JP2009212776A - Ultrasonic sensor for measuring state of object existing under high temperature environment - Google Patents

Ultrasonic sensor for measuring state of object existing under high temperature environment Download PDF

Info

Publication number
JP2009212776A
JP2009212776A JP2008053251A JP2008053251A JP2009212776A JP 2009212776 A JP2009212776 A JP 2009212776A JP 2008053251 A JP2008053251 A JP 2008053251A JP 2008053251 A JP2008053251 A JP 2008053251A JP 2009212776 A JP2009212776 A JP 2009212776A
Authority
JP
Japan
Prior art keywords
sensor
ultrasonic
damping material
frame
ultrasonic sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008053251A
Other languages
Japanese (ja)
Other versions
JP4911630B2 (en
Inventor
Akihiro Tagawa
明広 田川
Takuya Yamashita
卓哉 山下
Masashi Ueda
雅司 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency filed Critical Japan Atomic Energy Agency
Priority to JP2008053251A priority Critical patent/JP4911630B2/en
Publication of JP2009212776A publication Critical patent/JP2009212776A/en
Application granted granted Critical
Publication of JP4911630B2 publication Critical patent/JP4911630B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic sensor that is used even under high temperature environment as a case that an object for measurement exists in high temperature sodium of a fast breeder reactor and by which a high resolution measured image is obtained. <P>SOLUTION: The ultrasonic sensor is constituted of a plurality of sensor elements arranged like a matrix, wherein each sensor element is constituted of a sensor frame constituting one electrode, and a plurality of sensor elements formed like a matrix on the sensor frame. Each of the sensor elements includes a piezoelectric element which transmits/receives ultrasonic wave, one surface of which is connected to the sensor frame, a damping material for ultrasonic attenuation vertically arranged on the other surface of the piezoelectric element, and the other electrode arranged between the damping material and the piezoelectric element. Each sensor element is fixed to a metal frame, respectively, and the damping material is constituted of a material exhibiting large resistance to thermal shock. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高温環境下にある測定対象物の変形、破壊等の状態を目視測定するための超音波センサに関するものである。さらに詳細には、本発明は、高速増殖炉の冷却材のような高温ナトリウム(Na)中においても使用可能な超音波センサに関する。   The present invention relates to an ultrasonic sensor for visually measuring the state of deformation or destruction of a measurement object in a high temperature environment. More particularly, the present invention relates to an ultrasonic sensor that can also be used in high temperature sodium (Na), such as a fast breeder reactor coolant.

超音波を利用した各種センシング技術は、圧電素子を利用することによって、超音波の発信から受信までの到達時間差を把握することで、被対象物の有無、形状、欠陥等を測定するために、幅広い産業分野において利用されている。
解像度を向上させ、測定対称物の解析精度を向上させるため、圧電素子を平面状に均等配列(マトリックス配列)させた超音波センサや、超音波の送信と受信を別々の圧電素子に分担させる構造を持つ超音波センサなどが、既に多くの産業分野において使用されている。
In order to measure the presence / absence, shape, defect, etc. of the object by grasping the arrival time difference from transmission to reception of ultrasonic waves by using piezoelectric elements, various sensing technologies using ultrasonic waves, It is used in a wide range of industrial fields.
In order to improve resolution and improve the analysis accuracy of symmetrical objects, ultrasonic sensors with piezoelectric elements arranged in a uniform plane (matrix arrangement) and structures that share transmission and reception of ultrasonic waves to separate piezoelectric elements Have already been used in many industrial fields.

例えば、特許文献1に開示された「超音波装置」では、水中あるいは大気中において、圧電素子をマトリックス状に複数併設し、超音波による解析精度を上げ、かつ、各圧電素子間のクロストークを減少させるためのインピーダンスの整合性を取る等の工夫がなされている。   For example, in the “ultrasonic device” disclosed in Patent Document 1, a plurality of piezoelectric elements are provided in a matrix in water or in the air, the accuracy of ultrasonic analysis is improved, and crosstalk between the piezoelectric elements is reduced. Ingenuity is taken such as taking impedance matching to reduce.

また、特許文献2に開示された「リアルタイム3次元超音波映像装置および探触子」では、水中あるいは大気中において、マトリックス状に複数併設した圧電素子を、送信用と受信用とに使いわけ、それらを交互に配列し、超音波による解析精度向上と、解析時間短縮が図られている。   In addition, in the “real-time three-dimensional ultrasound imaging apparatus and probe” disclosed in Patent Document 2, in water or in the air, a plurality of piezoelectric elements arranged in a matrix are used for transmission and reception, They are arranged alternately to improve the analysis accuracy by ultrasonic waves and shorten the analysis time.

さらに、特許文献3に開示された「液体金属用超音波トランジューサ」では、特許文献1あるいは特許文献2とは異なり、超音波トランジューサの液体重金属との接液界面における音圧透過効率の悪さを改善するため、圧電素子の振動伝達部に液体重金属との濡れ性を持たせる工夫がなされている。
特開2001−197593号公報 特開2003−000599号公報 特開2006−322749号公報
Furthermore, unlike “Patent Document 1” or “Patent Document 2”, the “ultrasonic transducer for liquid metal” disclosed in Patent Document 3 has poor sound pressure transmission efficiency at the liquid contact interface between the ultrasonic transducer and the liquid heavy metal. In order to improve the above, a device has been devised in which the vibration transmitting portion of the piezoelectric element has wettability with the liquid heavy metal.
JP 2001-197593 A JP 2003-0000599 A JP 2006-322749 A

しかしながら、上述の各超音波装置では、ダンピング材の材質が環境が厳しい分野での使用、例えば、高速増殖炉の検査時のナトリウム液中のように高温環境下(200℃)、高放射線下(10Gy)での測定、さらに、プラント配管の探傷等の高温環境下、各種液体の取扱い環境下での測定のように、使用環境が極めて厳しい分野での使用に耐えないという欠点があった。 However, in each of the above-described ultrasonic apparatuses, the material used for the damping material is used in a severe environment, for example, in a high temperature environment (200 ° C.) or in a high radiation state (for example, in a sodium solution at the time of inspection of a fast breeder reactor). 10 5 Gy), as well as measurement under high temperature environment such as flaw detection of plant piping, and handling of various liquids .

したがって、本発明の目的は、測定対象物が高速増殖炉の高温ナトリウム中に存在する場合のように、高温環境下であっても使用でき、かつ高解像度の測定画像を得ることのできる超音波センサを提供することにある。   Therefore, an object of the present invention is to provide an ultrasonic wave that can be used even in a high temperature environment and can obtain a high-resolution measurement image, such as when the measurement object is present in high-temperature sodium of a fast breeder reactor. It is to provide a sensor.

本発明の1つの観点に係る超音波センサは、マトリクス状に配列された複数個のセンサ要素から構成され、各センサ要素が、一方の電極を構成する平面状のセンサフレームと、該センサフレームの同一面上にマトリクス状に形成された複数個のセンサ素子から構成され、前記センサ素子のそれぞれが、一方の面が前記センサフレームに接するように接続された、超音波を発信/受信する圧電素子と、該圧電素子の他方の面に垂直に配置された超音波減衰用のダンピング材と、該ダンピング材と前記圧電素子の間に配置された他方の電極とから構成される超音波センサであって、前記各センサ要素がそれぞれ金属製のフレームに固定されており、前記ダンピング材が、少なくとも熱衝撃に対して大きな抵抗を示す材料から構成されている。このように、各センサ要素をフレームに収納するようにしているので、高温環境下で使用しても熱歪みが抑えられ、高解像度を得ることができる。   An ultrasonic sensor according to one aspect of the present invention includes a plurality of sensor elements arranged in a matrix, and each sensor element includes a planar sensor frame constituting one electrode, and the sensor frame. Piezoelectric elements for transmitting / receiving ultrasonic waves, each composed of a plurality of sensor elements formed in a matrix on the same surface, each of which is connected such that one surface is in contact with the sensor frame An ultrasonic attenuation damper disposed perpendicular to the other surface of the piezoelectric element, and the other electrode disposed between the damping material and the piezoelectric element. The sensor elements are fixed to a metal frame, and the damping material is made of a material that exhibits at least a large resistance to thermal shock. Thus, since each sensor element is stored in the frame, thermal distortion is suppressed even when used in a high temperature environment, and high resolution can be obtained.

より好適には、前記ダンピング材の材料として、アルマタイトを用いることがのぞましい。アルマタイトは、同じように熱衝撃特性に優れた他の材料、例えば、ボロンナイトライトなどよりも超音波のダンピング特性に優れていることから、高温環境下で使用される超音波センサのダンピング材としては最適である。   More preferably, it is preferable to use almatite as the material of the damping material. Almatite is superior to other materials with excellent thermal shock characteristics, such as boron nitrite, so it has superior ultrasonic damping characteristics. Therefore, it is used as a damping material for ultrasonic sensors used in high-temperature environments. Is the best.

さらにより好適には、前記他方の電極が前記ダンピング材の底面及び少なくとも1つの側面に蒸着された金属から構成することが望ましい。電極を蒸着することで、センサ要素自体を小型化できるので、よりセンサ素子数の多い小型の超音波センサが得られるようになる。また、この蒸着金属としては、耐久性等の面からチタン(Ti)を用いることが望ましい。   More preferably, it is desirable that the other electrode is made of a metal deposited on the bottom surface and at least one side surface of the damping material. By evaporating the electrodes, the sensor element itself can be miniaturized, and a small ultrasonic sensor with a larger number of sensor elements can be obtained. Moreover, as this vapor deposition metal, it is desirable to use titanium (Ti) from the viewpoint of durability.

本発明に係る超音波センサは、稼働中の高速増殖炉の高温ナトリウムのような高温環境下で使用できる構造に作られているので、従来は測定対象物が入った高温の液体はすべて取除いた上で超音波測定を行なっていたものを、高温の液体が存在したままであっても超音波測定を実現できる。従って、原子力機器、プラント等が運転中であっても超音波検が可能となり、各種運転機器の操業度を低下させずに、かつ、供用期間中の超音波測定が可能になることにより、早期の異常把握が可能となり、各種運転機器のより一層の安全性向上を図ることができる。   The ultrasonic sensor according to the present invention has a structure that can be used in a high-temperature environment such as high-temperature sodium in an operating fast breeder reactor, so conventionally all high-temperature liquids containing measurement objects are removed. In addition, ultrasonic measurement can be realized even if the high-temperature liquid remains in the state where ultrasonic measurement has been performed. Therefore, ultrasonic inspection is possible even when nuclear equipment, plants, etc. are in operation, and it is possible to perform ultrasonic measurement during the service period without deteriorating the operating degree of various operating equipment, and at an early stage. Abnormality can be grasped, and the safety of various operating devices can be further improved.

勿論、上記のような過酷な条件下でその効果を発揮する本発明は、一般の水中等であっても充分その性能、効果を達成することができる。   Of course, the present invention, which exhibits its effect under the severe conditions as described above, can sufficiently achieve its performance and effect even in general water.

本発明の好適な超音波センサは、例えば、4×4のマトリクス状に配列された複数個のセンサ要素から構成される。各センサ要素は、一方の電極を構成するセンサフレームと、センサフレームの同一平面上に、例えば、8×8のマトリクス状に形成された複数個のセンサ素子から構成される。センサフレームを一方の電極として使用することにより、超音波センサ自体の構造を簡潔かつ強固にすることができる。これらセンサ素子のそれぞれは、一方の面がセンサフレームに接続された、超音波を発信/受信する圧電素子と、圧電素子の他方の面に垂直に配置された超音波減衰用のダンピング材と、ダンピング材と圧電素子の間に配置された他方の電極とから構成される。   The preferred ultrasonic sensor of the present invention is composed of a plurality of sensor elements arranged in a 4 × 4 matrix, for example. Each sensor element is composed of a sensor frame that constitutes one electrode and a plurality of sensor elements formed on the same plane of the sensor frame, for example, in an 8 × 8 matrix. By using the sensor frame as one electrode, the structure of the ultrasonic sensor itself can be simplified and strengthened. Each of these sensor elements includes a piezoelectric element for transmitting / receiving ultrasonic waves, one surface of which is connected to a sensor frame, and a damping material for ultrasonic attenuation disposed perpendicular to the other surface of the piezoelectric element, It is comprised from the other electrode arrange | positioned between a damping material and a piezoelectric element.

ダンピング材は、圧電素子に電圧をかけて超音波を発信させたときに発生する第2波以降の波を吸収するためのものであり、超音波の進行方向に長い直方体の形状をしている。また、約220℃という稼働中の高速増殖炉の高温ナトリウムに接しても変形しないように、熱衝撃に対して大きな抵抗を示す材料で構成される。熱衝撃に対して大きな抵抗を示す材料、すなわち、耐熱性の高い材料として、最高仕様温度2000℃、耐熱衝撃温度1500℃、密度2.0のボロンナイトライト(六方結晶化ホウ酸)と、最高仕様温度1500℃、耐熱衝撃温度1200℃、密度3.3のアルマタイト(チタン酸アルミ)を選択し、試験を行ってこれらの材料の超音波減衰特性を調べた。その結果を図4の(a)及び(b)に示す。ここで、(a)はアルマタイトの減衰特性を示し、(b)はボロンナイトライトの減衰特性を示している。図4に示された減衰特性から、ボロンナイトライトのよりもアルマタイトの方が優れた減衰特性を示すことがわかる。   The damping material is for absorbing the second and subsequent waves generated when an ultrasonic wave is transmitted by applying a voltage to the piezoelectric element, and has a rectangular parallelepiped shape that is long in the traveling direction of the ultrasonic wave. . Moreover, it is comprised with the material which shows big resistance with respect to a thermal shock so that it may not deform | transform even if it contacts the high temperature sodium of the operating fast breeder reactor of about 220 degreeC. As a material exhibiting a large resistance to thermal shock, that is, a material having high heat resistance, boron nitrite (hexagonal crystal boric acid) having a maximum specification temperature of 2000 ° C., a thermal shock temperature of 1500 ° C. and a density of 2.0, and the highest Almatite (aluminum titanate) having a specification temperature of 1500 ° C., a thermal shock temperature of 1200 ° C., and a density of 3.3 was selected and tested to examine the ultrasonic attenuation characteristics of these materials. The results are shown in FIGS. 4 (a) and (b). Here, (a) shows the attenuation characteristics of almatite, and (b) shows the attenuation characteristics of boron nitrite. It can be seen from the attenuation characteristics shown in FIG. 4 that alumite exhibits superior attenuation characteristics than boron nitride.

さらにまた、各センサ要素が熱歪みを起こし、得られる画像が不鮮明にならないように、各センサ要素はそれぞれ金属製のフレームに固定収納される。このフレームの材質としては、熱変形の抑制の観点からスーパーインバー金属を用いることが好ましい。スーパーインバーは、鉄やステンレス鋼に比べて熱膨張係数が10分の1以下であり、温度が変わっても変形し難い性質があるためである。各フレームを縦方向に4個、横方向に4個マトリクス状に配置して1個の超音波センサを形成する。超音波センサの解像度は、受信素子の超音波向角が大きいほど(圧電素子の場合には素子の直径が小さいほど超音波向角が大きい)、また素子の個数が多いほど高くなる。しかし、素子の個数を多くすると画像化に時間がかかるため、現実的な画像処理時間にするために素子数は、256個すなわちセンサ要素数16個(4×4マトリクス)程度が好ましい。   Furthermore, each sensor element is fixedly housed in a metal frame so that each sensor element is not thermally distorted and the resulting image is unclear. As the material of the frame, it is preferable to use Super Invar metal from the viewpoint of suppressing thermal deformation. This is because Super Invar has a thermal expansion coefficient of 1/10 or less as compared with iron and stainless steel, and is difficult to deform even when the temperature changes. One ultrasonic sensor is formed by arranging four frames in the vertical direction and four in the horizontal direction in a matrix. The resolution of the ultrasonic sensor increases as the ultrasonic direction angle of the receiving element increases (in the case of a piezoelectric element, the ultrasonic direction angle increases as the element diameter decreases) and as the number of elements increases. However, since imaging takes time when the number of elements is increased, the number of elements is preferably about 256, that is, about 16 sensor elements (4 × 4 matrix) in order to achieve a realistic image processing time.

次に、本発明に係る超音波センサを用いた高温ナトリウム内の対象物の測定装置及びその方法について、図5を用いて説明する。図5は、本発明の超音波センサを使用した超音波測定装置を概略的に表わしている。図5において、符号1は本発明に係る超音波センサを示し、100は高温ナトリウム中の測定対象物である。超音波センサ1は、測定対象物100への超音波の発信と、発信した超音波が測定対象物100から反射した反射波を受信する機能とを兼ね備えている。   Next, a measuring apparatus and method for an object in high-temperature sodium using the ultrasonic sensor according to the present invention will be described with reference to FIG. FIG. 5 schematically shows an ultrasonic measurement apparatus using the ultrasonic sensor of the present invention. In FIG. 5, the code | symbol 1 shows the ultrasonic sensor which concerns on this invention, 100 is a measuring object in high temperature sodium. The ultrasonic sensor 1 has both a function of transmitting an ultrasonic wave to the measurement object 100 and a function of receiving a reflected wave reflected from the measurement object 100 by the transmitted ultrasonic wave.

超音波測定時は、上記超音波センサ1の圧電素子(図1参照)を所定時間動作させることにより、測定対象物100に向けて超音波を発信させる。この際、ダンピング材(図1の符号6)によって超音波の余分な成分が減衰させられるので、残響が少ない超音波が発信させられる。その後、超音波発信を停止し、測定対象物100からの反射波を受信する。この反射波もダンピング材によって余分な周波数成分が減衰させられるため、残響が少ない超音波として圧電素子によって受信される。   During ultrasonic measurement, the piezoelectric element (see FIG. 1) of the ultrasonic sensor 1 is operated for a predetermined time to transmit ultrasonic waves toward the measurement object 100. At this time, since an extra component of the ultrasonic wave is attenuated by the damping material (reference numeral 6 in FIG. 1), an ultrasonic wave with less reverberation is transmitted. Thereafter, the ultrasonic wave transmission is stopped, and the reflected wave from the measuring object 100 is received. Since the excessive frequency component is also attenuated by the damping material, the reflected wave is received by the piezoelectric element as an ultrasonic wave with little reverberation.

1回の操作毎に得られたデータは、発信/受信器101でアナログ信号として受信されたのち、AD変換部201でディジタル信号に変換され、高速信号処理部301に送られる一時的に記憶される。高速信号処理部301では、繰り返し実行され、得られた対象物のデータに基づいて3次元開口合成処理プログラムによって、合成処理がおこなわれる。このようにして得られた対象物に関するデータは、インターフェース401を介して、例えば、パーソナルコンピュータ501に送られ、そのディスプレイ601に目視可能な画像として表示される。   Data obtained for each operation is received as an analog signal by the transmitter / receiver 101, converted to a digital signal by the AD converter 201, and temporarily stored in the high-speed signal processor 301. The The high-speed signal processing unit 301 is repeatedly executed, and synthesis processing is performed by a three-dimensional aperture synthesis processing program based on the obtained object data. Data relating to the object obtained in this way is sent to, for example, the personal computer 501 via the interface 401 and displayed on the display 601 as a visible image.

以下、図1乃至図3を参照して、本発明に係る超音波センサの一実施例について説明する。図1は、本発明に係る超音波センサに使用されるセンサ素子の一実施例の構成を概略的に示している。また、図2は、図1に示されたセンサ素子をマトリクス状に配列した構成を示している。図3は、本発明によって測定した測定対象物の高速画像処理結果の例を示している。   Hereinafter, an embodiment of an ultrasonic sensor according to the present invention will be described with reference to FIGS. 1 to 3. FIG. 1 schematically shows a configuration of an embodiment of a sensor element used in an ultrasonic sensor according to the present invention. FIG. 2 shows a configuration in which the sensor elements shown in FIG. 1 are arranged in a matrix. FIG. 3 shows an example of a high-speed image processing result of the measurement object measured by the present invention.

図1において、センサ素子3は、始めに真空スパッタによりダンピング材にチタン(Ti)を蒸着させ、電極6を形成し、その後、圧電素子4と、電極6が形成されたダンピング材5を積層することにより作成した。電極6をこのように形成することで、余計なリード線が不要になり、断線等の排除、省スペース化、軽量化が図られた。圧電素子4とダンピング材5は、高温用の半田で接合した。このようにして作られたセンサ素子3を、電極を兼ねたスーパーインバー製のフレームの同一平面上に8×8のマトリクス状に均一に配列し、センサ要素10が構成された。なお、作成されたセンサ素子3において、圧電素子4の厚さは0.4mm、縦横の幅はそれぞれ2.5mmであり、ダンピング材の厚さ(高さ)は5mm、縦横の幅はそれぞれ2.5mmである。各センサ要素の周囲を金属製のフレームで囲むことで、超音波センサ全体の物理的強度が向上し、しいては、良好な解像度を有する。   In FIG. 1, the sensor element 3 first deposits titanium (Ti) on a damping material by vacuum sputtering to form an electrode 6, and then laminates the piezoelectric element 4 and the damping material 5 on which the electrode 6 is formed. Created by. By forming the electrode 6 in this way, unnecessary lead wires are unnecessary, and disconnection and the like, space saving, and weight reduction are achieved. The piezoelectric element 4 and the damping material 5 were joined with high-temperature solder. The sensor elements 3 thus produced were uniformly arranged in an 8 × 8 matrix on the same plane of a frame made of Super Invar that also served as an electrode, and the sensor element 10 was configured. In the created sensor element 3, the thickness of the piezoelectric element 4 is 0.4 mm, the vertical and horizontal widths are 2.5 mm, the thickness (height) of the damping material is 5 mm, and the vertical and horizontal widths are 2 respectively. .5 mm. By enclosing each sensor element with a metal frame, the physical strength of the entire ultrasonic sensor is improved, and the resolution is good.

上述のようにして構成されたセンサ要素10を同一平面上に2×2のマトリクス状に配列し、合計16×16(256個)のセンサ素子3から構成される超音波センサ1を作成した。この超音波センサ1を図2に示す。なお、作られた超音波センサの一辺の長さは、約80mmで、センサ素子間の距離(センサ素子の中心から隣りのセンサ素子の中心までの距離)は、4mmである。   The sensor elements 10 configured as described above were arranged in a 2 × 2 matrix on the same plane, and an ultrasonic sensor 1 composed of a total of 16 × 16 (256) sensor elements 3 was produced. This ultrasonic sensor 1 is shown in FIG. The length of one side of the produced ultrasonic sensor is about 80 mm, and the distance between the sensor elements (the distance from the center of the sensor element to the center of the adjacent sensor element) is 4 mm.

図3に、上述の超音波センサを用いて、水中に存在する模擬対象物を測定して得た、3D画像解析の結果を示す。水中と高温ナトリウム中では超音波特性が異なるため、この画像がそのまま高温ナトリウム中で得られるものではないが、本発明に係る超音波センサを使用すれば、多少の画像処理の調整によってほぼ同様の画像が得られると考えられる。   FIG. 3 shows the result of 3D image analysis obtained by measuring a simulated object existing in water using the above-described ultrasonic sensor. Since the ultrasonic characteristics are different between water and high-temperature sodium, this image cannot be obtained as it is in high-temperature sodium, but if the ultrasonic sensor according to the present invention is used, it is almost the same by adjusting some image processing. An image can be obtained.

本発明によれば、原子力設備の共用期間中であっても、設備機器の測定が可能になるため、各種運転機器の安全性をこれまで以上に向上させることができる。また、高温下、放射線環境下等の過酷環境であっても、遠隔(約100m程度)にある測定対象物に対して高解像度(2mm程度)、解析処理時間も0.5秒程度の超音波測定装置が実現できるので、点検検査の精度をこれまで以上に向上させることができ、原子力プラント、化学プラント等において極めて有用である。   According to the present invention, since it is possible to measure facility equipment even during a period during which nuclear facilities are shared, the safety of various operating devices can be improved more than ever. Moreover, even in harsh environments such as high temperatures and radiation environments, ultrasonic waves with a high resolution (about 2 mm) and an analysis processing time of about 0.5 seconds for a remote (about 100 m) measurement object. Since a measuring device can be realized, the accuracy of inspection and inspection can be improved more than ever, and it is extremely useful in nuclear power plants, chemical plants and the like.

本発明に係る超音波センサに使用されるセンサ素子の一実施例の構成説明図である。1 is a configuration explanatory diagram of one embodiment of a sensor element used in an ultrasonic sensor according to the present invention. FIG. 図1に示されたセンサ素子をマトリクス状に配列した構成を示す図である。It is a figure which shows the structure which arranged the sensor element shown by FIG. 1 in the matrix form. 本発明によって測定した測定対象物の高速画像処理結果の例を示す図である。It is a figure which shows the example of the high-speed image processing result of the measuring object measured by this invention. 超音波センサに使用可能な2種類のダンピング材のそれぞれの超音波特性を示す図である。It is a figure which shows each ultrasonic characteristic of two types of damping materials which can be used for an ultrasonic sensor. 本発明の超音波センサを用いて行う超音波測定装置の概略説明図である。It is a schematic explanatory drawing of the ultrasonic measuring apparatus performed using the ultrasonic sensor of this invention.

符号の説明Explanation of symbols

1 超音波センサ
2 センサフレーム
3 センサ素子
4 圧電素子
5 ダンピング材
6 電極
7 信号ケーブル
10 センサ要素
100 測定対象物
DESCRIPTION OF SYMBOLS 1 Ultrasonic sensor 2 Sensor frame 3 Sensor element 4 Piezoelectric element 5 Damping material 6 Electrode 7 Signal cable 10 Sensor element 100 Measurement object

Claims (4)

マトリクス状に配列された複数個のセンサ要素から構成され、各センサ要素が、
一方の電極を構成する平面状のセンサフレームと、該センサフレームの同一面上にマトリクス状に形成された複数個のセンサ素子から構成され、
前記センサ素子のそれぞれが、一方の面が前記センサフレームに接続された、超音波を発信/受信する圧電素子と、該圧電素子の他方の面に垂直に配置された超音波減衰用のダンピング材と、該ダンピング材と前記圧電素子の間に配置された他方の電極とから構成される超音波センサであって、
前記各センサ要素がそれぞれ金属製フレームに固定されており、前記ダンピング材が、少なくとも熱衝撃に対して大きな抵抗を示す材料から構成されていることを特徴とする超音波センサ。
It is composed of a plurality of sensor elements arranged in a matrix, and each sensor element is
It is composed of a planar sensor frame constituting one electrode and a plurality of sensor elements formed in a matrix on the same surface of the sensor frame,
Each of the sensor elements includes a piezoelectric element for transmitting / receiving ultrasonic waves, one surface of which is connected to the sensor frame, and a damping material for ultrasonic attenuation disposed perpendicular to the other surface of the piezoelectric element. And an ultrasonic sensor composed of the damping material and the other electrode disposed between the piezoelectric elements,
The ultrasonic sensor, wherein each sensor element is fixed to a metal frame, and the damping material is made of a material that exhibits at least a large resistance to thermal shock.
前記ダンピング材の材料が、アルマタイトであることを特徴とする請求項1に記載の超音波センサ。   The ultrasonic sensor according to claim 1, wherein the material of the damping material is almatite. 前記他方の電極が前記ダンピング材の底面及び少なくとも1つの側面に蒸着された金属から構成されていることを特徴とする請求項1又は2のいずれかに記載の超音波センサ。   The ultrasonic sensor according to claim 1, wherein the other electrode is made of a metal deposited on a bottom surface and at least one side surface of the damping material. 前記蒸着金属がチタン(Ti)であることを特徴とする請求項3に記載の超音波センサ。   The ultrasonic sensor according to claim 3, wherein the deposited metal is titanium (Ti).
JP2008053251A 2008-03-04 2008-03-04 Ultrasonic sensor for measuring the state of an object in a high temperature environment Expired - Fee Related JP4911630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008053251A JP4911630B2 (en) 2008-03-04 2008-03-04 Ultrasonic sensor for measuring the state of an object in a high temperature environment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008053251A JP4911630B2 (en) 2008-03-04 2008-03-04 Ultrasonic sensor for measuring the state of an object in a high temperature environment

Publications (2)

Publication Number Publication Date
JP2009212776A true JP2009212776A (en) 2009-09-17
JP4911630B2 JP4911630B2 (en) 2012-04-04

Family

ID=41185508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008053251A Expired - Fee Related JP4911630B2 (en) 2008-03-04 2008-03-04 Ultrasonic sensor for measuring the state of an object in a high temperature environment

Country Status (1)

Country Link
JP (1) JP4911630B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014503803A (en) * 2010-11-05 2014-02-13 ナショナル リサーチ カウンシル オブ カナダ Ultrasonic transducer assembly and system for monitoring structural integrity
CN114063085A (en) * 2021-05-21 2022-02-18 友达光电股份有限公司 Ultrasonic detection device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08292179A (en) * 1995-04-20 1996-11-05 Toshiba Corp Ultrasonic transducer for inspection of inner section of furnace and inspection device of inner section of furnace
JPH10104387A (en) * 1996-09-30 1998-04-24 Toshiba Corp In-core inspection device
JP2005175919A (en) * 2003-12-11 2005-06-30 Mitsubishi Heavy Ind Ltd Ultrasonic receiving sensor and device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08292179A (en) * 1995-04-20 1996-11-05 Toshiba Corp Ultrasonic transducer for inspection of inner section of furnace and inspection device of inner section of furnace
JPH10104387A (en) * 1996-09-30 1998-04-24 Toshiba Corp In-core inspection device
JP2005175919A (en) * 2003-12-11 2005-06-30 Mitsubishi Heavy Ind Ltd Ultrasonic receiving sensor and device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014503803A (en) * 2010-11-05 2014-02-13 ナショナル リサーチ カウンシル オブ カナダ Ultrasonic transducer assembly and system for monitoring structural integrity
US9618481B2 (en) 2010-11-05 2017-04-11 National Research Council Of Canada Ultrasonic transducer assembly and system for monitoring structural integrity
US10458955B2 (en) 2010-11-05 2019-10-29 National Research Council Of Canada Ultrasonic transducer assembly and system for monitoring structural integrity
CN114063085A (en) * 2021-05-21 2022-02-18 友达光电股份有限公司 Ultrasonic detection device
CN114063085B (en) * 2021-05-21 2024-04-30 友达光电股份有限公司 Ultrasonic detection device

Also Published As

Publication number Publication date
JP4911630B2 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
Yu et al. In situ 2-D piezoelectric wafer active sensors arrays for guided wave damage detection
Santhanam et al. Reflection of Lamb waves obliquely incident on the free edge of a plate
Sutcliffe et al. Full matrix capture with time-efficient auto-focusing of unknown geometry through dual-layered media
US20190360974A1 (en) High-temperature ultrasonic sensor
US10908130B2 (en) Asset integrity monitoring using cellular networks
Mizutani et al. Introduction of measurement techniques in ultrasonic electronics: Basic principles and recent trends
Shi et al. Application of chirp pulse compression technique to a high-temperature EMAT with a large lift-off
Livadiotis et al. An algebraic reconstruction imaging approach for corrosion damage monitoring of pipelines
Shimizu et al. Visualization of defects in thin metal plates by a scanning airborne ultrasound source technique using guided waves of different frequencies
JP4911630B2 (en) Ultrasonic sensor for measuring the state of an object in a high temperature environment
JP5134277B2 (en) Ultrasonic inspection equipment
US20180164258A1 (en) Low-power wireless device for asset-integrity monitoring
Lv et al. A guided wave transducer with sprayed magnetostrictive powder coating for monitoring of aluminum conductor steel-reinforced cables
KR20140091099A (en) Apparatus and method for high temperature thickness measurement/monitoring using coated waveguide
Kochański et al. Modelling and numerical simulations of In‐Air reverberation images for fault detection in medical ultrasonic transducers: a feasibility study
Ding et al. Selectable single-mode guided waves for multi-type damages localization of plate-like structures using film comb transducers
Qu et al. Lamb wave damage detection using time reversal DORT method
Deng et al. A time-reversal defect-identifying method for guided wave inspection in pipes
JP2005043164A (en) Apparatus for measuring propagation time of sound wave
Hai-Yan et al. Focusing of time reversal Lamb waves and its applications in structural health monitoring
JP2013217787A (en) Vibration measurement device and vibration measurement method
Zhang et al. Lamb waves topological imaging combining with Green’s function retrieval theory to detect near filed defects in isotropic plates
JP2005064919A (en) High-temperature ultrasonic probe
CN210665625U (en) Double-crystal composite ultrasonic probe with high sensitivity
Velichko et al. Post-processing of guided wave array data for high resolution pipe inspection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120112

R150 Certificate of patent or registration of utility model

Ref document number: 4911630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees