば、オイル流入口からオイルを中空部内に供給し、中空部内のオイルをオイル排出口から排出することで、中空部を流れるオイルによってピストン冠部を冷却することができる。   In an automobile engine, in order to improve fuel efficiency, it is effective to cool the piston crown to prevent knocking and improve the compression ratio. Therefore, for example, Japanese Utility Model Publication No. 59-130020 discloses a piston in which a hollow portion is formed in a piston crown portion, and an oil inlet and an oil outlet are formed to communicate the hollow portion and the outside of the piston. . According to this piston, oil is supplied into the hollow portion from the oil inlet, and the oil in the hollow portion is discharged from the oil discharge port, so that the piston crown can be cooled by the oil flowing through the hollow portion.

また特開平05−288049号公報には、ピストン冠部の内部に渦巻き状のオイル流路を形成し、そのオイル流路を流れるオイルによってピストン冠部を冷却するようにしたピストン冷却装置が記載されている。   Japanese Patent Application Laid-Open No. 05-288049 discloses a piston cooling device in which a spiral oil passage is formed inside a piston crown and the piston crown is cooled by oil flowing through the oil passage. ing.

またシリンダ内へ燃料を直接噴射するシステムにおいては、ピストン冠部の表面である冠面における噴霧燃料の分布が燃焼効率に対して重要な因子であり、表面積の増大と燃費の向上を目的として、冠面の形状を凹凸形状とすることも行われている。   In a system that directly injects fuel into the cylinder, the distribution of sprayed fuel on the crown, which is the surface of the piston crown, is an important factor for the combustion efficiency. For the purpose of increasing the surface area and improving fuel consumption, The shape of the crown surface is also made uneven.

このようなピストンは、一般に、アルミニウム合金などから鋳造によって製造されている。ところがピストンの形状が複雑になるほど、鋳造時に鋳巣が発生しやすいという問題がある。特にピストン冠部の内部に鋳巣が発生すると、その鋳巣には空気が存在していることから、空気の断熱作用によって冷却効率が低下し、その結果、燃費の向上度合いが低くなってしまう。   Such a piston is generally manufactured by casting from an aluminum alloy or the like. However, the more complicated the shape of the piston is, the more likely it is that a void is generated during casting. In particular, when a void is generated inside the piston crown, air is present in the void, so that the cooling efficiency is lowered by the heat insulation action of the air, and as a result, the degree of improvement in fuel consumption is reduced. .

またオイル流路を形成するために、鋼材などからなる別部材を鋳包むことが行われている。さらに、ピストンリングによる摩耗を抑制するために、リング溝をもつ鋳鉄製の耐摩環を鋳包むことも行われている。ところが、これらの別部材を鋳包む場合には、別部材とピストン本体との接合不良が生じ、別部材とピストン本体との界面で剥離が生じる場合があった。このような剥離部分には空気が存在し、鋳巣と同様にその断熱作用によって冷却効率が低下してしまう。   In order to form an oil flow path, another member made of steel or the like is cast. Furthermore, in order to suppress wear caused by the piston ring, cast iron wear-resistant rings having ring grooves are also cast. However, when these separate members are cast, there is a case where a poor connection between the separate member and the piston body occurs, and peeling occurs at the interface between the separate member and the piston body. Air exists in such a peeled portion, and the cooling efficiency is lowered by the heat insulating action like the cast hole.

そこで、生産されたピストンを検査して、鋳巣や剥離の存在する不良品を検出する必要がある。この検査は、非破壊検査で行うことが望ましく、各種の検査方法が提案されている。   Therefore, it is necessary to inspect the produced piston to detect defective products having cast holes and peeling. This inspection is preferably performed by nondestructive inspection, and various inspection methods have been proposed.

例えば実開平06−078808号公報には、超音波を用いてピストンの内部欠陥を検出する方法が記載されている。しかしこの検査方法では、超音波の入射波がピストン冠部の凹凸や別部材との界面で複雑に反射し、検査精度が低いという問題がある。また被検体を回転させたり、複数の探触子の作動と非作動の切換などを行わなければならず、検査工数が大きいという不具合もある。   For example, Japanese Utility Model Laid-Open No. 06-078808 describes a method for detecting an internal defect of a piston using ultrasonic waves. However, in this inspection method, there is a problem that the incident wave of ultrasonic waves is reflected in a complex manner at the unevenness of the piston crown and the interface with another member, and the inspection accuracy is low. In addition, there is a problem that the inspection man-hour is large because the subject needs to be rotated or the operation of a plurality of probes must be switched between inactive and inactive.

また特開平01−156662号公報には、繊維強化部をもつピストンについて、アコースティック・エミッション法を利用して内部欠陥を検査する方法が記載されている。ところがアコースティック・エミッション法では、冷却中に進展するクラックなど動的に発生する欠陥は検出できるものの、鋳巣など静的に発生した欠陥を検出することは困難である。
実開昭59−130020号公報 特開平05−288049号公報 実開平06−078808号公報 特開平01−156662号公報
Japanese Laid-Open Patent Publication No. 01-156662 describes a method for inspecting internal defects of a piston having a fiber reinforced portion by using an acoustic emission method. However, the acoustic emission method can detect dynamically generated defects such as cracks that develop during cooling, but it is difficult to detect statically generated defects such as cast holes.
Japanese Utility Model Publication No.59-130020 Japanese Patent Laid-Open No. 05-288049 Japanese Utility Model Publication No. 06-078808 Japanese Patent Laid-Open No. 01-156662

本発明は上記事情に鑑みてなされたものであり、非破壊法によってピストンの内部欠陥を簡便にかつ容易に検査できるようにすることを解決すべき課題とする。   This invention is made | formed in view of the said situation, and makes it the problem which should be solved to enable it to test | inspect easily and easily the internal defect of a piston by a nondestructive method.

上記課題を解決する本発明のピストンの内部欠陥検査方法の特徴は、ピストン冠部を上底とする有底筒状をなし、ピストン冠部にオイル流入口とオイル流出口をもつオイル流路を備えたピストンを用い、ピストン冠部の内部欠陥を非破壊で検査する方法であって、
オイル流路に所定温度の液状熱媒体を注入しながらピストン冠部の表面である冠面の昇温速度に関連した物理量を測定し、その物理量を予め決められた基準値と比較することを特徴とする。
The feature of the piston internal defect inspection method of the present invention that solves the above problems is that it has a bottomed cylindrical shape with the piston crown as the upper base, and an oil flow path having an oil inlet and an oil outlet at the piston crown. A non-destructive method for inspecting internal defects of a piston crown using a provided piston,
Measuring a physical quantity related to the temperature rise rate of the crown surface, which is the surface of the piston crown, while injecting a liquid heat medium at a predetermined temperature into the oil flow path, and comparing the physical quantity with a predetermined reference value And

本発明のピストンの内部欠陥検査方法では、オイル流路に所定温度の液状熱媒体を注入しながら冠面の昇温速度に関連した物理量を測定する。鋳巣や剥離部などの内部欠陥が存在する部位は、他の正常な部位より断熱性が高いため、オイル流路内の液状熱媒体からの熱は内部欠陥を避けるように伝熱し、伝熱距離が長くなる。したがって、内部欠陥の存在しない基準品の所定位置の昇温速度に関連した物理量を基準値として予め測定しておくことで、検体の同一位置における同物理量に基準値と差が生じていれば、検体には内部欠陥が存在すると判定される。   In the piston internal defect inspection method of the present invention, a physical quantity related to the temperature rise rate of the crown surface is measured while injecting a liquid heat medium having a predetermined temperature into the oil passage. Parts with internal defects such as cast holes and peeled parts have higher heat insulation than other normal parts, so the heat from the liquid heat medium in the oil flow path is transferred to avoid internal defects and heat transfer. The distance gets longer. Therefore, by measuring in advance as a reference value a physical quantity related to the temperature rise rate at a predetermined position of a reference product without an internal defect, if there is a difference from the reference value in the same physical quantity at the same position of the specimen, It is determined that the sample has an internal defect.

すなわち本発明のピストンの内部欠陥検査方法によれば、非破壊で精度高く内部欠陥の有無を検査することができ、かつ検査工数も小さい。したがって全数検査が可能となり、製品の信頼性が向上する。   That is, according to the internal defect inspection method for a piston of the present invention, the presence or absence of internal defects can be inspected with high accuracy in a nondestructive manner, and the number of inspection steps is small. Therefore, 100% inspection is possible and the reliability of the product is improved.

本発明のピストンの内部欠陥検査方法は、ピストン冠部にオイル流路を備えたピストンに適用される。ピストン冠部の形状、オイル流路の形状には、特に制限がない。ピストン冠部には、オイル流路と外部とを連通するオイル流入口とオイル流出口が形成されている。   The piston internal defect inspection method according to the present invention is applied to a piston having an oil flow path in a piston crown. There are no particular limitations on the shape of the piston crown and the shape of the oil passage. The piston crown is formed with an oil inlet and an oil outlet that communicate the oil flow path with the outside.

オイル流路がピストン冠部の局部的に形成されていると、オイル流路から遠い部位における内部欠陥の存在の検出精度が低下する。したがってオイル流路は、ピストン冠部の表面から見て均一に分布していることが望ましい。しかし、ピストン冠部の表面から見て全面に均一に分布している必要はなく、少なくともオイル流路がピストン冠部を略一周するように形成されていれば足りる。   If the oil flow path is formed locally at the crown portion of the piston, the detection accuracy of the presence of an internal defect at a site far from the oil flow path is lowered. Therefore, it is desirable that the oil flow path is uniformly distributed as viewed from the surface of the piston crown. However, it does not have to be uniformly distributed over the entire surface as viewed from the surface of the piston crown, and it is sufficient that at least the oil flow path is formed so as to substantially make a round of the piston crown.

本発明のピストンの内部欠陥検査方法では、先ずオイル流路に所定温度の液状熱媒体が注入される。この液状熱媒体としては、水、高沸点有機溶媒、各種オイル、グリコール類などを用いることができる。室温で液状であり、沸点が50℃以上であり、かつ熱容量が高いものが望ましく、オイル流路に残存しても弊害の無いエンジンオイルが特に望ましい。オイル流路に注入される液状熱媒体の温度は特に制限されないが、検体であるピストンの温度との温度差が50〜 100℃程度が推奨される。温度差が小さすぎても大きすぎても、内部欠陥の検出精度が低下する場合がある。   In the piston internal defect inspection method of the present invention, first, a liquid heat medium having a predetermined temperature is injected into the oil passage. As this liquid heat medium, water, a high boiling point organic solvent, various oils, glycols, and the like can be used. A liquid that is liquid at room temperature, has a boiling point of 50 ° C. or higher, and has a high heat capacity is desirable, and engine oil that does not have any harmful effects even if it remains in the oil passage is particularly desirable. The temperature of the liquid heat medium injected into the oil flow path is not particularly limited, but a temperature difference of about 50 to 100 ° C. with respect to the temperature of the piston as the specimen is recommended. If the temperature difference is too small or too large, the detection accuracy of internal defects may decrease.

オイル流路への液状熱媒体の注入は、使用時のオイルの供給と同様に、オイル流入口又はオイル排出口へ向かってノズルから液状熱媒体を噴出させて行うことができる。噴出中の液状熱媒体の冷却を防止するために、ノズルの先端をオイル流入口又はオイル排出口に差し込む、あるいはオイル流入口又はオイル排出口に密着させた状態で噴出させることが望ましい。   The liquid heat medium can be injected into the oil flow path by ejecting the liquid heat medium from the nozzle toward the oil inlet or the oil outlet, similarly to the supply of oil during use. In order to prevent cooling of the liquid heat medium being ejected, it is desirable that the nozzle tip be inserted into the oil inlet or the oil outlet or ejected while being in close contact with the oil inlet or the oil outlet.

オイル流路に所定温度の液状熱媒体が注入された後、ピストン冠部の表面である冠面の昇温速度に関連した物理量が測定される。液状熱媒体は、オイル流路内に滞留した状態であってもよい。しかしオイル流路内に滞留していると、伝熱によって液状熱媒体の温度が徐々に低下するので、昇温速度に関連した物理量の基準品との差が小さくなり、検査精度が低くなる場合がある。したがって、所定温度の液状熱媒体が一定流速でオイル流路内を常に流動した状態であることが望ましい。液状熱媒体の流速にばらつきが生じると、検出精度が低下する場合がある。   After the liquid heat medium having a predetermined temperature is injected into the oil flow path, a physical quantity related to the temperature rise rate of the crown surface, which is the surface of the piston crown, is measured. The liquid heat medium may stay in the oil flow path. However, if it stays in the oil flow path, the temperature of the liquid heat medium will gradually decrease due to heat transfer, so the difference from the physical quantity reference product related to the heating rate will be small, and the inspection accuracy will be low There is. Therefore, it is desirable that the liquid heat medium having a predetermined temperature always flows in the oil flow path at a constant flow rate. If the flow rate of the liquid heat medium varies, the detection accuracy may decrease.

昇温速度に関連した物理量としては、所定時間経過後の所定部位の温度、所定部位の温度が所定温度に到達するまでの時間、所定部位の到達最高温度などから選択することができる。このうち一つでもよいし、複数の物理量を測定することも好ましい。また所定部位は一箇所のみでもよいが、複数箇所とすることが望ましい。   The physical quantity related to the rate of temperature increase can be selected from the temperature of a predetermined part after a predetermined time has elapsed, the time until the temperature of the predetermined part reaches a predetermined temperature, the maximum temperature reached at the predetermined part, and the like. One of these may be used, and it is also preferable to measure a plurality of physical quantities. Moreover, although the predetermined part may be only one place, it is desirable to set it as multiple places.

所定時間経過後の所定部位の温度、あるいは所定部位の温度が所定温度に到達するまでの時間を測定することで、鋳巣などの存在を検出することができる。また所定部位の到達最高温度を測定することで、オイル流路の閉塞などの異常も検出することができる。   By measuring the temperature of the predetermined part after the lapse of the predetermined time or the time until the temperature of the predetermined part reaches the predetermined temperature, the presence of a cast hole or the like can be detected. Further, by measuring the maximum temperature reached at a predetermined site, it is possible to detect abnormalities such as blockage of the oil flow path.

昇温速度に関連した物理量を測定するには、液状熱媒体の注入時からの時間を測定するとともに、熱電対を接触させて冠面の所定点の表面温度を測定する方法、冠面の遠赤外線強度を検出して画像分析する方法など、公知の手段を用いることで測定することができる。   To measure the physical quantity related to the rate of temperature rise, measure the time from the injection of the liquid heat medium, measure the surface temperature at a given point on the crown surface by contacting a thermocouple, It can be measured by using a known means such as a method of detecting an infrared intensity and analyzing an image.

測定された昇温速度に関連した物理量は、予め決められた基準値と比較される。予め決められた基準値とは、内部欠陥が存在しないことが予めわかっている基準品を用い、上記と同様に液状熱媒体を注入して測定された値である。基準品は、検体と同一形状をなし、同一材料から製造されたものである。   The physical quantity related to the measured heating rate is compared with a predetermined reference value. The predetermined reference value is a value measured by injecting a liquid heat medium in the same manner as described above using a reference product that is known in advance to have no internal defects. The reference product has the same shape as the specimen and is manufactured from the same material.

本発明の内部欠陥検査方法においては、基準品及び検体の初期温度は同一温度とし、基準品及び検体の測定時に注入される液状熱媒体の温度も同一とする必要がある。基準品及び検体の初期温度は特に制限されないが、液状熱媒体の温度と検体の温度との温度差を50〜 100℃程度とする場合には、初期温度は室温程度とすることが好ましい。室温程度の初期温度とすれば、製造されたピストンを初期温度とするまでの時間が短いので、検査工数をさらに小さくすることができる。   In the internal defect inspection method of the present invention, the initial temperature of the reference product and the specimen must be the same temperature, and the temperature of the liquid heat medium injected when measuring the reference product and the specimen must also be the same. The initial temperature of the reference product and the specimen is not particularly limited, but when the temperature difference between the temperature of the liquid heat medium and the specimen is about 50 to 100 ° C., the initial temperature is preferably about room temperature. If the initial temperature is about room temperature, the time until the manufactured piston is set to the initial temperature is short, so that the number of inspection steps can be further reduced.

以下、実施例により本発明を具体的に説明する。   Hereinafter, the present invention will be described specifically by way of examples.

(実施例1)
図1に、本実施例で用いた自動車のディーゼルエンジン用のピストンの断面図を示す。このピストンは、アルミニウム合金から鋳造によって一体に形成され、上底を構成する有底円筒状のピストン冠部1と、ピストン冠部1の下部に形成された薄肉のスカート部2とを備えている。スカート部2には、コンロッドを枢支するピンが保持される一対のピン孔20が形成されている。
Example 1
FIG. 1 shows a sectional view of a piston for a diesel engine of an automobile used in this example. The piston is integrally formed of an aluminum alloy by casting, and includes a bottomed cylindrical piston crown portion 1 constituting an upper base, and a thin skirt portion 2 formed at a lower portion of the piston crown portion 1. . The skirt portion 2 is formed with a pair of pin holes 20 for holding pins that pivotally support the connecting rod.

ピストン冠部1は、上面に凹凸形状をなす冠面10を備え、ピストン冠部1の外周には複数のリング溝11が形成されている。最上部のリング溝11は、断面コ字状の鋳鉄製の耐摩環3から形成されている。また耐摩環3の背面には断面C字形状の鋼リング4が配置され、耐摩環3の内周表面と鋼リング4とで囲まれたリング状空間が冷却用のオイル流路40を構成している。オイル流路40は、ピストン冠部1を一周している。耐摩環3及び鋼リング4は、ピストンの鋳造時に鋳ぐるまれて一体化されている。   The piston crown 1 includes a crown surface 10 having an uneven shape on the upper surface, and a plurality of ring grooves 11 are formed on the outer periphery of the piston crown 1. The uppermost ring groove 11 is formed of a wear-resistant ring 3 made of cast iron having a U-shaped cross section. A steel ring 4 having a C-shaped cross section is disposed on the back surface of the wear-resistant ring 3, and a ring-shaped space surrounded by the inner peripheral surface of the wear-resistant ring 3 and the steel ring 4 constitutes an oil flow path 40 for cooling. ing. The oil flow path 40 goes around the piston crown 1. The wear ring 3 and the steel ring 4 are cast and integrated when the piston is cast.

ピストン冠部1の内周表面には、オイル流入口12とオイル排出口13とが開口し、オイル流入口12とオイル排出口13とは共に連通路14を介してオイル流路40と連通している。   An oil inlet 12 and an oil outlet 13 are opened on the inner peripheral surface of the piston crown 1, and both the oil inlet 12 and the oil outlet 13 communicate with the oil passage 40 through the communication passage 14. ing.

先ず、超音波探傷法によって内部欠陥が存在しないことが明らかとなったピストンの基準品を用意した。この基準品は、検体であるピストンと同一形状であり、同一材質である。   First, a reference product for a piston that was found to be free from internal defects by ultrasonic flaw detection was prepared. This reference product has the same shape and the same material as the piston as the specimen.

図2に示すように、基準品を検査装置にセットした。この検査装置は、ピストン冠部1の冠面10の表面温度を測定する表面温度計5と、オイル流路40にエンジンオイルを供給するオイル供給装置6とから構成されている。表面温度計5には、複数の熱電対50が接続されている。複数の熱電対50は、冠面10の所定部位にそれぞれ当接している。表面温度計5は、複数の熱電対50の信号を同時に処理し、冠面10の複数の所定部位における表面温度を同時に検出する。   As shown in FIG. 2, the reference product was set in the inspection apparatus. This inspection device is composed of a surface thermometer 5 that measures the surface temperature of the crown surface 10 of the piston crown 1 and an oil supply device 6 that supplies engine oil to the oil passage 40. A plurality of thermocouples 50 are connected to the surface thermometer 5. The plurality of thermocouples 50 are in contact with predetermined portions of the crown surface 10, respectively. The surface thermometer 5 simultaneously processes signals from a plurality of thermocouples 50 and simultaneously detects surface temperatures at a plurality of predetermined portions of the crown surface 10.

オイル供給装置6は、エンジンオイル60を蓄えた容器61と、ポンプ62と、ヒータ63と、ノズル64とから構成されている。ポンプ62は、容器61内のエンジンオイル60を所定圧力でヒータ63へ送り、ヒータ63で所定温度に加熱されたエンジンオイル60がノズル64から所定圧力で噴出する。ノズル64の先端はオイル流入口12に密着し、オイル流入口12から連通路14を介してオイル流路40にエンジンオイル60が注入される。オイル流路40を流れたエンジンオイル60は、オイル排出口13から排出されて容器61に戻る。   The oil supply device 6 includes a container 61 that stores engine oil 60, a pump 62, a heater 63, and a nozzle 64. The pump 62 sends the engine oil 60 in the container 61 to the heater 63 at a predetermined pressure, and the engine oil 60 heated to a predetermined temperature by the heater 63 is ejected from the nozzle 64 at a predetermined pressure. The tip of the nozzle 64 is in close contact with the oil inlet 12, and engine oil 60 is injected from the oil inlet 12 into the oil passage 40 through the communication path 14. The engine oil 60 that has flowed through the oil flow path 40 is discharged from the oil discharge port 13 and returns to the container 61.

検査の間はポンプ62及びヒータ63が常に駆動され、オイル流路40には常に一定温度( 100℃)のエンジンオイル60が一定流速( 0.5m/秒)で流れている。   During the inspection, the pump 62 and the heater 63 are always driven, and the engine oil 60 at a constant temperature (100 ° C.) always flows through the oil passage 40 at a constant flow rate (0.5 m / sec).

基準品は室温(25℃)の状態で検査装置にセットされ、 100℃のエンジンオイル60がオイル流路40に注入されると、エンジンオイル60はオイル流路40を一定流速( 0.5m/秒)で循環する。表面温度計5は、オイル注入直後から冠面10の複数の部位の温度を検出して時間と共に連続的に測定する。ある一つの熱電対50が当接している部位における測定結果を図3に実線で示す。その部位の表面温度は、エンジンオイル60の注入直後から直線的に上昇し、所定時間経過後は一定温度となる。   The reference product is set in the inspection device at room temperature (25 ° C). When engine oil 60 at 100 ° C is injected into the oil passage 40, the engine oil 60 flows through the oil passage 40 at a constant flow rate (0.5m / second). ). The surface thermometer 5 detects the temperature of a plurality of portions of the crown surface 10 immediately after oil injection and continuously measures it with time. A measurement result at a portion where a certain thermocouple 50 is in contact is shown by a solid line in FIG. The surface temperature of the part increases linearly immediately after the injection of the engine oil 60 and becomes a constant temperature after a predetermined time has elapsed.

次に、基準品に代えて検体のピストン(25℃)を検査装置にセットし、上記と同様にして冠面10の同じ部位の表面温度の変化を測定した。結果を図3に一点鎖線で示す。その部位の表面温度は、エンジンオイル60の注入直後から直線的に上昇し、所定時間経過後は基準品と同一の一定温度となる。しかしピストン冠部1に内部欠陥が存在すると、基準品に比べて昇温速度が低下する。   Next, the specimen piston (25 ° C.) was set in the inspection apparatus instead of the reference product, and the change in the surface temperature of the same portion of the crown surface 10 was measured in the same manner as described above. The results are shown in FIG. The surface temperature of the part rises linearly immediately after the injection of the engine oil 60, and becomes the same constant temperature as that of the reference product after a predetermined time. However, if there is an internal defect in the piston crown 1, the rate of temperature rise is lower than that of the reference product.

すなわち図4に示すように、ピストン冠部1に鋳巣 100が存在すると、エンジンオイル60からの熱は鋳巣 100を避けるように伝熱され、鋳巣 100の存在しない場合に比べて伝熱経路が長くなる。そのため、その伝熱経路の延長上にある冠面の部位における昇温速度が低下する。また鋼リング4の背面に剥離部 101が存在する場合にも同様の現象が生じ、剥離部 101に近い冠面の部位における昇温速度が低下する。   That is, as shown in FIG. 4, when the casting hole 100 exists in the piston crown 1, the heat from the engine oil 60 is transferred so as to avoid the casting hole 100, and compared to the case where the casting hole 100 does not exist. The route becomes longer. Therefore, the rate of temperature rise at the crown surface portion on the extension of the heat transfer path decreases. Moreover, when the peeling part 101 exists in the back surface of the steel ring 4, the same phenomenon will arise, and the temperature increase rate in the site | part of the crown surface near the peeling part 101 will fall.

そして鋳巣 100や剥離部 101の数が多いほど、あるいはその容積が大きいほど、昇温速度の低下度合いが大きい。そこで図3から、エンジンオイル60の注入開始から所定時間(t)経過後(例えば10秒後)の温度を読み取る。その時点における基準品の表面温度はTs であるのに対し、検体の表面温度はTs からΔTだけ低いT1 である。したがってΔTの値を標準値と比較することで、検体の品質の合否を判定することができる。 The degree of decrease in the heating rate increases as the number of casting holes 100 and peeling parts 101 increases or as the volume increases. Therefore, from FIG. 3, the temperature after a predetermined time (t) has elapsed from the start of injection of the engine oil 60 (for example, after 10 seconds) is read. The surface temperature of the reference product at that time is T s , whereas the surface temperature of the specimen is T 1 which is lower than T s by ΔT. Therefore, the pass / fail of the quality of the specimen can be determined by comparing the value of ΔT with the standard value.

(実施例2)
本実施例では、検体の品質の合否の判定方法が異なること以外は実施例1と同様に測定した。
(Example 2)
In this example, measurement was performed in the same manner as in Example 1 except that the method for determining whether the quality of the specimen was acceptable or not was different.

すなわち図5に示すように、基準品及び検体ともに、冠面10の所定部位の温度が所定温度(T:例えば60℃)となるまでに要した時間(基準品:ts 、検体:t1 )を計測した。その結果、検体はΔt=t1 −ts だけ遅くなるため、Δtの値を標準値と比較することで、検体の品質の合否を判定することができる。 That is, as shown in FIG. 5, the time required for the temperature of the predetermined part of the crown surface 10 to reach a predetermined temperature (T: for example, 60 ° C.) for both the reference product and the sample (reference product: t s , sample: t 1 ) Was measured. As a result, since the sample is delayed by Δt = t 1 −t s , the quality of the sample can be determined to pass or fail by comparing the value of Δt with the standard value.

(実施例3)
本実施例も、検体の品質の合否の判定方法が異なること以外は実施例1と同様に測定した。
(Example 3)
In this example, the measurement was performed in the same manner as in Example 1 except that the determination method of the quality of the specimen was different.

すなわち図6に示すように、基準品及び検体ともに、冠面10の所定部位における到達最高温度(基準品:Ts 、検体:T1 )を計測した。このように到達最高温度に差があり、その差(ΔT)が所定値より大きい場合には、オイル流路40に何らかの異常が存在することが推察される。 That is, as shown in FIG. 6, the maximum temperature reached at a predetermined portion of the crown surface 10 (reference product: T s , sample: T 1 ) was measured for both the reference product and the sample. Thus, when there is a difference in the maximum temperature reached and the difference (ΔT) is larger than a predetermined value, it is assumed that some abnormality exists in the oil flow path 40.

本発明のピストンの内部欠陥検査方法は、自動車エンジン用のピストンに限らず、各種内燃機関に用いられるピストンを検査するのに利用できる。   The piston internal defect inspection method of the present invention is not limited to pistons for automobile engines, but can be used to inspect pistons used in various internal combustion engines.

本発明の一実施例に用いたピストンの断面図である。It is sectional drawing of the piston used for one Example of this invention. 本発明の一実施例における検査装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the test | inspection apparatus in one Example of this invention. 本発明の一実施例における測定結果を示し、測定時間と表面温度との関係を示すグラフである。It is a graph which shows the measurement result in one Example of this invention, and shows the relationship between measurement time and surface temperature. 本発明の一実施例に用いた鋳巣をもつピストンの断面図である。It is sectional drawing of the piston with a cast hole used for one Example of this invention. 本発明の第2の実施例における測定結果を示し、測定時間と表面温度との関係を示すグラフである。It is a graph which shows the measurement result in 2nd Example of this invention, and shows the relationship between measurement time and surface temperature. 本発明の第3の実施例における測定結果を示し、測定時間と表面温度との関係を示すグラフである。It is a graph which shows the measurement result in the 3rd Example of this invention, and shows the relationship between measurement time and surface temperature.

符号の説明Explanation of symbols

1:ピストン冠部 2:スカート部 5:表面温度計
10:冠面 40:オイル流路 50:熱電対
60:エンジンオイル 62:ポンプ 63:ヒータ
1: Piston crown 2: Skirt 5: Surface thermometer
10: Crown 40: Oil flow path 50: Thermocouple
60: Engine oil 62: Pump 63: Heater

Claims (4)

ピストン冠部を上底とする有底筒状をなし、該ピストン冠部にオイル流入口とオイル流出口をもつオイル流路を備えたピストンを用い、該ピストン冠部の内部欠陥を非破壊で検査するピストンの内部欠陥検査方法であって、
該オイル流路に所定温度の液状熱媒体を注入しながら該ピストン冠部の表面である冠面の昇温速度に関連した物理量を測定し、該物理量を予め決められた基準値と比較することを特徴とするピストンの内部欠陥検査方法。
Uses a piston with an oil flow path with an oil inlet and an oil outlet in the piston crown, with a bottomed cylindrical shape with the piston crown as the upper base, and nondestructive internal defects in the piston crown An internal defect inspection method for a piston to be inspected,
Measuring a physical quantity related to the temperature rise rate of the crown surface, which is the surface of the piston crown, while injecting a liquid heat medium at a predetermined temperature into the oil flow path, and comparing the physical quantity with a predetermined reference value An internal defect inspection method for a piston characterized by
前記測定は、前記オイル流路に該液状熱媒体を一定流速で流通させながら行う請求項1に記載のピストンの内部欠陥検査方法。   The piston internal defect inspection method according to claim 1, wherein the measurement is performed while the liquid heat medium is circulated through the oil passage at a constant flow rate. 前記ピストン冠部には耐摩環をもつリング溝を備え、前記オイル流路は該耐摩環の背面に形成されて前記ピストン冠部を略一周している請求項1又は請求項2に記載のピストンの内部欠陥検査方法。   3. The piston according to claim 1, wherein the piston crown portion is provided with a ring groove having a wear-resistant ring, and the oil flow path is formed on a back surface of the wear-resistant ring so as to substantially go around the piston crown portion. Internal defect inspection method. 前記物理量は、所定時間経過後の所定部位の温度、所定部位の温度が所定温度に到達するまでの時間、所定部位の到達最高温度から選ばれる少なくとも一つである請求項1〜3のいずれかに記載のピストンの内部欠陥検査方法。   The physical quantity is at least one selected from the temperature of a predetermined part after a predetermined time has elapsed, the time until the temperature of the predetermined part reaches the predetermined temperature, and the maximum temperature reached at the predetermined part. The internal defect inspection method of the piston as described in 1.
JP2008057588A 2008-03-07 2008-03-07 Piston internal defect inspection method Expired - Fee Related JP5041235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008057588A JP5041235B2 (en) 2008-03-07 2008-03-07 Piston internal defect inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008057588A JP5041235B2 (en) 2008-03-07 2008-03-07 Piston internal defect inspection method

Publications (2)

Publication Number Publication Date
JP2009216416A true JP2009216416A (en) 2009-09-24
JP5041235B2 JP5041235B2 (en) 2012-10-03

Family

ID=41188445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008057588A Expired - Fee Related JP5041235B2 (en) 2008-03-07 2008-03-07 Piston internal defect inspection method

Country Status (1)

Country Link
JP (1) JP5041235B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109668738B (en) * 2019-02-28 2020-02-07 北京理工大学 Piston temperature field simulation test device and test method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59130020U (en) * 1983-02-19 1984-08-31 トヨタ自動車株式会社 Internal combustion engine piston oil cooling system
JPS62126339A (en) * 1985-11-28 1987-06-08 Komatsu Ltd Method and apparatus for detecting internal flaw
JPS62126338A (en) * 1985-11-28 1987-06-08 Komatsu Ltd Method for detecting flaw of ceramic coating
JPS6385438A (en) * 1986-09-30 1988-04-15 Nissan Motor Co Ltd Nondestructive inspecting method for coating layer
JPH11287154A (en) * 1998-04-02 1999-10-19 Unisia Jecs Corp Piston for internal combustion engine
JPH11351388A (en) * 1998-06-09 1999-12-24 Nissan Diesel Motor Co Ltd Structure of piston for internal combustion engine
WO2007063575A1 (en) * 2005-11-29 2007-06-07 Kantum Electronics Co., Ltd. Aperture detector and aperture detection method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59130020U (en) * 1983-02-19 1984-08-31 トヨタ自動車株式会社 Internal combustion engine piston oil cooling system
JPS62126339A (en) * 1985-11-28 1987-06-08 Komatsu Ltd Method and apparatus for detecting internal flaw
JPS62126338A (en) * 1985-11-28 1987-06-08 Komatsu Ltd Method for detecting flaw of ceramic coating
JPS6385438A (en) * 1986-09-30 1988-04-15 Nissan Motor Co Ltd Nondestructive inspecting method for coating layer
JPH11287154A (en) * 1998-04-02 1999-10-19 Unisia Jecs Corp Piston for internal combustion engine
JPH11351388A (en) * 1998-06-09 1999-12-24 Nissan Diesel Motor Co Ltd Structure of piston for internal combustion engine
WO2007063575A1 (en) * 2005-11-29 2007-06-07 Kantum Electronics Co., Ltd. Aperture detector and aperture detection method

Also Published As

Publication number Publication date
JP5041235B2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
CN104713897A (en) Thermal protection coating surface performance test method
CN109060825B (en) Nondestructive testing method based on pulsed airflow excitation infrared imaging and implementation device thereof
US20060256837A1 (en) Method for determine the internal structure of a heat conducting body
BE1020791A3 (en) METHOD AND DEVICE FOR MEASURING THE LEVELS OF CAST IRON AND DAIRY IN A HIGH-FURNACE
JP4742178B2 (en) Scuffing detection
JP5041235B2 (en) Piston internal defect inspection method
JP2010521626A5 (en)
JP3670869B2 (en) Coating layer thermal resistance measurement method
CN109991266B (en) Laser heating measurement device and method for interface heat exchange coefficient and material thermal conductivity
RU2700349C1 (en) Method for determination of thickness of deposits on inner surface of pipeline
TW200925600A (en) Method for determining the thermal shock robustness and material strength of brittle failure materials
KR101137699B1 (en) Method and Apparatus for Measurement of Terminal Solid Solubility Temperature in Alloys Capable of Forming Hydrides
RU2520952C1 (en) Heat control method for leakage check of large-sized vessels
JP3137470U (en) Crack inspection equipment
US10458951B2 (en) Cylinder block inspection method and system
RU2315983C1 (en) Method of nondestructive testing of articles
US20220136920A1 (en) Thermal gas inspection of plugged honeycomb body
CN209069460U (en) A kind of temperature sensor testing device
JP2010025762A (en) Inspection method and inspection device of brazed state
CN201075001Y (en) Device for detecting pipe wall thickness
JP2926534B2 (en) Pour point measuring device and measuring method
Sakagami et al. Development of a Self-reference Lock-in Thermography for Remote Nondestructive Testing of Fatigue Crack(1 st Report, Fundamental Study Using Welded Steel Samples)
FR2955661A1 (en) Heat exchangers integrity controlling method, involves utilizing dissolved gas as fluid in liquid, measuring possible leak rate, and transforming possible leak rate in terms of risk
CN105997016B (en) The method and its system of measurement object are identified based on electronic thermometer
JP3556826B2 (en) Ultrasonic flaw detection method for tubes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120627

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees