JP2009215964A - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP2009215964A
JP2009215964A JP2008060367A JP2008060367A JP2009215964A JP 2009215964 A JP2009215964 A JP 2009215964A JP 2008060367 A JP2008060367 A JP 2008060367A JP 2008060367 A JP2008060367 A JP 2008060367A JP 2009215964 A JP2009215964 A JP 2009215964A
Authority
JP
Japan
Prior art keywords
opening
passage
main
catalytic converter
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008060367A
Other languages
Japanese (ja)
Other versions
JP5071172B2 (en
Inventor
Hajime Yasuda
肇 安田
Masayoshi Nishizawa
公良 西沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008060367A priority Critical patent/JP5071172B2/en
Publication of JP2009215964A publication Critical patent/JP2009215964A/en
Application granted granted Critical
Publication of JP5071172B2 publication Critical patent/JP5071172B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To avoid temporary drop of catalyst temperature when a channel changeover valve 5 opens associated with the completion of warming up. <P>SOLUTION: A main passage 3 is connected to an exhaust port 2 and a main catalyst converter 4 is disposed at a downstream side. A channel change over valve 5 opening and closing the main passage 3 is provided in a middle of the main passage 3. A bypass passage 7 having small passage cross section area branches off of the main passage 3, and a small bypass catalytic converter 8 is put in a middle thereof. Exhaust gas is guided to the bypass passage 7 side to control emission right after cold start. The channel changeover valve 5 is controlled to start opening at relatively low opening change speed to prescribed intermediate opening, to be retained at the target intermediate opening during display time, and to open to full open position at the maximum opening change speed, when the same opens associated with the completion of warming up. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、冷間始動直後に、排気系の比較的上流に触媒コンバータを備えたバイパス流路側に流路切換弁により排気を案内するようにした排気装置に関し、特に、その流路切換弁切換時の制御に関する。   The present invention relates to an exhaust device in which exhaust gas is guided by a flow path switching valve to a bypass flow path side provided with a catalytic converter relatively upstream of an exhaust system immediately after a cold start, and more particularly to the flow path switching valve switching. Concerning time control.

従来から知られているように、車両の床下などの排気系の比較的下流側にメイン触媒コンバータを配置した構成では、内燃機関の冷間始動後、触媒コンバータの温度が上昇して活性化するまでの間、十分な排気浄化作用を期待することができない。また一方、触媒コンバータを排気系の上流側つまり内燃機関側に近付けるほど、触媒の熱劣化による耐久性低下が問題となる。   As conventionally known, in a configuration in which the main catalytic converter is disposed relatively downstream of the exhaust system such as under the floor of a vehicle, the temperature of the catalytic converter rises and is activated after a cold start of the internal combustion engine. In the meantime, a sufficient exhaust purification action cannot be expected. On the other hand, the closer the catalytic converter is to the upstream side of the exhaust system, that is, the internal combustion engine side, the lower the durability due to thermal degradation of the catalyst.

そのため、特許文献1および特許文献2に開示されているように、メイン触媒コンバータを備えたメイン流路の上流側部分と並列にバイパス流路を設けるとともに、このバイパス流路に、別のバイパス触媒コンバータを介装し、両者を切り換える切換弁によって、冷間始動直後は、バイパス流路側に排気を案内するようにした排気装置が、従来から提案されている。この構成では、バイパス触媒コンバータは排気系の中でメイン触媒コンバータよりも相対的に上流側に位置しており、相対的に早期に活性化するので、より早い段階から排気浄化を開始することができる。
特開平5−321644号公報 特開2005−351088号公報
Therefore, as disclosed in Patent Document 1 and Patent Document 2, a bypass channel is provided in parallel with the upstream portion of the main channel including the main catalytic converter, and another bypass catalyst is provided in the bypass channel. 2. Description of the Related Art Conventionally, there has been proposed an exhaust device that guides exhaust gas to the bypass flow path side immediately after a cold start by a switching valve that interposes a converter and switches both of them. In this configuration, the bypass catalytic converter is positioned relatively upstream of the main catalytic converter in the exhaust system and is activated relatively early, so that exhaust purification can be started from an earlier stage. it can.
JP-A-5-321644 Japanese Patent Laid-Open No. 2005-351088

上記のような構成においては、メイン触媒コンバータの暖機が完了してメイン流路側へ排気が流れるように切換弁が切り換えられるときに、切換弁がメイン流路を急激に開放すると、該メイン流路内に滞留していた低温の排気(あるいは空気)がメイン触媒コンバータに急激に流れ込むため、触媒温度が低下してしまい、触媒による排気浄化率が一時的に低下する問題がある。   In the configuration as described above, when the switching valve is switched so that the warm-up of the main catalytic converter is completed and the exhaust gas flows to the main flow path side, if the switching valve suddenly opens the main flow path, the main flow Since the low-temperature exhaust gas (or air) staying in the passage suddenly flows into the main catalytic converter, the catalyst temperature decreases, and there is a problem that the exhaust gas purification rate by the catalyst temporarily decreases.

そこで、この発明に係る内燃機関の制御装置は、排気装置として、メイン触媒コンバータを下流側に備えたメイン通路の上流側部分と並列にバイパス通路が設けられるとともに、このバイパス通路にバイパス触媒コンバータを備え、かつ上記メイン通路の上記上流側部分に該メイン通路を閉塞する流路切換弁を備えてなる内燃機関において、上記メイン触媒コンバータの暖機完了を判定する手段と、この暖機完了の判定時に、上記流路切換弁を第1の開度変化速度でもって所定の目標中間開度まで開き、その後、上記第1の開度変化速度よりも大きな第2の開度変化速度でもって全開位置まで開く流路切換弁制御手段と、を備えることを特徴としている。   Therefore, the control device for an internal combustion engine according to the present invention is provided with a bypass passage in parallel with the upstream portion of the main passage provided with the main catalytic converter on the downstream side as an exhaust device, and the bypass catalytic converter is provided in the bypass passage. And a means for determining completion of warm-up of the main catalytic converter, and determination of completion of warm-up in an internal combustion engine provided with a flow path switching valve for closing the main passage in the upstream portion of the main passage Sometimes, the flow path switching valve is opened to a predetermined target intermediate opening degree with a first opening degree changing speed, and then fully opened with a second opening degree changing speed larger than the first opening degree changing speed. And a flow path switching valve control means that opens up to.

一つの態様では、上記目標中間開度に達した後、さらに、所定のディレイ期間の間、該目標中間開度に保持するようにしている。   In one aspect, after reaching the target intermediate opening, the target intermediate opening is held for a predetermined delay period.

上記第1の開度変化速度、第2の開度変化速度、ディレイ期間、目標中間開度は、さらに望ましくは、機関運転条件や温度条件等に応じて可変的に設定される。   More preferably, the first opening change speed, the second opening change speed, the delay period, and the target intermediate opening are variably set according to engine operating conditions, temperature conditions, and the like.

この発明によれば、メイン触媒コンバータが活性したときの流路の切換時に、まず初めに、所定の目標中間開度まで徐々に流路切換弁が開くので、メイン流路内に滞留していた低温のガスがメイン触媒コンバータへ急激に流れ込むことがなく、触媒の一時的な温度低下に伴う浄化率の低下を回避できる。   According to this invention, at the time of switching the flow path when the main catalytic converter is activated, first, the flow path switching valve is gradually opened to a predetermined target intermediate opening, so that it has remained in the main flow path. Low-temperature gas does not flow rapidly into the main catalytic converter, and it is possible to avoid a reduction in purification rate due to a temporary temperature drop of the catalyst.

以下、この発明を直列4気筒内燃機関の制御装置として適用した一実施例を図面に基づいて詳細に説明する。   Hereinafter, an embodiment in which the present invention is applied as a control device for an in-line four-cylinder internal combustion engine will be described in detail with reference to the drawings.

図1は、この内燃機関の排気装置の配管レイアウトならびに制御システムを模式的に示した説明図であり、始めに、この図1に基づいて、排気装置の構成を説明する。   FIG. 1 is an explanatory view schematically showing the piping layout and control system of the exhaust device of the internal combustion engine. First, the configuration of the exhaust device will be described based on FIG.

内燃機関1のシリンダヘッド1aには、直列に配置された♯1気筒〜♯4気筒の各気筒の排気ポート2がそれぞれ側面に向かって開口するように形成されており、この排気ポート2のそれぞれに、メイン通路3が接続されている。♯1気筒〜♯4気筒の4本のメイン通路3は、1本の流路に合流しており、その下流側に、メイン触媒コンバータ4が配置されている。このメイン触媒コンバータ4は、車両の床下に配置される容量の大きなものであって、触媒としては、例えば、三元触媒とHCトラップ触媒とを含んでいる。上記のメイン通路3およびメイン触媒コンバータ4によって、通常の運転時に排気が通流するメイン流路が構成される。また、各気筒からの4本のメイン通路3の合流点には、流路切換手段として各メイン通路3を一斉に開閉する流路切換弁5が設けられている。この流路切換弁5は、電動モータ等の適宜なアクチュエータ5aによって開閉駆動される。   In the cylinder head 1a of the internal combustion engine 1, exhaust ports 2 of cylinders # 1 to # 4 arranged in series are formed so as to open toward the side surfaces, respectively. In addition, the main passage 3 is connected. The four main passages 3 of the # 1 cylinder to the # 4 cylinder merge into one flow path, and the main catalytic converter 4 is disposed on the downstream side thereof. The main catalytic converter 4 has a large capacity arranged under the floor of the vehicle, and includes, for example, a three-way catalyst and an HC trap catalyst as the catalyst. The main passage 3 and the main catalytic converter 4 constitute a main passage through which exhaust flows during normal operation. In addition, a flow path switching valve 5 that opens and closes the main passages 3 at the same time is provided as a flow path switching means at the junction of the four main paths 3 from each cylinder. The flow path switching valve 5 is driven to open and close by an appropriate actuator 5a such as an electric motor.

一方、バイパス流路として、各気筒のメイン通路3の各々から、該メイン通路3よりも通路断面積の小さなバイパス通路7がそれぞれ分岐している。各バイパス通路7の上流端となる分岐点6は、メイン通路3のできるだけ上流側の位置に設定されている。4本のバイパス通路7は、下流側で1本の流路に合流しており、その合流点の直後に、三元触媒を用いたバイパス触媒コンバータ8が介装されている。このバイパス触媒コンバータ8は、メイン触媒コンバータ4に比べて容量が小さな小型のものであり、望ましくは、低温活性に優れた触媒が用いられる。バイパス触媒コンバータ8の出口側から延びるバイパス通路7の下流端は、メイン通路3におけるメイン触媒コンバータ4上流側でかつ流路切換弁5よりも下流側の合流点15において該メイン通路3に接続されている。   On the other hand, bypass passages 7 each having a smaller passage sectional area than the main passage 3 are branched from the main passages 3 of the respective cylinders as bypass passages. The branch point 6 that is the upstream end of each bypass passage 7 is set to a position on the upstream side of the main passage 3 as much as possible. The four bypass passages 7 merge into one flow path on the downstream side, and a bypass catalytic converter 8 using a three-way catalyst is interposed immediately after the junction. The bypass catalytic converter 8 has a small capacity as compared with the main catalytic converter 4, and preferably uses a catalyst excellent in low-temperature activity. A downstream end of the bypass passage 7 extending from the outlet side of the bypass catalytic converter 8 is connected to the main passage 3 at a junction 15 upstream of the main catalytic converter 4 in the main passage 3 and downstream of the flow path switching valve 5. ing.

なお、メイン触媒コンバータ4の入口部ならびに出口部、およびバイパス触媒コンバータ8の入口部ならびに出口部には、それぞれ空燃比センサ10,11,12,13が配置されている。また、上記メイン触媒コンバータ4の入口部には、排気温度ひいてはメイン触媒コンバータ4の温度を検出するための排気温度センサ14が設けられている。なお、触媒コンバータ4自体に温度センサを配置することも可能である。   Air-fuel ratio sensors 10, 11, 12 and 13 are arranged at the inlet and outlet of the main catalytic converter 4 and at the inlet and outlet of the bypass catalytic converter 8, respectively. In addition, an exhaust temperature sensor 14 for detecting the exhaust temperature and thus the temperature of the main catalytic converter 4 is provided at the inlet of the main catalytic converter 4. It is also possible to arrange a temperature sensor in the catalytic converter 4 itself.

内燃機関1は、点火プラグ21を備え、その吸気通路22には、燃料噴射弁23が配置されている。さらに、吸気通路22の上流側に、モータ等のアクチュエータによって開閉駆動される所謂電子制御型スロットル弁24が配置されているとともに、吸入空気量を検出するエアフロメータ25がエアクリーナ26下流に設けられている。   The internal combustion engine 1 includes a spark plug 21, and a fuel injection valve 23 is disposed in the intake passage 22. Furthermore, a so-called electronically controlled throttle valve 24 that is opened and closed by an actuator such as a motor is disposed upstream of the intake passage 22, and an air flow meter 25 that detects the intake air amount is provided downstream of the air cleaner 26. Yes.

内燃機関1の種々の制御パラメータ、例えば、上記燃料噴射弁23による燃料噴射量、点火プラグ21による点火時期、スロットル弁24の開度、流路切換弁5の開閉状態(さらにはその開度変化速度)、などは、エンジンコントロールユニット27によって制御される。このエンジンコントロールユニット27には、上述したセンサ類のほか、冷却水温センサ28、運転者により操作されるアクセルペダルの開度(踏込量)を検出するアクセル開度センサ29、図示せぬクランク角センサなどの種々のセンサ類の検出信号が入力されている。   Various control parameters of the internal combustion engine 1, for example, the fuel injection amount by the fuel injection valve 23, the ignition timing by the spark plug 21, the opening degree of the throttle valve 24, the open / closed state of the flow path switching valve 5 (and the opening degree change thereof) The speed) is controlled by the engine control unit 27. In addition to the above-described sensors, the engine control unit 27 includes a coolant temperature sensor 28, an accelerator opening sensor 29 that detects the opening (depression amount) of an accelerator pedal operated by the driver, and a crank angle sensor (not shown). Detection signals of various sensors such as are input.

このような構成においては、冷間始動後の機関温度ないしは排気温度が低い段階では、アクチュエータ5aを介して流路切換弁5が閉じられ、メイン通路3が遮断される。そのため、各気筒から吐出された排気は、その全量が分岐点6からバイパス通路7を通してバイパス触媒コンバータ8へと流れる。バイパス触媒コンバータ8は、排気系の上流側つまり排気ポート2に近い位置にあり、かつ小型のものであるので、速やかに活性化し、早期に排気浄化が開始される。   In such a configuration, when the engine temperature or the exhaust temperature after the cold start is low, the flow path switching valve 5 is closed via the actuator 5a, and the main passage 3 is blocked. Therefore, the entire amount of exhaust discharged from each cylinder flows from the branch point 6 to the bypass catalytic converter 8 through the bypass passage 7. The bypass catalytic converter 8 is located upstream of the exhaust system, that is, at a position close to the exhaust port 2 and is small in size, so that it is activated quickly and exhaust purification is started at an early stage.

一方、機関の暖機が進行して、メイン触媒コンバータ4の触媒が活性したら、後述するようなプロセスで流路切換弁5が開放される。これにより、各気筒から吐出された排気は、主に、メイン通路3からメイン触媒コンバータ4を通過する。このときバイパス通路7側は特に遮断されていないが、バイパス通路7側の方がメイン通路3側よりも通路断面積が小さく、かつバイパス触媒コンバータ8が介在しているので、両者の通路抵抗の差により、排気流の大部分はメイン通路3側を通り、バイパス通路7側には殆ど流れない。従って、バイパス触媒コンバータ8の熱劣化は十分に抑制される。   On the other hand, when the engine warms up and the catalyst of the main catalytic converter 4 is activated, the flow path switching valve 5 is opened by a process as described later. Thus, the exhaust discharged from each cylinder mainly passes through the main catalytic converter 4 from the main passage 3. At this time, the bypass passage 7 side is not particularly cut off, but the bypass passage 7 side has a smaller passage cross-sectional area than the main passage 3 side and the bypass catalytic converter 8 is interposed. Due to the difference, most of the exhaust flow passes through the main passage 3 side and hardly flows into the bypass passage 7 side. Therefore, the thermal deterioration of the bypass catalytic converter 8 is sufficiently suppressed.

ここで、上記のように流路切換弁5がメイン通路3を開放する際に、流路切換弁5が全開位置まで急激に開かれると、相対的に通路断面積の大きなメイン通路3の中に滞留していた低温の排気(あるいは空気)が急激にメイン触媒コンバータ4に流れ込み、触媒温度の低下を招来する。図10の実線は、一例として、メイン触媒コンバータ4の触媒温度が活性温度に達したときに全閉位置から全開位置まで急激に開いたときの触媒温度の変化の例を示している。   Here, when the flow passage switching valve 5 opens the main passage 3 as described above, if the flow passage switching valve 5 is suddenly opened to the fully open position, the inside of the main passage 3 having a relatively large passage sectional area. The low-temperature exhaust gas (or air) staying in the air suddenly flows into the main catalytic converter 4 and causes a decrease in the catalyst temperature. The solid line in FIG. 10 shows, as an example, an example of a change in the catalyst temperature when the catalyst temperature of the main catalytic converter 4 suddenly opens from the fully closed position to the fully open position when it reaches the activation temperature.

そのため、本実施例では、図10に破線で例示するように、流路切換弁5を第1の開度変化速度でもって所定の目標中間開度まで開き、所定のディレイ期間の間、該目標中間開度に保持した後、上記第1の開度変化速度に比較して相対的に大きな第2の開度変化速度でもって全開位置まで開くように、流路切換弁5の開作動を制御する。これにより、破線で示すように、メイン触媒コンバータ4の一時的な温度低下が回避される。   Therefore, in this embodiment, as illustrated by a broken line in FIG. 10, the flow path switching valve 5 is opened to the predetermined target intermediate opening degree with the first opening degree changing speed, and the target value is set during the predetermined delay period. After the intermediate opening degree is maintained, the opening operation of the flow path switching valve 5 is controlled so that it opens to the fully opened position with the second opening degree changing speed relatively larger than the first opening degree changing speed. To do. Thereby, as shown with a broken line, the temporary temperature fall of the main catalytic converter 4 is avoided.

以下、図2および図3のフローチャートに基づいて、この流路切換弁5の開作動の制御を具体的に説明する。   Hereinafter, based on the flowcharts of FIGS. 2 and 3, the control of the opening operation of the flow path switching valve 5 will be specifically described.

図2は、機関の暖機の進行に伴って流路切換弁5を開くか否かの判定を行うルーチンを示しており、先ずステップ1(図中ではS1等と略記する)において、排気温度センサ14により検出された排気温度が所定温度EXHTMP(触媒が活性したとみなしうる温度に対応する)を越えたか否かを判定する。所定温度EXHTMPを越えていれば、ステップ2で空燃比フィードバック制御中であるか否か判定する。流路切換弁5を開くと背圧変化等により一時的な空燃比変動が生じるので、万一、空燃比フィードバック制御中でなければ、流路切換弁5の開制御は許可しない。さらに、アイドル運転中か否かをステップ3で判定し、アイドル運転中であれば、回転数フィードバック制御中であるか否かをさらにステップ4で判定する。これは、流路切換弁5を開いた際に生じるトルク変動を考慮したものであり、アイドル回転数のフィードバック制御の実行中であれば、トルク変動が吸収されるため、ステップ6へ進んで、流路切換弁5の開制御を許可する。またアイドル運転中でない場合は、ステップ5でスロットル弁開度が所定値BYTVO未満であることを条件として、ステップ6へ進み、流路切換弁5の開制御を許可する。すなわち、スロットル弁開度が大きい加速中は、流路切換弁5の切換は行わない。   FIG. 2 shows a routine for determining whether or not to open the flow path switching valve 5 as the engine warms up. First, in step 1 (abbreviated as S1 in the figure), the exhaust gas temperature is shown. It is determined whether or not the exhaust temperature detected by the sensor 14 exceeds a predetermined temperature EXHTMP (corresponding to a temperature at which the catalyst can be regarded as being activated). If it exceeds the predetermined temperature EXHTMP, it is determined in step 2 whether air-fuel ratio feedback control is being performed. When the flow path switching valve 5 is opened, a temporary air-fuel ratio fluctuation occurs due to a change in back pressure or the like. Therefore, if the air-fuel ratio feedback control is not in progress, the opening control of the flow path switching valve 5 is not permitted. Further, it is determined in step 3 whether or not the engine is in idle operation. If in idle operation, it is further determined in step 4 whether or not the rotation speed feedback control is being performed. This takes into account the torque fluctuation that occurs when the flow path switching valve 5 is opened. If the idle speed feedback control is being executed, the torque fluctuation is absorbed. Open control of the flow path switching valve 5 is permitted. If the idling operation is not being performed, the process proceeds to step 6 on the condition that the throttle valve opening is less than the predetermined value BYTVO in step 5, and the opening control of the flow path switching valve 5 is permitted. That is, the flow path switching valve 5 is not switched during acceleration with a large throttle valve opening.

図3は、流路切換弁5を開く際の制御ルーチンを示しており、先ずステップ11において、前述したステップ6の制御許可がなされたか判定する。ここでYESであれば、ステップ12へ進み、目標中間開度を設定する。この目標中間開度は、例えば通路断面積として10%〜50%程度の値であり、固定的な値でもよいが、望ましくは、始動時の機関温度(冷却水温度、油温など)に基づいて可変的に設定する。具体的には、始動時の冷却水温度が60℃以上であるような暖機再始動の際には、より大きな値、例えば50%に近い値とし、極低温の冷間始動時には、より小さな値、例えば10%に近い値とする。   FIG. 3 shows a control routine for opening the flow path switching valve 5. First, in step 11, it is determined whether the control permission in step 6 described above has been granted. If “YES” here, the process proceeds to a step 12 to set a target intermediate opening. The target intermediate opening is, for example, a value of about 10% to 50% as a passage cross-sectional area, and may be a fixed value, but is desirably based on the engine temperature (cooling water temperature, oil temperature, etc.) at the start. Variably set. Specifically, a larger value, for example, a value close to 50%, is set at the time of warm-up restart such that the cooling water temperature at the start is 60 ° C. or higher, and a smaller value at a cold start at a cryogenic temperature. A value, for example, a value close to 10%.

次に、この目標中間開度に達するまでの開度変化速度(請求項における第1の開度変化速度)の初期値(基準値)をステップ13でセットする。これは、後述するように固定値である。そして、ステップ14で、この初期値の補正が必要であるかどうかを機関運転条件等から判断し、必要に応じて、ステップ15においてその補正を行う。なお、この実施例の開制御では、図4に示すように、実質的に3つの区間A,B,Cによって流路切換弁5が全閉から全開まで変化することになるが、このステップ13〜15の開度変化速度は、最初の区間Aの特性の傾きに相当する。この開度変化速度が過度に大きいと、全開まで急に開いた場合と同様に、触媒温度が低下し、逆に、過度に小さいと、内燃機関が吐出する高温排気による触媒温度の上昇が緩慢となる。図5は、ある排気温度および排気流量の下において、触媒コンバータ4入口での排温の変化と開度変化速度との関係をプロットしたものであり、図示するように、開度変化速度としてある最適点が存在し、この最適点の開度変化速度とすると、触媒コンバータ4の温度上昇が最も効果的に得られることになる。この最適点が、基本的に、ステップ13の初期値に相当する。一方、図5の最適点は、排気流量や排気温度等によって異なるので、機関運転条件等に応じた補正が必要となる。図6は、機関の負荷に対する開度変化速度の補正値の特性を示しており、基準の負荷(このときの補正値は0である)よりも負荷が大きいと補正値は負の値で与えられ、負荷が小さいと正の補正値が与えられる。例えば、両者は図のような直線的な関係を有する。なお、この補正値は、基準となる開度変化速度の初期値に加算されるものである。同様に、図7は、機関回転速度に対する開度変化速度の補正値の特性を示しており、基準の回転速度よりも高速であると負の補正値が、低速であると正の補正値が、それぞれ直線的な関係で与えられる。これらの負荷および回転速度に関する補正は、主に排気流量の変化を考慮したものである。また、図8は、点火時期と補正値との関係を示しており、点火時期がMBT点よりも遅角するほど排気温度が高くなるので、開度変化速度が小さくなるように、負の補正値が与えられる。さらに図9は、冷却水温と補正値との関係を示しており、冷却水温度が基準の水温よりも低いときには負の補正値が、高いときには正の補正値が、それぞれ直線的な関係で与えられる。   Next, an initial value (reference value) of an opening change speed (first opening change speed in claims) until the target intermediate opening is reached is set in step 13. This is a fixed value as will be described later. In step 14, it is determined whether or not the initial value needs to be corrected based on the engine operating conditions and the like, and if necessary, the correction is performed in step 15. In the opening control of this embodiment, as shown in FIG. 4, the flow path switching valve 5 changes from fully closed to fully opened by substantially three sections A, B, C. The opening change rate of ˜15 corresponds to the slope of the characteristic of the first section A. If this rate of change in opening is excessively large, the catalyst temperature decreases in the same manner as when the valve is suddenly opened until it is fully opened. Conversely, if it is excessively small, the increase in catalyst temperature due to the high-temperature exhaust discharged from the internal combustion engine is slow. It becomes. FIG. 5 is a plot of the relationship between the change in exhaust temperature at the inlet of the catalytic converter 4 and the opening change rate under a certain exhaust temperature and exhaust flow rate. If an optimum point exists and the opening degree change speed at this optimum point, the temperature rise of the catalytic converter 4 is most effectively obtained. This optimum point basically corresponds to the initial value of step 13. On the other hand, the optimum point in FIG. 5 varies depending on the exhaust flow rate, the exhaust temperature, and the like, so that correction according to the engine operating conditions and the like is necessary. FIG. 6 shows the characteristics of the correction value of the opening change rate with respect to the engine load. If the load is larger than the reference load (the correction value at this time is 0), the correction value is given as a negative value. When the load is small, a positive correction value is given. For example, both have a linear relationship as shown in the figure. In addition, this correction value is added to the initial value of the opening change speed serving as a reference. Similarly, FIG. 7 shows the characteristics of the correction value of the opening change speed with respect to the engine rotational speed. When the speed is higher than the reference rotational speed, a negative correction value is obtained, and when the speed is low, a positive correction value is obtained. Are given in a linear relationship. These corrections relating to the load and the rotational speed mainly take into account changes in the exhaust flow rate. FIG. 8 shows the relationship between the ignition timing and the correction value. Since the exhaust gas temperature increases as the ignition timing is retarded from the MBT point, the negative correction is performed so that the opening change rate becomes small. A value is given. Further, FIG. 9 shows the relationship between the cooling water temperature and the correction value. When the cooling water temperature is lower than the reference water temperature, a negative correction value is given in a linear relationship, and when the cooling water temperature is high, a positive correction value is given in a linear relationship. It is done.

ステップ13〜15で最適な開度変化速度が定まると、ステップ16において、その開度変化速度でもって流路切換弁5が開き始める。ステップ17では、目標中間開度に達したかを繰り返し判定し、目標中間開度に達した時点でステップ18へ進んで流路切換弁5の開作動が一旦停止する。同時に、ステップ19で、図4の区間Bに相当するディレイ時間をセットする。このディレイ時間は適当な固定値でもよいが、望ましくは、そのときの排気温度に応じて可変的に設定する。具体的には、そのときの(つまり目標中間開度に達した時点での)排気温度が高いほど短い時間となるようにディレイ時間を設定する。そして、ステップ20において、このディレイ時間が経過したかを判定し、ディレイ時間が経過した時点で、ステップ21で再度流路切換弁5の開作動を開始する。このときは、アクチュエータの構成などから定まる最大の開度変化速度(これが請求項における第2の開度変化速度に相当する)でもって流路切換弁5が開く。これが、図4の区間Cに相当する。   When the optimum opening change speed is determined in steps 13 to 15, in step 16, the flow path switching valve 5 starts to open with the opening change speed. In step 17, it is repeatedly determined whether or not the target intermediate opening has been reached, and when the target intermediate opening is reached, the routine proceeds to step 18 where the opening operation of the flow path switching valve 5 is temporarily stopped. At the same time, in step 19, a delay time corresponding to the section B in FIG. 4 is set. This delay time may be an appropriate fixed value, but is desirably set variably according to the exhaust temperature at that time. Specifically, the delay time is set so that the shorter the exhaust temperature at that time (that is, when the target intermediate opening is reached), the shorter the time. Then, in step 20, it is determined whether or not the delay time has elapsed. When the delay time has elapsed, in step 21, the opening operation of the flow path switching valve 5 is started again. At this time, the flow path switching valve 5 is opened with the maximum opening change speed determined from the configuration of the actuator or the like (this corresponds to the second opening change speed in the claims). This corresponds to the section C in FIG.

このように、上記実施例によれば、メイン触媒コンバータ4が活性したときに、流路切換弁5は、機関運転条件に応じた比較的小さな開度変化速度でもって目標中間開度まで一旦開き、適宜なディレイ時間の間、その目標中間開度に保持されるので、メイン通路3に滞留していた低温のガスが少しずつメイン触媒コンバータ4に流れ込んでメイン通路3全体が徐々に高温となり、触媒コンバータ4の一時的な温度低下を来すことなく流路の切換を達成できる。   Thus, according to the above-described embodiment, when the main catalytic converter 4 is activated, the flow path switching valve 5 is temporarily opened to the target intermediate opening degree with a relatively small opening changing speed according to the engine operating conditions. Since the target intermediate opening is maintained for an appropriate delay time, the low-temperature gas staying in the main passage 3 gradually flows into the main catalytic converter 4 to gradually increase the temperature of the main passage 3 as a whole. Switching of the flow path can be achieved without causing a temporary temperature drop of the catalytic converter 4.

なお、上記実施例では、排気温度センサ14の実際の検出温度に基づいてメイン触媒コンバータ4の活性を判定しているが、始動後の経過時間や冷却水温度などの他のパラメータに基づいて触媒コンバータ4の活性を判定する場合にも、本発明の開制御は同様に適用することができる。   In the above embodiment, the activity of the main catalytic converter 4 is determined based on the actual detected temperature of the exhaust temperature sensor 14, but the catalyst is determined based on other parameters such as the elapsed time after starting and the coolant temperature. The open control of the present invention can be similarly applied when determining the activity of the converter 4.

次に、この発明の異なる実施例を図11の特性図に基づいて説明する。この図は、メイン触媒コンバータ4が活性して流路切換弁5の開制御が許可されたときの全閉位置から全開位置までの開度変化の特性を示しているが、前述した図4と異なり、実質的に2つの区間A,Dによって流路切換弁5が全閉から全開まで変化する。区間Aは、前述した実施例と同様であり、例えば機関始動時の冷却水温度から定まる目標中間開度まで、機関運転条件により補正された第1の開度変化速度でもって徐々に開いていく。そして、目標中間開度に達したら、相対的に大きな変化速度である第2の開度変化速度でもって全開位置まで開く。このときの第2の開度変化速度は、固定値ではなく、そのときの排気温度に応じて可変的に設定される。具体的には、そのときの(つまり目標中間開度に達した時点での)排気温度が高いほど速やかに開くように大きな第2の開度変化速度が与えられる。このような開制御によっても、触媒コンバータ4の一時的な温度低下を確実に回避しつつ流路切換を達成できる。   Next, another embodiment of the present invention will be described with reference to the characteristic diagram of FIG. This figure shows the characteristics of the opening change from the fully closed position to the fully open position when the main catalytic converter 4 is activated and the opening control of the flow path switching valve 5 is permitted. Unlikely, the flow path switching valve 5 changes substantially from fully closed to fully open by two sections A and D. The section A is the same as that in the above-described embodiment. For example, the section A is gradually opened from the coolant temperature at the time of engine start to the target intermediate opening determined by the first opening change speed corrected by the engine operating conditions. . When the target intermediate opening degree is reached, the second opening degree changing speed, which is a relatively large changing speed, is opened to the fully opened position. The second opening change rate at this time is not a fixed value, but is variably set according to the exhaust temperature at that time. Specifically, a larger second opening change speed is given such that the higher the exhaust gas temperature at that time (that is, when the target intermediate opening is reached), the quicker the opening is. Even with such open control, the flow path switching can be achieved while reliably avoiding a temporary temperature drop of the catalytic converter 4.

なお、図4のようにディレイ時間の区間Bを有するものにおいて、さらに区間Cの開度変化速度を変化させるようにすることも可能である。   In addition, in the case of having the delay time section B as shown in FIG. 4, it is possible to further change the opening degree change speed of the section C.

この発明に係る排気装置の配管レイアウトならびに制御システムの一例を示す構成説明図。BRIEF DESCRIPTION OF THE DRAWINGS The structure explanatory drawing which shows an example of the piping layout and control system of the exhaust apparatus which concerns on this invention. 暖機に伴い流路切換弁の開制御の許可を行うルーチンを示すフローチャート。The flowchart which shows the routine which performs permission of opening control of a flow-path switching valve with warming-up. 流路切換弁の開制御の流れを示すフローチャート。The flowchart which shows the flow of opening control of a flow-path switching valve. この実施例の流路切換弁の開度変化の一例を示す特性図。The characteristic view which shows an example of the opening degree change of the flow-path switching valve of this Example. 触媒コンバータ入口での排温の変化と開度変化速度との関係を示す特性図。The characteristic view which shows the relationship between the change of the exhaust temperature in a catalytic converter inlet_port | entrance, and an opening change speed. 機関負荷に対する開度変化速度の補正値の特性を示す特性図。The characteristic view which shows the characteristic of the correction value of the opening degree change speed with respect to engine load. 機関回転速度に対する開度変化速度の補正値の特性を示す特性図。The characteristic view which shows the characteristic of the correction value of the opening degree change speed with respect to an engine speed. 点火時期に対する開度変化速度の補正値の特性を示す特性図。The characteristic view which shows the characteristic of the correction value of the opening degree change speed with respect to ignition timing. 冷却水温度に対する開度変化速度の補正値の特性を示す特性図。The characteristic view which shows the characteristic of the correction value of the opening degree change speed with respect to cooling water temperature. 流路切換弁を開いたときの触媒温度の変化を従来例(実線)と実施例(破線)とで対比して示す特性図。The characteristic view which shows the change of a catalyst temperature when a flow-path switching valve is opened by contrasting with a prior art example (solid line) and an Example (broken line). 異なる実施例の流路切換弁の開度変化の一例を示す特性図。The characteristic view which shows an example of the opening degree change of the flow-path switching valve of a different Example.

符号の説明Explanation of symbols

3…メイン通路
4…メイン触媒コンバータ
5…流路切換弁
6…分岐点
7…バイパス通路
8…バイパス触媒コンバータ
14…排気温度センサ
27…エンジンコントロールユニット
DESCRIPTION OF SYMBOLS 3 ... Main passage 4 ... Main catalytic converter 5 ... Flow path switching valve 6 ... Branch point 7 ... Bypass passage 8 ... Bypass catalytic converter 14 ... Exhaust temperature sensor 27 ... Engine control unit

Claims (6)

排気装置として、メイン触媒コンバータを下流側に備えたメイン通路の上流側部分と並列にバイパス通路が設けられるとともに、このバイパス通路にバイパス触媒コンバータを備え、かつ上記メイン通路の上記上流側部分に該メイン通路を閉塞する流路切換弁を備えてなる内燃機関において、
上記メイン触媒コンバータの暖機完了を判定する手段と、
この暖機完了の判定時に、上記流路切換弁を第1の開度変化速度でもって所定の目標中間開度まで開き、その後、上記第1の開度変化速度よりも大きな第2の開度変化速度でもって全開位置まで開く流路切換弁制御手段と、
を備えることを特徴とする内燃機関の制御装置。
As an exhaust device, a bypass passage is provided in parallel with the upstream portion of the main passage provided with the main catalytic converter on the downstream side, the bypass passage is provided with the bypass catalytic converter, and the upstream portion of the main passage is provided with the bypass passage. In the internal combustion engine comprising a flow path switching valve that closes the main passage,
Means for determining completion of warm-up of the main catalytic converter;
When the warm-up completion is determined, the flow path switching valve is opened to a predetermined target intermediate opening degree with the first opening degree changing speed, and then the second opening degree larger than the first opening degree changing speed. A flow path switching valve control means that opens to a fully open position with a changing speed;
A control device for an internal combustion engine, comprising:
上記第1の開度変化速度が機関運転条件によって補正されることを特徴とする請求項1に記載の内燃機関の制御装置。   2. The control device for an internal combustion engine according to claim 1, wherein the first opening change rate is corrected by engine operating conditions. 上記目標中間開度に達した後、所定のディレイ期間の間、該目標中間開度に保持することを特徴とする請求項1または2に記載の内燃機関の制御装置。   3. The control apparatus for an internal combustion engine according to claim 1, wherein the target intermediate opening degree is maintained for a predetermined delay period after reaching the target intermediate opening degree. 上記ディレイ期間がそのときの排気温度に応じて設定されることを特徴とする請求項1〜3のいずれかに記載の内燃機関の制御装置。   4. The control apparatus for an internal combustion engine according to claim 1, wherein the delay period is set according to an exhaust gas temperature at that time. 上記目標中間開度が始動時の機関温度条件に応じて設定されることを特徴とする請求項1〜4のいずれかに記載の内燃機関の制御装置。   The control apparatus for an internal combustion engine according to any one of claims 1 to 4, wherein the target intermediate opening is set according to an engine temperature condition at the time of starting. 上記第2の開度変化速度がそのときの排気温度に応じて設定されることを特徴とする請求項1〜5のいずれかに記載の内燃機関の制御装置。   6. The control device for an internal combustion engine according to claim 1, wherein the second opening degree change speed is set according to the exhaust temperature at that time.
JP2008060367A 2008-03-11 2008-03-11 Control device for internal combustion engine Expired - Fee Related JP5071172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008060367A JP5071172B2 (en) 2008-03-11 2008-03-11 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008060367A JP5071172B2 (en) 2008-03-11 2008-03-11 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2009215964A true JP2009215964A (en) 2009-09-24
JP5071172B2 JP5071172B2 (en) 2012-11-14

Family

ID=41188075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008060367A Expired - Fee Related JP5071172B2 (en) 2008-03-11 2008-03-11 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5071172B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010037998A (en) * 2008-08-01 2010-02-18 Nissan Motor Co Ltd Exhaust device for engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05321644A (en) * 1992-05-26 1993-12-07 Honda Motor Co Ltd Exhaust emission control device of engine
JPH07189668A (en) * 1993-12-27 1995-07-28 Nissan Motor Co Ltd Exhaust emission control device for engine
JP2005351088A (en) * 2004-06-08 2005-12-22 Nissan Motor Co Ltd Exhaust system of multicylinder internal combustion engine
JP2007154811A (en) * 2005-12-07 2007-06-21 Nissan Motor Co Ltd Control device of internal combustion engine
JP2007321652A (en) * 2006-06-01 2007-12-13 Nissan Motor Co Ltd Internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05321644A (en) * 1992-05-26 1993-12-07 Honda Motor Co Ltd Exhaust emission control device of engine
JPH07189668A (en) * 1993-12-27 1995-07-28 Nissan Motor Co Ltd Exhaust emission control device for engine
JP2005351088A (en) * 2004-06-08 2005-12-22 Nissan Motor Co Ltd Exhaust system of multicylinder internal combustion engine
JP2007154811A (en) * 2005-12-07 2007-06-21 Nissan Motor Co Ltd Control device of internal combustion engine
JP2007321652A (en) * 2006-06-01 2007-12-13 Nissan Motor Co Ltd Internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010037998A (en) * 2008-08-01 2010-02-18 Nissan Motor Co Ltd Exhaust device for engine

Also Published As

Publication number Publication date
JP5071172B2 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
JP4462100B2 (en) Exhaust device for internal combustion engine and control method for internal combustion engine
JP4506842B2 (en) Control device for internal combustion engine
WO2013011573A1 (en) Engine cooling device
JP4793103B2 (en) Internal combustion engine
JP6236960B2 (en) Control device and control method for spark ignition internal combustion engine
JP4779730B2 (en) Failure diagnosis device for exhaust gas purification device of internal combustion engine
JP6112299B2 (en) Engine control device
JP2008180176A (en) Exhaust system for multiple cylinder internal combustion engine
JP5071172B2 (en) Control device for internal combustion engine
JP2008045428A (en) Failure diagnostic device of exhaust emission control system
JP4228199B2 (en) Engine warm-up control device
JP4706463B2 (en) Control device for internal combustion engine
JP5018974B2 (en) Control device for internal combustion engine
JP6201439B2 (en) Control device and control method for internal combustion engine
JP2008038603A (en) Failure diagnostic method for internal combustion engine, and failure diagnostic device for internal combustion engine
JP5012710B2 (en) Exhaust gas purification device for internal combustion engine
EP1890017A1 (en) Internal combustion engine and method of controlling the same
JP4371227B2 (en) Exhaust gas purification device for multi-cylinder engine
JP5040838B2 (en) Control device for internal combustion engine
JP5040702B2 (en) Control device for internal combustion engine
JP2007239571A (en) Controller of internal combustion engine
JP2009209840A (en) Exhaust emission control device for engine
JP2008121509A (en) Failure diagnostic device of exhaust emission control system
JP4816300B2 (en) Internal combustion engine and control method for internal combustion engine
JP2008196333A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120806

R150 Certificate of patent or registration of utility model

Ref document number: 5071172

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees