JP2009215348A - Method for producing resin molded product - Google Patents

Method for producing resin molded product Download PDF

Info

Publication number
JP2009215348A
JP2009215348A JP2008057546A JP2008057546A JP2009215348A JP 2009215348 A JP2009215348 A JP 2009215348A JP 2008057546 A JP2008057546 A JP 2008057546A JP 2008057546 A JP2008057546 A JP 2008057546A JP 2009215348 A JP2009215348 A JP 2009215348A
Authority
JP
Japan
Prior art keywords
resin molded
molded body
resin
group
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008057546A
Other languages
Japanese (ja)
Other versions
JP5292860B2 (en
Inventor
Kazuhiro Tanahashi
一裕 棚橋
Hiroyuki Sugaya
博之 菅谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008057546A priority Critical patent/JP5292860B2/en
Publication of JP2009215348A publication Critical patent/JP2009215348A/en
Application granted granted Critical
Publication of JP5292860B2 publication Critical patent/JP5292860B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a resin molded product on which adsorption of protein and peptide is suppressed. <P>SOLUTION: The resin molded product has a functional group covalently bonded to the surface thereof, the functional group having a structure represented by the general formula 1:-(OR<SB>1</SB>)<SB>n</SB>-O-R<SB>2</SB>(wherein R<SB>1</SB>represents a 2 or 3C alkylene group; R<SB>2</SB>represents a saccharide residue; and n represents a number of 1-100). An aqueous solution of a nonionic surfactant represented by the following general formula 2 is brought into contact with a resin molded product and the resin molded product is irradiated with radiation, wherein the concentration of the surfactant in the aqueous solution is set in a range of 0.05-500 times the critical micelle concentration of the surfactant at 25°C. R<SB>3</SB>-(OR<SB>1</SB>)<SB>n</SB>-OR<SB>2</SB>(formula 2) (wherein R<SB>3</SB>represents a 1-30C linear or branched chain alkyl group, an alkenyl group, an alkynyl group or R<SB>4</SB>-A-; R<SB>1</SB>represents a 2 or 3C alkylene group; R<SB>2</SB>represents a saccharide residue; and n represents a number of 1-100). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はタンパク質および/またはペプチド処理用として特に好適な樹脂成型体、およびその製造方法に関する。   The present invention relates to a resin molding particularly suitable for protein and / or peptide treatment, and a method for producing the same.

近年、ポストゲノム研究として、プロテオーム解析研究(プロテオミクス)が注目され始めた。遺伝子産物であるタンパク質は遺伝子よりも疾患の病態に直接リンクしていると考えられることから、タンパク質を網羅的に調べるプロテオーム解析の研究成果は診断と治療に広く応用できると期待されている。   In recent years, proteomic analysis research (proteomics) has begun to attract attention as post-genomic research. Since protein, which is a gene product, is thought to be directly linked to disease pathology rather than gene, research results of proteome analysis that comprehensively examines proteins are expected to be widely applicable to diagnosis and treatment.

プロテオーム解析が急速に進展しだしたのは、技術的には質量分析装置(mass spectrometer: MS)による高速構造分析が可能となってきたことが大きい。MALDI-TOF-MS (matrix assisted laser desorption ionization time-of-flight mass spectrometry) 等の実用化によって、ポリペプチドのハイスループット超微量分析が可能となり、従来検出し得なかった微量タンパク質までが同定可能となり、疾患関連因子の探索に強力なツールとなってきている。   The reason why proteome analysis has made rapid progress is technically that high-speed structural analysis by mass spectrometer (MS) has become possible. Practical applications such as MALDI-TOF-MS (matrix assisted laser desorption ionization time-of-flight mass spectrometry) enable high-throughput ultra-trace analysis of polypeptides, enabling identification of trace proteins that could not be detected in the past. It has become a powerful tool in the search for disease-related factors.

病態のバイオマーカーや病因関連因子と考えられているペプチドホルモン、インターロイキン、サイトカイン等の生理活性タンパク質の多くは、極微量 (<ng/mL)にしか存在せず。その含有量比は、アルブミンなどの高分子量の高含量成分に比べて、実にナノからピコレベルである。タンパク質の大きさという点では、タンパク質全種類の70%以上は分子量60kDa以下であり、上記の極微量なバイオマーカータンパク質はいずれもこの領域に含まれる場合がほとんどである。   Many bioactive proteins such as peptide hormones, interleukins, and cytokines, which are considered to be pathological biomarkers and pathogenesis-related factors, exist only in trace amounts (<ng / mL). The content ratio is actually nano to pico level as compared with a high content component of high molecular weight such as albumin. In terms of protein size, 70% or more of all types of proteins have a molecular weight of 60 kDa or less, and most of the above-mentioned trace amounts of biomarker proteins are mostly included in this region.

ところで、タンパク質を取り扱う場合、生化学の分野でとりわけ良く用いられる各種分析器具の樹脂基材表面へのタンパク質の非特異吸着が常に問題となる。この基材表面への非特異吸着は、タンパク質の減少による分析結果のバラツキを引き起こすだけではなく、分析対象であるタンパク質のロスといった重大な問題を引き起こすので、非特異吸着を防ぐ必要がある。一般的に非特異吸着によるタンパク質の減少率は溶液中のタンパク質の総濃度に依存し、タンパク質の総濃度が低いほどタンパク質の減少率が大きくなる。特に上述のようにプロテオーム解析において病因関連の微量成分を質量分析で分析する場合、既存の前処理装置には非特異吸着を抑制する処理が施したものがない。そのため、検出を阻害する成分を除外して得られる分画液のタンパク質の総濃度は極めて低く、微量バイオマーカータンパク質の非特異吸着による減少・ロスが問題となっている。   By the way, when handling proteins, non-specific adsorption of proteins to the resin substrate surface of various analytical instruments used particularly well in the field of biochemistry is always a problem. This non-specific adsorption on the substrate surface not only causes variations in the analysis results due to protein reduction, but also causes serious problems such as loss of the protein to be analyzed, so it is necessary to prevent non-specific adsorption. Generally, the protein reduction rate due to non-specific adsorption depends on the total protein concentration in the solution, and the protein reduction rate increases as the total protein concentration decreases. In particular, when the pathogenesis-related trace component is analyzed by mass spectrometry in the proteome analysis as described above, there is no existing pretreatment apparatus that has been subjected to a process for suppressing nonspecific adsorption. Therefore, the total protein concentration of the fraction obtained by excluding components that inhibit detection is extremely low, and there is a problem of reduction / loss due to nonspecific adsorption of a trace amount of biomarker protein.

このようなタンパクやペプチドの付着によるロスの問題に対して、大きく分けて二通りの対策がある。一つは吸着を抑制する化合物を生体成分溶液に添加する方法、もうひとつは樹脂基材表面の生体成分非吸着処理である。前者の代表的な方法として、ブロッキング剤を添加する方法がある。ブロッキング剤にはアルブミンやカゼインの溶液が用いられ、競争吸着により有用生体成分の吸着を抑制する方法である。競争吸着であるためにブロッキング剤濃度は有用生体成分の濃度より高くするのが一般的である。したがって、分析用途ではブロッキング剤が分析を阻害したり、少量の添加でも生体成分が構造変化する危険性がある。ブロッキングの他に界面活性剤、無機塩類や有機溶媒を添加する方法もあるが、これもブロッキング剤と同様に分析系の阻害や生体成分の構造変化に伴う変性が問題となる。   There are two main countermeasures against the problem of loss due to the adhesion of proteins and peptides. One is a method of adding a compound that suppresses adsorption to the biological component solution, and the other is a biological component non-adsorption treatment on the surface of the resin substrate. As a typical method of the former, there is a method of adding a blocking agent. As a blocking agent, a solution of albumin or casein is used, which is a method for suppressing adsorption of useful biological components by competitive adsorption. Because of the competitive adsorption, the concentration of the blocking agent is generally higher than the concentration of useful biological components. Therefore, in analysis applications, there is a risk that the blocking agent inhibits the analysis, and even if a small amount is added, the biological component changes in structure. In addition to blocking, there is a method of adding a surfactant, an inorganic salt, or an organic solvent. However, as with the blocking agent, there is a problem in that the analysis system is inhibited and denaturation due to structural changes of biological components.

一方、基材表面の非吸着処理として一般的なものは、基材表面の親水化処理である。親水化処理にはいくつかの方法がある。例えば基材へ親水性化合物、例えば2-メタクリロイルオキシエチルホスホリルコリン共重合体(以下MPCと略記)をコーティング処理により導入する方法が特許文献1に記載されている。また、親水性化合物をグラフト処理により導入する方法が特許文献2〜6に記載されている。リアクティブイオンエッチング処理、プラズマ処理やイオンクラスタービーム処理のように、基材表面へ親水性の官能基を直接生成させる方法もある。   On the other hand, a common non-adsorption treatment on the substrate surface is a hydrophilic treatment on the substrate surface. There are several methods for hydrophilization treatment. For example, Patent Document 1 discloses a method in which a hydrophilic compound such as 2-methacryloyloxyethyl phosphorylcholine copolymer (hereinafter abbreviated as MPC) is introduced into a substrate by coating treatment. Patent Documents 2 to 6 describe methods for introducing a hydrophilic compound by grafting. There is also a method in which hydrophilic functional groups are directly generated on the surface of the substrate, such as reactive ion etching, plasma treatment, and ion cluster beam treatment.

しかしながら、従来の基材表面処理では、かかる処理を施した基材が、高濃度のタンパクやペプチドの溶液と接触した場合には生体成分の吸着を抑制する効果が認められるが、低濃度の生体成分を含有する溶液と接触した場合には依然として吸着による生体成分の減少やロスが発生し、課題解決には未だ十分といえるレベルのものではなかった。   However, in the conventional base material surface treatment, when the base material subjected to such a treatment comes into contact with a high concentration protein or peptide solution, an effect of suppressing the adsorption of biological components is recognized. When contacted with a solution containing a component, reduction or loss of biological components due to adsorption still occurred, and the level was still not sufficient to solve the problem.

さらに親水性高分子によるコーティング処理による手法は、処理された基材に対して、さらに親水性高分子溶液を用いた溶媒が接触した場合、コーティングが剥離するなどして親水性が低下することが懸念される。また、分析や分離等の処理装置においては、溶出した親水性高分子が後の分析の阻害因子となりうることが懸念される。   Furthermore, in the method using a coating treatment with a hydrophilic polymer, when a solvent using a hydrophilic polymer solution is further contacted with the treated substrate, the hydrophilicity may be lowered due to peeling of the coating or the like. Concerned. Further, in a processing apparatus such as analysis or separation, there is a concern that the eluted hydrophilic polymer may be an inhibitor of subsequent analysis.

親水性高分子グラフトによる親水化は、グラフト量に比例して親水性が向上するが、処理する親水性高分子溶液の濃度が高くなると親水性高分子同士で三次元的に架橋してしまうために親水性高分子の運動性が低下してしまい、生体成分の付着抑制効果が低くなるという問題がある。更に、特許文献6に記載の方法では低塩濃度という、よりタンパク質吸着が起こりやすい条件において十分な効果を発揮できない。   Hydrophilization by hydrophilic polymer grafting improves hydrophilicity in proportion to the amount of graft, but if the concentration of the hydrophilic polymer solution to be processed is increased, the hydrophilic polymers are cross-linked three-dimensionally. However, there is a problem that the mobility of the hydrophilic polymer is lowered and the effect of suppressing the adhesion of biological components is lowered. Furthermore, the method described in Patent Document 6 cannot exhibit a sufficient effect under a condition where protein adsorption is likely to occur, such as a low salt concentration.

また、リアクティブイオンエッチング処理、プラズマ処理、およびイオンクラスタービーム処理は、基材の外表面や板状基材の片面などを簡便に親水化することができるが、プラズマやイオンクラスタービームなどの影になる部分を親水化することが難しい。そのため、複雑な形状をした成型体を1回の処理で親水化するのには適していない。また、基材の生体成分の吸着特性は、生体成分と接触する部分の表面状態に依存する。一般的には、表面の親水性が高いほど、さらに表面に固定化された親水性分子の運動性が高いほど、生体成分の基材表面への吸着は抑制される。運動性の高い親水性分子は、その分子運動によって、タンパク質や血小板などの生体成分を排除していると考えられている。リアクティブイオンエッチング処理、プラズマ処理、およびイオンクラスタービーム処理による親水化は、基材表面に水酸基などの親水性官能基が生成されることによる、すなわち親水性高分子の基材表面への導入による親水化と比較して、親水性分子の運動性が低い。そのため、生体成分の付着抑制効果は低く好ましくない。さらに、処理中に高温になる場合があるので基材が変性することもあるため好ましくない。   In addition, reactive ion etching treatment, plasma treatment, and ion cluster beam treatment can easily hydrophilize the outer surface of the base material or one side of the plate-like base material. It is difficult to make the part to become hydrophilic. Therefore, it is not suitable for making a molded body having a complicated shape hydrophilic by one treatment. Moreover, the adsorption | suction characteristic of the biological component of a base material is dependent on the surface state of the part which contacts a biological component. In general, the higher the hydrophilicity of the surface and the higher the mobility of the hydrophilic molecules immobilized on the surface, the more the biological component is adsorbed onto the substrate surface. It is considered that hydrophilic molecules having high mobility exclude biological components such as proteins and platelets by their molecular motion. Hydrophilization by reactive ion etching treatment, plasma treatment, and ion cluster beam treatment is due to the generation of hydrophilic functional groups such as hydroxyl groups on the substrate surface, that is, by introduction of hydrophilic polymers onto the substrate surface. Compared with hydrophilization, the mobility of hydrophilic molecules is low. Therefore, the effect of suppressing the adhesion of biological components is low and not preferable. Furthermore, since it may become high temperature during a process, since a base material may modify | denature, it is not preferable.

このように、タンパクまたはペプチドの吸着抑制処理の技術が確立されていないために、吸着の少ない樹脂成型体は未だ世の中にない。
特表2002−542163号公報 特開2003−130882号公報 特開昭58−40323号公報 特許第3297707号公報 特開昭61−225653号公報 国際公開第06/025352号パンフレット
Thus, since the technique of the protein or peptide adsorption | suction suppression process is not established, the resin molded object with few adsorption | suctions is not yet in the world.
Japanese translation of PCT publication No. 2002-542163 JP 2003-130882 A JP 58-40323 A Japanese Patent No. 3297707 Japanese Patent Laid-Open No. 61-225653 International Publication No. 06/025352 Pamphlet

上述のとおり、臨床プロテオーム解析など極微量の生体物質を操作する分野において、成型体表面に対するタンパクまたはペプチドの非特異吸着によってタンパク質をロスし、安定した処理・分析ができないという問題がある。安定した処理・分析を行うために、基材表面へのタンパク質の非特異吸着を抑制することが必須であり、本分野にてとりわけよく使用されるポリスチレン、ポリエチレン、ポリプロピレン、ポリカーボネート、ポリ塩化ビニルなどの樹脂成型体への吸着抑制技術を提供することが課題である。   As described above, in the field of manipulating a very small amount of biological material such as clinical proteome analysis, there is a problem that protein is lost due to non-specific adsorption of the protein or peptide to the surface of the molded body, and stable treatment / analysis cannot be performed. In order to perform stable processing and analysis, it is essential to suppress nonspecific adsorption of proteins to the surface of the base material, and polystyrene, polyethylene, polypropylene, polycarbonate, polyvinyl chloride, etc., which are particularly often used in this field It is a problem to provide a technique for suppressing adsorption to the molded resin.

上記課題を解決するために、本発明では以下のいずれかの手段を採用する。
(1)下記一般式1
−(OR−O−R (式1)
(式中、Rは炭素数2または3のアルキレン基を示し、Rは糖残基を示し、nは1〜100の数を示す)、で表される構造を有する官能基が表面に共有結合されてなる樹脂成型体。
(2)nが5〜80である(1)に記載の樹脂成型体。
(3)糖がグルコース、フルクトース、キシロースから選ばれる(1)または(2)に記載の樹脂成型体。
(4)樹脂成型体に、下記一般式2で表される非イオン性界面活性剤の水溶液を接触させる工程と、前記水溶液を接液させた樹脂成型体に放射線を照射する工程とを有し、前記水溶液における前記界面活性剤の濃度が、該界面活性剤の25℃における臨界ミセル濃度の0.05倍〜500倍の範囲である樹脂成型体の製造方法。
In order to solve the above problems, the present invention employs any of the following means.
(1) The following general formula 1
— (OR 1 ) n —O—R 2 (Formula 1)
(Wherein R 1 represents an alkylene group having 2 or 3 carbon atoms, R 2 represents a sugar residue, and n represents a number of 1 to 100), and a functional group having a structure represented by A resin molded body formed by covalent bonding.
(2) The resin molding as described in (1) whose n is 5-80.
(3) The resin molded product according to (1) or (2), wherein the sugar is selected from glucose, fructose, and xylose.
(4) A step of bringing a resin molded body into contact with an aqueous solution of a nonionic surfactant represented by the following general formula 2 and a step of irradiating the resin molded body with the aqueous solution in contact with radiation The method for producing a resin molded body, wherein the concentration of the surfactant in the aqueous solution is in the range of 0.05 to 500 times the critical micelle concentration at 25 ° C. of the surfactant.

−(OR−OR (式2)
(式中、Rは炭素数1〜30の直鎖または分岐鎖のアルキル基、アルケニル基、アルキニル基、またはR−A−を示し(但し、Rは炭素数1〜18の直鎖または分岐鎖のアルキル、アルケニルまたはアルキニル基、Aはフェニレン基)、Rは炭素数2または3のアルキレン基を示し、Rは糖残基を示し、nは1〜100の数を示す)
(5)前記水溶液が水溶性無機塩類を50mmol/L〜300mmol/Lの濃度で含むものである、(4)に記載の樹脂成型体の製造方法。
(6)Rの炭素数が2である、(4)または(5)に記載の樹脂成型体の製造方法。

(7)Rの炭素数が5〜25である、(4)〜(6)のいずれかに記載の樹脂成型体の製造方法。
(8)RがR−A−であり、Rの炭素数が7〜10である、(4)〜(7)のいずれかに記載の樹脂成型体の製造方法。
(9)前記界面活性剤のHLBが10以上である、(4)〜(8)のいずれかに記載の樹脂成型体の製造方法。
R 3 — (OR 1 ) n —OR 2 (Formula 2)
(In the formula, R 3 represents a linear or branched alkyl group, alkenyl group, alkynyl group, or R 4 -A- having 1 to 30 carbon atoms (provided that R 4 is a linear chain having 1 to 18 carbon atoms). Or a branched alkyl, alkenyl or alkynyl group, A is a phenylene group), R 1 represents an alkylene group having 2 or 3 carbon atoms, R 2 represents a sugar residue, and n represents a number of 1 to 100)
(5) The method for producing a resin molded body according to (4), wherein the aqueous solution contains water-soluble inorganic salts at a concentration of 50 mmol / L to 300 mmol / L.
(6) The method for producing a resin molded body according to (4) or (5), wherein R 1 has 2 carbon atoms.

(7) The method for producing a resin molded body according to any one of (4) to (6), wherein R 3 has 5 to 25 carbon atoms.
(8) The method for producing a resin molded body according to any one of (4) to (7), wherein R 1 is R 4 -A-, and R 4 has 7 to 10 carbon atoms.
(9) The manufacturing method of the resin molding in any one of (4)-(8) whose HLB of the said surfactant is 10 or more.

本発明により、生体成分、とりわけタンパク質およびペプチドを表面に吸着しにくい樹脂成型体を得ることができる。そして、かかる樹脂成形体によれば、分析の目的とするタンパク質等の損失を少なくできる。   According to the present invention, it is possible to obtain a molded resin that hardly adsorbs biological components, particularly proteins and peptides, on the surface. And according to this resin molding, the loss of the protein etc. made into the objective of analysis can be decreased.

本発明の樹脂成型体、および本発明によって製造される樹脂成型体は、タンパク質および/またはペプチドの処理に好適に用いられる。ここでいう処理とは、とりわけ、生化学、生物学、分析化学、農林水産業、食品、医学、薬学などの分野で行われる、タンパク質および/またはペプチドを取り扱う操作を意味し、単にタンパク質および/またはペプチド、またはそれらを含有する溶液の保管・保存・採取・分注にとどまらず、反応・分析・分離・精製・濃縮・乾燥などの操作も含まれる。従って、成型体の形状は特に限定されず、糸、中空糸、繊維、編み地、フィルム、平膜、中空糸膜、粒子、チューブ、ロッド、容器など目的・用途に合わせた多様な形状をしていて良い。   The resin molded body of the present invention and the resin molded body produced by the present invention are suitably used for the treatment of proteins and / or peptides. The treatment here means, in particular, an operation for handling proteins and / or peptides performed in the fields of biochemistry, biology, analytical chemistry, agriculture, forestry and fisheries, food, medicine, pharmacy, and the like. In addition to storage, preservation, collection, and dispensing of peptides or solutions containing them, operations such as reaction, analysis, separation, purification, concentration, and drying are also included. Therefore, the shape of the molded body is not particularly limited, and various shapes such as yarns, hollow fibers, fibers, knitted fabrics, films, flat membranes, hollow fiber membranes, particles, tubes, rods, containers, and the like can be used. It is good.

樹脂の種類は特に限定されず、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビリニデン、ポリスチレン、ポリ酢酸ビニル、ポリアクリレート、ポリメタクリレート、ポリメチルメタクリレート、ポリアクリロニトリル、ポリイソプレン、ポリブタジエンなどのビニル系ポリマーまたはアクリル系ポリマー、ナイロンなどのポリアミド系ポリマー、ポリイミド系ポリマー、ポリウレタン系ポリマー、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリ乳酸、ポリグリコール酸などのポリエステル系ポリマー、ポリテトラフルオロエチレン、ポリビニリデンフロリド、パーフルオロポリマーなどのフッ素系ポリマー、ポリカーボネート、ポリフェニレンオキシド、ポリフェニレンスルフィド、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、シリコン樹脂、天然ゴム、セルロース、酢酸セルロースなどから適宜選択される。また、上記ポリマーからなる共重合体や、上記ポリマーをブレンドしてなる樹脂でも良い。   The type of resin is not particularly limited, and vinyl polymers such as polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyvinyl acetate, polyacrylate, polymethacrylate, polymethyl methacrylate, polyacrylonitrile, polyisoprene, polybutadiene, or the like Acrylic polymers, polyamide polymers such as nylon, polyimide polymers, polyurethane polymers, polyethylene terephthalate, polybutylene terephthalate, polyester polymers such as polylactic acid, polyglycolic acid, polytetrafluoroethylene, polyvinylidene fluoride, perfluoro Fluoropolymers such as polymers, polycarbonate, polyphenylene oxide, polyphenylene sulfide, polysulfone, polyethylene Terusuruhon, polyether ether ketone, silicone resin, natural rubber, cellulose, is suitably selected from cellulose acetate. Moreover, the copolymer which consists of the said polymer, and resin formed by blending the said polymer may be sufficient.

本発明において樹脂の重量平均分子量、数平均分子量、分子量多分散度や結晶性は特に限定されず、成型できるものであれば何でも良い。成型体は樹脂のみから構成されていても良く、樹脂が表面に局在している成型体でも良い。   In the present invention, the weight average molecular weight, number average molecular weight, molecular weight polydispersity and crystallinity of the resin are not particularly limited, and any resin can be used as long as it can be molded. The molded body may be composed only of a resin, or may be a molded body in which the resin is localized on the surface.

上記のような樹脂成形体が、例えばタンパク質の処理に用いられるが、タンパク質は、水に溶解しているとき、親水性のドメインがタンパク質分子の表面に存在し、疎水性ドメインがタンパクの内部に存在している。そして、タンパク質が疎水性の基材に接触すると内部の疎水性ドメインが表面に露出し、疎水性相互作用により基材に吸着すると考えられる。したがって、タンパク質の吸着を抑制するためには基材表面の親水化が有効である。   The resin molded body as described above is used, for example, for protein processing. When protein is dissolved in water, a hydrophilic domain is present on the surface of the protein molecule, and a hydrophobic domain is present inside the protein. Existing. And when protein contacts a hydrophobic base material, an internal hydrophobic domain will be exposed on the surface, and it is thought that it adsorb | sucks to a base material by hydrophobic interaction. Therefore, hydrophilization of the substrate surface is effective for suppressing protein adsorption.

親水化された基材表面の化学構造としては、式1で表される化学構造を例示できる。   The chemical structure represented by Formula 1 can be exemplified as the chemical structure of the hydrophilic surface of the substrate.

−(OR−O−R (式1)
(式中、Rは炭素数2または3のアルキレン基を示し、Rは糖残基を示し、nは1〜100の数を示す)
ポリオキシアルキレンセグメントの重合度は、短かすぎると室温での水溶性が低下し、長すぎると樹脂表面との相互作用が弱くなることから、nは1〜100である。中でも上限としては80以下が好ましく、さらには50以下が好ましい。一方、下限としては5以上がより好ましい。
— (OR 1 ) n —O—R 2 (Formula 1)
(Wherein R 1 represents an alkylene group having 2 or 3 carbon atoms, R 2 represents a sugar residue, and n represents a number of 1 to 100)
When the degree of polymerization of the polyoxyalkylene segment is too short, water solubility at room temperature decreases, and when it is too long, the interaction with the resin surface becomes weak, so n is 1 to 100. Among these, the upper limit is preferably 80 or less, and more preferably 50 or less. On the other hand, the lower limit is more preferably 5 or more.

ポリオキシアルキレン鎖の末端であるRは、糖残基である。糖残基とは、糖の化学構造の中で(ORセグメントとの共有結合に使われた水酸基を除いた残りの構造を意味する。糖は単糖、オリゴ糖、多糖など特に限定されないが、化学合成のしやすさという点で、単糖類が好ましく、特に糖残基が椅子型のコンフォーメーションを取ったときに水酸基の立体配置が水分子のトリジマイト水和構造に位置するという点で、グルコース、フルクトース、キシロースが最も好ましい。 R 2 at the end of the polyoxyalkylene chain is a sugar residue. The sugar residue means the remaining structure excluding the hydroxyl group used for the covalent bond with the (OR 1 ) n segment in the chemical structure of the sugar. The sugar is not particularly limited to monosaccharides, oligosaccharides, polysaccharides, etc., but monosaccharides are preferable from the viewpoint of ease of chemical synthesis, and particularly when the sugar residue takes a chair-type conformation, the configuration of hydroxyl groups is Glucose, fructose, and xylose are most preferred in that they are located in the tridymite hydration structure of water molecules.

本発明における、タンパク質の吸着を抑制する表面を有する樹脂成形体は下記のようにして得ることができる。   In the present invention, the resin molded body having a surface that suppresses protein adsorption can be obtained as follows.

すなわち、本発明においては、樹脂成型体を、非イオン性界面活性剤の水溶液に接液させ、当該樹脂成型体表面に該界面活性剤を物理化学的に吸着させる。なお、本発明において接液とは、樹脂成型体の表面に、該界面活性剤の水溶液を接触させることをいう。その方法は特に限定されず、樹脂成型体を該水溶液中に浸漬する方法、該水溶液を成型体に噴霧する方法などが含まれるが、均一に処理できるという点で樹脂成型体を該水溶液中に浸漬する方法が好ましい。   That is, in the present invention, the resin molded body is brought into contact with an aqueous solution of a nonionic surfactant, and the surfactant is physicochemically adsorbed on the surface of the resin molded body. In the present invention, the term “liquid contact” refers to bringing the aqueous solution of the surfactant into contact with the surface of the resin molding. The method is not particularly limited, and includes a method of immersing the resin molded body in the aqueous solution, a method of spraying the aqueous solution onto the molded body, and the like. A dipping method is preferred.

本発明において、非イオン性界面活性剤は1〜100℃の温度範囲で水溶性であることが必須である。界面活性剤が水溶液中で沈殿を生じるものでなければよく、ミセルやリポゾームなどのナノスフェアまたはミクロスフェアとして溶存していても良い。   In the present invention, it is essential that the nonionic surfactant is water-soluble in a temperature range of 1 to 100 ° C. It is sufficient that the surfactant does not cause precipitation in an aqueous solution, and the surfactant may be dissolved as nanospheres or microspheres such as micelles and liposomes.

非イオン性界面活性剤としては、式2で表される有機化合物を例示できる。   Examples of nonionic surfactants include organic compounds represented by Formula 2.

−(OR−OR (式2)
(式中、Rは炭素数1〜30の直鎖または分岐鎖のアルキル基、アルケニル基、アルキニル基、またはR−A−を示し(但し、Rは炭素数1〜18の直鎖または分岐鎖のアルキル、アルケニルまたはアルキニル基、Aはフェニレン基)、Rは炭素数1〜3のアルキレン基を示し、Rは糖残基を示し、nは1〜100の数を示す)
これらの非イオン性界面活性剤は、水溶液にして樹脂成型体に接触させることで、疎水性のRセグメント介して該樹脂成型体の表面に吸着される一方、該表面を親水性のポリオキシアルキレンセグメント(ORにより親水化する。また、ポリオキシアルキレンセグメント(ORは、タンパク質溶液中に伸展することになるので、親水化の効果に加えて、親水性高分子鎖のミクロブラウン運動による排除体積効果も発現する。そのため、本発明によって得られた樹脂成型体はタンパク質吸着抑制効果を発揮することができる。
R 3 — (OR 1 ) n —OR 2 (Formula 2)
(In the formula, R 3 represents a linear or branched alkyl group, alkenyl group, alkynyl group, or R 4 -A- having 1 to 30 carbon atoms (provided that R 4 is a linear chain having 1 to 18 carbon atoms). Or a branched alkyl, alkenyl or alkynyl group, A is a phenylene group), R 1 represents an alkylene group having 1 to 3 carbon atoms, R 2 represents a sugar residue, and n represents a number from 1 to 100)
These nonionic surfactants are adsorbed on the surface of the resin molded body through a hydrophobic R 3 segment by contacting the resin molded body with an aqueous solution, while the surface is treated with hydrophilic polyoxy Hydrophilization by alkylene segment (OR 1 ) n . In addition, since the polyoxyalkylene segment (OR 1 ) n extends into the protein solution, in addition to the effect of hydrophilization, an excluded volume effect due to micro-Brownian motion of the hydrophilic polymer chain is also exhibited. Therefore, the resin molding obtained according to the present invention can exhibit a protein adsorption suppressing effect.

タンパク質やペプチドなどの非吸着性は、放射線照射前に物理化学的に吸着し、放射線照射によって化学的に固定化される非イオン性界面活性剤の量に依存する。そのため、接液の工程において、該非イオン性界面活性剤の吸着量を適切に制御することが重要である。   The non-adsorbability of proteins and peptides depends on the amount of nonionic surfactant that is physicochemically adsorbed before irradiation and chemically immobilized by irradiation. Therefore, it is important to appropriately control the adsorption amount of the nonionic surfactant in the liquid contact process.

界面活性剤の吸着量を決める因子の一つが、HLB(親水性親油性バランス)である。ここでいうHLBは、グリフィン法により化学構造から理論的に以下のようにして算出することができる。なお、下記式における水溶性化合物の親水性部分とは、(1)式の場合(OR−ORのセグメントをさす。 One factor that determines the amount of surfactant adsorbed is HLB (hydrophilic lipophilic balance). The HLB here can be theoretically calculated from the chemical structure by the Griffin method as follows. In addition, the hydrophilic part of the water-soluble compound in the following formula refers to a segment of (OR 1 ) n —OR 2 in the case of formula (1).

HLB理論値 = 20×(Wp/Ws)
Wp:水溶性化合物の親水性部分の分子量
Ws:水溶性化合物の分子量
HLB理論値は、低すぎると親水性が不足して水に対する溶解性が低下し、高すぎると親油性が不足して樹脂成型体表面に対する吸着性が低下する場合がある。そのため、HLBは10以上、20以下であることが好ましく、とりわけ12以上、19以下の範囲であることが最も好ましい。
HLB theoretical value = 20 × (Wp / Ws)
Wp: Molecular weight of hydrophilic portion of water-soluble compound Ws: Molecular weight of water-soluble compound The HLB theoretical value is too low if the hydrophilicity is insufficient and the solubility in water is lowered, and if too high, the lipophilicity is insufficient. The adsorptivity to the surface of the molded body may be reduced. Therefore, HLB is preferably 10 or more and 20 or less, and most preferably 12 or more and 19 or less.

また、式2に示す非イオン性界面活性剤は、親水性のポリオキシアルキレンセグメントと疎水性のRセグメントのバランスにより、水に対する溶解性及び水中での溶存状態が決まる。Rの化学構造は、炭素数が1〜30の直鎖または分岐鎖のアルキル基、アルケニル基、アルキニル基、またはR−A−(但し、Rは炭素数1〜18の直鎖または分岐鎖のアルキル基、アルケニル基またはアルキニル基、Aはフェニレン基)であれば特に限定されないが、炭素数が少ないと樹脂表面との相互作用が弱くなり、炭素数が多いと室温での水溶性が低下する場合がある。そのため、Rの炭素数は5〜25が好ましい。また、RがR−A−の場合、上記理由に加えて入手の点で、Rの炭素数が7〜10であることが好ましい。 In addition, the nonionic surfactant represented by Formula 2 determines the solubility in water and the dissolved state in water depending on the balance between the hydrophilic polyoxyalkylene segment and the hydrophobic R 3 segment. R 3 has a chemical structure of a linear or branched alkyl group having 1 to 30 carbon atoms, an alkenyl group, an alkynyl group, or R 4 -A- (wherein R 4 is a straight chain having 1 to 18 carbon atoms or The branched alkyl group, alkenyl group or alkynyl group, and A is a phenylene group) are not particularly limited. However, when the number of carbon atoms is small, the interaction with the resin surface becomes weak, and when the number of carbon atoms is large, water solubility at room temperature is achieved. May decrease. Therefore, the carbon number of R 3 is preferably 5 to 25. Further, when R 3 is R 4 -A-, in terms of availability, in addition to the above reasons, it is preferable number of carbon atoms of R 4 is 7 to 10.

ポリオキシアルキレンセグメントの重合度は、短かすぎると室温での水溶性が低下し、長すぎると樹脂表面との相互作用が弱くなることから、nは1〜100である。中でも上限としては80以下が好ましく、さらには50以下が好ましい。一方、下限としては5以上がより好ましい。   When the degree of polymerization of the polyoxyalkylene segment is too short, water solubility at room temperature decreases, and when it is too long, the interaction with the resin surface becomes weak, so n is 1 to 100. Among these, the upper limit is preferably 80 or less, and more preferably 50 or less. On the other hand, the lower limit is more preferably 5 or more.

ポリオキシアルキレンセグメントのアルキレン鎖Rの炭素数は2または3であり、ポリオキシアルキレンはポリオキシエチレンまたはポリオキシプロピレンである。特に水との親和性が高いという点でポリオキシエチレンが好ましい。 The alkylene chain R 1 of the polyoxyalkylene segment has 2 or 3 carbon atoms, and the polyoxyalkylene is polyoxyethylene or polyoxypropylene. In particular, polyoxyethylene is preferable because of its high affinity with water.

ポリオキシアルキレン鎖の末端であるRは、糖残基である。糖残基とは、糖の化学構造の中で(ORセグメントとの共有結合に使われた水酸基を除いた残りの構造を意味する。糖は単糖、オリゴ糖、多糖など特に限定されないが、化学合成のしやすさという点で、単糖類が好ましく、特に糖残基が椅子型のコンフォーメーションを取ったときに水酸基の立体配置が水分子のトリジマイト水和構造に位置するという点で、グルコース、フルクトース、キシロースが最も好ましい。 R 2 at the end of the polyoxyalkylene chain is a sugar residue. The sugar residue means the remaining structure excluding the hydroxyl group used for the covalent bond with the (OR 1 ) n segment in the chemical structure of the sugar. The sugar is not particularly limited to monosaccharides, oligosaccharides, polysaccharides, etc., but monosaccharides are preferable from the viewpoint of ease of chemical synthesis, and particularly when the sugar residue takes a chair-type conformation, the configuration of hydroxyl groups is Glucose, fructose, and xylose are most preferred in that they are located in the tridymite hydration structure of water molecules.

上記式1においてRがR−A−の場合、Rとポリオキシアルキレンセグメントは、フェニレン基Aのどの位置に結合していても良いが、安定性が高く、合成しやすいという点で1,4位のパラ置換体であることが最も好ましい。フェニレン基Aにおいて、Rとポリオキシアルキレンセグメントが結合していない位置は、水溶性を変化させないのであれば他の置換基で置換されていても良い。 In the above formula 1, when R 1 is R 4 -A-, R 4 and the polyoxyalkylene segment may be bonded to any position of the phenylene group A, but they are highly stable and easy to synthesize. Most preferred is a para-substituted product at the 1,4-position. In the phenylene group A, the position where R 1 and the polyoxyalkylene segment are not bonded may be substituted with other substituents as long as the water solubility is not changed.

式2で表される非イオン性界面活性剤の糖残基を結合可能な原料界面活性剤の具体例としては、Triton(登録商標) X-45、Triton(登録商標) X-100、Triton(登録商標) X-114、Triton(登録商標) X-165、Triton(登録商標) X-200、Triton(登録商標) X-305、Triton(登録商標) X-405、Triton(登録商標) X-705、Triton(登録商標) N-60、Triton(登録商標) N-101、Triton(登録商標) N-111、Triton(登録商標) N-150、Polyoxyethylene(8)Octylphenyl Ether、Polyoxyethylene(9)Octylphenyl Ether、Polyoxyethylene(10)Octylphenyl Ether、Polyoxyethylene (5)Nonylphenyl Ether、Polyoxyethylene (10)Nonylphenyl Ether、Polyoxyethylene (15)Nonylphenyl Ether、Polyoxyethylene (20)Nonylphenyl Etherが挙げられる。なお、これらは、式2におけるRがR−A−のものであって、Rの炭素数が8または9、ポリオキシアルキレンセグメント(ORにおける繰り返し数nが10〜70、同セグメントにおけるアルキレン鎖Rの炭素数が2である。また、Rとポリオキシアルキレンセグメントは、フェニレン基に対して1,4位のパラ位に結合している。 Specific examples of the raw material surfactant capable of binding the sugar residue of the nonionic surfactant represented by Formula 2 include Triton (registered trademark) X-45, Triton (registered trademark) X-100, Triton ( (Registered trademark) X-114, Triton (registered trademark) X-165, Triton (registered trademark) X-200, Triton (registered trademark) X-305, Triton (registered trademark) X-405, Triton (registered trademark) X- 705, Triton (registered trademark) N-60, Triton (registered trademark) N-101, Triton (registered trademark) N-111, Triton (registered trademark) N-150, Polyoxyethylene (8) Octylphenyl Ether, Polyoxyethylene (9) Octylphenyl Examples include Ether, Polyoxyethylene (10) Octylphenyl Ether, Polyoxyethylene (5) Nonylphenyl Ether, Polyoxyethylene (10) Nonylphenyl Ether, Polyoxyethylene (15) Nonylphenyl Ether, Polyoxyethylene (20) Nonylphenyl Ether. These are those in which R 3 in Formula 2 is R 4 -A-, R 4 has 8 or 9 carbon atoms, and polyoxyalkylene segment (OR 1 ) n has a repeating number n of 10 to 70, The alkylene chain R 1 in the segment has 2 carbon atoms. R 4 and the polyoxyalkylene segment are bonded to the para-positions 1 and 4 with respect to the phenylene group.

また、別の原料界面活性剤の具体例としては、Brij(登録商標)30、Brij(登録商標)35、Brij(登録商標)56、Brij(登録商標)58、Brij(登録商標)78、Brij(登録商標)97、Brij(登録商標)98、Polyoxyethylene(6)Decyl Ether、Polyoxyethylene(9)Decyl Ether、Polyoxyethylene(12)Decyl Ether、Polyoxyethylene(20)Cetyl Ether、Polyoxyethylene(10)Dodecyl Ether、Polyoxyethylene(23)Lauryl Ether、Polyoxyethylene (7)Oleyl Ether、Polyoxyethylene (10)Oleyl Ether、Polyoxyethylene (20)Oleyl Ether、Polyoxyethylene (50)Oleyl Ether、Polyoxyethylene (4)Stearyl Ether、Polyoxyethylene (20)Stearyl Etherが挙げられる。なお、これらは、式2におけるRの炭素数が10〜18、ポリオキシアルキレンセグメント(ORにおける繰り返し数nが6〜23、同セグメントにおけるアルキレン鎖Rの炭素数が2であるものである。 Specific examples of other raw material surfactants include Brij (registered trademark) 30, Brij (registered trademark) 35, Brij (registered trademark) 56, Brij (registered trademark) 58, Brij (registered trademark) 78, Brij. (Registered trademark) 97, Brij (registered trademark) 98, Polyoxyethylene (6) Decyl Ether, Polyoxyethylene (9) Decyl Ether, Polyoxyethylene (12) Decyl Ether, Polyoxyethylene (20) Cetyl Ether, Polyoxyethylene (10) Dodecyl Ether, Polyoxyethylene ( 23) Lauryl Ether, Polyoxyethylene (7) Oleyl Ether, Polyoxyethylene (10) Oleyl Ether, Polyoxyethylene (20) Oleyl Ether, Polyoxyethylene (50) Oleyl Ether, Polyoxyethylene (4) Stearyl Ether, Polyoxyethylene (20) Stearyl Ether. Note that these are the number of carbon atoms of R 3 in formula 2 is 10 to 18, the repeating number n in the polyoxyalkylene segments (OR 1) n is 6 to 23 carbon atoms in the alkylene chain R 1 in the segment is 2 Is.

このような非イオン性界面活性剤は、樹脂表面に吸着させる際、水溶液における濃度が低すぎると吸着抑制効果を発揮するだけの絶対量が不足し、高すぎると過剰量の界面活性剤が表面に蓄積し、ラジカルが表面に結合する反応効率を低下させ易いだけでなく、ポリオキシアルキレンセグメントの排除体積効果が有効に機能しにくい。そのため、水溶液における濃度は、当該非イオン性界面活性剤の臨界ミセル濃度の0.05倍〜500倍の範囲であることが必要であり、とりわけ0.1倍〜200倍の範囲であることが最も好ましい。   When such a nonionic surfactant is adsorbed on the resin surface, if the concentration in the aqueous solution is too low, the absolute amount sufficient to exert the adsorption-inhibiting effect is insufficient. In addition to easily reducing the reaction efficiency of radicals binding to the surface, the excluded volume effect of the polyoxyalkylene segment is difficult to function effectively. Therefore, the concentration in the aqueous solution needs to be in the range of 0.05 to 500 times the critical micelle concentration of the nonionic surfactant, and in particular in the range of 0.1 to 200 times. Most preferred.

ここでいう臨界ミセル濃度は、例えば以下のようにして評価することができる。
[測定条件]
測定装置:CBVP−A3;協和界面科学株式会社製(または、同一条件にて同一の結果が得られる装置であれば問題ない。)
試験室温度:25℃
試験室湿度:60%
プレート:白金プレート
この条件で表面張力を測定し、得られた表面張力を、水溶性非イオン性界面活性剤の濃度(対数濃度)に対してプロットした図において、表面張力が一定となる最も低い濃度(臨界ミセル濃度)を求める。
The critical micelle concentration here can be evaluated, for example, as follows.
[Measurement condition]
Measuring device: CBVP-A3; manufactured by Kyowa Interface Science Co., Ltd. (or no problem as long as the same result can be obtained under the same conditions)
Test room temperature: 25 ° C
Test room humidity: 60%
Plate: Platinum plate The surface tension was measured under these conditions, and the obtained surface tension was plotted against the concentration (logarithmic concentration) of the water-soluble nonionic surfactant. Determine the concentration (critical micelle concentration).

また、かかる水溶性非イオン性界面活性剤濃度は、同じ理由から、0.001重量%以上1重量%以下であることが好ましく、とりわけ0.01重量%以上、1重量%以下であることが最も好ましい。   Further, for the same reason, the concentration of the water-soluble nonionic surfactant is preferably 0.001% by weight or more and 1% by weight or less, particularly 0.01% by weight or more and 1% by weight or less. Most preferred.

さらに、本発明の製造方法においては、放射線を使って水溶性非イオン性界面活性剤を樹脂成型体表面に結合させるため、該界面活性剤の水溶液中に、水溶性無機塩類を共存させるのが好ましい。水溶性無機塩類は、前記界面活性剤と樹脂成型体表面との疎水性相互作用を強める効果がある。水溶性無機塩類は特に限定されず、リチウム、ナトリウム、カリウム、カルシウム、マグネシウム、アンモニウム、鉄、亜鉛の塩酸塩、硫酸塩、炭酸塩、リン酸塩などが好ましく用いられる。水溶性無機塩類の濃度は特に限定されるものではないが、低すぎると該界面活性剤と樹脂成型体表面との疎水性相互作用を強める効果が低下し、高すぎると該界面活性剤の溶解性を低下させる場合がある。そのため、水溶液に対して、50mmol/L以上、300mmol/L以下であることが好ましく、100mmol/L以上、300mmol/L以下であることが最も好ましい。   Furthermore, in the production method of the present invention, since water-soluble nonionic surfactant is bound to the surface of the molded resin using radiation, water-soluble inorganic salts are allowed to coexist in the aqueous solution of the surfactant. preferable. Water-soluble inorganic salts have the effect of enhancing the hydrophobic interaction between the surfactant and the surface of the resin molding. The water-soluble inorganic salts are not particularly limited, and lithium, sodium, potassium, calcium, magnesium, ammonium, iron, zinc hydrochloride, sulfate, carbonate, phosphate and the like are preferably used. The concentration of the water-soluble inorganic salt is not particularly limited, but if it is too low, the effect of enhancing the hydrophobic interaction between the surfactant and the surface of the molded resin will be reduced, and if it is too high, the surfactant will be dissolved. It may reduce the sex. Therefore, it is preferably 50 mmol / L or more and 300 mmol / L or less, and most preferably 100 mmol / L or more and 300 mmol / L or less with respect to the aqueous solution.

続いて、本発明においては、上述したように樹脂成形体表面に吸着させた非イオン性界面活性剤を、化学的に当該樹脂成型体表面に結合させる。結合は放射線を用いて行う。すなわち、上述の水溶液に接液した後の樹脂成形体の表面に放射線を照射することで、樹脂成形体と上述の界面活性剤とを結合させる。放射線のエネルギーにより、水中で活性なヒドロキシラジカルが発生し、このラジカルが樹脂または該水溶性非イオン性界面活性の水素を引き抜いて新たなラジカルを発生させ、ラジカル反応を連鎖的に進行させ、樹脂成形体表面での結合が起こる。   Subsequently, in the present invention, the nonionic surfactant adsorbed on the surface of the resin molded body as described above is chemically bonded to the surface of the resin molded body. Bonding is performed using radiation. That is, the resin molded body and the above-described surfactant are bonded by irradiating the surface of the resin molded body after being in contact with the above-described aqueous solution with radiation. Radiation energy generates active hydroxy radicals in water, and these radicals draw out the resin or the water-soluble nonionic surface active hydrogen to generate new radicals, causing the radical reaction to proceed in a chain and the resin. Bonding occurs on the surface of the compact.

放射線としては、α線、β線、γ線、X線、紫外線、電子線などが用いられる。特に、γ線などの電磁波線や電子線は、近年は簡便さの点から滅菌などに多く採用されており好適に用いられる。放射線量は表面への結合の効率と樹脂基材の劣化防止の点から0.01kGy以上100kGy以下の範囲で行うことが好ましく、0.1kGy以上50kGy以下の範囲、特に0.5以上、40kGy以内で行うことが最も好ましい。   As the radiation, α rays, β rays, γ rays, X rays, ultraviolet rays, electron beams and the like are used. In particular, electromagnetic waves such as γ rays and electron beams have been widely used for sterilization and the like in recent years because of their simplicity. The radiation dose is preferably in the range of 0.01 kGy or more and 100 kGy or less from the viewpoint of the efficiency of bonding to the surface and prevention of deterioration of the resin base material, in the range of 0.1 kGy or more and 50 kGy or less, particularly 0.5 or more and 40 kGy or less. Most preferably,

これらの工程によって、非イオン性界面活性剤は、共有結合によって樹脂成型体表面に化学的に結合する。従って、界面活性剤が溶出せず、吸着抑制効果が持続するという特徴を有する表面が得られる。   By these steps, the nonionic surfactant is chemically bonded to the surface of the resin molded body by a covalent bond. Therefore, the surface which has the characteristics that a surfactant does not elute and an adsorption | suction suppression effect continues is obtained.

樹脂成型体の表面に共有結合した上記界面活性剤は化学構造の分析により検出される。これは成型体表面が樹脂のみから成るのに対して、該界面活性剤がポリオキシアルキレン基を有することを利用するものである。例えば、TOF−SIMS(飛行時間型二次イオン質量分析)により、ポリアルキレンオキシド基特有のイオンフラグメントを検出することが可能である。また、該界面活性剤がフェニレン基を有する場合、ATR−IRスペクトルの1100〜1300cm−1の炭素−酸素結合に起因するシグナルはポリプロピレンやポリスチレンなどの樹脂には見られない特有のシグナルである。
The surfactant covalently bonded to the surface of the resin molding is detected by chemical structure analysis. This utilizes the fact that the surface of the molded body consists only of a resin, whereas the surfactant has a polyoxyalkylene group. For example, ion fragments specific to polyalkylene oxide groups can be detected by TOF-SIMS (time-of-flight secondary ion mass spectrometry). Moreover, when this surfactant has a phenylene group, the signal resulting from the 1100-1300 cm < -1 > carbon-oxygen bond of an ATR-IR spectrum is a peculiar signal which is not seen in resin, such as a polypropylene and a polystyrene.

以下実験例にて本発明を詳細に説明するが、本発明の範囲がこれらの実験例にのみ限定されるものではない
<β-ミクログロブリンを用いた吸着性能の評価方法>
基材表面に対するタンパク質の吸着評価について、ヒトβ-ミクログロブリン(SIGMA販売、Cat.No.M4890)(以下、β2-MGと略記)の溶液で吸着試験を行う場合について説明する。
Hereinafter, the present invention will be described in detail with experimental examples, but the scope of the present invention is not limited to these experimental examples. <Method of evaluating adsorption performance using β 2 -microglobulin>
The protein adsorption evaluation on the substrate surface will be described in the case where an adsorption test is conducted with a solution of human β 2 -microglobulin (SIGMA sales, Cat. No. M4890) (hereinafter abbreviated as β2-MG).

β2-MGを500ng/ml、ヒト血清アルブミン(SIGMA販売、Cat.No.A1653)(以下、HSAと略記)を500ng/mlに調整した25 mmol/L重炭酸アンモニウム水溶液(pH 8.2)をタンパク質溶液(以下、タンパク質溶液Aとする)として用いた。タンパク質溶液A中のタンパク質は、調製に使用した容器にも吸着するので、タンパク質溶液を調製するのに使用する容器は、予めウシ血清アルブミン(ナカライテスク販売、Cat.No.01863-35)(以下、BSAと略記)でブロッキングした容器を用いた。容器のブロッキング操作は、1%のBSAのリン酸緩衝生理食塩水(以下、PBSと略記)溶液中に遠沈管(Greiner Bio-One GmbH製、CELLSTAR TUBES、15mL)を30分放置した後、かかる遠沈管をPBSで3回、蒸留水で3回洗浄することによって行った。このようにブロッキングした遠沈管で調製したタンパク質溶液Aを以下のように吸着実験に用いた。   Protein solution of 25 mmol / L ammonium bicarbonate aqueous solution (pH 8.2) adjusted to 500 ng / ml of β2-MG and 500 ng / ml of human serum albumin (SIGMA sold, Cat. No. A1653) (hereinafter abbreviated as HSA) (Hereinafter referred to as protein solution A). Since the protein in the protein solution A is also adsorbed in the container used for the preparation, the container used for preparing the protein solution must be prepared in advance with bovine serum albumin (Nacalai Tesque Sales, Cat. No. 01863-35) , Abbreviated as BSA). The blocking operation of the container is performed after leaving a centrifuge tube (Greiner Bio-One GmbH, CELLSTAR TUBES, 15 mL) in a 1% BSA phosphate buffered saline (hereinafter abbreviated as PBS) solution for 30 minutes. The centrifuge tube was washed 3 times with PBS and 3 times with distilled water. The protein solution A prepared with the centrifuge tube thus blocked was used in the adsorption experiment as follows.

樹脂成型体としての試験管にタンパク質溶液Aを100μl加えて、26℃で1時間放置した。1時間後に試験管内のタンパク溶液を採取し、1%のBSAのPBS溶液で10倍に希釈した溶液をβ2-MG濃度(c)の測定に用いた。樹脂試験管に分注する前のタンパク質溶液Aについてもβ2-MG濃度(b)を測定した。   100 μl of protein solution A was added to a test tube as a resin molding and left at 26 ° C. for 1 hour. One hour later, the protein solution in the test tube was collected, and a solution diluted 10-fold with 1% BSA in PBS was used for measurement of β2-MG concentration (c). The β2-MG concentration (b) was also measured for the protein solution A before being dispensed into the resin test tube.

β2-MG濃度(b)の測定はβ2-MG測定キット(和光純薬工業発売 グラザイムβ2-microgloblin EIA TEST, Code.305-11011)にて、キット添付のマニュアルに従って行った。添付マニュアルの一部を改良し、1%のBSAのPBS溶液で30分予めブロッキングした反応容器を最初の反応時に用いた。タンパク質の吸着率(a)は下式により算出し、吸着率が50%以下である場合を非吸着表面とした。 The β2-MG concentration (b) was measured with a β2-MG measurement kit (Wako Pure Chemical Industries, Ltd., Glazyme β 2 -microgloblin EIA TEST, Code. 305-11011) according to the manual attached to the kit. A part of the attached manual was modified and a reaction vessel previously blocked with 1% BSA in PBS for 30 minutes was used for the first reaction. The protein adsorption rate (a) was calculated by the following equation, and the case where the adsorption rate was 50% or less was defined as a non-adsorbed surface.

(a)=((b)-(c))/(b)×100
(a):プラスチック試験管タンパク質吸着率(%)
(b):タンパク質溶液A中のβ2-MG濃度 (ng/mL)
(c):試験管中で1時間評価後の試料溶液中のβ2-MG量(ng/mL)
<臨界ミセル濃度の測定方法>
[測定条件]
測定装置:CBVP−A3(協和界面科学株式会社製)
試験室温度:25℃
試験室湿度:60%
プレート:白金プレート
容器に非イオン性界面活性剤の水溶液を入れて、CBVP−A3の添付マニュアルに従って表面張力を測定した。様々な濃度の非イオン性界面活性剤について、同様に表面張力測定を行い、各表面張力の値を、非イオン性界面活性剤の濃度(対数濃度)に対してプロットし、表面張力が一定となる最も低い濃度を求めることによって、非イオン性界面活性剤の臨界ミセル濃度を求めた。
(A) = ((b)-(c)) / (b) × 100
(A): Protein adsorption rate of plastic test tube (%)
(B): β2-MG concentration in protein solution A (ng / mL)
(C): β2-MG amount (ng / mL) in the sample solution after 1 hour evaluation in a test tube
<Measurement method of critical micelle concentration>
[Measurement condition]
Measuring device: CBVP-A3 (manufactured by Kyowa Interface Science Co., Ltd.)
Test room temperature: 25 ° C
Test room humidity: 60%
Plate: Platinum plate An aqueous solution of a nonionic surfactant was put in a container, and the surface tension was measured according to the attached manual of CBVP-A3. For various concentrations of nonionic surfactant, the surface tension is measured in the same manner, and the value of each surface tension is plotted against the concentration of nonionic surfactant (logarithmic concentration). The critical micelle concentration of the nonionic surfactant was determined by determining the lowest concentration.

(製造例)
300mLの三ツ口フラスコにポリオキシエチレン(20)ノニルフェニルエーテル(Aldrich) 16.36 g、ペンタアセチルグルコシド(東京化成)12 g、合成ゼオライトA-4粉末(和光純薬:75μm (200mesh)通過)10 g、脱水ジクロロエタン(Aldrich)150mLを添加し、80℃で1時間撹拌、還流した。BF3/Et2O(和光純薬)7 mLを添加し、80℃で9時間撹拌した。反応終了を薄層クロマトグラフィーで確認し、ハイフロ スーパーセル(ナカライテスク)を添加したガラスフィルターでゼオライトを除去し、濾液から溶媒をエバポレーションで除去した。残査をメタノールに溶解した後、メタノール(Aldrich)に溶解したナトリウムメトキシド(和光純薬)を添加し、撹拌した。反応終了を薄層クロマトグラフィーで確認し、アンバーライト(登録商標)IR120B(オルガノ)を添加して中和した。フィルターでイオン交換樹脂を除いた後、濾液から溶媒をエバポレーションで除去し、減圧乾燥して、グルコースを結合したポリオキシエチレン(20)ノニルフェニルエーテル (“Glu-Triton(登録商標) N-200” :glucose-coupled polyoxyethylene(20) n-nonylphenyl ether ( )内の数値はポリオキシエチレン鎖の重合度)を得た。25℃における表面張力の測定結果から算出される臨界ミセル濃度は0.1mmol/lであった。
(Production example)
In a 300 mL three-necked flask, polyoxyethylene (20) nonylphenyl ether (Aldrich) 16.36 g, pentaacetylglucoside (Tokyo Kasei) 12 g, synthetic zeolite A-4 powder (Wako Pure Chemicals: 75 μm (200mesh) passed) 10 g, 150 mL of dehydrated dichloroethane (Aldrich) was added, and the mixture was stirred and refluxed at 80 ° C. for 1 hour. 7 mL of BF 3 / Et 2 O (Wako Pure Chemical Industries, Ltd.) was added and stirred at 80 ° C. for 9 hours. The completion of the reaction was confirmed by thin layer chromatography, the zeolite was removed with a glass filter to which Hyflo Supercel (Nacalai Tesque) was added, and the solvent was removed from the filtrate by evaporation. After the residue was dissolved in methanol, sodium methoxide (Wako Pure Chemical Industries) dissolved in methanol (Aldrich) was added and stirred. The completion of the reaction was confirmed by thin layer chromatography, and Amberlite (registered trademark) IR120B (organo) was added for neutralization. After removing the ion exchange resin with a filter, the solvent was removed from the filtrate by evaporation, dried under reduced pressure, and glucose-bound polyoxyethylene (20) nonylphenyl ether (“Glu-Triton® N-200 “: Glucose-coupled polyoxyethylene (20) n-nonylphenyl ether () indicates the degree of polymerization of polyoxyethylene chain). The critical micelle concentration calculated from the measurement result of the surface tension at 25 ° C. was 0.1 mmol / l.

(実験例1)
樹脂製試験管(BECTON DICKINSON製「5ml Polystyrene Round-Bottom Tube」)を、0.0001、0.001、0.01、0.1、1および10%の濃度のGlu-TritonN-200水溶液100mlにそれぞれ各5本ずつ浸漬し、γ線照射した。γ線の吸収線量は25kGyであった。試験管を水溶液から取り出して、流水500mlで3回洗浄し室温で風乾した。これらの試験管のうち各濃度3本ずつをヒトβ2-MG吸着試験に供し、吸着率の平均値を求めた。条件と結果を表1に示す。
(Experimental example 1)
A resin test tube (“5 ml Polystyrene Round-Bottom Tube” made by BECTON DICKINSON) is immersed in 100 ml of 0.0001, 0.001, 0.01, 0.1, 1 and 10% Glu-Triton N-200 aqueous solution, 5 each. Gamma irradiation was performed. The absorbed dose of gamma rays was 25 kGy. The test tube was removed from the aqueous solution, washed 3 times with 500 ml of running water and air dried at room temperature. Of these test tubes, three of each concentration was subjected to the human β2-MG adsorption test, and the average value of the adsorption rate was determined. The conditions and results are shown in Table 1.

(実験例2)
樹脂製試験管(BECTON DICKINSON製「5ml Polystyrene Round-Bottom Tube」)を、0、100、200および300mmol/Lの塩化ナトリウムを含む0.1% Glu-TritonN-200水溶液100mlにそれぞれ各5本ずつ浸漬し、実験例1同様に処理し、ヒトβ2-MG吸着試験に供した。条件と結果を表1に示す。
(Experimental example 2)
Dip a resin test tube (“5 ml Polystyrene Round-Bottom Tube” manufactured by BECTON DICKINSON) into 100 ml of 0.1% Glu-Triton N-200 aqueous solution containing 0, 100, 200 and 300 mmol / L sodium chloride. This was treated in the same manner as in Experimental Example 1 and subjected to a human β2-MG adsorption test. The conditions and results are shown in Table 1.

(実験例3)
樹脂製試験管(BECTON DICKINSON製「5ml Polystyrene Round-Bottom Tube」)5本を、0.1% Glu-TritonN-200水溶液100mlに浸漬した。γ線照射はせずに、試験管を、実験例1のγ線照射後の後処理と同様に処理した。これらの試験管のうち3本をヒトβ2-MG吸着試験に供し、吸着率の平均値を求めた。条件と結果を表1に示す。
(Experimental example 3)
Five resin test tubes (“5 ml Polystyrene Round-Bottom Tube” manufactured by BECTON DICKINSON) were immersed in 100 ml of 0.1% Glu-Triton N-200 aqueous solution. Without γ-irradiation, the test tube was treated in the same way as the post-treatment after γ-irradiation in Experimental Example 1. Three of these test tubes were subjected to the human β2-MG adsorption test, and the average value of the adsorption rate was determined. The conditions and results are shown in Table 1.

(実験例4)
特許文献6に記載の方法に従って、樹脂製試験管(BECTON DICKINSON製「5ml Polystyrene Round-Bottom Tube」5本を臨界ミセル濃度の存在しないポリビニルアルコール(ポバール205、クラレ製)0.1% 水溶液100mlに浸漬し、γ線照射した。γ線の吸収線量は25kGyであった。樹脂試験管をポリビニルアルコール水溶液から取り出して流水500mlで洗浄し、70℃のオーブンで1時間乾燥した。これらの試験管のうち3本をヒトβ2-MG吸着試験に供し、吸着率の平均値を求めた。条件と結果を表1に示す。
(Experimental example 4)
According to the method described in Patent Document 6, 5 test tubes made of resin (“5 ml Polystyrene Round-Bottom Tube” manufactured by BECTON DICKINSON) are immersed in 100 ml of 0.1% aqueous solution of polyvinyl alcohol (Poval 205, manufactured by Kuraray) without critical micelle concentration. The absorbed dose of γ rays was 25 kGy.The resin test tube was taken out of the polyvinyl alcohol aqueous solution, washed with 500 ml of running water, and dried in an oven at 70 ° C. for 1 hour. The book was subjected to a human β2-MG adsorption test, and the average value of the adsorption rate was determined, and the conditions and results are shown in Table 1.

(実験例5)
樹脂製試験管(BECTON DICKINSON製「5ml Polystyrene Round-Bottom Tube」)5本を流水500mlで洗浄し、室温で風乾した。これらの試験管のうち3本をヒトβ2-MG吸着試験に供し、吸着率の平均値を求めた。条件と結果を表1に示す。
(Experimental example 5)
Five resin test tubes (“5 ml Polystyrene Round-Bottom Tube” manufactured by BECTON DICKINSON) were washed with 500 ml of running water and air-dried at room temperature. Three of these test tubes were subjected to the human β2-MG adsorption test, and the average value of the adsorption rate was determined. The conditions and results are shown in Table 1.

(実験例6)
樹脂製試験管(BECTON DICKINSON製「5ml Polystyrene Round-Bottom Tube」)を、0.1%の濃度のTritonN-200(polyoxyethylene(20) n-nonylphenyl ether ( )内の数値はポリオキシエチレン鎖の重合度 和光純薬販売 Cat No.321-33752)水溶液100mlに各5本ずつ浸漬し、実験例1同様に処理し、ヒトβ2-MG吸着試験に供した。条件と結果を表1に示す。
(Experimental example 6)
A resin test tube (“5 ml Polystyrene Round-Bottom Tube” manufactured by BECTON DICKINSON) is used in a TritonN-200 (polyoxyethylene (20) n-nonylphenyl ether () concentration of 0.1%). Photopure drug sales Cat No.321-33752) 5 each was immersed in 100 ml of an aqueous solution, treated in the same manner as in Experimental Example 1, and subjected to human β2-MG adsorption test. The conditions and results are shown in Table 1.

Figure 2009215348
Figure 2009215348

表1から明らかなように、ヒトβ2-MG吸着試験の結果、本発明の場合はヒトβ2-MG吸着量が少なく、微量生体成分の吸着抑制、高率回収に効果的である。   As is apparent from Table 1, as a result of the human β2-MG adsorption test, the amount of human β2-MG adsorbed is small in the present invention, which is effective for suppressing adsorption of a small amount of biological components and for high-rate recovery.

本発明の製造方法は、微量のタンパクおよび/またはペプチド等を処理・分析する際の吸着ロスを防ぐという意味で非常に有用なものであり、特にプロテオーム解析などに用いれば医学、特にヒトの病気の発見に寄与する。   The production method of the present invention is very useful in terms of preventing adsorption loss when processing and analyzing trace amounts of proteins and / or peptides, and is particularly useful for medical, particularly human diseases, when used for proteome analysis. Contribute to the discovery of

Claims (9)

下記一般式1
−(OR−O−R (式1)
(式中、Rは炭素数2または3のアルキレン基を示し、Rは糖残基を示し、nは1〜100の数を示す)、で表される構造を有する官能基が表面に共有結合されてなる樹脂成型体。
The following general formula 1
— (OR 1 ) n —O—R 2 (Formula 1)
(Wherein R 1 represents an alkylene group having 2 or 3 carbon atoms, R 2 represents a sugar residue, and n represents a number of 1 to 100), and a functional group having a structure represented by A resin molded body formed by covalent bonding.
nが5〜80である請求項1に記載の樹脂成型体。 The resin molded product according to claim 1, wherein n is 5 to 80. 糖がグルコース、フルクトース、キシロースから選ばれる請求項1または2に記載の樹脂成型体。 The resin molding according to claim 1 or 2, wherein the sugar is selected from glucose, fructose, and xylose. 樹脂成型体に、下記一般式2で表される非イオン性界面活性剤の水溶液を接触させる工程と、前記水溶液を接液させた樹脂成型体に放射線を照射する工程とを有し、前記水溶液における前記界面活性剤の濃度が、該界面活性剤の25℃における臨界ミセル濃度の0.05倍〜500倍の範囲である樹脂成型体の製造方法。
−(OR−OR (式2)
(式中、Rは炭素数1〜30の直鎖または分岐鎖のアルキル基、アルケニル基、アルキニル基、またはR−A−を示し(但し、Rは炭素数1〜18の直鎖または分岐鎖のアルキル、アルケニルまたはアルキニル基、Aはフェニレン基)、Rは炭素数2または3のアルキレン基を示し、Rは糖残基を示し、nは1〜100の数を示す)
A step of bringing the resin molded body into contact with an aqueous solution of a nonionic surfactant represented by the following general formula 2; and a step of irradiating the resin molded body with the aqueous solution in contact with radiation. The manufacturing method of the resin molding which the density | concentration of the said surfactant in is the range of 0.05 times-500 times the critical micelle density | concentration in 25 degreeC of this surfactant.
R 3 — (OR 1 ) n —OR 2 (Formula 2)
(In the formula, R 3 represents a linear or branched alkyl group, alkenyl group, alkynyl group, or R 4 -A- having 1 to 30 carbon atoms (provided that R 4 is a linear chain having 1 to 18 carbon atoms). Or a branched alkyl, alkenyl or alkynyl group, A is a phenylene group), R 1 represents an alkylene group having 2 or 3 carbon atoms, R 2 represents a sugar residue, and n represents a number of 1 to 100)
前記水溶液が水溶性無機塩類を50mmol/L〜300mmol/Lの濃度で含むものである、請求項4に記載の樹脂成型体の製造方法。 The manufacturing method of the resin molding of Claim 4 whose said aqueous solution contains water-soluble inorganic salt by the density | concentration of 50 mmol / L-300 mmol / L. の炭素数が2である、請求項4または5に記載の樹脂成型体の製造方法。 The method for producing a resin molded body according to claim 4 or 5, wherein R 1 has 2 carbon atoms. の炭素数が5〜25である、請求項4〜6のいずれかに記載の樹脂成型体の製造方法。 The number of carbon atoms of R 3 is 5 to 25, a manufacturing method of the resin molded body according to any one of claims 4-6. がR−A−であり、Rの炭素数が7〜10である、請求項4〜7のいずれかに記載の樹脂成型体の製造方法。 R 1 is R 4 -A-, the carbon number of R 4 is 7 to 10, a manufacturing method of the resin molded body according to any one of claims 4-7. 前記界面活性剤のHLBが10以上である、請求項4〜8のいずれかに記載の樹脂成型体の製造方法。 The manufacturing method of the resin molding in any one of Claims 4-8 whose HLB of the said surfactant is 10 or more.
JP2008057546A 2008-03-07 2008-03-07 Manufacturing method of resin molding Expired - Fee Related JP5292860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008057546A JP5292860B2 (en) 2008-03-07 2008-03-07 Manufacturing method of resin molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008057546A JP5292860B2 (en) 2008-03-07 2008-03-07 Manufacturing method of resin molding

Publications (2)

Publication Number Publication Date
JP2009215348A true JP2009215348A (en) 2009-09-24
JP5292860B2 JP5292860B2 (en) 2013-09-18

Family

ID=41187548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008057546A Expired - Fee Related JP5292860B2 (en) 2008-03-07 2008-03-07 Manufacturing method of resin molding

Country Status (1)

Country Link
JP (1) JP5292860B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015148558A (en) * 2014-02-07 2015-08-20 国立大学法人京都工芸繊維大学 Protein adsorption inhibitor and protein adsorption inhibition method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04132710A (en) * 1990-09-25 1992-05-07 Nippon Kayaku Co Ltd Resin composition and cured material thereof
JPH04365001A (en) * 1991-06-12 1992-12-17 Seiko Epson Corp Optical article with defogging performance
JPH11170685A (en) * 1997-12-05 1999-06-29 Sekisui Chem Co Ltd Recorded medium
JP2000154373A (en) * 1998-11-18 2000-06-06 Sekisui Chem Co Ltd Antifogging composition, agricultural film and its production
WO2004018085A1 (en) * 2002-08-21 2004-03-04 Toray Industries, Inc. Modified substrate and process for producing modified substrate
WO2008102744A1 (en) * 2007-02-20 2008-08-28 Toray Industries, Inc. Method for production of molded resin article

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04132710A (en) * 1990-09-25 1992-05-07 Nippon Kayaku Co Ltd Resin composition and cured material thereof
JPH04365001A (en) * 1991-06-12 1992-12-17 Seiko Epson Corp Optical article with defogging performance
JPH11170685A (en) * 1997-12-05 1999-06-29 Sekisui Chem Co Ltd Recorded medium
JP2000154373A (en) * 1998-11-18 2000-06-06 Sekisui Chem Co Ltd Antifogging composition, agricultural film and its production
WO2004018085A1 (en) * 2002-08-21 2004-03-04 Toray Industries, Inc. Modified substrate and process for producing modified substrate
WO2008102744A1 (en) * 2007-02-20 2008-08-28 Toray Industries, Inc. Method for production of molded resin article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015148558A (en) * 2014-02-07 2015-08-20 国立大学法人京都工芸繊維大学 Protein adsorption inhibitor and protein adsorption inhibition method

Also Published As

Publication number Publication date
JP5292860B2 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
Shen et al. Inhibition of monocyte adhesion and fibrinogen adsorption on glow discharge plasma deposited tetraethylene glycol dimethyl ether
Martins et al. Albumin and fibrinogen adsorption on PU–PHEMA surfaces
US9795721B2 (en) Antithrombotic material
US20120276576A1 (en) Porous polymer monoliths, processes for preparation and use thereof
JPWO2005097844A1 (en) Polymer particles
JP5332613B2 (en) Manufacturing method of resin molding
US10709822B2 (en) Antithrombotic metallic material
Suganya et al. Study on plasma pre-functionalized PVC film grafted with TiO2/PVP to improve blood compatible and antibacterial properties
JPH07300513A (en) Material with grafted surface
JP5292860B2 (en) Manufacturing method of resin molding
Riedelová et al. The relation between protein adsorption and hemocompatibility of antifouling polymer brushes
JP5741547B2 (en) Modified substrate and method for producing modified substrate
CN103228677A (en) Cellulose substrates, compositions and methods for storage and analysis of biological materials
CN101010334B (en) Fractionation apparatus
Martins et al. Albumin and fibrinogen adsorption on Cibacron blue F3G-A immobilised onto PU-PHEMA (polyurethane-poly (hydroxyethylmethacrylate)) surfaces
Ma et al. Surface modification of cycloolefin polymer via surface-initiated photoiniferter-mediated polymerization for suppressing bioadhesion
CN103755998B (en) The preparation method of the polymeric substrate of a kind of surface bioactive and biologically inert
WO2015108020A1 (en) Composition, method for preparing sugar chain sample, and method for analyzing sugar chain
Taylor et al. Adhesion of microbes using 3‐aminopropyl triethoxy silane and specimen stabilisation techniques for analytical transmission electron microscopy
JP2005239761A (en) Modified substrate
Peng Matrix-assisted laser desorption/ionization (MALDI) target modification for enhanced proteomics analysis and plasma polymer characterization by MALDI mass spectrometry
JP2017025177A (en) Composition, manufacturing method of composition, preparation method of carbohydrate chain sample and analytic method of carbohydrate chain
SHEU et al. Immobilization non-fouling discharge treatment biomaterial of polyethylene surfaces oxide using surfactants an argon glow
CN117659480A (en) Multi-material compatible double-sided adhesive material and preparation method thereof
JP2000346765A (en) Analyzing sample container and instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130527

LAPS Cancellation because of no payment of annual fees