JP2009215115A - Composition for low-temperature firing porcelain, and manufacturing method thereof - Google Patents

Composition for low-temperature firing porcelain, and manufacturing method thereof Download PDF

Info

Publication number
JP2009215115A
JP2009215115A JP2008061443A JP2008061443A JP2009215115A JP 2009215115 A JP2009215115 A JP 2009215115A JP 2008061443 A JP2008061443 A JP 2008061443A JP 2008061443 A JP2008061443 A JP 2008061443A JP 2009215115 A JP2009215115 A JP 2009215115A
Authority
JP
Japan
Prior art keywords
component
clay
weight
composition
mineral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008061443A
Other languages
Japanese (ja)
Other versions
JP5083971B2 (en
Inventor
Takashi Ito
伊藤  隆
Masaaki Hattori
正明 服部
Seiji Niijima
聖治 新島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mie Prefecture
Original Assignee
Mie Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mie Prefecture filed Critical Mie Prefecture
Priority to JP2008061443A priority Critical patent/JP5083971B2/en
Publication of JP2009215115A publication Critical patent/JP2009215115A/en
Application granted granted Critical
Publication of JP5083971B2 publication Critical patent/JP5083971B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composition for low-temperature firing porcelains which is sintered at a low temperature of about 1,100°C and has a broad firing temperature range, and a manufacturing method thereof. <P>SOLUTION: The composition comprises a non-clay component containing at least one mineral component selected from a component C being a mineral containing Li<SB>2</SB>O as a main component of an alkali metal component, a component A being a mineral containing Na<SB>2</SB>O as a main component of an alkali metal component, and a component B being a mineral containing K<SB>2</SB>O as a main component of an alkali metal component; and a clay component, wherein the clay component is contained in 30 to 50 wt.% with respect to the whole composition; and the component C is contained in 8.3 to 75 wt.% with respect to the whole non-clay component. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、1100℃程度の低温で焼結するとともに、広い焼成温度幅を有する低温焼成磁器用組成物および低温焼成磁器の製造方法に関する。   The present invention relates to a composition for low-temperature fired ceramics that is sintered at a low temperature of about 1100 ° C. and has a wide firing temperature range, and a method for producing a low-temperature fired ceramic.

従来、一般に磁器を製造するための原料組成は、長石−珪石−粘土系、セリサイト−珪石系、長石−リン酸カルシウム−粘土系などであるが、これらは、磁器化するための焼成温度が 1200℃〜1350℃を必要としている。
現在製造されている陶磁器の中で、磁器の焼成温度は、美濃焼が約 1350℃、有田焼、九谷焼が約 1300℃、ボーンチャイナが 1200〜1300℃であり、これより低温の 1100℃程度で焼成するものは製造されていない。
Conventionally, the raw material composition for producing porcelain is generally feldspar-silica-clay system, sericite-silica system, feldspar-calcium phosphate-clay system, etc., but these have a firing temperature of 1200 ° C. Need ~ 1350 ° C.
Among the ceramics that are currently manufactured, the firing temperature of porcelain is about 1350 ° C for Mino ware, about 1300 ° C for Arita ware and Kutani ware, 1200 to 1300 ° C for bone china, and baked at a lower temperature of about 1100 ° C. What you do is not manufactured.

1100℃程度の低温で焼成する磁器の研究は、各所で過去にも行なわれており、ガラス−粘土系、リン酸塩−粘土系、微粒炭酸カルシウム−粘土系などで、低温焼成磁器が開発されている(例えば、特許文献1、特許文献2など)。しかしながら、「土の可塑性が低く成形が困難である」、「焼成温度幅が狭い」、「原料の処理が難しい」などの欠点があるため、食器など一般に用いられている磁器としては、ほとんど実用化されていないのが現状である。   Research on porcelain fired at a low temperature of about 1100 ° C has been carried out in various places in the past, and low-temperature fired porcelain has been developed in glass-clay, phosphate-clay, fine calcium carbonate-clay, etc. (For example, Patent Document 1, Patent Document 2, etc.). However, because of the disadvantages such as “low plasticity of the soil and difficult to mold”, “narrow firing temperature range” and “difficult to process raw materials”, it is almost practical as a porcelain generally used for tableware etc. The current situation is that it has not been realized.

また、電子材料として用いる特殊な磁器には、1100℃以下で焼成して磁器化するガラス−粘土系のものがある(特許文献3参照)。しかしながら、コストが高い、焼成温度幅が狭い、可塑性が低いなどの問題がある。   In addition, as a special porcelain used as an electronic material, there is a glass-clay type material that is baked at 1100 ° C. or less to become porcelain (see Patent Document 3). However, there are problems such as high cost, narrow firing temperature range, and low plasticity.

近年、原油の値上がりに伴う燃料費の高騰が深刻な問題になっている。また、産業界における環境負荷の低減が求められている中、陶磁器製造過程における二酸化炭素排出量の抑制も重要な課題である。これらのことからも、より低温で焼成できる素地の開発が切望されている。
特開2005−162592号公報 特開平10−95657号公報 特開平11−335156号公報
In recent years, the rise in fuel costs accompanying the rise in crude oil prices has become a serious problem. In addition, while reducing the environmental burden in the industry, it is also an important issue to reduce carbon dioxide emissions during the ceramic manufacturing process. Also from these things, development of the base material which can be baked at lower temperature is anxious.
JP 2005-162592 A JP-A-10-95657 Japanese Patent Laid-Open No. 11-335156

本発明は、このような問題に対処するためになされたもので、1100℃程度の低温で焼結できるとともに、広い焼成温度幅を有する低温焼成磁器用組成物および該組成物を用いた低温焼成磁器の製造方法の提供を目的とする。   The present invention was made to address such problems, and can be sintered at a low temperature of about 1100 ° C., and has a wide firing temperature range, and a low-temperature fired ceramic composition using the composition. The object is to provide a method for manufacturing porcelain.

本発明の低温焼成磁器用組成物は、Li2Oをアルカリ金属成分の主成分として含む鉱物であるC成分と、Na2Oをアルカリ金属成分の主成分として含む鉱物であるA成分およびK2Oをアルカリ金属成分の主成分として含む鉱物であるB成分から選ばれた少なくとも1つの鉱物成分とを含む非粘土成分と、粘土成分とを含み、組成物全体に対して上記粘土成分を 30 〜 50 重量%含み、この非粘土成分全体に対して上記C成分を 8.3 〜 75 重量%以下含むことを特徴とする。
また、上記A成分がNa2Oを 5〜22 重量%含む鉱物であり、上記B成分がK2Oを 4〜17 重量%含む鉱物であり、上記C成分がLi2Oを 3〜12 重量%含む鉱物であることを特徴とする。
また、上記粘土成分を除いた非粘土成分として、上記A成分、B成分およびC成分の組成範囲が下記三角座標(1)の斜線範囲で表されることを特徴とする。

Figure 2009215115
上記三角座標(1)において、A、B、およびC各成分の頂点の値は、( 100 重量%−粘土成分の重量%)を、各頂点の対辺は 0 重量%をそれぞれ表す。
また、本発明の低温焼成磁器用組成物は、上記A成分がネフェリンサイアナイトまたはソーダ長石であり、上記B成分がカリ長石であり、上記C成分がペタライトであることを特徴とする。 The composition for low-temperature fired porcelain of the present invention includes a C component which is a mineral containing Li 2 O as a main component of an alkali metal component, an A component which is a mineral containing Na 2 O as a main component of an alkali metal component, and K 2. A non-clay component containing at least one mineral component selected from the B component, which is a mineral containing O as a main component of the alkali metal component, and a clay component, It is characterized by containing 50 wt% and not more than 8.3 to 75 wt% of the C component with respect to the whole non-clay component.
The component A is a mineral containing 5 to 22% by weight of Na 2 O, the component B is a mineral containing 4 to 17% by weight of K 2 O, and the component C is 3 to 12% by weight of Li 2 O. % Minerals.
Moreover, as a non-clay component excluding the clay component, the composition range of the A component, the B component, and the C component is represented by a hatched range of the following triangular coordinate (1).
Figure 2009215115
In the triangular coordinate (1), the value of the vertex of each component of A, B, and C represents (100% by weight−% by weight of the clay component), and the opposite side of each vertex represents 0% by weight.
The composition for low-temperature fired porcelain of the present invention is characterized in that the A component is nepheline sianite or soda feldspar, the B component is potassium feldspar, and the C component is petalite.

本発明の低温焼成磁器の製造方法は、Li2Oをアルカリ金属成分の主成分として含む鉱物であるC成分と、Na2Oをアルカリ金属成分の主成分として含む鉱物であるA成分およびK2Oをアルカリ金属成分の主成分として含む鉱物であるB成分から選ばれた少なくとも1つの鉱物成分とを含む非粘土成分と、粘土成分とを混合する工程と、上記混合した各成分を平均粒子径 11 μm以下に粉砕する工程と、上記粉砕した各成分を混練・成形して 1000℃以上 1200℃未満で焼成する工程とを含むことを特徴とする。 The method for producing a low-temperature fired porcelain of the present invention comprises a C component which is a mineral containing Li 2 O as a main component of an alkali metal component, an A component which is a mineral containing Na 2 O as a main component of an alkali metal component, and K 2. A step of mixing a clay component with a non-clay component containing at least one mineral component selected from the B component, which is a mineral containing O as a main component of the alkali metal component, and the average particle size of the mixed components The method includes a step of pulverizing to 11 μm or less and a step of kneading and molding the pulverized components and firing at 1000 ° C. or more and less than 1200 ° C.

本発明の低温焼成磁器用組成物は、鉱物であるC成分と、同A成分および同B成分から選ばれた少なくとも1つの鉱物成分とを含む非粘土成分と、粘土成分とを含み、組成物全体に対して粘土成分を 30 〜 50 重量%含み、該粘土成分を除いた非粘土成分として上記C成分を必須成分として含むので、1100℃程度での焼成による磁器化が可能となる。また、1100℃程度での焼成温度において、その焼成温度幅を 25℃以上とすることができる。
特に、粘土成分を一定量含有し、上記A成分をネフェリンサイアナイト、上記B成分をカリ長石、上記C成分をペタライトにすることで、1100℃程度で磁器化し、吸水率 0.5 重量%以下、かさ密度の変化を 25 〜100 ℃の焼成温度範囲で 0.03 g/cm3の範囲に抑えることができる磁器が得られる。
また、使用する原料は、全て天然原料であり、安価なこと、粉砕などの処理が容易で使用しやすいこと、大量に採掘されており入手も比較的容易であることなどの利点がある。
The composition for low-temperature fired porcelain of the present invention comprises a non-clay component containing a C component as a mineral, at least one mineral component selected from the A component and the B component, and a clay component, Since the clay component is contained in an amount of 30 to 50% by weight with respect to the whole and the C component is included as an essential component as a non-clay component excluding the clay component, it can be made porcelain by firing at about 1100 ° C. Further, at a firing temperature of about 1100 ° C., the firing temperature range can be 25 ° C. or more.
In particular, by containing a certain amount of clay component, the above A component is nepheline sianite, the above B component is potash feldspar, and the above C component is petalite, making it porcelain at about 1100 ° C, water absorption 0.5% by weight or less, bulkiness A porcelain capable of suppressing the change in density to a range of 0.03 g / cm 3 in a firing temperature range of 25 to 100 ° C. is obtained.
The raw materials used are all natural raw materials, and are advantageous in that they are inexpensive, easy to use such as pulverization and easy to use, and are mined in large quantities and relatively easy to obtain.

従来、長石−珪石−粘土系の磁器は、1350℃程度の高温で焼成するものが多く製造されているが、これは長石として、カリ長石を主に用いるものである。
本発明では、水への溶解性の少ないアルカリ金属酸化物含有物質として、長石類は、アルカリ金属としてナトリウムを含有するネフェリンサイアナイト、カリウムを含有するカリ長石、リチウムを含有するペタライトを特定範囲の割合で混合使用する。これらにより、混合アルカリ効果が発揮され、従来の長石−珪石−粘土系磁器では困難であった 1100℃程度の低温での焼結が可能になったと考えられる。
Conventionally, many feldspar-silica-clay-based porcelains are fired at a high temperature of about 1350 ° C., and this mainly uses potash feldspar.
In the present invention, as an alkali metal oxide-containing substance having a low solubility in water, feldspars include nepheline sianite containing sodium as an alkali metal, potassium feldspar containing potassium, and petalite containing lithium in a specific range. Mix in proportions. By these, mixed alkali effect was exhibited, and it is thought that sintering at a low temperature of about 1100 ° C., which was difficult with conventional feldspar-silica-clay ceramics, is possible.

本発明の低温焼成磁器の製造方法は、鉱物であるC成分、同A成分および同B成分から選ばれた少なくとも1つの鉱物成分と、粘土成分とを混合する工程と、上記混合した成分を平均粒子径 11 μm以下に粉砕する工程と、上記粉砕した成分を混練・成形して 1000℃以上 1200℃未満で焼成する工程とを含むので、緻密で機械的強度が高く、透光性を有する焼結体を得ることができる。また、1075℃〜1150℃程度の広い焼成温度幅を有するので、焼結温度にむらのある通常の陶磁器焼成炉でも使用可能である。
さらに、粘土分を一定量含有し、また可塑性に影響しがたい3種類の長石類を混合使用するので、粘土の可塑性を良好に保持でき、成形が容易である。
The method for producing a low-temperature fired porcelain of the present invention comprises a step of mixing at least one mineral component selected from the C component, the A component, and the B component, which are minerals, and a clay component, and an average of the mixed components. Since it includes a step of pulverizing to a particle size of 11 μm or less and a step of kneading and forming the pulverized components and firing at 1000 ° C. or more and less than 1200 ° C. A ligation can be obtained. Further, since it has a wide firing temperature range of about 1075 ° C. to 1150 ° C., it can also be used in ordinary ceramic firing furnaces having uneven sintering temperatures.
Further, since three kinds of feldspars containing a certain amount of clay and hardly affecting plasticity are mixed and used, the plasticity of the clay can be maintained well and molding is easy.

本発明の低温焼成磁器用組成物は、Li2Oをアルカリ金属成分の主成分として含む鉱物であるC成分と、Na2Oをアルカリ金属成分の主成分として含む鉱物であるA成分およびK2Oをアルカリ金属成分の主成分として含む鉱物であるB成分から選ばれた少なくとも1つの鉱物成分と、粘土成分とを含む。 The composition for low-temperature fired porcelain of the present invention includes a C component which is a mineral containing Li 2 O as a main component of an alkali metal component, an A component which is a mineral containing Na 2 O as a main component of an alkali metal component, and K 2. It includes at least one mineral component selected from the B component, which is a mineral containing O as a main component of the alkali metal component, and a clay component.

上記A成分としては、SiO2、Al23を主成分として、Na2Oを 5〜22 重量%含み、灼熱残分 5 重量%以下の鉱物成分が好ましく使用できる。
Na2Oが 5 重量%未満であるとNa2Oを含む鉱物としての作用を示さず、22 重量%をこえる鉱物は使用困難である。
該鉱物成分としては、ネフェリンサイアナイト、ソーダ長石、ネフェリン、ゼオライト等を用いることができる。これらの中で、入手しやすく、広い焼成温度幅が得られるという理由でネフェリンサイアナイトが好ましい。
As the component A, a mineral component containing SiO 2 and Al 2 O 3 as main components, containing 5 to 22% by weight of Na 2 O, and having a residue of 5% by weight or less can be preferably used.
When Na 2 O is less than 5% by weight, it does not act as a mineral containing Na 2 O, and minerals exceeding 22% by weight are difficult to use.
As the mineral component, nepheline sianite, soda feldspar, nepheline, zeolite and the like can be used. Among these, nepheline sianite is preferable because it is easily available and a wide firing temperature range can be obtained.

上記B成分としては、SiO2、Al23を主成分として、K2Oを 4〜17 重量%含み、灼熱残分 5 重量%以下の鉱物成分が好ましく使用できる。
2Oが 4 重量%未満であるとK2Oを含む鉱物としての作用を示さず、17 重量%をこえる鉱物は使用困難である。
該鉱物成分としてはカリ長石、セリサイト、白雲母、リューサイト等を用いることができる。これらの中で、入手しやすく、取り扱いが容易であるという理由でカリ長石が好ましい。
As the B component, as main components SiO 2, Al 2 O 3, includes K 2 O 4 to 17 wt%, ignition residue content of 5% by weight of the mineral component can be preferably used.
When K 2 O is less than 4% by weight, it does not act as a mineral containing K 2 O, and minerals exceeding 17% by weight are difficult to use.
As the mineral component, potassium feldspar, sericite, muscovite, leucite and the like can be used. Among these, potassium feldspar is preferable because it is easily available and easy to handle.

上記C成分としては、SiO2、Al23を主成分として、Li2Oを 3〜12 重量%含み、灼熱残分 5 重量%以下の鉱物成分が好ましく使用できる。
Li2Oが 3 重量%未満であるとLi2Oを含む鉱物としての作用を示さず、12 重量%をこえると使用困難である。
該鉱物成分としてはペタライト、スポジュメン、ユークリプタイト、アンブリゴナイト、レピドライト等を用いることができる。これらの中で、加熱による急激な体積変化がなく、資源も豊富で入手しやすいという理由でペタライトが好ましい。
Examples of the C component, the main component SiO 2, Al 2 O 3, the Li 2 O containing 3 to 12 wt%, ignition residue content of 5% by weight of the mineral component can be preferably used.
When Li 2 O is less than 3% by weight, it does not show an action as a mineral containing Li 2 O, and when it exceeds 12% by weight, it is difficult to use.
Examples of the mineral component include petalite, spodumene, eucryptite, ambrigonite, and lipidoid. Among these, petalite is preferable because it does not undergo a sudden volume change due to heating, is rich in resources, and is easily available.

上記粘土成分としては、SiO2およびAl23を合計で 80 重量%以上含み、灼熱残分 8 重量%以上、好ましくは 10 重量%以上の粘土成分を使用することができる。
該粘土成分としては、ニュージランド(NZ)カオリンや河東カオリンなどのカオリン、蛙目粘土、木節粘土、ベントナイト等を用いることができる。これらの中で、不純物が少ないという理由でNZカオリンが好ましい。
As the clay component, it is possible to use a clay component containing SiO 2 and Al 2 O 3 in a total of 80% by weight or more, and a residual residue of 8% by weight or more, preferably 10% by weight or more.
Examples of the clay component include kaolins such as New Zealand (NZ) kaolin and Hedong kaolin, Sasame clay, Kibushi clay, bentonite and the like. Of these, NZ kaolin is preferred because it has few impurities.

本発明において、各成分の配合割合を変えた場合の焼成温度幅は、各成分を粉砕混合した後、混練・成形して焼成することで得られる焼結体の吸水率、かさ密度を測定することで判定できる。吸水率 0.5 重量%以内となる焼成温度範囲で、かさ密度の最大値からの変動幅が小さな値を示すほど焼成温度幅が広いといえる。
例えば、表1に示す各成分を表2に示す配合割合で粘土成分の割合を変化させた場合の焼成温度に対する吸水率およびかさ密度の変化を図1に示す。また、焼成温度幅を表2に示す。なお、表2において、A成分、B成分、C成分はそれぞれ等量混合した。例えば(A+B+C)の配合量が60重量%の場合、A成分、B成分、C成分はそれぞれ20重量%である。また、焼成前の原料は目開き 500 μmのふるい通過分を用い、圧力 50 MPa でプレス成形した試験片を各焼成温度で1時間保持した。
In the present invention, when the blending ratio of each component is changed, the firing temperature range is measured by measuring the water absorption rate and bulk density of a sintered body obtained by pulverizing and mixing the components, followed by kneading, forming and firing. Can be determined. It can be said that the firing temperature range is wider as the fluctuation range from the maximum bulk density is smaller in the firing temperature range where the water absorption is within 0.5% by weight.
For example, FIG. 1 shows changes in water absorption and bulk density with respect to the firing temperature when the proportions of the clay components are changed in the proportions shown in Table 1 for the components shown in Table 1. Table 2 shows the firing temperature range. In Table 2, A component, B component, and C component were mixed in equal amounts. For example, when the blending amount of (A + B + C) is 60% by weight, the A component, the B component, and the C component are each 20% by weight. Moreover, the raw material before baking used the sieve passage of 500 micrometers of openings, and the test piece press-molded by the pressure of 50 MPa was hold | maintained at each baking temperature for 1 hour.

Figure 2009215115
Figure 2009215115
Figure 2009215115
Figure 2009215115

図1および表2に示すように、粘土成分が少ないと焼成温度幅が狭くなり、また粘土成分が多くなると焼成温度が高くなるとともに焼成温度幅が狭くなる。
本発明の低温焼成磁器用組成物は、上記粘土成分を 30 〜 50 重量%、好ましくは 35 〜 45 重量%含む。粘土成分が 30 重量%未満であると、焼成温度幅が狭くなり、粘土成分が 50 重量%をこえると、吸水率 0.5 重量%以内となる焼結温度が高くなり低温焼成
が困難になる。またかさ密度の変化が大きくなり均一な焼結体を得ることが困難となる。
As shown in FIG. 1 and Table 2, when the clay component is small, the firing temperature range is narrowed, and when the clay component is large, the firing temperature is increased and the firing temperature range is narrowed.
The composition for low-temperature fired porcelain of the present invention contains 30 to 50% by weight, preferably 35 to 45% by weight of the above clay component. When the clay component is less than 30% by weight, the firing temperature range becomes narrower, and when the clay component exceeds 50% by weight, the sintering temperature becomes less than 0.5% by weight and the low temperature firing becomes difficult. Also, the change in bulk density becomes large and it becomes difficult to obtain a uniform sintered body.

本発明の低温焼成磁器用組成物は、上記粘土成分 30 〜 50 重量%に対して、上記C成分を必須成分として含む。
好ましくは、上記粘土成分を除いた非粘土成分全体に対してC成分を 8.3 〜 75 重量%、より好ましくは、上記粘土成分を除いた非粘土成分として、A成分、B成分およびC成分の組成範囲が上記三角座標(1)の斜線範囲内である。
例えば、粘土成分を 40 重量%含み、残りの全てが非粘土成分の場合、三角座標の各頂点は 60 重量%となり、A成分は 0 〜 55 重量%、B成分は 0 〜 55 重量%、C成分は 5 〜 45 重量%の範囲で、A成分とB成分とC成分との合計が 60 重量%となる範囲が好ましい。
The composition for low-temperature fired porcelain of the present invention contains the C component as an essential component with respect to 30 to 50% by weight of the clay component.
Preferably, C component is 8.3 to 75% by weight with respect to the whole non-clay component excluding the clay component, more preferably, the composition of A component, B component and C component as non-clay component excluding the clay component The range is within the hatched range of the triangular coordinate (1).
For example, when the clay component is 40% by weight and all the remaining components are non-clay components, each vertex of the triangular coordinates is 60% by weight, the A component is 0 to 55% by weight, the B component is 0 to 55% by weight, C The component is in the range of 5 to 45% by weight, and the range in which the total of component A, component B and component C is 60% by weight is preferable.

A成分とB成分とC成分との合計が 60 重量%となる配合において、各成分の割合を変化させて焼成温度に対する吸水率およびかさ密度の変化を測定し、かさ密度が最大値を示す温度と焼成温度幅を求めた結果を以下に三角座標(2)で示す。

Figure 2009215115
三角座標(2)において、例えば黒点とこの黒点付近に記載された 1100/75 の数値は、黒点が三角座標上でのA成分とB成分とC成分との配合割合を示し、吸水率が 0.5 %以下となる最低焼成温度と、かさ密度の変動幅が最大値−0.03 g/cm3の範囲に収まる焼成温度幅を示す。なお、粘土成分 40 %、C成分 60 %の場合、1250 ℃以下の焼成温度では焼結体が得られなかった。
三角座標(2)に示すように、A成分とB成分とC成分との合計が 60 重量%となる配合において、 1100℃以内で 50 ℃以上の焼成幅を得ようとすれば、A成分は 0 〜 45 重量%、B成分は 0 〜 45 重量%、C成分は 15 〜 45 重量%の範囲で、A成分とB成分とC成分との合計が 60 重量%となる範囲が好ましい。その範囲は、三角座標(2)に示す斜線で示す範囲内である。
また、 1080℃以内で 75 ℃以上の焼成幅を得ようとすれば、A成分とB成分とC成分との範囲は、太線で示す 1080℃で囲まれた範囲内である。 The temperature at which the bulk density reaches the maximum value is measured by changing the proportion of each component and measuring the change in the water absorption rate and the bulk density with respect to the firing temperature in the formulation where the total of the A component, the B component, and the C component is 60% by weight. The results of obtaining the firing temperature range are shown in triangular coordinates (2) below.
Figure 2009215115
In triangular coordinate (2), for example, the black point and the numerical value of 1100/75 written in the vicinity of the black point indicate the blending ratio of the A component, the B component and the C component on the triangular coordinate, and the water absorption is 0.5. % Firing temperature range within which the fluctuation range of bulk density falls within the range of the maximum value −0.03 g / cm 3 . When the clay component was 40% and the C component was 60%, a sintered body could not be obtained at a firing temperature of 1250 ° C. or lower.
As shown in the triangular coordinate (2), in a composition where the sum of the A component, the B component and the C component is 60% by weight, if an attempt is made to obtain a firing width of 50 ° C. or more within 1100 ° C., the A component is A range of 0 to 45% by weight, a B component of 0 to 45% by weight, a C component of 15 to 45% by weight and a total of A, B and C components of 60% by weight is preferred. The range is within the range indicated by the oblique lines shown in triangular coordinates (2).
Moreover, if it is going to obtain the baking width | variety of 75 degreeC or more within 1080 degreeC, the range of A component, B component, and C component will be in the range enclosed by 1080 degreeC shown with a thick line.

本発明の低温焼成磁器組成物は、上記粘土成分および上記非粘土成分で構成することが好ましい。
また、上記粘土成分、非粘土成分以外に、その10重量%以下であれば、ガラスフリット、炭酸マグネシウム、燐酸マグネシウム、酸化亜鉛、二酸化ケイ素、酸化アルミニウム、酸化チタン、ジルコン、酸化ジルコニウム、ムライト、酸化鉄、酸化銅、酸化マンガン、酸化コバルト、酸化ニッケル、酸化クロムなどの成分を含んでもよい。
The low-temperature fired ceramic composition of the present invention is preferably composed of the clay component and the non-clay component.
In addition to the above-mentioned clay component and non-clay component, glass frit, magnesium carbonate, magnesium phosphate, zinc oxide, silicon dioxide, aluminum oxide, titanium oxide, zircon, zirconium oxide, mullite, oxidation can be used if the content is 10% by weight or less. Components such as iron, copper oxide, manganese oxide, cobalt oxide, nickel oxide, and chromium oxide may be included.

本発明の低温焼成磁器の製造方法について説明する。
上述のA成分と、B成分と、C成分と、粘土成分を湿式法または乾式法により混合する。例えば、湿式法では、各成分を所定の大きさのボールミルに入れ、所定量の水を添加した後、10〜 20 時間程度回転させて粉砕混合する。混合物をフィルタープレスなどを用いて脱水し、成形に供する。
成形は、排泥鋳込成形法、圧力鋳込成形法、機械ろくろ成形法、手ろくろ成形法、湿式プレス成形法、乾式プレス成形法などにより、所定の形状に成形する。例えば、排泥鋳込成形法では、上記脱水混合物に所定量の水と分散剤を加え、撹拌機などを用いて 2〜5 時間程度混合撹拌し、スラリーを作製する。このスラリーを所定の形状の石膏型に流し込んで着肉させた後、残留するスラリーを排泥し、脱型して成形体を得る。
焼成は、得られた成形体を乾燥させた後、電気炉、ガス炉などにより 1000 ℃以上 1200 ℃未満で焼成する。
A method for producing the low-temperature fired porcelain of the present invention will be described.
The above-mentioned A component, B component, C component, and clay component are mixed by a wet method or a dry method. For example, in the wet method, each component is put into a ball mill of a predetermined size, a predetermined amount of water is added, and then the mixture is pulverized and mixed for about 10 to 20 hours. The mixture is dehydrated using a filter press or the like and subjected to molding.
The molding is performed in a predetermined shape by a sludge casting molding method, a pressure casting molding method, a mechanical potter's wheel molding method, a hand potter's wheel molding method, a wet press molding method, a dry press molding method, or the like. For example, in the sludge cast molding method, a predetermined amount of water and a dispersing agent are added to the dehydrated mixture, and the mixture is stirred for about 2 to 5 hours using a stirrer or the like to prepare a slurry. After pouring this slurry into a gypsum mold having a predetermined shape and making it thick, the remaining slurry is drained and demolded to obtain a molded body.
Firing is performed by drying the obtained molded body, and then firing at 1000 ° C. or more and less than 1200 ° C. using an electric furnace, a gas furnace, or the like.

表2における実験番号NP204素地における粘土以外の原料のボールミル粉砕時間を変え、粒度による焼結性の影響を調べた。表3にこれらの素地の平均粒子径を測定した結果を、また、図2にボールミル粉砕時間と焼結性の関係を示す。

Figure 2009215115
Experiment No. NP204 in Table 2 The ball milling time of raw materials other than clay in the substrate was changed, and the influence of sinterability due to particle size was examined. Table 3 shows the results of measuring the average particle size of these substrates, and FIG. 2 shows the relationship between ball milling time and sinterability.
Figure 2009215115

図2および表3より、粉砕時間が長くなると、若干低温での焼結が進むが、あまり大きな違いはなく、粒度による影響は少ない。しかし、焼成温度幅の広い安定した焼結性の示す素地にするためには、12 時間以上粉砕し、平均粒子径で 11 μm以下、好ましくは 10 μm以下に粉砕する。   2 and Table 3, as the pulverization time becomes longer, sintering at a slightly lower temperature proceeds, but there is no significant difference, and the influence of the particle size is small. However, in order to obtain a substrate having a wide firing temperature range and stable sinterability, it is pulverized for 12 hours or more and pulverized to an average particle diameter of 11 μm or less, preferably 10 μm or less.

実際の焼結では、炉内の温度は均一ではないため、焼成温度幅が狭いと製品の歩留まりが悪くなることから、ある程度焼成温度幅が広いことが重要である。本発明の低温焼成磁器用組成物は上記配合であるので、1100℃付近で 25 ℃以上の十分な焼成温度幅を有している。   In actual sintering, since the temperature in the furnace is not uniform, if the firing temperature range is narrow, the yield of the product is deteriorated. Therefore, it is important that the firing temperature range is wide to some extent. Since the composition for low-temperature fired porcelain of the present invention has the above-mentioned composition, it has a sufficient firing temperature range of about 25 ° C. or more around 1100 ° C.

以下の実施例および比較例において、以下の原料を使用した。
ネフェリンサイアナイト(UNIMIN CANADA社製、ネフェリンサイアナイト)
カリ長石(MAHAVIR MINERALS社製、インド長石)
ペタライト(BIKITA MINERALS社製、#200ペタライト)
粘土(N.Z.CHINA CLAYS社製、ニュージーランドカオリン)
これら原料は上記表1に示す組成を有している。また、粘土を除き、24 時間湿式ボールミル粉砕し(ペタライトのみ 48 時間粉砕)、乾燥して用いた。
The following raw materials were used in the following examples and comparative examples.
Nepheline sianite (made by UNIMIN CANADA, nepheline sianite)
Potash feldspar (MAHAVIR MINALALS, Indian feldspar)
Petalite (Bikita Minerals, # 200 Petalite)
Clay (NZ Kaolin, New Zealand Kaolin)
These raw materials have the compositions shown in Table 1 above. In addition, the clay was removed, and wet ball milling was performed for 24 hours (only petalite was ground for 48 hours), followed by drying.

実施例1〜実施例3
表4に示す配合割合でネフェリンサイアナイト、カリ長石、ペタライト、および粘土を2時間湿式ボールミルで混合した後、乾燥した。乾燥した各調合物を粉砕し、目開き 500 μmのふるいを通過させた。試験体は、これを用いて、圧力 50 MPa で直径 25 mm、厚さ約 5 mm の円盤をプレス成形した。また、曲げ強度の試験体は、120×25×約 7 mm の直方体を同様にプレス成形した。各成形体は、電気炉により、昇温速度 200℃/h、所定温度での保持1時間として焼成した。
Examples 1 to 3
Nepheline sianite, potassium feldspar, petalite, and clay were mixed in a wet ball mill for 2 hours at the blending ratio shown in Table 4, and then dried. Each dried formulation was pulverized and passed through a sieve having an opening of 500 μm. The test specimen was used to press-mold a disk having a diameter of 25 mm and a thickness of about 5 mm at a pressure of 50 MPa. The test specimen for bending strength was press-molded in the same manner as a rectangular parallelepiped of 120 x 25 x about 7 mm. Each molded body was fired in an electric furnace at a heating rate of 200 ° C./h and a holding time of 1 hour at a predetermined temperature.

得られた焼結体の焼結性を評価するため、焼結体の吸水率、かさ密度をアルキメデス法により測定し、Norris らによる方法( A.W.Norris, et al. "Range Curves : An Experimental Method for the Study of Vitreous Pottery Bodies". Trans. J. Brit. Ceram. Soc., 78, P102-108(1979) )により焼成温度幅を求めた。また、曲げ強度は、焼成3点曲げ法により、支点間距離 10 cm、クロスヘッドスピード 5 m/min として測定した。熱膨張は、昇温速度 5℃/min で測定した。結晶組成は、X線回折により調べた。
得られた焼結体の最大かさ密度温度と焼成温度幅を図3に示す。また、特に実施例2における吸水率とかさ密度の変化を図4に、また実施例2素地の物性を測定した結果を表5に示す。
In order to evaluate the sinterability of the sintered body, the water absorption and bulk density of the sintered body were measured by the Archimedes method, and the method by Norris et al. (AWNorris, et al. “Range Curves: An Experimental Method for the Study of Vitreous Pottery Bodies ". Trans. J. Brit. Ceram. Soc., 78, P102-108 (1979)). The bending strength was measured by a firing three-point bending method with a distance between supporting points of 10 cm and a crosshead speed of 5 m / min. Thermal expansion was measured at a heating rate of 5 ° C / min. The crystal composition was examined by X-ray diffraction.
The maximum bulk density temperature and firing temperature range of the obtained sintered body are shown in FIG. In particular, FIG. 4 shows changes in water absorption and bulk density in Example 2, and Table 5 shows the results of measuring physical properties of Example 2 substrate.

比較例1〜比較例3
表4に示す配合割合でネフェリンサイアナイト、カリ長石、および粘土を2時間湿式ボールミルで混合した後、乾燥した。乾燥した各調合物を粉砕し、目開き 500 μmのふるいを通過させた。試験体は、これを用いて、圧力 50 MPa で直径 25 mm、厚さ約 5 mm の円盤をプレス成形した。成形体は、電気炉により、昇温速度 200℃/h、所定温度での保持1時間として焼成した。
Comparative Examples 1 to 3
Nepheline sianite, potash feldspar, and clay were mixed in a wet ball mill for 2 hours at the blending ratio shown in Table 4 and then dried. Each dried formulation was pulverized and passed through a sieve having an opening of 500 μm. The test specimen was used to press-mold a disk having a diameter of 25 mm and a thickness of about 5 mm at a pressure of 50 MPa. The molded body was fired in an electric furnace at a heating rate of 200 ° C./h and a holding time of 1 hour at a predetermined temperature.

得られた焼結体の焼結性を評価するため、実施例1と同様に焼結体の吸水率、かさ密度を測定し、焼成温度幅を求めた。
得られた焼結体の最大かさ密度温度と焼成温度幅を図3に示す。また、特に比較例2における吸水率とかさ密度の変化を図5に示す。
In order to evaluate the sinterability of the obtained sintered body, the water absorption rate and bulk density of the sintered body were measured in the same manner as in Example 1 to determine the firing temperature range.
The maximum bulk density temperature and firing temperature range of the obtained sintered body are shown in FIG. Moreover, especially the change of the water absorption rate and the bulk density in the comparative example 2 is shown in FIG.

Figure 2009215115
Figure 2009215115
Figure 2009215115
Figure 2009215115

図3に示すように、ネフェリンサイアナイト−カリ長石−粘土系の比較例1〜3は、いずれも最大かさ密度温度を得るための焼成温度が 1150℃であるが、焼成温度幅が狭い。一方、ペタライトを含有する実施例1〜3は、最大かさ密度が 1100℃であり、比較例1〜3に比べて低温で焼結する。これは、ネフェリンサイアナイトのナトリウム、カリ長石のカリウム、ペタライトのリチウムの3種類のアルカリ金属が混合されたことによる混合アルカリ効果が現れ、生成したガラスの溶融粘性が低下したためと考えられる。   As shown in FIG. 3, the comparative examples 1 to 3 of the nepheline sianite-potassium feldspar-clay system all have a firing temperature of 1150 ° C. to obtain the maximum bulk density temperature, but the firing temperature range is narrow. On the other hand, Examples 1-3 containing petalite have a maximum bulk density of 1100 ° C. and are sintered at a lower temperature than Comparative Examples 1-3. This is thought to be due to the mixed alkali effect due to the mixing of three alkali metals, sodium nepheline sianite, potassium potassium feldspar, and lithium lithium petalite, resulting in a decrease in the melt viscosity of the produced glass.

また、吸水率が 0%になる温度が低いと低温で焼結しやすく、吸水率 0%になる温度付近でのかさ密度が安定していると焼成温度幅が広いといえる。
図5に示すように、比較例2のネフェリンサイアナイト−カリ長石−粘土系素地では、吸水率は 1150℃程度で 0%になるが、この温度付近でかさ密度の変化が大きく、焼成温度幅が狭い。一方、図4に示すように、実施例2のネフェリンサイアナイト−カリ長石−ペタライト−粘土系素地にすると、1075℃程度で吸水率が約 0%になり、1075〜1150℃の範囲でかさ密度が安定しているため、この温度範囲( 75 ℃)が焼成温度幅であり、広い温度幅を有していることがわかる。
Moreover, if the temperature at which the water absorption rate is 0% is low, sintering is easy at low temperatures, and if the bulk density near the temperature at which the water absorption rate is 0% is stable, it can be said that the firing temperature range is wide.
As shown in FIG. 5, in the nepheline syanite-potassium feldspar-clay base material of Comparative Example 2, the water absorption becomes 0% at about 1150 ° C., but the change in bulk density is large near this temperature, and the firing temperature range is narrow. On the other hand, as shown in FIG. 4, when the nepheline syanite-potassium feldspar-petalite-clay base material of Example 2 is used, the water absorption becomes about 0% at about 1075 ° C, and the bulk density in the range of 1075 to 1150 ° C. Since it is stable, it can be seen that this temperature range (75 ° C.) is the firing temperature range and has a wide temperature range.

したがって、ネフェリンサイアナイト−カリ長石−ペタライト−粘土系素地にすることで、これまでの陶磁器素地では困難であった低温での焼結と、広い焼成温度幅を得ることができることになる。これまでの陶磁器素地に比べて 100〜200℃程度は低温で焼成できるとともに、焼成温度幅が 75℃程度あり、かなり広い温度幅で焼成が可能であることから、通常の陶磁器焼成炉を用いて焼成することも容易である。
また、表5より、曲げ強度、線熱膨張係数は、通常の磁器と同等であることがわかった。
Therefore, by using a nepheline sianite-potassium feldspar-petalite-clay-based body, sintering at a low temperature and a wide firing temperature range that have been difficult with conventional ceramic bodies can be obtained. Compared to conventional ceramic bodies, it can be fired at a low temperature of about 100-200 ° C, and the firing temperature range is about 75 ° C. It can be fired in a fairly wide temperature range, so use a normal ceramic firing furnace. It is also easy to fire.
Further, from Table 5, it was found that the bending strength and the linear thermal expansion coefficient are equivalent to those of ordinary porcelain.

本発明の低温焼成磁器用組成物は、ガラスフリットなどの高価なガラス成分を配合することなく、安価な天然原料を用いて、1100℃程度の焼成で焼結できるので、原油の値上がりに伴う燃料費の高騰に対処することができ、また、陶磁器製造過程における二酸化炭素排出量の抑制に寄与できる。
さらに、得られる磁器は、低温焼成磁器であるにも拘わらず、緻密で機械的強度が高く、透光性を有する焼結体を得ることができるため、食器や照明器具など日用品として用いられる磁器や観賞用磁器だけでなく、電子材料などとして用いられる特殊な磁器のための組成物としても好適に用いることができる。
The composition for low-temperature fired porcelain of the present invention can be sintered by firing at about 1100 ° C. using inexpensive natural raw materials without blending expensive glass components such as glass frit. It is possible to cope with a rise in costs, and to contribute to the suppression of carbon dioxide emissions in the ceramic manufacturing process.
Furthermore, although the obtained porcelain is a low-temperature fired porcelain, it can obtain a dense sintered body having high mechanical strength and translucency. The composition can be suitably used not only for ornamental porcelain but also for a special porcelain used as an electronic material.

粘土成分の割合に対する吸水率およびかさ密度の変化を示す図である。It is a figure which shows the change of the water absorption rate and the bulk density with respect to the ratio of a clay component. ボールミル粉砕時間と焼結性の関係を示す図である。It is a figure which shows the relationship between ball mill grinding time and sinterability. 焼結体における最大かさ密度温度および焼成温度幅を示す図である。It is a figure which shows the maximum bulk density temperature and firing temperature range in a sintered compact. 本発明の焼成体の吸水率とかさ密度の変化を示すグラフである。It is a graph which shows the change of the water absorption rate and bulk density of the sintered body of this invention. 従来品における焼成体の吸水率とかさ密度の変化を示すグラフである。It is a graph which shows the change of the water absorption rate and bulk density of the sintered body in a conventional product.

Claims (5)

Li2Oをアルカリ金属成分の主成分として含む鉱物であるC成分と、Na2Oをアルカリ金属成分の主成分として含む鉱物であるA成分およびK2Oをアルカリ金属成分の主成分として含む鉱物であるB成分から選ばれた少なくとも1つの鉱物成分とを含む非粘土成分と、粘土成分とを含み、
組成物全体に対して前記粘土成分を 30 〜 50 重量%含み、前記非粘土成分として、この非粘土成分全体に対して前記C成分を 8.3 〜 75 重量%含むことを特徴とする低温焼成磁器用組成物。
C component which is a mineral containing Li 2 O as a main component of an alkali metal component, A component which is a mineral containing Na 2 O as a main component of an alkali metal component, and a mineral containing K 2 O as a main component of an alkali metal component A non-clay component containing at least one mineral component selected from the B component, and a clay component,
30% to 50% by weight of the clay component with respect to the whole composition, and 8.3 to 75% by weight of the C component with respect to the whole non-clay component as the non-clay component. Composition.
前記A成分がNa2Oを 5〜22 重量%含む鉱物であり、前記B成分がK2Oを 4〜17 重量%含む鉱物であり、前記C成分がLi2Oを 3〜12 重量%含む鉱物であることを特徴とする請求項1記載の低温焼成磁器用組成物。 The A component is a mineral containing 5 to 22% by weight of Na 2 O, the B component is a mineral containing 4 to 17% by weight of K 2 O, and the C component contains 3 to 12% by weight of Li 2 O. The composition for low-temperature fired porcelain according to claim 1, wherein the composition is a mineral. 前記非粘土成分として、前記A成分、前記B成分および前記C成分の組成範囲が下記三角座標(1)の斜線範囲で表されることを特徴とする請求項1または請求項2記載の低温焼成磁器用組成物。
Figure 2009215115
(上記三角座標(1)において、A、B、およびC各成分の頂点の値は、( 100 重量%−粘土成分の重量%)を、各頂点の対辺は 0 重量%をそれぞれ表す。)
The low-temperature firing according to claim 1 or 2, wherein the composition range of the A component, the B component, and the C component as the non-clay component is represented by a hatched range of the following triangular coordinate (1). Porcelain composition.
Figure 2009215115
(In the above triangular coordinate (1), the values of the vertices of each of the A, B, and C components are (100% by weight−% by weight of the clay component), and the opposite side of each vertex represents 0% by weight.)
前記A成分がネフェリンサイアナイトまたはソーダ長石であり、前記B成分がカリ長石であり、前記C成分がペタライトであることを特徴とする請求項3記載の低温焼成磁器用組成物。   4. The composition for low-temperature fired porcelain according to claim 3, wherein the A component is nepheline sianite or soda feldspar, the B component is potassium feldspar, and the C component is petalite. Li2Oをアルカリ金属成分の主成分として含む鉱物であるC成分と、Na2Oをアルカリ金属成分の主成分として含む鉱物であるA成分およびK2Oをアルカリ金属成分の主成分として含む鉱物であるB成分から選ばれた少なくとも1つの鉱物成分とを含む非粘土成分と、粘土成分とを混合する工程と、
前記混合した各成分を平均粒子径 11 μm以下に粉砕する工程と、
前記粉砕した各成分を混練・成形して 1000℃以上 1200℃未満で焼成する工程とを含むことを特徴とする低温焼成磁器の製造方法。
C component which is a mineral containing Li 2 O as a main component of an alkali metal component, A component which is a mineral containing Na 2 O as a main component of an alkali metal component, and a mineral containing K 2 O as a main component of an alkali metal component A step of mixing a non-clay component containing at least one mineral component selected from the B component and a clay component;
Crushing each of the mixed components to an average particle size of 11 μm or less;
And a step of kneading and molding the pulverized components and firing at 1000 ° C. or more and less than 1200 ° C.
JP2008061443A 2008-03-11 2008-03-11 Composition for low-temperature fired porcelain and method for producing low-temperature fired porcelain Expired - Fee Related JP5083971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008061443A JP5083971B2 (en) 2008-03-11 2008-03-11 Composition for low-temperature fired porcelain and method for producing low-temperature fired porcelain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008061443A JP5083971B2 (en) 2008-03-11 2008-03-11 Composition for low-temperature fired porcelain and method for producing low-temperature fired porcelain

Publications (2)

Publication Number Publication Date
JP2009215115A true JP2009215115A (en) 2009-09-24
JP5083971B2 JP5083971B2 (en) 2012-11-28

Family

ID=41187379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008061443A Expired - Fee Related JP5083971B2 (en) 2008-03-11 2008-03-11 Composition for low-temperature fired porcelain and method for producing low-temperature fired porcelain

Country Status (1)

Country Link
JP (1) JP5083971B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013022257A (en) * 2011-07-21 2013-02-04 Ishigaki Sangyo:Kk Heat resistant dish for microwave oven
CN108793960A (en) * 2018-08-23 2018-11-13 广西亚欧瓷业有限公司 A kind of preparation method of wear-resistant ceramic brick capable of releasing negative ion

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107805047A (en) * 2017-11-01 2018-03-16 福建德化五洲陶瓷股份有限公司 High feldspathic ceramic body material and preparation method thereof, the method for preparing with it ceramic

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1095657A (en) * 1996-09-17 1998-04-14 Etsuro Kato Plastic clay compound sinterable at low temperature
JPH10194827A (en) * 1997-01-14 1998-07-28 Mizuno Giken:Kk Thermal shock resistant ceramics and its production
JPH11335156A (en) * 1998-05-27 1999-12-07 Kyocera Corp Low-temperature fired porcelain composition and production of porcelain
JP2005162592A (en) * 2003-12-03 2005-06-23 Tonari Emura Method for forming low-temperature fired clay

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1095657A (en) * 1996-09-17 1998-04-14 Etsuro Kato Plastic clay compound sinterable at low temperature
JPH10194827A (en) * 1997-01-14 1998-07-28 Mizuno Giken:Kk Thermal shock resistant ceramics and its production
JPH11335156A (en) * 1998-05-27 1999-12-07 Kyocera Corp Low-temperature fired porcelain composition and production of porcelain
JP2005162592A (en) * 2003-12-03 2005-06-23 Tonari Emura Method for forming low-temperature fired clay

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013022257A (en) * 2011-07-21 2013-02-04 Ishigaki Sangyo:Kk Heat resistant dish for microwave oven
CN108793960A (en) * 2018-08-23 2018-11-13 广西亚欧瓷业有限公司 A kind of preparation method of wear-resistant ceramic brick capable of releasing negative ion
CN108793960B (en) * 2018-08-23 2021-06-29 广西亚欧瓷业有限公司 Preparation method of wear-resistant ceramic tile capable of releasing negative ions

Also Published As

Publication number Publication date
JP5083971B2 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
JP5661303B2 (en) Composition for low-temperature fired porcelain and method for producing low-temperature fired porcelain
Kamseu et al. Characterisation of porcelain compositions using two china clays from Cameroon
Ryan Properties of ceramic raw materials
Yalçın et al. Utilization of bauxite waste in ceramic glazes
Andreola et al. Technological properties of glass-ceramic tiles obtained using rice husk ash as silica precursor
JP6818022B2 (en) Sintered zirconia mullite refractory composite, its production method, and its use
ES2688325T3 (en) Refractory product and its use
JP6845645B2 (en) Magnesium oxide-containing spinel powder and its manufacturing method
JP4944610B2 (en) Green component for manufacturing sintered refractory products with improved bubble generation behavior
CN103030415A (en) High-performance forsterite refractory raw material and preparation method thereof
CN103011870B (en) Forsterite refractory and production method thereof
Zhang et al. Effect of Al2O3 addition on the flexural strength and light‐transmission properties of bone china
JP4408104B2 (en) Strengthened porcelain and manufacturing method thereof
JP5083971B2 (en) Composition for low-temperature fired porcelain and method for producing low-temperature fired porcelain
Zhang et al. Fabrication and characterization of bone china using synthetic bone powder as raw materials
KR101283314B1 (en) Composite for ceramic ware with low deformation and high strength and manufacturing method of ceramic ware
CN104557061A (en) Straight hole ceramic filter
JP2015040149A (en) Zirconia powder, and sintered compact and use thereof
CN110713380A (en) Preparation method of high-purity compact forsterite
KR20070066729A (en) Fabrication method of high density &amp; high fracture toughness silica radome
CN103044043A (en) Compact forsterite fire-resistant raw material and preparation method thereof
JP6221663B2 (en) Zirconia powder
Li et al. Synthesis of α-cordierite based glass-ceramic from Bayan Obo tailing and fly ash through volume crystallization
JPH0930860A (en) Production of refractory having low thermal expansion property
RU2422405C1 (en) Crude mixture and method of producing high-strength refractory ceramic based on said mixture

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120831

R150 Certificate of patent or registration of utility model

Ref document number: 5083971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees