JP2009212272A - Semiconductor device, semiconductor laser and method for manufacturing the semiconductor device - Google Patents

Semiconductor device, semiconductor laser and method for manufacturing the semiconductor device Download PDF

Info

Publication number
JP2009212272A
JP2009212272A JP2008053084A JP2008053084A JP2009212272A JP 2009212272 A JP2009212272 A JP 2009212272A JP 2008053084 A JP2008053084 A JP 2008053084A JP 2008053084 A JP2008053084 A JP 2008053084A JP 2009212272 A JP2009212272 A JP 2009212272A
Authority
JP
Japan
Prior art keywords
substrate
layer
active layer
thin film
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008053084A
Other languages
Japanese (ja)
Inventor
Naotaka Uchitomi
直隆 内富
Yoshio Jinbo
良夫 神保
Hideyuki Toyoda
英之 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagaoka University of Technology NUC
Original Assignee
Nagaoka University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagaoka University of Technology NUC filed Critical Nagaoka University of Technology NUC
Priority to JP2008053084A priority Critical patent/JP2009212272A/en
Publication of JP2009212272A publication Critical patent/JP2009212272A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device having a low temperature dependence, a semiconductor laser and a method for manufacturing the semiconductor device. <P>SOLUTION: In this semiconductor device 1, which includes a substrate 2 and an active layer 4 constituted of an Sb-based semiconductor thin film formed on the substrate 2, the active layer 4 is formed on a surface of the substrate 2 in which the crystal orientation being (111). The active layer 4 is the Sb-based semiconductor thin film formed of any one kind or two kinds or more of GaSb, AlGaSb, AlSb, InGaSb and InSb, and has a quantum well structure. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体素子、半導体レーザ及び半導体素子の製造方法に関し、特に、多重量子井戸構造を有する半導体素子に適用して好適のものである。   The present invention relates to a semiconductor device, a semiconductor laser, and a semiconductor device manufacturing method, and is particularly suitable for application to a semiconductor device having a multiple quantum well structure.

現在光通信には1.3-1.55μm帯の赤外領域半導体レーザが用いられている。この波長領域では主にInP(001)面方位を有する基板を用いて半導体レーザが製造されている(例えば特許文献1)。ところで、InP基板の代わりにSi基板を用いることができれば、非常に安価な赤外領域の半導体レーザが実現できることが予想される。   Currently, 1.3-1.55 μm band semiconductor lasers are used for optical communications. In this wavelength region, a semiconductor laser is manufactured mainly using a substrate having an InP (001) plane orientation (for example, Patent Document 1). By the way, if an Si substrate can be used instead of an InP substrate, it is expected that a very inexpensive semiconductor laser in the infrared region can be realized.

一方、シリコン集積回路においては微細化が進み、更なる集積化および高機能化のため、光電子集積化の必要性が求められる。例えば、光インターコネクトでは、従来から光通信で採用されている1.3-1.5μm帯の赤外波長領域が適していると考えられる。通常このような技術的な背景から、Si基板上に化合物半導体をエピタキシャル成長させる研究・開発が進められているが、その候補としてSb系半導体がある。
特開平6−69589号公報
On the other hand, miniaturization has progressed in silicon integrated circuits, and there is a need for optoelectronic integration for further integration and higher functionality. For example, in the optical interconnect, it is considered that the 1.3-1.5 μm band infrared wavelength region conventionally used in optical communication is suitable. In general, from such a technical background, research and development for epitaxial growth of compound semiconductors on Si substrates are underway, and candidates for this include Sb-based semiconductors.
JP-A-6-69589

しかしながら、従来のSb系半導体では、使用温度領域によって発光波長が変化してしまうという問題があった。   However, the conventional Sb-based semiconductor has a problem that the emission wavelength varies depending on the operating temperature range.

そこで本発明は上記した問題点に鑑み、温度依存性の低い半導体素子、半導体レーザ及び半導体素子の製造方法を提供することを目的とする。   In view of the above-described problems, an object of the present invention is to provide a semiconductor element, a semiconductor laser, and a method for manufacturing the semiconductor element that have low temperature dependency.

上記目的を達成するために、請求項1に係る発明は、基板と、前記基板上に形成したSb系半導体薄膜からなる活性層とを備える半導体素子において、前記活性層は、結晶方位が(111)である前記基板の表面上に形成したことを特徴とする。   To achieve the above object, the invention according to claim 1 is a semiconductor device comprising a substrate and an active layer made of an Sb-based semiconductor thin film formed on the substrate, wherein the active layer has a crystal orientation of (111 ) On the surface of the substrate.

また、請求項2に係る発明は、前記活性層が、GaSb,AlGaSb,AlSb,InGaSb,及びInSbのうちいずれか1種又は2種以上で形成されるSb系半導体薄膜であり、量子井戸構造を有することを特徴とする。   According to a second aspect of the present invention, the active layer is an Sb-based semiconductor thin film formed of one or more of GaSb, AlGaSb, AlSb, InGaSb, and InSb, and has a quantum well structure. It is characterized by having.

また、請求項3に係る発明は、前記活性層が、GaSb薄膜で形成した井戸層と、AlGaSb薄膜で形成した障壁層とを有し、前記Al組成が0.3〜0.4であって、前記井戸層の厚さが8〜9nm、前記障壁層の厚さが40〜50nmであることを特徴とする。   According to a third aspect of the present invention, the active layer includes a well layer formed of a GaSb thin film and a barrier layer formed of an AlGaSb thin film, wherein the Al composition is 0.3 to 0.4, and the well layer The thickness of the barrier layer is 8 to 9 nm, and the thickness of the barrier layer is 40 to 50 nm.

また、請求項4に係る発明は、基板と、前記基板上に形成したSb系半導体薄膜からなる活性層と、前記活性層を挟むように形成された一対のクラッド層とを備える半導体素子において、前記活性層は、結晶方位が(111)である前記基板の表面上に形成した半導体素子を備えたことを特徴とする。   The invention according to claim 4 is a semiconductor device comprising a substrate, an active layer made of an Sb-based semiconductor thin film formed on the substrate, and a pair of clad layers formed so as to sandwich the active layer. The active layer includes a semiconductor element formed on the surface of the substrate having a crystal orientation of (111).

また、請求項5に係る発明は、基板上にSb系半導体薄膜からなる活性層を形成する工程を備える半導体素子の製造方法において、前記活性層は、結晶方位が(111)である前記基板の表面上にエピタキシャル成長させて形成することを特徴とする。   The invention according to claim 5 is a method of manufacturing a semiconductor device comprising a step of forming an active layer made of an Sb-based semiconductor thin film on a substrate, wherein the active layer has a crystal orientation of (111). It is characterized by being formed by epitaxial growth on the surface.

また、請求項6に係る発明は、エピタキシャル成長温度が400℃から500℃であることを特徴とする。   The invention according to claim 6 is characterized in that the epitaxial growth temperature is 400 ° C. to 500 ° C.

本発明によれば、温度依存性の低い半導体素子を得ることができるので、安定的に使用可能な信頼性の高い半導体レーザを安価に形成することができる。このようなSi(111)基板を採用した低価格化光デバイス技術が実現されれば、例えば、自動車等の輸送機器に搭載することができ、夜間走行時におけるドライバーの安全性を向上させることができる。   According to the present invention, a semiconductor element having low temperature dependence can be obtained, so that a highly reliable semiconductor laser that can be stably used can be formed at low cost. If low-cost optical device technology using such a Si (111) substrate is realized, it can be installed in, for example, transportation equipment such as an automobile, and the safety of the driver during night driving can be improved. it can.

(1)全体構成
以下図面を参照して、本発明の好適な実施形態について説明する。図1に示す半導体素子1は、基板2、第1のクラッド層(n型)3、活性層4、及び第2のクラッド層(p型)5を有し、前記第1のクラッド層3、前記活性層4、及び前記第2のクラッド層5はいずれもSb系半導体薄膜からなり、基板2上に順次積層してなる。このように構成された半導体素子1について検討した結果、使用温度領域によって発光波長が変化することが問題となることを確認した。
(1) Overall Configuration A preferred embodiment of the present invention will be described below with reference to the drawings. A semiconductor element 1 shown in FIG. 1 includes a substrate 2, a first cladding layer (n-type) 3, an active layer 4, and a second cladding layer (p-type) 5, and the first cladding layer 3, Both the active layer 4 and the second cladding layer 5 are made of an Sb-based semiconductor thin film, and are sequentially laminated on the substrate 2. As a result of examining the semiconductor element 1 configured as described above, it was confirmed that the emission wavelength varies depending on the operating temperature range.

そこで、温度依存性の低い半導体素子、半導体レーザ及び半導体素子の製造方法を検討した結果、前記活性層4を積層する基板表面2の結晶方位を制御することにより、温度依存性を改善できることを確認した。   Therefore, as a result of examining semiconductor devices, semiconductor lasers, and semiconductor device manufacturing methods having low temperature dependence, it was confirmed that temperature dependence can be improved by controlling the crystal orientation of the substrate surface 2 on which the active layer 4 is laminated. did.

すなわち、基板2、第1のクラッド層3、活性層4、及び第2のクラッド層5を有し、前記第1のクラッド層3、前記活性層4、及び前記第2のクラッド層5はいずれもSb系半導体薄膜からなり、基板2上に順次積層してなる半導体素子において、前記第1のクラッド層3を積層する基板2表面の結晶方位を(111)とすることが望ましい。   That is, the substrate 2, the first clad layer 3, the active layer 4, and the second clad layer 5 are included, and the first clad layer 3, the active layer 4, and the second clad layer 5 are any of them. In a semiconductor element made of an Sb-based semiconductor thin film and sequentially stacked on the substrate 2, it is desirable that the crystal orientation of the surface of the substrate 2 on which the first cladding layer 3 is stacked be (111).

本実施形態では、基板2は、Si(111)で構成される。第1のクラッド層3は、AlSb層3a及びGaSb層3bをSi基板2表面上に順次積層してなる。また、活性層4は、GaSb,AlGaSb,AlSb,InGaSb,及びInSbのうちいずれか1種又は2種以上で形成される。この活性層4は、図示しないが、特に、GaSb薄膜で形成した井戸層と、AlGaSb薄膜で形成した障壁層とを交互に複数積層した多重量子井戸構造(MQW;Multiple-Quantum Well)が好ましい。   In the present embodiment, the substrate 2 is made of Si (111). The first cladding layer 3 is formed by sequentially laminating an AlSb layer 3a and a GaSb layer 3b on the surface of the Si substrate 2. The active layer 4 is formed of any one or more of GaSb, AlGaSb, AlSb, InGaSb, and InSb. Although not shown, the active layer 4 is preferably a multiple quantum well (MQW) structure in which a plurality of well layers formed of GaSb thin films and barrier layers formed of AlGaSb thin films are alternately stacked.

温度依存性が低下するメカニズムについて説明する。従来のSi(001)などによる発光は、バンドギャップの温度依存性を反映しているものと考えられる。これに対し、本発明に係る結晶方位が(111)のSiからなる基板については、バンドギャップの温度変化とあわせて、基板から受けるひずみに起因したバンドギャップへの影響が考えられ、温度変化とひずみによる影響が相殺して温度依存性を小さくしているものと考えられる。   A mechanism for reducing the temperature dependence will be described. It is considered that light emission by conventional Si (001) reflects the temperature dependence of the band gap. On the other hand, for a substrate made of Si having a crystal orientation of (111) according to the present invention, in addition to the temperature change of the band gap, the influence on the band gap due to the strain received from the substrate can be considered. It is thought that the temperature dependence is reduced by offsetting the influence of strain.

次に、本発明に係るSb系半導体薄膜の形成方法について説明する。本実施形態では、分子線エピタキシー法(MBE法;Molecular Beam Epitaxy)によって形成する場合について説明する。   Next, a method for forming an Sb-based semiconductor thin film according to the present invention will be described. In the present embodiment, a case of forming by molecular beam epitaxy (MBE method) will be described.

本実施例では、結晶方位が(111)のSiの基板2上に第1のクラッド層3を形成する。第1のクラッド層3を形成するには、まずAlSb層3aを形成する。このAlSb層3aの形成が確認された後にGaSb層3bをエピタキシャル成長させる。その際、GaSb層3bは2次元成長をすることによって平坦な結晶表面が実現できる。   In the present embodiment, a first cladding layer 3 is formed on a Si substrate 2 having a crystal orientation of (111). In order to form the first cladding layer 3, first, the AlSb layer 3a is formed. After confirming the formation of the AlSb layer 3a, the GaSb layer 3b is epitaxially grown. At that time, the GaSb layer 3b can realize a flat crystal surface by two-dimensional growth.

このように第1のクラッド層3を形成した後に、本実施例ではGaSb薄膜で形成した井戸層と、AlGaSb薄膜で形成した障壁層とからなる多重量子井戸構造からなる活性層4を作製する。次いで、図2は、上記したように結晶方位が(111)のSiの基板2を用いて、半導体素子としての面発光レーザ(VCSEL;Vertical Cavity Surface Emitting Laser)10を作製した場合の構造図である。面発光レーザ10は、基板2、第1のクラッド層としての第1DBR(Distributed Bragg Reflection;分布ブラッグ反射)層11、活性層12、及び第2のクラッド層としての第2DBR層13を備え、基板2上に第1DBR層11、活性層12、及び第2DBR層13を順次積層してなる。基板2は、n型不純物を含む結晶方位が(111)のSiからなる。第1DBR層11は、前記基板2上に形成され、前記基板2と同型の不純物を含有するAlGaSb層及びGaSb層からなる。活性層12は、図示しないがGaSb薄膜で形成した井戸層と、AlGaSb薄膜で形成した障壁層とからなる多重量子井戸構造からなる。第2DBR層13は、前記第1DBR層11と反対型の不純物、すなわちp型のGaSb層からなる。さらに、基板2の下面に第1電極15を、第2DBR層13及びポリイミド16上に窓17を有する第2電極14をそれぞれ備える。   After forming the first cladding layer 3 in this manner, in this embodiment, an active layer 4 having a multiple quantum well structure including a well layer formed of a GaSb thin film and a barrier layer formed of an AlGaSb thin film is manufactured. Next, FIG. 2 is a structural diagram in the case where a surface emitting laser (VCSEL) 10 as a semiconductor element is manufactured using the Si substrate 2 having the crystal orientation (111) as described above. is there. A surface emitting laser 10 includes a substrate 2, a first DBR (Distributed Bragg Reflection) layer 11 as a first cladding layer, an active layer 12, and a second DBR layer 13 as a second cladding layer. The first DBR layer 11, the active layer 12, and the second DBR layer 13 are sequentially stacked on the substrate 2. The substrate 2 is made of Si having a crystal orientation (111) containing an n-type impurity. The first DBR layer 11 is formed on the substrate 2 and includes an AlGaSb layer and a GaSb layer containing impurities of the same type as the substrate 2. Although not shown, the active layer 12 has a multiple quantum well structure including a well layer formed of a GaSb thin film and a barrier layer formed of an AlGaSb thin film. The second DBR layer 13 is made of an impurity of the opposite type to the first DBR layer 11, that is, a p-type GaSb layer. Further, a first electrode 15 is provided on the lower surface of the substrate 2, and a second electrode 14 having a window 17 on the second DBR layer 13 and the polyimide 16 is provided.

このような構造の面発光レーザ10は、活性層12の両側にそれぞれ設けた第1DBR層11及び第2DBR層12により、基板2と垂直方向に共振器を形成する。これにより、面発光レーザ10は、基板2表面から光を出射することができる。このようにして、本実施形態では、活性層11を結晶方位が(111)のSiの基板2上に形成することにより、温度依存性の低い面発光レーザ10を提供することができる。本実施例では、基板2は結晶方位が(111)のSiを用いて形成したが、ここで示した構造は、Sb系半導体多重量子井戸構造をGaSb基板と異なる半導体基板上、たとえばGaAs(111)やInP(111)基板上に作製した場合にも同様な効果が期待されることはいうまでもない。
(2)実施例
以下、実施例について説明する。基板には、結晶方位が(111)のSiを用い、まずAlSb層を厚さ10nm形成する。その形成が確認された後にGaSb層を厚さ500nmエピタキシャル成長させる。
In the surface emitting laser 10 having such a structure, a resonator is formed in a direction perpendicular to the substrate 2 by the first DBR layer 11 and the second DBR layer 12 provided on both sides of the active layer 12, respectively. Thereby, the surface emitting laser 10 can emit light from the surface of the substrate 2. Thus, in this embodiment, the surface emitting laser 10 having low temperature dependence can be provided by forming the active layer 11 on the Si substrate 2 having the crystal orientation (111). In this embodiment, the substrate 2 is formed using Si having a crystal orientation of (111). However, the structure shown here is an Sb-based semiconductor multiple quantum well structure on a semiconductor substrate different from the GaSb substrate, for example, GaAs (111 It goes without saying that the same effect can be expected when fabricated on an InP (111) substrate.
(2) Examples Hereinafter, examples will be described. For the substrate, Si having a crystal orientation of (111) is used, and an AlSb layer is first formed to a thickness of 10 nm. After the formation is confirmed, the GaSb layer is epitaxially grown to a thickness of 500 nm.

次いで、上記のように第1のクラッド層を形成した結晶方位が(111)のSiの基板上に活性層を形成する。形成条件は、図3に示す通りである。すなわち、結晶方位が(111)のSiの基板を背圧が10-8Torr以下の薄膜成長室内にセットする。その後、300℃で表面のデガス(degas)を行い、結晶方位が(111)のSiの基板を750℃で表面の自然酸化膜を除去する。その後、アンチモン分子線ビームを照射しながら基板温度を500℃まで降温し、AlSb層およびGaSb層形成後、GaSb薄膜で形成した井戸層と、AlGaSb薄膜で形成した障壁層とから構成される多重量子井戸構造を作製する。本実施例の多重量子井戸構造はAl組成0.35として10量子井戸である。次いで第2のクラッド層を厚さ5nm形成する。 Next, an active layer is formed on the Si substrate having the crystal orientation (111) on which the first cladding layer is formed as described above. The formation conditions are as shown in FIG. That is, a Si substrate having a crystal orientation of (111) is set in a thin film growth chamber having a back pressure of 10 −8 Torr or less. Thereafter, degassing of the surface is performed at 300 ° C., and the natural oxide film on the surface of the Si substrate having a crystal orientation of (111) is removed at 750 ° C. After that, the substrate temperature is lowered to 500 ° C. while irradiating the antimony molecular beam, and after the formation of the AlSb layer and the GaSb layer, a multiple quantum composed of a well layer formed of a GaSb thin film and a barrier layer formed of an AlGaSb thin film A well structure is produced. The multiple quantum well structure of this example has 10 quantum wells with an Al composition of 0.35. Next, a second cladding layer is formed to a thickness of 5 nm.

このように形成したエピタキシャル層のX線回折測定結果を図4に示す。結晶方位が(111)のSiの基板上に形成されたGaSb層の(111)面がエピタキシャル成長していることが確認できた。さらに、この多重量子井戸構造についてフォトルミネッセンスを測定した結果を図5に示す。15Kから300Kまでの測定を行った。上記図5の結果を改めて図6のグラフにまとめた。この測定結果から、従来報告されている結晶方位が(100)のSiの表面上に成長した多重量子井戸構造(図中A)では、発光波長が長波長側にシフトしているが、結晶方位が(111)のSiの表面上に成長させた多重量子井戸構造(図中B)では強い温度依存性が現れないことが確認できた。これにより、結晶方位が(111)のSiの表面上に成長させた多重量子井戸構造(図中B)は、光デバイスを作製するSiの面指数として最適であることが確認できた。このように、Si(111)面上に半導体レーザを作成した場合には、温度依存性に優れた半導体レーザを実現することが可能になった。   The X-ray diffraction measurement result of the epitaxial layer thus formed is shown in FIG. It was confirmed that the (111) plane of the GaSb layer formed on the Si substrate having the crystal orientation (111) was epitaxially grown. Furthermore, the result of having measured the photoluminescence about this multiple quantum well structure is shown in FIG. Measurements from 15K to 300K were performed. The results of FIG. 5 are summarized in the graph of FIG. From this measurement result, in the conventionally reported multiple quantum well structure (A in the figure) grown on the surface of (100) Si, the emission wavelength is shifted to the longer wavelength side. However, it was confirmed that no strong temperature dependence appears in the multiple quantum well structure (B in the figure) grown on the surface of (111) Si. As a result, it was confirmed that the multiple quantum well structure (B in the figure) grown on the Si surface having the crystal orientation (111) is optimal as the plane index of Si for producing an optical device. Thus, when a semiconductor laser is formed on the Si (111) surface, it has become possible to realize a semiconductor laser having excellent temperature dependence.

本発明は、本実施形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形実施が可能である。   The present invention is not limited to this embodiment, and various modifications can be made within the scope of the gist of the present invention.

本研究の将来の産業応用として、Si基板上に制作される低価格な赤外領域の発光・受光デバイスによる集積技術の実現、たとえば赤外受光素子アレイなどにより夜間の自動車走行時の歩行者認識などへの応用が期待され、安全走行の実現が図れると予想される。   Future industrial applications of this research include the realization of integrated technology using low-cost infrared light emitting / receiving devices fabricated on Si substrates, for example, pedestrian recognition when driving a car at night using an infrared light receiving element array It is expected that it will be able to achieve safe driving.

本実施形態に係る半導体素子の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the semiconductor element which concerns on this embodiment. 本実施形態に係る面発光レーザの構成を模式的に示す斜視断面図である。It is a perspective sectional view showing typically the composition of the surface emitting laser concerning this embodiment. 半導体素子の製造条件を示す基板温度と時間との関係を示す図である。It is a figure which shows the relationship between the substrate temperature and time which show the manufacturing conditions of a semiconductor element. 半導体素子のX線回折結晶構造解析の結果を示す図である。It is a figure which shows the result of the X-ray-diffraction crystal structure analysis of a semiconductor element. 半導体素子のフォトルミネッセンスの測定結果を示す図である。It is a figure which shows the measurement result of the photoluminescence of a semiconductor element. 図5の結果から、新たに温度とピークエネルギー、及び温度とピーク波長との関係を示す図である。It is a figure which shows the relationship between temperature and peak energy newly, and temperature and peak wavelength from the result of FIG.

符号の説明Explanation of symbols

1 半導体素子
2 基板
3 第1のクラッド層
4 活性層
5 第2のクラッド層
DESCRIPTION OF SYMBOLS 1 Semiconductor element 2 Board | substrate 3 1st cladding layer 4 Active layer 5 2nd cladding layer

Claims (6)

基板と、前記基板上に形成したSb系半導体薄膜からなる活性層とを備える半導体素子において、前記活性層は、結晶方位が(111)である前記基板の表面上に形成したことを特徴とする半導体素子。   In a semiconductor device comprising a substrate and an active layer made of an Sb-based semiconductor thin film formed on the substrate, the active layer is formed on the surface of the substrate having a crystal orientation of (111) Semiconductor element. 前記活性層が、GaSb,AlGaSb,AlSb,InGaSb,及びInSbのうちいずれか1種又は2種以上で形成されるSb系半導体薄膜であり、量子井戸構造を有することを特徴とする請求項1記載の半導体素子。   2. The active layer is an Sb-based semiconductor thin film formed of any one or more of GaSb, AlGaSb, AlSb, InGaSb, and InSb, and has a quantum well structure. Semiconductor element. 前記活性層が、GaSb薄膜で形成した井戸層と、AlGaSb薄膜で形成した障壁層とを有し、前記Al組成が0.3〜0.4であって、前記井戸層の厚さが8〜9nm、前記障壁層の厚さが40〜50nmであることを特徴とする請求項1記載の半導体素子。   The active layer includes a well layer formed of a GaSb thin film and a barrier layer formed of an AlGaSb thin film, the Al composition is 0.3 to 0.4, and the thickness of the well layer is 8 to 9 nm. 2. The semiconductor device according to claim 1, wherein the thickness of the layer is 40 to 50 nm. 基板と、前記基板上に形成したSb系半導体薄膜からなる活性層と、前記活性層を挟むように形成された一対のクラッド層とを備える半導体素子において、前記活性層は、結晶方位が(111)である前記基板の表面上に形成した半導体素子を備えたことを特徴とする半導体レーザ。   In a semiconductor element comprising a substrate, an active layer made of an Sb-based semiconductor thin film formed on the substrate, and a pair of clad layers formed so as to sandwich the active layer, the active layer has a crystal orientation of (111 And a semiconductor element formed on the surface of the substrate. 基板上にSb系半導体薄膜からなる活性層を形成する工程を備える半導体素子の製造方法において、前記活性層は、結晶方位が(111)である前記基板の表面上にエピタキシャル成長させて形成することを特徴とする半導体素子の製造方法。   In a method for manufacturing a semiconductor device comprising a step of forming an active layer made of an Sb-based semiconductor thin film on a substrate, the active layer is formed by epitaxial growth on the surface of the substrate having a crystal orientation of (111). A method for manufacturing a semiconductor device. エピタキシャル成長温度が400℃から500℃であることを特徴とする請求項5記載の半導体素子の製造方法。   6. The method of manufacturing a semiconductor device according to claim 5, wherein the epitaxial growth temperature is 400 to 500.degree.
JP2008053084A 2008-03-04 2008-03-04 Semiconductor device, semiconductor laser and method for manufacturing the semiconductor device Withdrawn JP2009212272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008053084A JP2009212272A (en) 2008-03-04 2008-03-04 Semiconductor device, semiconductor laser and method for manufacturing the semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008053084A JP2009212272A (en) 2008-03-04 2008-03-04 Semiconductor device, semiconductor laser and method for manufacturing the semiconductor device

Publications (1)

Publication Number Publication Date
JP2009212272A true JP2009212272A (en) 2009-09-17

Family

ID=41185142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008053084A Withdrawn JP2009212272A (en) 2008-03-04 2008-03-04 Semiconductor device, semiconductor laser and method for manufacturing the semiconductor device

Country Status (1)

Country Link
JP (1) JP2009212272A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102157903A (en) * 2011-01-25 2011-08-17 中国科学院半导体研究所 Epitaxial growth method of W type antimonide class II quantum well
EP3414783A4 (en) * 2016-02-09 2019-10-16 Lumeova, Inc Ultra-wideband, wireless optical high speed communication devices and systems

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102157903A (en) * 2011-01-25 2011-08-17 中国科学院半导体研究所 Epitaxial growth method of W type antimonide class II quantum well
CN102157903B (en) * 2011-01-25 2012-08-08 中国科学院半导体研究所 Epitaxial growth method of W type antimonide class II quantum well
EP3414783A4 (en) * 2016-02-09 2019-10-16 Lumeova, Inc Ultra-wideband, wireless optical high speed communication devices and systems
US10879421B2 (en) 2016-02-09 2020-12-29 Lumeova, Inc. Ultra-wideband, free space optical communication apparatus
US10930816B2 (en) 2016-02-09 2021-02-23 Lumeova, Inc. Ultra-wideband light emitting diode and optical detector comprising aluminum indium gallium nitride and method of fabricating the same
US11233172B2 (en) 2016-02-09 2022-01-25 Lumeova, Inc. Ultra-wideband, free space optical communication apparatus
US11923478B2 (en) 2016-02-09 2024-03-05 Lumeova, Inc. Ultra-wideband, free space optical communication apparatus

Similar Documents

Publication Publication Date Title
US9941663B2 (en) Hybrid vertical cavity light emitting sources
JP6300240B2 (en) Semiconductor device
JP3672678B2 (en) Quantum semiconductor device and manufacturing method thereof
US9459405B2 (en) Method for fabricating a semiconductor device for use in an optical application
EP2020711B1 (en) Method for manufacturing surface-emitting laser
CN109314158B (en) Method for manufacturing semiconductor optical device and semiconductor optical device
US20040065888A1 (en) Vertical-cavity, surface-emission type laser diode and fabrication process thereof
JP2011513954A5 (en)
JP4554526B2 (en) Semiconductor light emitting device
US20130234178A1 (en) Semiconductor light emitting device and method for manufacturing the same
JP4651312B2 (en) Manufacturing method of semiconductor device
JP2008047684A (en) Semiconductor luminescent element, manufacturing method thereof, and semiconductor luminescent device
JP5182363B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP2007227744A (en) Quantum-dot optical semiconductor device, and its process for fabrication
JP2009212272A (en) Semiconductor device, semiconductor laser and method for manufacturing the semiconductor device
JP5149146B2 (en) Optical semiconductor device and integrated device
JP2008091420A (en) Method of manufacturing quantum dot optical semiconductor element
JP2005203419A (en) Epitaxial wafer for light emitting element
CN116031752B (en) Semiconductor light-emitting structure and preparation method thereof
JPH06326409A (en) Surface emission element
GB2507513A (en) Semiconductor device with epitaxially grown active layer adjacent an optically passive region
JP2010141241A (en) Method for manufacturing light-emitting device and the light-emitting device
JP2778868B2 (en) Surface-emitting light emitting diode
JP2010003918A (en) Surface light-emitting laser and method of manufacturing the same
JP2007157802A (en) Semiconductor laser device and method of manufacturing same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110510