JP2009212267A5 - - Google Patents

Download PDF

Info

Publication number
JP2009212267A5
JP2009212267A5 JP2008052993A JP2008052993A JP2009212267A5 JP 2009212267 A5 JP2009212267 A5 JP 2009212267A5 JP 2008052993 A JP2008052993 A JP 2008052993A JP 2008052993 A JP2008052993 A JP 2008052993A JP 2009212267 A5 JP2009212267 A5 JP 2009212267A5
Authority
JP
Japan
Prior art keywords
electrode
thermoelectric
metal layer
power generation
pbte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008052993A
Other languages
Japanese (ja)
Other versions
JP2009212267A (en
JP5176602B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2008052993A priority Critical patent/JP5176602B2/en
Priority claimed from JP2008052993A external-priority patent/JP5176602B2/en
Publication of JP2009212267A publication Critical patent/JP2009212267A/en
Publication of JP2009212267A5 publication Critical patent/JP2009212267A5/ja
Application granted granted Critical
Publication of JP5176602B2 publication Critical patent/JP5176602B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (23)

第1電極と、
前記第1電極に対向する第2電極と、
前記第1電極および前記第2電極との間に挟まれ、かつ前記第1電極および前記第2電極のいずれにも電気的に接続された積層体とを具備し、
前記積層体は、PbTe層と金属層とが交互に積層されてなり、
前記PbTe層および前記金属層が、前記第1電極と前記第2電極とが対向する方向に対して傾斜しており、
前記対向する方向に対して垂直方向に温度差を印加することによって、前記第1電極および前記第2電極をと介して電力を取り出す、熱発電デバイス素子。
A first electrode;
A second electrode facing the first electrode;
A laminated body sandwiched between the first electrode and the second electrode and electrically connected to both the first electrode and the second electrode;
The laminate is formed by alternately laminating PbTe layers and metal layers,
The PbTe layer and the metal layer are inclined with respect to a direction in which the first electrode and the second electrode face each other;
A thermoelectric device element that takes out electric power through the first electrode and the second electrode by applying a temperature difference in a direction perpendicular to the opposing direction.
前記PbTe層および前記金属層が、前記第1電極と前記第2電極とが対向する方向に対して角度θで傾斜しており、
前記角度θが10°以上55°以下である、
請求項1に記載の熱発電デバイス素子。
The PbTe layer and the metal layer are inclined at an angle θ with respect to a direction in which the first electrode and the second electrode face each other;
The angle θ is 10 ° or more and 55 ° or less.
The thermoelectric power generation device element according to claim 1.
前記角度θが15°以上45°以下である、
請求項2に記載の熱発電デバイス素子。
The angle θ is 15 ° or more and 45 ° or less,
The thermoelectric power generation device element according to claim 2.
前記金属層が、Al、Cu、Ag、またはAuからなる、
請求項1に記載の熱発電デバイス素子。
The metal layer is made of Al, Cu, Ag, or Au;
The thermoelectric power generation device element according to claim 1.
前記金属層が、Cu、Ag、またはAuからなる、
請求項4に記載の熱発電デバイス素子。
The metal layer is made of Cu, Ag, or Au;
The thermoelectric power generation device element according to claim 4.
前記金属層が、CuまたはAgからなる、
請求項5に記載の熱発電デバイス素子。
The metal layer is made of Cu or Ag;
The thermoelectric device element according to claim 5.
前記金属層の厚み:前記PbTe層の厚みの比が400:1から20:1までの範囲内にある、
請求項1に記載の熱発電デバイス素子。
The ratio of the thickness of the metal layer to the thickness of the PbTe layer is in the range of 400: 1 to 20: 1.
The thermoelectric power generation device element according to claim 1.
前記金属層の厚み:前記PbTe層の厚みの比が100:1から80:1までの範囲内にある、
請求項7に記載の熱発電デバイス素子。
The ratio of the thickness of the metal layer to the thickness of the PbTe layer is in the range of 100: 1 to 80: 1.
The thermoelectric device element according to claim 7.
前記金属層が、Al、Cu、Ag、またはAuからなり、
前記金属層の厚み:前記PbTe層の厚みの比が400:1から20:1までの範囲内にある、
請求項2に記載の熱発電デバイス素子。
The metal layer is made of Al, Cu, Ag, or Au;
The ratio of the thickness of the metal layer to the thickness of the PbTe layer is in the range of 400: 1 to 20: 1.
The thermoelectric power generation device element according to claim 2.
前記金属層が、CuまたはAgからなり、
前記金属層の厚み:前記PbTe層の厚みの比が100:1から80:1までの範囲内にある、
請求項3に記載の熱発電デバイス素子。
The metal layer is made of Cu or Ag;
The ratio of the thickness of the metal layer to the thickness of the PbTe layer is in the range of 100: 1 to 80: 1.
The thermoelectric power generation device element according to claim 3.
第1電極と、
前記第1電極に対向する第2電極と、
前記第1電極および前記第2電極との間に挟まれ、かつ前記第1電極および前記第2電極のいずれにも電気的に接続された積層体とを具備し、
前記積層体は、PbTe層と金属層とが交互に積層されてなり、
前記PbTe層および前記金属層が、前記第1電極と前記第2電極とが対向する方向に対して傾斜しており、
前記対向する方向に対して垂直方向に温度差を印加することによって、前記第1電極および前記第2電極をと介して電力を取り出す、熱発電デバイス素子の製造方法であって、
前記製造方法は、以下の工程を有する:
PbTe層と金属層とを交互に積層してなる積層構造体を得る積層構造体形成工程、
前記積層構造体の積層方向に対して傾斜する面で前記積層構造体を切り出して前記積層体を得る積層体切り出し工程、
前記積層体に前記第1電極および前記第2電極を形成する電極形成工程。
A first electrode;
A second electrode facing the first electrode;
A laminated body sandwiched between the first electrode and the second electrode and electrically connected to both the first electrode and the second electrode;
The laminate is formed by alternately laminating PbTe layers and metal layers,
The PbTe layer and the metal layer are inclined with respect to a direction in which the first electrode and the second electrode face each other;
A method of manufacturing a thermoelectric device element, wherein power is taken out through the first electrode and the second electrode by applying a temperature difference in a direction perpendicular to the opposing direction,
The manufacturing method has the following steps:
A laminated structure forming step for obtaining a laminated structure in which PbTe layers and metal layers are alternately laminated;
A laminate cutout step of obtaining the laminate by cutting out the laminate structure on a surface inclined with respect to the lamination direction of the laminate structure;
An electrode forming step of forming the first electrode and the second electrode on the laminate;
第1電極と、
前記第1電極に対向する第2電極と、
前記第1電極および前記第2電極との間に挟まれ、かつ前記第1電極および前記第2電極のいずれにも電気的に接続された積層体とを具備し、
前記積層体は、PbTe層と金属層とが交互に積層されてなり、
前記PbTe層および前記金属層が、前記第1電極と前記第2電極とが対向する方向に対して傾斜している熱発電デバイス素子から、前記第1電極および前記第2電極をと介して電力を取り出す発電方法であって、
前記発電方法は以下の工程を包含する:
前記対向する方向に対して垂直方向に温度差を印加する、温度差印加工程。
A first electrode;
A second electrode facing the first electrode;
A laminated body sandwiched between the first electrode and the second electrode and electrically connected to both the first electrode and the second electrode;
The laminate is formed by alternately laminating PbTe layers and metal layers,
The PbTe layer and the metal layer receive electric power from the thermoelectric device element inclined with respect to the direction in which the first electrode and the second electrode face each other through the first electrode and the second electrode. A power generation method for taking out
The power generation method includes the following steps:
Applying a temperature difference in a direction perpendicular to the opposing direction;
前記PbTe層および前記金属層が、前記第1電極と前記第2電極とが対向する方向に対して角度θで傾斜しており、
前記角度θが10°以上55°以下である、
請求項12に記載の発電方法。
The PbTe layer and the metal layer are inclined at an angle θ with respect to a direction in which the first electrode and the second electrode face each other;
The angle θ is 10 ° or more and 55 ° or less.
The power generation method according to claim 12.
前記角度θが15°以上45°以下である、
請求項13に記載の発電方法。
The angle θ is 15 ° or more and 45 ° or less,
The power generation method according to claim 13.
前記金属層が、Al、Cu、Ag、またはAuからなる、
請求項12に記載の発電方法。
The metal layer is made of Al, Cu, Ag, or Au;
The power generation method according to claim 12.
前記金属層が、Cu、Ag、またはAuからなる、
請求項15に記載の発電方法。
The metal layer is made of Cu, Ag, or Au;
The power generation method according to claim 15.
前記金属層が、CuまたはAgからなる、
請求項16に記載の発電方法。
The metal layer is made of Cu or Ag;
The power generation method according to claim 16.
前記金属層の厚み:前記PbTe層の厚みの比が400:1から20:1までの範囲内にある、
請求項12に記載の発電方法。
The ratio of the thickness of the metal layer to the thickness of the PbTe layer is in the range of 400: 1 to 20: 1.
The power generation method according to claim 12.
前記金属層の厚み:前記PbTe層の厚みの比が100:1から80:1までの範囲内にある、
請求項18に記載の発電方法。
The ratio of the thickness of the metal layer to the thickness of the PbTe layer is in the range of 100: 1 to 80: 1.
The power generation method according to claim 18.
前記金属層が、Al、Cu、Ag、またはAuからなり、
前記金属層の厚み:前記PbTe層の厚みの比が400:1から20:1までの範囲内にある、
請求項13に記載の発電方法。
The metal layer is made of Al, Cu, Ag, or Au;
The ratio of the thickness of the metal layer to the thickness of the PbTe layer is in the range of 400: 1 to 20: 1.
The power generation method according to claim 13.
前記金属層が、CuまたはAgからなり、
前記金属層の厚み:前記PbTe層の厚みの比が100:1から80:1までの範囲内にある、
請求項14に記載の発電方法。
The metal layer is made of Cu or Ag;
The ratio of the thickness of the metal layer to the thickness of the PbTe layer is in the range of 100: 1 to 80: 1.
The power generation method according to claim 14.
支持板と、
前記支持板上に設けられた複数個の熱発電デバイス素子と、
を具備し、
ここで、前記各熱発電デバイス素子は、請求項1に係る熱発電デバイス素子であり、
隣接する2つの前記熱発電デバイス素子の一端を電気的に接続する各接続電極によって前記複数個の熱発電デバイス素子が電気的に直列に接続されており、
電気的に直列に接続されている前記複数個の熱発電デバイス素子の2つの終端には、それぞれ取り出し電極が接続されており、
前記支持板の法線方向に沿って温度差が印加されることによって、前記取り出し電極を介して電力が取り出される、熱発電デバイス。
A support plate;
A plurality of thermoelectric device elements provided on the support plate;
Comprising
Here, each of the thermoelectric generation device elements is a thermoelectric generation device element according to claim 1,
The plurality of thermoelectric generation device elements are electrically connected in series by each connection electrode that electrically connects one end of two adjacent thermoelectric generation device elements,
An extraction electrode is connected to each of the two ends of the plurality of thermoelectric device elements that are electrically connected in series,
A thermoelectric generation device in which electric power is extracted through the extraction electrode when a temperature difference is applied along a normal direction of the support plate.
支持板と、
前記支持板上に設けられた複数個の熱発電デバイス素子とを具備し、
ここで、前記各熱発電デバイス素子は、請求項1に係る熱発電デバイス素子であり、
各熱発電デバイス素子の両端をそれぞれ電気的に接続する2つの取り出し電極によって前記複数個の熱発電デバイス素子が電気的に並列に接続されており、
前記支持板の法線方向に沿って温度差が印加されることによって、前記取り出し電極を介して電力が取り出される、熱発電デバイス。
A support plate;
A plurality of thermoelectric device elements provided on the support plate;
Here, each of the thermoelectric generation device elements is a thermoelectric generation device element according to claim 1,
The plurality of thermoelectric device elements are electrically connected in parallel by two extraction electrodes that electrically connect both ends of each thermoelectric device element,
A thermoelectric generation device in which electric power is extracted through the extraction electrode when a temperature difference is applied along a normal direction of the support plate.
JP2008052993A 2008-03-04 2008-03-04 Thermoelectric device element Active JP5176602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008052993A JP5176602B2 (en) 2008-03-04 2008-03-04 Thermoelectric device element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008052993A JP5176602B2 (en) 2008-03-04 2008-03-04 Thermoelectric device element

Publications (3)

Publication Number Publication Date
JP2009212267A JP2009212267A (en) 2009-09-17
JP2009212267A5 true JP2009212267A5 (en) 2010-09-30
JP5176602B2 JP5176602B2 (en) 2013-04-03

Family

ID=41185138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008052993A Active JP5176602B2 (en) 2008-03-04 2008-03-04 Thermoelectric device element

Country Status (1)

Country Link
JP (1) JP5176602B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6904847B2 (en) * 2017-08-10 2021-07-21 太陽誘電株式会社 Laminated pyroelectric element

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4434904A1 (en) * 1994-09-29 1996-06-05 Max Planck Gesellschaft Highly sensitive thermo-electric radiation detector
JPH1074986A (en) * 1996-06-27 1998-03-17 Natl Aerospace Lab Production of thermoelectric conversion element, pi-type thermoelectric conversion element pair and thermoelectric conversion module

Similar Documents

Publication Publication Date Title
JP5987444B2 (en) Thermoelectric conversion device and manufacturing method thereof
JP5665618B2 (en) Capacitor configuration unit and capacitor
JP2017022407A5 (en)
JP2009027039A5 (en)
JP2006196886A5 (en)
JP2013077598A5 (en) Heat conducting member and joining structure using heat conducting member
JP2013168419A5 (en)
JP2014175425A5 (en)
JP2010098086A5 (en)
JP2006179923A5 (en)
JP2010231969A5 (en)
WO2008108034A1 (en) Power generation method employing thermoelectric generating element, thermoelectric generating element and its manufacturing method, and thermoelectric generating device
JP2011071315A5 (en)
JP2016131245A5 (en)
JP2005108989A5 (en)
JP2007129239A5 (en)
JP2009246174A5 (en)
WO2009028289A1 (en) Ceramic multilayer substrate
JP5482063B2 (en) Thermoelectric conversion element and manufacturing method thereof
JP2015156445A (en) Lamination type film capacitor, and method for manufacturing lamination type film capacitor
JP2006203077A5 (en)
JP2014165368A (en) Chip resistor and method of manufacturing chip resistor
JP2009212267A5 (en)
JP2009218252A5 (en)
JP2009218253A5 (en)