JP5332613B2 - Manufacturing method of resin molding - Google Patents

Manufacturing method of resin molding Download PDF

Info

Publication number
JP5332613B2
JP5332613B2 JP2008528271A JP2008528271A JP5332613B2 JP 5332613 B2 JP5332613 B2 JP 5332613B2 JP 2008528271 A JP2008528271 A JP 2008528271A JP 2008528271 A JP2008528271 A JP 2008528271A JP 5332613 B2 JP5332613 B2 JP 5332613B2
Authority
JP
Japan
Prior art keywords
resin
adsorption
aqueous solution
surfactant
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008528271A
Other languages
Japanese (ja)
Other versions
JPWO2008102744A1 (en
Inventor
一裕 棚橋
明彦 伊藤
博之 菅谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008528271A priority Critical patent/JP5332613B2/en
Publication of JPWO2008102744A1 publication Critical patent/JPWO2008102744A1/en
Application granted granted Critical
Publication of JP5332613B2 publication Critical patent/JP5332613B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/056Forming hydrophilic coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • C08J7/065Low-molecular-weight organic substances, e.g. absorption of additives in the surface of the article

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

In order to prevent a protein or peptide from adsorbing on a resin molding, the resin molding is brought into contact with an aqueous solution of a nonionic surfactant, and then the resin molding is irradiated with radiation rays and also a concentration of the surfactant in the aqueous solution is made to be 0.05 times to 500 times a critical micelle concentration of the surfactant at 25°C.

Description

本発明はタンパク質および/またはペプチド処理用として特に好適な樹脂成型体の製造方法に関する。   The present invention relates to a method for producing a resin molding particularly suitable for protein and / or peptide treatment.

近年、ポストゲノム研究として、プロテオーム解析研究(プロテオミクス)が注目され始めた。遺伝子産物であるタンパク質は遺伝子よりも疾患の病態に直接リンクしていると考えられることから、タンパク質を網羅的に調べるプロテオーム解析の研究成果は診断と治療に広く応用できると期待されている。   In recent years, proteomic analysis research (proteomics) has begun to attract attention as post-genomic research. Since protein, which is a gene product, is thought to be directly linked to disease pathology rather than gene, research results of proteome analysis that comprehensively examines proteins are expected to be widely applicable to diagnosis and treatment.

プロテオーム解析が急速に進展しだしたのは、技術的には質量分析装置(mass spectrometer: MS)による高速構造分析が可能となってきたことが大きい。MALDI-TOF-MS (matrix assisted laser desorption ionization time-of-flight mass spectrometry) 等の実用化によって、ポリペプチドのハイスループット超微量分析が可能となり、従来検出し得なかった微量タンパク質までが同定可能となり、疾患関連因子の探索に強力なツールとなってきている。   The reason why proteome analysis has made rapid progress is technically that high-speed structural analysis by mass spectrometer (MS) has become possible. Practical applications such as MALDI-TOF-MS (matrix assisted laser desorption ionization time-of-flight mass spectrometry) enable high-throughput ultra-trace analysis of polypeptides, enabling identification of trace proteins that could not be detected in the past. It has become a powerful tool in the search for disease-related factors.

病態のバイオマーカーや病因関連因子と考えられているペプチドホルモン、インターロイキン、サイトカイン等の生理活性タンパク質の多くは、極微量 (<ng/mL)にしか存在せず。その含有量比は、アルブミンなどの高分子量の高含量成分に比べて、実にナノからピコレベルである。タンパク質の大きさという点では、タンパク質全種類の70%以上は分子量60kDa以下であり、上記の極微量なバイオマーカータンパク質はいずれもこの領域に含まれる場合がほとんどである。   Many bioactive proteins such as peptide hormones, interleukins, and cytokines, which are considered to be pathological biomarkers and pathogenesis-related factors, exist only in trace amounts (<ng / mL). The content ratio is actually nano to pico level as compared with a high content component of high molecular weight such as albumin. In terms of protein size, 70% or more of all types of proteins have a molecular weight of 60 kDa or less, and most of the above-mentioned trace amounts of biomarker proteins are mostly included in this region.

ところで、タンパク質を取り扱う場合、生化学の分野でとりわけ良く用いられる各種分析器具の樹脂基材表面へのタンパク質の非特異吸着が常に問題となる。この基材表面への非特異吸着は、タンパク質の減少による分析結果のバラツキを引き起こすだけではなく、分析対象であるタンパク質のロスといった重大な問題を引き起こすので、非特異吸着を防ぐ必要がある。一般的に非特異吸着によるタンパク質の減少率は溶液中のタンパク質の総濃度に依存し、タンパク質の総濃度が低いほどタンパク質の減少率が大きくなる。特に上述のようにプロテオーム解析において病因関連の微量成分を質量分析で分析する場合、既存の前処理装置には非特異吸着を抑制する処理が施したものがない。そのため、検出を阻害する成分を除外して得られる分画液のタンパク質の総濃度は極めて低く、微量バイオマーカータンパク質の非特異吸着による減少・ロスが問題となっている。   By the way, when handling proteins, non-specific adsorption of proteins to the resin substrate surface of various analytical instruments used particularly well in the field of biochemistry is always a problem. This non-specific adsorption on the substrate surface not only causes variations in the analysis results due to protein reduction, but also causes serious problems such as loss of the protein to be analyzed, so it is necessary to prevent non-specific adsorption. Generally, the protein reduction rate due to non-specific adsorption depends on the total protein concentration in the solution, and the protein reduction rate increases as the total protein concentration decreases. In particular, when the pathogenesis-related trace component is analyzed by mass spectrometry in the proteome analysis as described above, there is no existing pretreatment apparatus that has been subjected to a process for suppressing nonspecific adsorption. Therefore, the total protein concentration of the fraction obtained by excluding components that inhibit detection is extremely low, and there is a problem of reduction / loss due to nonspecific adsorption of a trace amount of biomarker protein.

このようなタンパクやペプチドの付着によるロスの問題に対して、大きく分けて二通りの対策がある。一つは吸着を抑制する化合物を生体成分溶液に添加する方法、もうひとつは樹脂基材表面の生体成分非吸着処理である。前者の代表的な方法として、ブロッキング剤を添加する方法がある。ブロッキング剤にはアルブミンやカゼインの溶液が用いられ、競争吸着により有用生体成分の吸着を抑制する方法である。競争吸着であるためにブロッキング剤濃度は有用生体成分の濃度より高くするのが一般的である。したがって、分析用途ではブロッキング剤が分析を阻害したり、少量の添加でも生体成分が構造変化する危険性がある。ブロッキングの他に界面活性剤、無機塩類や有機溶媒を添加する方法もあるが、これもブロッキング剤と同様に分析系の阻害や生体成分の構造変化に伴う変性が問題となる。   There are two main countermeasures against the problem of loss due to the adhesion of proteins and peptides. One is a method of adding a compound that suppresses adsorption to the biological component solution, and the other is a biological component non-adsorption treatment on the surface of the resin substrate. As a typical method of the former, there is a method of adding a blocking agent. As a blocking agent, a solution of albumin or casein is used, which is a method for suppressing adsorption of useful biological components by competitive adsorption. Because of the competitive adsorption, the concentration of the blocking agent is generally higher than the concentration of useful biological components. Therefore, in analysis applications, there is a risk that the blocking agent inhibits the analysis, and even if a small amount is added, the biological component changes in structure. In addition to blocking, there is a method of adding a surfactant, an inorganic salt, or an organic solvent. However, as with the blocking agent, there is a problem in that the analysis system is inhibited and denaturation due to structural changes of biological components.

一方、基材表面の非吸着処理として一般的なものは、基材表面の親水化処理である。親水化処理にはいくつかの方法がある。例えば基材へ親水性化合物、例えば2-メタクリロイルオキシエチルホスホリルコリン共重合体(以下MPCと略記)をコーティング処理により導入する方法が特許文献1に記載されている。また、親水性化合物をグラフト処理により導入する方法が特許文献2〜6に記載されている。リアクティブイオンエッチング処理、プラズマ処理やイオンクラスタービーム処理のように、基材表面へ親水性の官能基を直接生成させる方法もある。   On the other hand, a common non-adsorption treatment on the substrate surface is a hydrophilic treatment on the substrate surface. There are several methods for hydrophilization treatment. For example, Patent Document 1 discloses a method in which a hydrophilic compound such as 2-methacryloyloxyethyl phosphorylcholine copolymer (hereinafter abbreviated as MPC) is introduced into a substrate by coating treatment. Patent Documents 2 to 6 describe methods for introducing a hydrophilic compound by grafting. There is also a method in which hydrophilic functional groups are directly generated on the surface of the substrate, such as reactive ion etching, plasma treatment, and ion cluster beam treatment.

しかしながら、従来の基材表面処理では、かかる処理を施した基材が、高濃度のタンパクやペプチドの溶液と接触した場合には生体成分の吸着を抑制する効果が認められるが、低濃度の生体成分を含有する溶液と接触した場合には依然として吸着による生体成分の減少やロスが発生し、課題解決には未だ十分といえるレベルのものではなかった。   However, in the conventional base material surface treatment, when the base material subjected to such a treatment comes into contact with a high concentration protein or peptide solution, an effect of suppressing the adsorption of biological components is recognized. When contacted with a solution containing a component, reduction or loss of biological components due to adsorption still occurred, and the level was still not sufficient to solve the problem.

さらに親水性高分子によるコーティング処理による手法は、処理された基材に対して、さらに親水性高分子溶液を用いた溶媒が接触した場合、コーティングが剥離するなどして親水性が低下することが懸念される。また、分析や分離等の処理装置においては、溶出した親水性高分子が後の分析の阻害因子となりうることが懸念される。   Furthermore, in the method using a coating treatment with a hydrophilic polymer, when a solvent using a hydrophilic polymer solution is further contacted with the treated substrate, the hydrophilicity may be lowered due to peeling of the coating or the like. Concerned. Further, in a processing apparatus such as analysis or separation, there is a concern that the eluted hydrophilic polymer can be an inhibitor of subsequent analysis.

親水性高分子グラフトによる親水化は、グラフト量に比例して親水性が向上するが、処理する親水性高分子溶液の濃度が高くなると親水性高分子同士で三次元的に架橋してしまうために親水性高分子の運動性が低下してしまい、生体成分の付着抑制効果が低くなるという問題がある。更に、特許文献6に記載の方法では低塩濃度という、よりタンパク質吸着が起こりやすい条件において十分な効果を発揮できない。   Hydrophilization by hydrophilic polymer grafting improves hydrophilicity in proportion to the amount of graft, but if the concentration of the hydrophilic polymer solution to be processed is increased, the hydrophilic polymers are cross-linked three-dimensionally. However, there is a problem that the mobility of the hydrophilic polymer is lowered and the effect of suppressing the adhesion of biological components is lowered. Furthermore, the method described in Patent Document 6 cannot exhibit a sufficient effect under a condition where protein adsorption is likely to occur, such as a low salt concentration.

また、リアクティブイオンエッチング処理、プラズマ処理、およびイオンクラスタービーム処理は、基材の外表面や板状基材の片面などを簡便に親水化することができるが、プラズマやイオンクラスタービームなどの影になる部分を親水化することが難しい。そのため、複雑な形状をした成型体を1回の処理で親水化するのには適していない。また、基材の生体成分の吸着特性は、生体成分と接触する部分の表面状態に依存する。一般的には、表面の親水性が高いほど、さらに表面に固定化された親水性分子の運動性が高いほど、生体成分の基材表面への吸着は抑制される。運動性の高い親水性分子は、その分子運動によって、タンパク質や血小板などの生体成分を排除していると考えられている。リアクティブイオンエッチング処理、プラズマ処理、およびイオンクラスタービーム処理による親水化は、基材表面に水酸基などの親水性官能基が生成されることによる、すなわち親水性高分子の基材表面への導入による親水化と比較して、親水性分子の運動性が低い。そのため、生体成分の付着抑制効果は低く好ましくない。さらに、処理中に高温になる場合があるので基材が変性することもあるため好ましくない。   In addition, reactive ion etching treatment, plasma treatment, and ion cluster beam treatment can easily hydrophilize the outer surface of the base material or one side of the plate-like base material. It is difficult to make the part to become hydrophilic. Therefore, it is not suitable for making a molded body having a complicated shape hydrophilic by one treatment. Moreover, the adsorption | suction characteristic of the biological component of a base material is dependent on the surface state of the part which contacts a biological component. In general, the higher the hydrophilicity of the surface and the higher the mobility of the hydrophilic molecules immobilized on the surface, the more the biological component is adsorbed onto the substrate surface. It is considered that hydrophilic molecules having high mobility exclude biological components such as proteins and platelets by their molecular motion. Hydrophilization by reactive ion etching treatment, plasma treatment, and ion cluster beam treatment is due to the generation of hydrophilic functional groups such as hydroxyl groups on the substrate surface, that is, by introduction of hydrophilic polymers onto the substrate surface. Compared with hydrophilization, the mobility of hydrophilic molecules is low. Therefore, the effect of suppressing the adhesion of biological components is low and not preferable. Furthermore, since it may become high temperature during a process, since a base material may modify | denature, it is not preferable.

このように、タンパクまたはペプチドの吸着抑制処理の技術が確立されていないために、吸着の少ない樹脂成型体は未だ世の中にない。
特表2002−542163号公報 特開2003−130882号公報 特開昭58−40323号公報 特許第3297707号公報 特開昭61−225653号公報 国際公開第06/025352号パンフレット
Thus, since the technique of the protein or peptide adsorption | suction suppression process is not established, the resin molded object with few adsorption | suctions is not yet in the world.
JP-T-2002-542163 JP 2003-130882 A JP 58-40323 A Japanese Patent No. 3297707 Japanese Patent Laid-Open No. 61-225653 International Publication No. 06/025352 Pamphlet

上述のとおり、臨床プロテオーム解析など極微量の生体物質を操作する分野において、成型体表面に対するタンパクまたはペプチドの非特異吸着によってタンパク質をロスし、安定した処理・分析ができないという問題がある。安定した処理・分析を行うために、基材表面へのタンパク質の非特異吸着を抑制することが必須であり、本分野にてとりわけよく使用されるポリスチレン、ポリエチレン、ポリプロピレン、ポリカーボネート、ポリ塩化ビニルなどの樹脂成型体への吸着抑制技術を提供することが課題である。   As described above, in the field of manipulating a very small amount of biological material such as clinical proteome analysis, there is a problem that protein is lost due to non-specific adsorption of the protein or peptide to the surface of the molded body, and stable treatment / analysis cannot be performed. In order to perform stable processing and analysis, it is essential to suppress nonspecific adsorption of proteins to the surface of the base material, and polystyrene, polyethylene, polypropylene, polycarbonate, polyvinyl chloride, etc., which are particularly often used in this field It is a problem to provide a technique for suppressing adsorption to the molded resin.

上記課題を解決するために、本発明では以下のいずれかの手段を採用する。
(1)樹脂成型体、非イオン性界面活性剤の水溶液に浸漬させる工程と、前記水溶液に浸漬させた状態で樹脂成型体に放射線を照射する工程とを有し、前記水溶液における前記界面活性剤の濃度が、該界面活性剤の25℃における臨界ミセル濃度の0.05倍〜500倍の範囲である、非イオン性界面活性剤が表面固定された、タンパク質および/またはペプチドの処理の用に供する樹脂成型体の製造方法。
(2)前記水溶液が水溶性無機塩類を50mmol/L〜300mmol/Lの濃度で含むものである、前記(1)に記載の樹脂成型体の製造方法。
(3)前記界面活性剤が式1で表されるものである、前記(1)または(2)に記載の樹脂成型体の製造方法。
In order to solve the above problems, the present invention employs any of the following means.
(1) The resin molded body includes a step of immersing in an aqueous solution of a nonionic surfactant, and a step of irradiating the resin molded body in a state of being immersed in said aqueous solution, it said in the aqueous surfactant For the treatment of proteins and / or peptides on which a nonionic surfactant is immobilized, wherein the concentration of the agent is in the range of 0.05 to 500 times the critical micelle concentration at 25 ° C. of the surfactant The manufacturing method of the resin molding to use for .
(2) The method for producing a resin molded body according to (1), wherein the aqueous solution contains water-soluble inorganic salts at a concentration of 50 mmol / L to 300 mmol / L.
(3) The manufacturing method of the resin molding as described in said (1) or (2) whose said surfactant is what is represented by Formula 1.

Figure 0005332613
Figure 0005332613

(4)Rの炭素数が2である、前記(3)に記載の樹脂成型体の製造方法。
(5)nの数が5〜80である、前記(3)または(4)に記載の樹脂成型体の製造方法。
(6)Rの炭素数が5〜25である、前記(3)〜(5)のいずれかに記載の樹脂成型体の製造方法。
(7)RがR−A−であり、Rの炭素数が7〜10である、前記(3)〜(6)のいずれかに記載の樹脂成型体の製造方法。
(8)前記界面活性剤のHLBが10以上である、前記(1)〜(7)のいずれかに記載の樹脂成型体の製造方法。
(4) The method for producing a resin molded body according to (3), wherein R 2 has 2 carbon atoms.
(5) The manufacturing method of the resin molding as described in said (3) or (4) whose number of n is 5-80.
(6) the number of carbon atoms of R 1 is 5 to 25, wherein (3) to the production method of the resin molded body according to any one of (5).
(7) The method for producing a resin molded body according to any one of (3) to (6), wherein R 1 is R 4 -A-, and R 4 has 7 to 10 carbon atoms.
(8) The manufacturing method of the resin molding in any one of said (1)-(7) whose HLB of the said surfactant is 10 or more.

本発明により、生体成分、とりわけタンパク質およびペプチドを表面に吸着しにくい樹脂成型体を得ることができる。そして、かかる樹脂成形体によれば、分析の目的とするタンパク質等の損失を少なくできる。   According to the present invention, it is possible to obtain a molded resin that hardly adsorbs biological components, particularly proteins and peptides, on the surface. And according to this resin molding, the loss of the protein etc. made into the objective of analysis can be decreased.

本発明によって製造される樹脂成型体は、タンパク質および/またはペプチドの処理に好適に用いられる。ここでいう処理とは、とりわけ、生化学、生物学、分析化学、農林水産業、食品、医学、薬学などの分野で行われる、タンパク質および/またはペプチドを取り扱う操作を意味し、単にタンパク質および/またはペプチド、またはそれらを含有する溶液の保管・保存・採取・分注にとどまらず、反応・分析・分離・精製・濃縮・乾燥などの操作も含まれる。従って、成型体の形状は特に限定されず、糸、中空糸、繊維、編み地、フィルム、平膜、中空糸膜、粒子、チューブ、ロッド、容器など目的・用途に合わせた多様な形状をしていて良い。   The resin molding manufactured by this invention is used suitably for the process of protein and / or a peptide. The treatment here means, in particular, an operation for handling proteins and / or peptides performed in the fields of biochemistry, biology, analytical chemistry, agriculture, forestry and fisheries, food, medicine, pharmacy, and the like. In addition to storage, preservation, collection, and dispensing of peptides or solutions containing them, operations such as reaction, analysis, separation, purification, concentration, and drying are also included. Therefore, the shape of the molded body is not particularly limited, and various shapes such as yarns, hollow fibers, fibers, knitted fabrics, films, flat membranes, hollow fiber membranes, particles, tubes, rods, containers, and the like can be used. It is good.

樹脂の種類は特に限定されず、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビリニデン、ポリスチレン、ポリ酢酸ビニル、ポリアクリレート、ポリメタクリレート、ポリメチルメタクリレート、ポリアクリロニトリル、ポリイソプレン、ポリブタジエンなどのビニル系ポリマーまたはアクリル系ポリマー、ナイロンなどのポリアミド系ポリマー、ポリイミド系ポリマー、ポリウレタン系ポリマー、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリ乳酸、ポリグリコール酸などのポリエステル系ポリマー、ポリテトラフルオロエチレン、ポリビニリデンフロリド、パーフルオロポリマーなどのフッ素系ポリマー、ポリカーボネート、ポリフェニレンオキシド、ポリフェニレンスルフィド、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、シリコン樹脂、天然ゴム、セルロース、酢酸セルロースなどから適宜選択される。また、上記ポリマーからなる共重合体や、上記ポリマーをブレンドしてなる樹脂でも良い。   The type of resin is not particularly limited, and vinyl polymers such as polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyvinyl acetate, polyacrylate, polymethacrylate, polymethyl methacrylate, polyacrylonitrile, polyisoprene, polybutadiene or the like Acrylic polymers, polyamide polymers such as nylon, polyimide polymers, polyurethane polymers, polyethylene terephthalate, polybutylene terephthalate, polyester polymers such as polylactic acid, polyglycolic acid, polytetrafluoroethylene, polyvinylidene fluoride, perfluoro Fluoropolymers such as polymers, polycarbonate, polyphenylene oxide, polyphenylene sulfide, polysulfone, polyethylene Terusuruhon, polyether ether ketone, silicone resin, natural rubber, cellulose, is suitably selected from cellulose acetate. Moreover, the copolymer which consists of the said polymer, and resin formed by blending the said polymer may be sufficient.

本発明において樹脂の重量平均分子量、数平均分子量、分子量多分散度や結晶性は特に限定されず、成型できるものであれば何でも良い。成型体は樹脂のみから構成されていても良く、樹脂が表面に局在している成型体でも良い。   In the present invention, the weight average molecular weight, number average molecular weight, molecular weight polydispersity and crystallinity of the resin are not particularly limited, and any resin can be used as long as it can be molded. The molded body may be composed only of a resin, or may be a molded body in which the resin is localized on the surface.

上記のような樹脂成形体が、例えばタンパク質の処理に用いられるが、タンパク質は、水に溶解しているとき、親水性のドメインがタンパク質分子の表面に存在し、疎水性ドメインがタンパクの内部に存在している。そして、タンパク質が疎水性の基材に接触すると内部の疎水性ドメインが表面に露出し、疎水性相互作用により基材に吸着すると考えられる。したがって、タンパク質の吸着を抑制するためには基材表面の親水化が有効である。   The resin molded body as described above is used, for example, for protein processing. When protein is dissolved in water, a hydrophilic domain is present on the surface of the protein molecule, and a hydrophobic domain is present inside the protein. Existing. And when protein contacts a hydrophobic base material, an internal hydrophobic domain will be exposed on the surface, and it is thought that it adsorb | sucks to a base material by hydrophobic interaction. Therefore, hydrophilization of the substrate surface is effective for suppressing protein adsorption.

そのため、本発明においては、上記のような樹脂成形体を、非イオン性界面活性剤の水溶液に接液させ、当該樹脂成型体表面に該界面活性剤を物理化学的に吸着させる。なお、本発明において接液とは、樹脂成型体の表面に、該界面活性剤の水溶液を接触させることをいう。その方法は特に限定されず、樹脂成型体を該水溶液中に浸漬する方法、該水溶液を成型体に噴霧する方法などが含まれるが、均一に処理できるという点で樹脂成型体を該水溶液中に浸漬する方法が好ましい。   Therefore, in the present invention, the resin molded body as described above is brought into contact with an aqueous solution of a nonionic surfactant, and the surfactant is physicochemically adsorbed on the surface of the resin molded body. In the present invention, the term “liquid contact” refers to bringing the aqueous solution of the surfactant into contact with the surface of the resin molding. The method is not particularly limited, and includes a method of immersing the resin molded body in the aqueous solution, a method of spraying the aqueous solution onto the molded body, and the like. A dipping method is preferred.

本発明において、非イオン性界面活性剤は1〜100℃の温度範囲で水溶性であることが必須である。界面活性剤が水溶液中で沈殿を生じるものでなければよく、ミセルやリポゾームなどのナノスフェアまたはミクロスフェアとして溶存していても良い。   In the present invention, it is essential that the nonionic surfactant is water-soluble in a temperature range of 1 to 100 ° C. It is sufficient that the surfactant does not cause precipitation in an aqueous solution, and the surfactant may be dissolved as nanospheres or microspheres such as micelles and liposomes.

非イオン性界面活性剤としては、式1で表される有機化合物を例示できる。   Examples of nonionic surfactants include organic compounds represented by Formula 1.

Figure 0005332613
Figure 0005332613

これらの非イオン性界面活性剤は、水溶液にして樹脂成型体に接触させることで、疎水性のRセグメント介して該樹脂成型体の表面に吸着される一方、該表面を親水性のポリオキシアルキレンセグメント(ORにより親水化する。また、ポリオキシアルキレンセグメント(ORは、タンパク質溶液中に伸展することになるので、親水化の効果に加えて、親水性高分子鎖のミクロブラウン運動による排除体積効果も発現する。そのため、本発明によって得られた樹脂成型体はタンパク質吸着抑制効果を発揮することができる。These nonionic surfactants are adsorbed on the surface of the resin molded body through a hydrophobic R 1 segment by contacting the resin molded body with an aqueous solution, while the surface is treated with hydrophilic polyoxy Hydrophilization with alkylene segment (OR 2 ) n . In addition, since the polyoxyalkylene segment (OR 2 ) n extends into the protein solution, in addition to the effect of hydrophilization, an excluded volume effect due to micro-Brownian motion of the hydrophilic polymer chain is also exhibited. Therefore, the resin molding obtained according to the present invention can exhibit a protein adsorption suppressing effect.

タンパク質やペプチドなどの非吸着性は、放射線照射前に物理化学的に吸着し、放射線照射によって化学的に固定化される非イオン性界面活性剤の量に依存する。そのため、接液の工程において、該非イオン性界面活性剤の吸着量を適切に制御することが重要である。   The non-adsorbability of proteins and peptides depends on the amount of nonionic surfactant that is physicochemically adsorbed before irradiation and chemically immobilized by irradiation. Therefore, it is important to appropriately control the adsorption amount of the nonionic surfactant in the liquid contact process.

界面活性剤の吸着量を決める因子の一つが、HLB(親水性親油性バランス)である。ここでいうHLBは、グリフィン法により化学構造から理論的に以下のようにして算出することができる。なお、下記式における水溶性化合物の親水性部分とは、(1)式の場合(OR−ORのセグメントをさす。One factor that determines the amount of surfactant adsorbed is HLB (hydrophilic lipophilic balance). The HLB here can be theoretically calculated from the chemical structure by the Griffin method as follows. In addition, the hydrophilic part of the water-soluble compound in the following formula refers to a segment of (OR 2 ) n —OR 3 in the case of formula (1).

Figure 0005332613
Figure 0005332613

HLB理論値は、低すぎると親水性が不足して水に対する溶解性が低下し、高すぎると親油性が不足して樹脂成型体表面に対する吸着性が低下する。そのため、HLBは10以上、20以下であることが好ましく、とりわけ12以上、19以下の範囲であることが最も好ましい。   If the HLB theoretical value is too low, the hydrophilicity is insufficient and the solubility in water is lowered, and if it is too high, the lipophilicity is insufficient and the adsorptivity to the surface of the resin molding is reduced. Therefore, HLB is preferably 10 or more and 20 or less, and most preferably 12 or more and 19 or less.

また、式1に示す非イオン性界面活性剤は、親水性のポリオキシアルキレンセグメントと疎水性のRセグメントのバランスにより、水に対する溶解性及び水中での溶存状態が決まる。Rの化学構造は、炭素数が1〜30の直鎖または分岐鎖のアルキル基、アルケニル基、アルキニル基、またはR−A−(但し、Rは炭素数1〜18の直鎖または分岐鎖のアルキル基、アルケニル基またはアルキニル基、Aはフェニレン基)であれば特に限定されないが、炭素数が少ないと樹脂表面との相互作用が弱くなり、炭素数が多いと室温での水溶性が低下する。そのため、Rの炭素数は5〜25が好ましい。また、RがR−A−の場合、上記理由に加えて入手の点で、Rの炭素数が7〜10であることが好ましい。In addition, the nonionic surfactant represented by Formula 1 determines the solubility in water and the dissolved state in water depending on the balance between the hydrophilic polyoxyalkylene segment and the hydrophobic R 1 segment. R 1 has a chemical structure of a linear or branched alkyl group having 1 to 30 carbon atoms, an alkenyl group, an alkynyl group, or R 4 -A- (wherein R 4 is a straight chain having 1 to 18 carbon atoms or The branched alkyl group, alkenyl group or alkynyl group, and A is a phenylene group) are not particularly limited. However, when the number of carbon atoms is small, the interaction with the resin surface becomes weak, and when the number of carbon atoms is large, water solubility at room temperature is achieved. Decreases. Therefore, the carbon number of R 1 is preferably 5-25. Further, when R 1 is R 4 -A-, in terms of availability, in addition to the above reasons, it is preferable number of carbon atoms of R 4 is 7 to 10.

ポリオキシアルキレンセグメントの重合度は、短かすぎると室温での水溶性が低下し、長すぎると樹脂表面との相互作用が弱くなることから、nは1〜100が好ましい。中でも上限としては80以下が好ましく、さらには50以下が好ましい。一方、下限としては5以上がより好ましい。   When the degree of polymerization of the polyoxyalkylene segment is too short, water solubility at room temperature is lowered, and when it is too long, the interaction with the resin surface becomes weak. Among these, the upper limit is preferably 80 or less, and more preferably 50 or less. On the other hand, the lower limit is more preferably 5 or more.

ポリオキシアルキレンセグメントのアルキレン鎖Rの炭素数は2または3であり、ポリオキシアルキレンはポリオキシエチレンまたはポリオキシプロピレンである。特に水との親和性が高いという点でポリオキシエチレンが好ましい。The alkylene chain R 2 of the polyoxyalkylene segment has 2 or 3 carbon atoms, and the polyoxyalkylene is polyoxyethylene or polyoxypropylene. In particular, polyoxyethylene is preferable because of its high affinity with water.

ポリオキシアルキレン鎖の末端であるRは、H基、CH基またはCHCH基であり、親水性が最も高いH基が最も好ましい。R 3 at the end of the polyoxyalkylene chain is an H group, a CH 3 group or a CH 2 CH 3 group, and the H group having the highest hydrophilicity is most preferred.

上記式1においてRがR−A−の場合、Rとポリオキシアルキレンセグメントは、フェニレン基Aのどの位置に結合していても良いが、安定性が高く、合成しやすいという点で1,4位のパラ置換体であることが最も好ましい。フェニレン基Aにおいて、Rとポリオキシアルキレンセグメントが結合していない位置は、水溶性を変化させないのであれば他の置換基で置換されていても良い。In the above formula 1, when R 1 is R 4 -A-, R 4 and the polyoxyalkylene segment may be bonded to any position of the phenylene group A, but they are highly stable and easy to synthesize. Most preferred is a para-substituted product at the 1,4-position. In the phenylene group A, the position where R 1 and the polyoxyalkylene segment are not bonded may be substituted with other substituents as long as the water solubility is not changed.

式1で表される非イオン性界面活性剤の具体例としては、Triton X-45、Triton X-100、Triton X-114、Triton X-165、Triton X-200、Triton X-305、Triton X-405、Triton X-705、Triton N-60、Triton N-101、Triton N-111、Triton N-150、Polyoxyethylene(8)Octylphenyl Ether、Polyoxyethylene(9)Octylphenyl Ether、Polyoxyethylene(10)Octylphenyl Ether、Polyoxyethylene (5)Nonylphenyl Ether、Polyoxyethylene (10)Nonylphenyl Ether、Polyoxyethylene (15)Nonylphenyl Ether、Polyoxyethylene (20)Nonylphenyl Etherが挙げられる。なお、これらは、式1におけるRがR−A−のものであって、Rの炭素数が8または9、ポリオキシアルキレンセグメント(ORにおける繰り返し数nが10〜70、同セグメントにおけるアルキレン鎖Rの炭素数が2、RがHである。また、Rとポリオキシアルキレンセグメントは、フェニレン基に対して1,4位のパラ位に結合している。Specific examples of the nonionic surfactant represented by Formula 1 include Triton X-45, Triton X-100, Triton X-114, Triton X-165, Triton X-200, Triton X-305, Triton X -405, Triton X-705, Triton N-60, Triton N-101, Triton N-111, Triton N-150, Polyoxyethylene (8) Octylphenyl Ether, Polyoxyethylene (9) Octylphenyl Ether, Polyoxyethylene (10) Octylphenyl Ether, Polyoxyethylene (5) Nonylphenyl Ether, Polyoxyethylene (10) Nonylphenyl Ether, Polyoxyethylene (15) Nonylphenyl Ether, Polyoxyethylene (20) Nonylphenyl Ether. Incidentally, these are, there is R 1 is R 4 -A- in Formula 1, the carbon number of R 4 is 8 or 9, the number of repetitions n of the polyoxyalkylene segments (OR 2) n is from 10 to 70, The alkylene chain R 2 in the segment has 2 carbon atoms and R 3 is H. R 4 and the polyoxyalkylene segment are bonded to the para-positions 1 and 4 with respect to the phenylene group.

また、別の非イオン性界面活性剤の具体例としては、Brij30、Brij35、Brij56、Brij58、Brij78、Brij97、Brij98、Polyoxyethylene(6)Decyl Ether、Polyoxyethylene(9)Decyl Ether、Polyoxyethylene(12)Decyl Ether、Polyoxyethylene(20)Cetyl Ether、Polyoxyethylene(10)Dodecyl Ether、Polyoxyethylene(23)Lauryl Ether、Polyoxyethylene (7)Oleyl Ether、Polyoxyethylene (10)Oleyl Ether、Polyoxyethylene (20)Oleyl Ether、Polyoxyethylene (50)Oleyl Ether、Polyoxyethylene (4)Stearyl Ether、Polyoxyethylene (20)Stearyl Etherが挙げられる。なお、これらは、式1におけるRの炭素数が10〜18、ポリオキシアルキレンセグメント(ORにおける繰り返し数nが6〜23、同セグメントにおけるアルキレン鎖Rの炭素数が2、RがHであるものである。Specific examples of other nonionic surfactants include Brij30, Brij35, Brij56, Brij58, Brij78, Brij97, Brij98, Polyoxyethylene (6) Decyl Ether, Polyoxyethylene (9) Decyl Ether, Polyoxyethylene (12) Decyl Ether , Polyoxyethylene (20) Cetyl Ether, Polyoxyethylene (10) Dodecyl Ether, Polyoxyethylene (23) Lauryl Ether, Polyoxyethylene (7) Oleyl Ether, Polyoxyethylene (10) Oleyl Ether, Polyoxyethylene (20) Oleyl Ether, Polyoxyethylene (50) Oleyl Ether, Examples include Polyoxyethylene (4) Stearyl Ether and Polyoxyethylene (20) Stearyl Ether. Note that these are the number of carbon atoms of R 1 in Formula 1 is 10 to 18, the polyoxyalkylene segments (OR 2) repetition number n in the n is 6 to 23 carbon atoms in the alkylene chain R 2 in the segments 2, R 3 is H.

このような非イオン性界面活性剤は、樹脂表面に吸着させる際、水溶液における濃度が低すぎると吸着抑制効果を発揮するだけの絶対量が不足し、高すぎると過剰量の界面活性剤が表面に蓄積し、ラジカルが表面に結合する反応効率を低下させ易いだけでなく、ポリオキシアルキレンセグメントの排除体積効果が有効に機能しにくい。そのため、水溶液における濃度は、当該非イオン性界面活性剤の臨界ミセル濃度の0.05倍〜500倍の範囲であることが好ましく、とりわけ0.1倍〜200倍の範囲であることが最も好ましい。   When such a nonionic surfactant is adsorbed on the resin surface, if the concentration in the aqueous solution is too low, the absolute amount sufficient to exert the adsorption-inhibiting effect is insufficient. In addition to easily reducing the reaction efficiency of radicals binding to the surface, the excluded volume effect of the polyoxyalkylene segment is difficult to function effectively. Therefore, the concentration in the aqueous solution is preferably in the range of 0.05 to 500 times the critical micelle concentration of the nonionic surfactant, and most preferably in the range of 0.1 to 200 times. .

ここでいう臨界ミセル濃度は、例えば以下のようにして評価することができる。
[測定条件]
測定装置:CBVP−A3;協和界面科学株式会社製(または、同一条件にて同一の結果が得られる装置であれば問題ない。)
試験室温度:25℃
試験室湿度:60%
プレート:白金プレート
この条件で表面張力を測定し、得られた表面張力を、水溶性非イオン性界面活性剤の濃度(対数濃度)に対してプロットした図において、表面張力が一定となる最も低い濃度(臨界ミセル濃度)を求める。
The critical micelle concentration here can be evaluated, for example, as follows.
[Measurement condition]
Measuring device: CBVP-A3; manufactured by Kyowa Interface Science Co., Ltd. (or no problem as long as the same result can be obtained under the same conditions)
Test room temperature: 25 ° C
Test room humidity: 60%
Plate: Platinum plate The surface tension was measured under these conditions, and the obtained surface tension was plotted against the concentration (logarithmic concentration) of the water-soluble nonionic surfactant. Determine the concentration (critical micelle concentration).

また、かかる水溶性非イオン性界面活性剤濃度は、同じ理由から、0.001重量%以上1重量%以下であることが好ましく、とりわけ0.01重量%以上、1重量%以下であることが最も好ましい。   Further, for the same reason, the concentration of the water-soluble nonionic surfactant is preferably 0.001% by weight or more and 1% by weight or less, particularly 0.01% by weight or more and 1% by weight or less. Most preferred.

さらに、本発明の製造方法においては、放射線を使って水溶性非イオン性界面活性剤を樹脂成型体表面に結合させるため、該界面活性剤の水溶液中に、水溶性無機塩類を共存させるのが好ましい。水溶性無機塩類は、前記界面活性剤と樹脂成型体表面との疎水性相互作用を強める効果がある。水溶性無機塩類は特に限定されず、リチウム、ナトリウム、カリウム、カルシウム、マグネシウム、アンモニウム、鉄、亜鉛の塩酸塩、硫酸塩、炭酸塩、リン酸塩などが好ましく用いられる。水溶性無機塩類の濃度は特に限定されるものではないが、低すぎると該界面活性剤と樹脂成型体表面との疎水性相互作用を強める効果が低下し、高すぎると該界面活性剤の溶解性を低下させる。そのため、水溶液に対して、50mmol/L以上、300mmol/L以下であることが好ましく、100mmol/L以上、300mmol/L以下であることが最も好ましい。   Furthermore, in the production method of the present invention, since water-soluble nonionic surfactant is bound to the surface of the molded resin using radiation, water-soluble inorganic salts are allowed to coexist in the aqueous solution of the surfactant. preferable. Water-soluble inorganic salts have the effect of enhancing the hydrophobic interaction between the surfactant and the surface of the resin molding. The water-soluble inorganic salts are not particularly limited, and lithium, sodium, potassium, calcium, magnesium, ammonium, iron, zinc hydrochloride, sulfate, carbonate, phosphate and the like are preferably used. The concentration of the water-soluble inorganic salt is not particularly limited, but if it is too low, the effect of strengthening the hydrophobic interaction between the surfactant and the surface of the molded resin will be reduced, and if it is too high, the surfactant will be dissolved. Reduce sex. Therefore, it is preferably 50 mmol / L or more and 300 mmol / L or less, and most preferably 100 mmol / L or more and 300 mmol / L or less with respect to the aqueous solution.

続いて、本発明においては、上述したように樹脂成形体表面に吸着させた非イオン性界面活性剤を、化学的に当該樹脂成型体表面に結合させる。結合は放射線を用いて行う。すなわち、上述の水溶液に接液した後の樹脂成形体の表面に放射線を照射することで、樹脂成形体と上述の界面活性剤とを結合させる。放射線のエネルギーにより、水中で活性なヒドロキシラジカルが発生し、このラジカルが樹脂または該水溶性非イオン性界面活性の水素を引き抜いて新たなラジカルを発生させ、ラジカル反応を連鎖的に進行させ、樹脂成形体表面での結合が起こる。
放射線としては、α線、β線、γ線、X線、紫外線、電子線などが用いられる。特に、γ線などの電磁波線や電子線は、近年は簡便さの点から滅菌などに多く採用されており好適に用いられる。放射線量は表面への結合の効率と樹脂基材の劣化防止の点から0.01kGy以上100kGy以下の範囲で行うことが好ましく、0.1kGy以上50kGy以下の範囲、特に0.5以上、40kGy以内で行うことが最も好ましい。
Subsequently, in the present invention, the nonionic surfactant adsorbed on the surface of the resin molded body as described above is chemically bonded to the surface of the resin molded body. Bonding is performed using radiation. That is, the resin molded body and the above-described surfactant are bonded by irradiating the surface of the resin molded body after being in contact with the above-described aqueous solution with radiation. Radiation energy generates active hydroxy radicals in water, and these radicals draw out the resin or the water-soluble nonionic surface active hydrogen to generate new radicals, causing the radical reaction to proceed in a chain and the resin. Bonding occurs on the surface of the compact.
As the radiation, α rays, β rays, γ rays, X rays, ultraviolet rays, electron beams and the like are used. In particular, electromagnetic waves such as γ rays and electron beams have been widely used for sterilization and the like in recent years because of their simplicity. The radiation dose is preferably in the range of 0.01 kGy or more and 100 kGy or less from the viewpoint of the efficiency of bonding to the surface and prevention of deterioration of the resin base material, in the range of 0.1 kGy or more and 50 kGy or less, particularly 0.5 or more and within 40 kGy Most preferably,

これらの工程によって、非イオン性界面活性剤は、共有結合によって樹脂成型体表面に化学的に結合する。従って、界面活性剤が溶出せず、吸着抑制効果が持続するという特徴を有する表面が得られる。   By these steps, the nonionic surfactant is chemically bonded to the surface of the resin molded body by a covalent bond. Therefore, the surface which has the characteristics that a surfactant does not elute and an adsorption | suction suppression effect continues is obtained.

樹脂成型体の表面に結合した上記界面活性剤は化学構造の分析により検出される。これは成型体表面が樹脂のみから成るのに対して、該界面活性剤がポリオキシアルキレン基を有することを利用するものである。例えば、TOF−SIMS(飛行時間型二次イオン質量分析)により、ポリアルキレンオキシド基特有のイオンフラグメントを検出することが可能である。また、該界面活性剤がフェニレン基を有する場合、ATR−IRスペクトルの1100〜1300cm−1の炭素−酸素結合に起因するシグナルはポリプロピレンやポリスチレンなどの樹脂には見られない特有のシグナルである。The surfactant bonded to the surface of the resin molding is detected by chemical structure analysis. This utilizes the fact that the surface of the molded body consists only of a resin, whereas the surfactant has a polyoxyalkylene group. For example, ion fragments specific to polyalkylene oxide groups can be detected by TOF-SIMS (time-of-flight secondary ion mass spectrometry). Moreover, when this surfactant has a phenylene group, the signal resulting from the 1100-1300 cm < -1 > carbon-oxygen bond of an ATR-IR spectrum is a peculiar signal which is not seen in resin, such as a polypropylene and a polystyrene.

以下実験例にて本発明を詳細に説明するが、本発明の範囲がこれらの実験例にのみ限定されるものではない
<β-ミクログロブリンを用いた吸着性能の評価方法>
基材表面に対するタンパク質の吸着評価について、ヒトβ-ミクログロブリン(SIGMA販売、Cat.No.M4890)(以下、β2-MGと略記)の溶液で吸着試験を行う場合について説明する。
Hereinafter, the present invention will be described in detail with experimental examples, but the scope of the present invention is not limited to these experimental examples. <Method of evaluating adsorption performance using β 2 -microglobulin>
The protein adsorption evaluation on the substrate surface will be described in the case where an adsorption test is conducted with a solution of human β 2 -microglobulin (SIGMA sales, Cat. No. M4890) (hereinafter abbreviated as β2-MG).

β2-MGを500ng/ml、ヒト血清アルブミン(SIGMA販売、Cat.No.A1653)(以下、HSAと略記)を500ng/mlに調整した25 mmol/L重炭酸アンモニウム水溶液(pH 8.2)をタンパク質溶液(以下、タンパク質溶液Aとする)として用いた。タンパク質溶液A中のタンパク質は、調製に使用した容器にも吸着するので、タンパク質溶液を調製するのに使用する容器は、予めウシ血清アルブミン(ナカライテスク販売、Cat.No.01863-35)(以下、BSAと略記)でブロッキングした容器を用いた。容器のブロッキング操作は、1%のBSAのリン酸緩衝生理食塩水(以下、PBSと略記)溶液中に遠沈管(Greiner Bio-One GmbH製、CELLSTAR TUBES、15mL)を30分放置した後、かかる遠沈管をPBSで3回、蒸留水で3回洗浄することによって行った。このようにブロッキングした遠沈管で調製したタンパク質溶液Aを以下のように吸着実験に用いた。   Protein solution of 25 mmol / L ammonium bicarbonate aqueous solution (pH 8.2) adjusted to 500 ng / ml of β2-MG and 500 ng / ml of human serum albumin (SIGMA sold, Cat. No. A1653) (hereinafter abbreviated as HSA) (Hereinafter referred to as protein solution A). Since the protein in the protein solution A is also adsorbed in the container used for the preparation, the container used for preparing the protein solution must be prepared in advance with bovine serum albumin (Nacalai Tesque Sales, Cat. No. 01863-35) , Abbreviated as BSA). The container blocking operation was performed after leaving a centrifuge tube (Greiner Bio-One GmbH, CELLSTAR TUBES, 15 mL) in a 1% BSA phosphate buffered saline (hereinafter abbreviated as PBS) solution for 30 minutes. The centrifuge tube was washed 3 times with PBS and 3 times with distilled water. The protein solution A prepared with the centrifuge tube thus blocked was used in the adsorption experiment as follows.

樹脂成型体としての試験管にタンパク質溶液Aを100μl加えて、26℃で1時間放置した。1時間後に試験管内のタンパク溶液を採取し、1%のBSAのPBS溶液で10倍に希釈した溶液をβ2-MG濃度(c)の測定に用いた。樹脂試験管に分注する前のタンパク質溶液Aについてもβ2-MG濃度(b)を測定した。   100 μl of protein solution A was added to a test tube as a resin molding and left at 26 ° C. for 1 hour. One hour later, the protein solution in the test tube was collected, and a 10-fold diluted solution of 1% BSA in PBS was used for measurement of β2-MG concentration (c). The β2-MG concentration (b) was also measured for the protein solution A before being dispensed into the resin test tube.

β2-MG濃度(b)の測定はβ2-MG測定キット(和光純薬工業発売 グラザイムβ2-microgloblin EIA TEST, Code.305-11011)にて、キット添付のマニュアルに従って行った。添付マニュアルの一部を改良し、1%のBSAのPBS溶液で30分予めブロッキングした反応容器を最初の反応時に用いた。タンパク質の吸着率(a)は下式により算出し、吸着率が50%以下である場合を非吸着表面とした。The β2-MG concentration (b) was measured with a β2-MG measurement kit (Wako Pure Chemical Industries, Ltd., Glazyme β 2 -microgloblin EIA TEST, Code. 305-11011) according to the manual attached to the kit. A part of the attached manual was modified and a reaction vessel previously blocked with 1% BSA in PBS for 30 minutes was used for the first reaction. The protein adsorption rate (a) was calculated by the following equation, and the case where the adsorption rate was 50% or less was defined as a non-adsorbed surface.

Figure 0005332613
Figure 0005332613

<臨界ミセル濃度の測定方法>
[測定条件]
測定装置:CBVP−A3(協和界面科学株式会社製)
試験室温度:25℃
試験室湿度:60%
プレート:白金プレート
容器に非イオン性界面活性剤の水溶液を入れて、CBVP−A3の添付マニュアルに従って表面張力を測定した。様々な濃度の非イオン性界面活性剤について、同様に表面張力測定を行い、各表面張力の値を、非イオン性界面活性剤の濃度(対数濃度)に対してプロットし、表面張力が一定となる最も低い濃度を求めることによって、非イオン性界面活性剤の臨界ミセル濃度を求めた。
<Measurement method of critical micelle concentration>
[Measurement condition]
Measuring device: CBVP-A3 (manufactured by Kyowa Interface Science Co., Ltd.)
Test room temperature: 25 ° C
Test room humidity: 60%
Plate: Platinum plate An aqueous solution of a nonionic surfactant was put in a container, and the surface tension was measured according to the attached manual of CBVP-A3. For various concentrations of nonionic surfactant, the surface tension is measured in the same manner, and the value of each surface tension is plotted against the concentration of nonionic surfactant (logarithmic concentration). The critical micelle concentration of the nonionic surfactant was determined by determining the lowest concentration.

(実験例1)
樹脂製試験管(BECTON DICKINSON製「5ml Polypropylene Round-Bottom Tube」)を、0.001、0.01、0.1および1%の濃度のTriton X-100(和光純薬販売、Cat No.168-11805)水溶液100mlに各5本ずつ浸漬し、γ線照射した。γ線の吸収線量は25kGyであった。試験管を水溶液から取り出して、流水500mlで3回洗浄し室温で風乾した。これらの試験管のうち各濃度3本ずつをヒトβ2-MG吸着試験に供し、吸着率の平均値を求めた。条件を表1に、結果を表2に示す
(実験例2)
樹脂製試験管(BECTON DICKINSON製「5ml Polypropylene Round-Bottom Tube」)を、0.0001、0.001、0.001、0.01および0.1%の濃度のpolyoxyethylene (10)nonylphenyl ether(和光純薬販売 Cat No.320-33722)水溶液100mlに各5本ずつ浸漬し、実験例1同様に処理し、ヒトβ2-MG吸着試験に供した。条件を表1に、結果を表2に示す。
(Experimental example 1)
Resin test tube ("5 ml Polypropylene Round-Bottom Tube" manufactured by BECTON DICKINSON) is added to 100 ml of 0.001, 0.01, 0.1 and 1% Triton X-100 (Wako Pure Chemicals, Cat No.168-11805) aqueous solution. Five of each were immersed and irradiated with γ rays. The absorbed dose of gamma rays was 25 kGy. The test tube was removed from the aqueous solution, washed 3 times with 500 ml of running water and air dried at room temperature. Of these test tubes, three of each concentration was subjected to the human β2-MG adsorption test, and the average value of the adsorption rate was determined. The conditions are shown in Table 1, and the results are shown in Table 2. (Experimental example 2)
A test tube made of resin ("5ml Polypropylene Round-Bottom Tube" manufactured by BECTON DICKINSON) is used in polyoxyethylene (10) nonylphenyl ether (Wako Pure Chemicals Cat No.320-33722) at concentrations of 0.0001, 0.001, 0.001, 0.01 and 0.1%. Five of each were immersed in 100 ml of an aqueous solution, treated in the same manner as in Experimental Example 1, and subjected to a human β2-MG adsorption test. The conditions are shown in Table 1, and the results are shown in Table 2.

(実験例3)
樹脂製試験管(BECTON DICKINSON製「5ml Polystyrene Round-Bottom Tube」)を、0.001、0.01、0.1および1%の濃度のTriton X-100(和光純薬販売 Cat No.168-11805)水溶液100mlに各5本ずつ浸漬し、実験例1同様に処理し、ヒトβ2-MG吸着試験に供した。条件を表1に、結果を表2に示す。
(Experimental example 3)
Each resin test tube (“5 ml Polystyrene Round-Bottom Tube” manufactured by BECTON DICKINSON) is added to 100 ml of 0.001, 0.01, 0.1, and 1% Triton X-100 (Wako Pure Chemicals Sales Cat No.168-11805) aqueous solution. Five pieces were immersed in each, treated in the same manner as in Experimental Example 1, and subjected to a human β2-MG adsorption test. The conditions are shown in Table 1, and the results are shown in Table 2.

(実験例4)
樹脂製試験管(BECTON DICKINSON製「5ml Polystyrene Round-Bottom Tube」)を、0.001、0.01、0.1、1、2および5%の濃度のTritonX-705(SIGMA販売 Cat No.X70570-100ML)水溶液100mlに各5本ずつ浸漬し、実験例1同様に処理し、ヒトβ2-MG吸着試験に供した。条件を表1に、結果を表2に示す。
(Experimental example 4)
A resin test tube ("5 ml Polystyrene Round-Bottom Tube" manufactured by BECTON DICKINSON) is added to 100 ml of 0.001, 0.01, 0.1, 1, 2 and 5% TritonX-705 (SIGMA sales Cat No. X70570-100ML) aqueous solution. Five of each were immersed, treated in the same manner as in Experimental Example 1, and subjected to a human β2-MG adsorption test. The conditions are shown in Table 1, and the results are shown in Table 2.

(実験例5)
樹脂製試験管(BECTON DICKINSON製「5ml Polystyrene Round-Bottom Tube」)を、0.0001、0.001、0.01、0.1および1%の濃度のTritonX-405(SIGMA販売 Cat No.X405-100ML)水溶液100mlに各5本ずつ浸漬し、実験例1同様に処理し、ヒトβ2-MG吸着試験に供した。条件を表1に、結果を表2に示す。
(Experimental example 5)
Resin test tubes ("5 ml Polystyrene Round-Bottom Tube" made by BECTON DICKINSON) are added to 100 ml of 0.0001, 0.001, 0.01, 0.1 and 1% TritonX-405 (SIGMA sales Cat No. X405-100ML) aqueous solution each 5 The samples were immersed one by one, treated in the same manner as in Experimental Example 1, and subjected to a human β2-MG adsorption test. The conditions are shown in Table 1, and the results are shown in Table 2.

(実験例6)
樹脂製試験管(BECTON DICKINSON製「5ml Polystyrene Round-Bottom Tube」)を、0.01、0.1、1、2、および5%の濃度のTriton X-45(SIGMA販売 Cat No.X45-100ML)水溶液100mlに各5本ずつ浸漬し、実験例1同様に処理し、ヒトβ2-MG吸着試験に供した。条件を表1に、結果を表2に示す。
(Experimental example 6)
Resin test tube (BECTON DICKINSON's “5ml Polystyrene Round-Bottom Tube”) in 100 ml of 0.01, 0.1, 1, 2, and 5% Triton X-45 (SIGMA Cat No. X45-100ML) aqueous solution Five of each were immersed, treated in the same manner as in Experimental Example 1, and subjected to a human β2-MG adsorption test. The conditions are shown in Table 1, and the results are shown in Table 2.

(実験例7)
樹脂製試験管(BECTON DICKINSON製「5ml Polystyrene Round-Bottom Tube」)を、0.0001、0.001、0.01、0.1および1%の濃度のBrij 58(SIGMA販売 Cat No.P5884-100G)水溶液100mlに各5本ずつ浸漬し、実験例1同様に処理し、ヒトβ2-MG吸着試験に供した。条件を表1に、結果を表2に示す。
(Experimental example 7)
Five test tubes made of resin (BECTON DICKINSON's “5 ml Polystyrene Round-Bottom Tube”) in 100 ml of 0.0001, 0.001, 0.01, 0.1 and 1% Brij 58 (SIGMA sales Cat No. P5884-100G) aqueous solution each. The samples were immersed one by one, treated in the same manner as in Experimental Example 1, and subjected to human β2-MG adsorption test. The conditions are shown in Table 1, and the results are shown in Table 2.

(実験例8)
樹脂製試験管(BECTON DICKINSON製「5ml Polypropylene Round-Bottom Tube」)を、0.0001、0.001、0.01、および0.1%の濃度のBrij 58(SIGMA販売 Cat No.P5884-100G)水溶液100mlに各5本ずつ浸漬し、実験例1同様に処理し、ヒトβ2-MG吸着試験に供した。条件を表1に、結果を表2に示す。
(Experimental example 8)
5 each of resin test tubes (5 ml Polypropylene Round-Bottom Tube made by BECTON DICKINSON) in 100 ml of 0.0001, 0.001, 0.01, and 0.1% concentrations of Brij 58 (SIGMA sales Cat No. P5884-100G) The sample was immersed, treated in the same manner as in Experimental Example 1, and subjected to a human β2-MG adsorption test. The conditions are shown in Table 1, and the results are shown in Table 2.

(実験例9)
樹脂製試験管(BECTON DICKINSON製「5ml Polystyrene Round-Bottom Tube」)を、100、200および300mmol/Lの塩化ナトリウムを含む0.1% Triton X-100(和光純薬販売 Cat No.168-11805)水溶液100mlにそれぞれ各5本ずつ浸漬し、実験例1同様に処理し、ヒトβ2-MG吸着試験に供した。条件を表1に、結果を表2に示す。
(Experimental example 9)
A test tube made of resin ("5 ml Polystyrene Round-Bottom Tube" manufactured by BECTON DICKINSON) in an aqueous solution of 0.1% Triton X-100 (Wako Pure Chemicals Cat No.168-11805) containing 100, 200 and 300 mmol / L sodium chloride 5 pieces each were immersed in 100 ml, treated in the same manner as in Experimental Example 1, and subjected to human β2-MG adsorption test. The conditions are shown in Table 1, and the results are shown in Table 2.

(実験例10)
樹脂製試験管(BECTON DICKINSON製「5ml Polystyrene Round-Bottom Tube」)を、100、200および300mmol/Lの塩化ナトリウムを含む0.1% Triton X-305(SIGMA販売 Cat No.X305-500ML)水溶液100mlにそれぞれ5本ずつ浸漬し、実験例1同様に処理し、ヒトβ2-MG吸着試験に供した。条件を表1に、結果を表2に示す。
(Experimental example 10)
Resin test tube ("5 ml Polystyrene Round-Bottom Tube" manufactured by BECTON DICKINSON) is added to 100 ml of 0.1% Triton X-305 (SIGMA sales Cat No. X305-500ML) aqueous solution containing 100, 200 and 300 mmol / L sodium chloride. Each was immersed in five pieces, treated in the same manner as in Experimental Example 1, and subjected to a human β2-MG adsorption test. The conditions are shown in Table 1, and the results are shown in Table 2.

(実験例11)
Triton X-15(SIGMA販売 Cat No.X15-500ML)の水溶液を調製しようとしたが溶解しなかったので、実験例1と同様の樹脂製試験管のγ線処理ができなかった。
(Experimental example 11)
Since an attempt was made to prepare an aqueous solution of Triton X-15 (SIGMA sales Cat No. X15-500ML) but it did not dissolve, the same γ-ray treatment of the resin test tube as in Experimental Example 1 could not be performed.

(実験例12)
樹脂製試験管(BECTON DICKINSON製「5ml Polypropylene Round-Bottom Tube」)5本を、0.01% Triton X-100水溶液100mlに浸漬した。γ線照射はせずに、試験管を、実験例1のγ線照射後の後処理と同様に処理した。これらの試験管のうち3本をヒトβ2-MG吸着試験に供し、吸着率の平均値を求めた。条件を表1に、結果を表2に示す。
(Experimental example 12)
Five resin test tubes (“5 ml Polypropylene Round-Bottom Tube” manufactured by BECTON DICKINSON) were immersed in 100 ml of 0.01% Triton X-100 aqueous solution. Without γ-irradiation, the test tube was treated in the same way as the post-treatment after γ-irradiation in Experimental Example 1. Three of these test tubes were subjected to the human β2-MG adsorption test, and the average value of the adsorption rate was determined. The conditions are shown in Table 1, and the results are shown in Table 2.

(実験例13)
樹脂製試験管(BECTON DICKINSON製「5ml Polystyrene Round-Bottom Tube」)5本を、0.01% Triton X-100水溶液100mlに浸漬した。γ線照射はせずに、試験管を、実験例1のγ線照射後の後処理と同様に処理した。これらの試験管のうち3本をヒトβ2-MG吸着試験に供し、吸着率の平均値を求めた。条件を表1に、結果を表2に示す。
(Experimental example 13)
Five resin test tubes (“5 ml Polystyrene Round-Bottom Tube” manufactured by BECTON DICKINSON) were immersed in 100 ml of 0.01% Triton X-100 aqueous solution. Without γ-irradiation, the test tube was treated in the same way as the post-treatment after γ-irradiation in Experimental Example 1. Three of these test tubes were subjected to the human β2-MG adsorption test, and the average value of the adsorption rate was determined. The conditions are shown in Table 1, and the results are shown in Table 2.

(実験例14)
特許文献6に記載の方法に従って、樹脂製試験管(BECTON DICKINSON製「5ml Polyprpylene Round-Bottom Tube」)5本を臨界ミセル濃度の存在しないポリビニルアルコール(ポバール205、クラレ製)0.1% 水溶液100mlに浸漬し、γ線照射した。γ線の吸収線量は25kGyであった。樹脂試験管をポリビニルアルコール水溶液から取り出して流水500mlで洗浄し、70℃のオーブンで1時間乾燥した。これらの試験管のうち3本をヒトβ2-MG吸着試験に供し、吸着率の平均値を求めた。条件を表1に、結果を表2に示す。
(Experimental example 14)
According to the method described in Patent Document 6, 5 test tubes made of resin ("5 ml Polyprpylene Round-Bottom Tube" manufactured by BECTON DICKINSON) are immersed in 100 ml of 0.1% aqueous solution of polyvinyl alcohol (Poval 205, manufactured by Kuraray) without critical micelle concentration. And irradiated with γ rays. The absorbed dose of gamma rays was 25 kGy. The resin test tube was taken out of the polyvinyl alcohol aqueous solution, washed with 500 ml of running water, and dried in an oven at 70 ° C. for 1 hour. Three of these test tubes were subjected to the human β2-MG adsorption test, and the average value of the adsorption rate was determined. The conditions are shown in Table 1, and the results are shown in Table 2.

(実験例15)
特許文献6に記載の方法に従って、樹脂製試験管(BECTON DICKINSON製「5ml Polystyrene Round-Bottom Tube」5本を臨界ミセル濃度の存在しないポリビニルアルコール(ポバール205、クラレ製)0.1% 水溶液100mlに浸漬し、γ線照射した。γ線の吸収線量は25kGyであった。樹脂試験管をポリビニルアルコール水溶液から取り出して流水500mlで洗浄し、70℃のオーブンで1時間乾燥した。これらの試験管のうち3本をヒトβ2-MG吸着試験に供し、吸着率の平均値を求めた。条件を表1に、結果を表2に示す。
(Experimental example 15)
According to the method described in Patent Document 6, 5 test tubes made of resin (“5 ml Polystyrene Round-Bottom Tube” manufactured by BECTON DICKINSON) are immersed in 100 ml of 0.1% aqueous solution of polyvinyl alcohol (Poval 205, manufactured by Kuraray) without critical micelle concentration. The absorbed dose of γ rays was 25 kGy.The resin test tube was taken out of the polyvinyl alcohol aqueous solution, washed with 500 ml of running water, and dried in an oven at 70 ° C. for 1 hour. The book was subjected to a human β2-MG adsorption test, and the average value of the adsorption rate was determined, the conditions are shown in Table 1, and the results are shown in Table 2.

(実験例16)
樹脂製試験管(BECTON DICKINSON製「5ml Polypropylene Round-Bottom Tube」)5本を流水500mlで洗浄し、室温で風乾した。これらの試験管のうち3本をヒトβ2-MG吸着試験に供し、吸着率の平均値を求めた。条件を表1に、結果を表2に示す。
(Experimental example 16)
Five resin test tubes ("5 ml Polypropylene Round-Bottom Tube" manufactured by BECTON DICKINSON) were washed with 500 ml of running water and air-dried at room temperature. Three of these test tubes were subjected to the human β2-MG adsorption test, and the average value of the adsorption rate was determined. The conditions are shown in Table 1, and the results are shown in Table 2.

(実験例17)
樹脂製試験管(BECTON DICKINSON製「5ml Polystyrene Round-Bottom Tube」)5本を流水500mlで洗浄し、室温で風乾した。これらの試験管のうち3本をヒトβ2-MG吸着試験に供し、吸着率の平均値を求めた。結果を表1に示す。
(Experimental example 17)
Five resin test tubes (“5 ml Polystyrene Round-Bottom Tube” manufactured by BECTON DICKINSON) were washed with 500 ml of running water and air-dried at room temperature. Three of these test tubes were subjected to the human β2-MG adsorption test, and the average value of the adsorption rate was determined. The results are shown in Table 1.

Figure 0005332613
Figure 0005332613

Figure 0005332613
Figure 0005332613

表1、2から明らかなように、ヒトβ2-MG吸着試験の結果、本発明の場合は比較例に比してヒトβ2-MG吸着量が少なく、微量生体成分の吸着抑制、高率回収に効果的である。   As is apparent from Tables 1 and 2, as a result of the human β2-MG adsorption test, the amount of human β2-MG adsorbed is smaller in the case of the present invention than in the comparative example, and the adsorption of trace biological components is suppressed and the recovery rate is high. It is effective.

本発明の製造方法は、微量のタンパクおよび/またはペプチド等を処理・分析する際の吸着ロスを防ぐという意味で非常に有用なものであり、特にプロテオーム解析などに用いれば医学、特にヒトの病気の発見に寄与する。   The production method of the present invention is very useful in terms of preventing adsorption loss when processing and analyzing trace amounts of proteins and / or peptides, and is particularly useful for medical, particularly human diseases, when used for proteome analysis. Contribute to the discovery of

Claims (8)

樹脂成型体、非イオン性界面活性剤の水溶液に浸漬させる工程と、前記水溶液に浸漬させた状態で樹脂成型体に放射線を照射する工程とを有し、前記水溶液における前記界面活性剤の濃度が、該界面活性剤の25℃における臨界ミセル濃度の0.05倍〜500倍の範囲である、非イオン性界面活性剤が表面固定された、タンパク質および/またはペプチドの処理の用に供する樹脂成型体の製造方法。 The resin molded body includes a step of immersing in an aqueous solution of a nonionic surfactant, and a step of irradiating the resin molded body in a state of being immersed in the aqueous solution, the concentration of the surfactant in the aqueous solution Is a resin used for the treatment of proteins and / or peptides on which a nonionic surfactant is immobilized, which is in the range of 0.05 to 500 times the critical micelle concentration at 25 ° C. of the surfactant A method for producing a molded body. 前記水溶液が水溶性無機塩類を50mmol/L〜300mmol/Lの濃度で含むものである、請求項1に記載の樹脂成型体の製造方法。 The method for producing a resin molded body according to claim 1, wherein the aqueous solution contains water-soluble inorganic salts at a concentration of 50 mmol / L to 300 mmol / L. 前記界面活性剤が式1で表されるものである、請求項1または2に記載の樹脂成型体の製造方法。
Figure 0005332613
The manufacturing method of the resin molding of Claim 1 or 2 whose said surfactant is what is represented by Formula 1.
Figure 0005332613
の炭素数が2である、請求項3に記載の樹脂成型体の製造方法。 The number of carbon atoms in R 2 is 2, the manufacturing method of the resin molded body according to claim 3. nの数が5〜80である、請求項3または4に記載の樹脂成型体の製造方法。 The manufacturing method of the resin molding of Claim 3 or 4 whose number of n is 5-80. の炭素数が5〜25である、請求項3〜5のいずれかに記載の樹脂成型体の製造方法。 The number of carbon atoms of R 1 is 5 to 25, a manufacturing method of the resin molded body according to any one of claims 3-5. がR−A−であり、Rの炭素数が7〜10である、請求項3〜6のいずれかに記載の樹脂成型体の製造方法。 R 1 is R 4 -A-, the carbon number of R 4 is 7 to 10, a manufacturing method of the resin molded body according to any one of claims 3-6. 前記界面活性剤のHLBが10以上である、請求項1〜7のいずれかに記載の樹脂成型体の製造方法。 The manufacturing method of the resin molding in any one of Claims 1-7 whose HLB of the said surfactant is 10 or more.
JP2008528271A 2007-02-20 2008-02-19 Manufacturing method of resin molding Expired - Fee Related JP5332613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008528271A JP5332613B2 (en) 2007-02-20 2008-02-19 Manufacturing method of resin molding

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2007038955 2007-02-20
JP2007038955 2007-02-20
JP2007144599 2007-05-31
JP2007144599 2007-05-31
PCT/JP2008/052695 WO2008102744A1 (en) 2007-02-20 2008-02-19 Method for production of molded resin article
JP2008528271A JP5332613B2 (en) 2007-02-20 2008-02-19 Manufacturing method of resin molding

Publications (2)

Publication Number Publication Date
JPWO2008102744A1 JPWO2008102744A1 (en) 2010-05-27
JP5332613B2 true JP5332613B2 (en) 2013-11-06

Family

ID=39710021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008528271A Expired - Fee Related JP5332613B2 (en) 2007-02-20 2008-02-19 Manufacturing method of resin molding

Country Status (6)

Country Link
US (1) US20100092685A1 (en)
EP (1) EP2123702B1 (en)
JP (1) JP5332613B2 (en)
CN (1) CN101583655B (en)
CA (1) CA2675267C (en)
WO (1) WO2008102744A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5292860B2 (en) * 2008-03-07 2013-09-18 東レ株式会社 Manufacturing method of resin molding
CN102844110B (en) * 2010-03-31 2014-12-03 旭化成医疗株式会社 Substrate for ligand immobilization and method for producing same
US20140126995A1 (en) 2012-11-06 2014-05-08 General Electric Company Microchannel cooled turbine component and method of forming a microchannel cooled turbine component

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56125435A (en) * 1980-03-06 1981-10-01 Dainippon Printing Co Ltd Food packaging antifogging film and production thereof
JPH07207049A (en) * 1993-10-15 1995-08-08 Kurabo Ind Ltd Modification of surface of fluororesin molding

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1287672A (en) * 1969-07-08 1972-09-06 Sumitomo Chemical Co Polymeric composite materials with anti-static and anti-fogging properties
JPS5840323A (en) 1981-09-03 1983-03-09 Idemitsu Petrochem Co Ltd Graft copolymer having excellent lubricity and its production
JPS61225653A (en) 1985-03-29 1986-10-07 Nippon Medical Supply Corp Apparatus for blood inspection
US5180760A (en) * 1988-04-28 1993-01-19 Nippon Oil And Fats Company, Limited Anti-fogging resin film-forming composition
JP3297707B2 (en) 1993-02-01 2002-07-02 旭メディカル株式会社 Modified hollow fiber and method for producing the same
MY120404A (en) * 1993-10-15 2005-10-31 Kuraishiki Boseki Kabushiki Kaisha Process for modifying the surfaces of the molded materials made of fluorine resins
US6013855A (en) * 1996-08-06 2000-01-11 United States Surgical Grafting of biocompatible hydrophilic polymers onto inorganic and metal surfaces
AUPP971399A0 (en) 1999-04-12 1999-05-06 Life Therapeutics Limited Separation of plasma components
US6680144B2 (en) * 1999-10-29 2004-01-20 Kvg Technologies, Inc. Battery separator
US7501157B2 (en) * 2001-06-26 2009-03-10 Accelr8 Technology Corporation Hydroxyl functional surface coating
US20030082625A1 (en) * 2001-10-22 2003-05-01 Lee Yong-Hee Method for the pretreatment of a surface for the reduction of non-specific binding by chemical entities
JP3865614B2 (en) 2001-10-25 2007-01-10 住友ベークライト株式会社 Microcircuit for protein analysis
US8048437B2 (en) * 2004-04-21 2011-11-01 Richard Nagler Medical device with surface coating comprising bioactive compound
EP1785431B1 (en) 2004-08-30 2016-01-20 Toray Industries, Inc. Fractionation apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56125435A (en) * 1980-03-06 1981-10-01 Dainippon Printing Co Ltd Food packaging antifogging film and production thereof
JPH07207049A (en) * 1993-10-15 1995-08-08 Kurabo Ind Ltd Modification of surface of fluororesin molding

Also Published As

Publication number Publication date
JPWO2008102744A1 (en) 2010-05-27
CN101583655B (en) 2013-07-17
CA2675267A1 (en) 2008-08-28
WO2008102744A1 (en) 2008-08-28
CA2675267C (en) 2015-03-31
CN101583655A (en) 2009-11-18
EP2123702A4 (en) 2012-05-09
EP2123702A1 (en) 2009-11-25
EP2123702B1 (en) 2013-10-02
US20100092685A1 (en) 2010-04-15

Similar Documents

Publication Publication Date Title
US9795721B2 (en) Antithrombotic material
Shen et al. Inhibition of monocyte adhesion and fibrinogen adsorption on glow discharge plasma deposited tetraethylene glycol dimethyl ether
Sheu et al. Immobilization of polyethylene oxide surfactants for non-fouling biomaterial surfaces using an argon glow discharge treatment
Pandiyaraj et al. Influence of non-thermal plasma forming gases on improvement of surface properties of low density polyethylene (LDPE)
JP5332613B2 (en) Manufacturing method of resin molding
JP6788796B2 (en) Antithrombotic metal material
JPH07300513A (en) Material with grafted surface
Suganya et al. Study on plasma pre-functionalized PVC film grafted with TiO2/PVP to improve blood compatible and antibacterial properties
JP5292860B2 (en) Manufacturing method of resin molding
Wen et al. Study on an antifouling and blood compatible poly (ethylene–vinyl acetate) material with fluorinated surface structure
JP5343317B2 (en) Modified substrate and method for producing modified substrate
Iwasaki et al. Protein adsorption and platelet adhesion on polymer surfaces having phospholipid polar group connected with oxyethylene chain
JPWO2006025352A1 (en) Fractionation device
JP4337644B2 (en) Manufacturing method for biochemical instruments
JP4649845B2 (en) Modified substrate
JP7043936B2 (en) Antithrombotic material
JP2001213984A (en) Method of fixing heparin on to surface of polymeric material
SHEU et al. Immobilization non-fouling discharge treatment biomaterial of polyethylene surfaces oxide using surfactants an argon glow
JP6831758B2 (en) Smell sustained release agent and odor sustained release member
JP2001213983A (en) Method of imparting anti-thrombotic property on to surface of polymeric material
CN117659480A (en) Multi-material compatible double-sided adhesive material and preparation method thereof
Peng Matrix-assisted laser desorption/ionization (MALDI) target modification for enhanced proteomics analysis and plasma polymer characterization by MALDI mass spectrometry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130715

LAPS Cancellation because of no payment of annual fees