JP2009210946A - Oscillating body device, light deflection device, and optical instrument using optical deflection device - Google Patents

Oscillating body device, light deflection device, and optical instrument using optical deflection device Download PDF

Info

Publication number
JP2009210946A
JP2009210946A JP2008055626A JP2008055626A JP2009210946A JP 2009210946 A JP2009210946 A JP 2009210946A JP 2008055626 A JP2008055626 A JP 2008055626A JP 2008055626 A JP2008055626 A JP 2008055626A JP 2009210946 A JP2009210946 A JP 2009210946A
Authority
JP
Japan
Prior art keywords
movable body
bending
angular displacement
support frame
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008055626A
Other languages
Japanese (ja)
Inventor
Yasushi Mizoguchi
安志 溝口
Yasuhiro Shimada
康弘 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008055626A priority Critical patent/JP2009210946A/en
Publication of JP2009210946A publication Critical patent/JP2009210946A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Facsimile Scanning Arrangements (AREA)
  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Micromachines (AREA)
  • Facsimile Heads (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oscillating body device, capable of using various combinations of bending deformation modes of a plurality of bending beams in a beam structure for rockably supporting a movable body for various purposes such as scanning line interval correction or the like. <P>SOLUTION: The oscillating body device includes a movable body 101, a beam structure which supports the movable body to a support frame 105 so as to be rockable around two oscillating axes, and at least one of drive means and detection means. The beam structure includes a torsion-deformable torsion beam 102 and a plurality of bending-deformable bending beams 103. One end of the torsion beam 102 is connected to the movable body, the other end thereof is connected to one end of each bending beam through a connection part 102, and the other end of each bending beam 103 is connected to the support frame 105. The drive means 106 or 113 selects a combination of bending deformation modes of the bending beams according to a drive signal, and selects at least one oscillation axis to cause angular displacement of the movable body around the oscillation axis. The detection means receives an effect according to the combination of bending deformation modes of the bending beams and detects the angular displacement of the movable body around the at least one oscillation axis. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、揺動可能に支持された可動体を有する揺動体装置、光偏向装置、及び光偏向装置を用いた光学機器に関する。特に、走査線の歪補正機能を実行し得る構成を備えマイクロマシニング技術などにて作製され得る光偏向装置、及び該光偏向装置を用いた光学機器に関する。 The present invention relates to an oscillator device having a movable body supported so as to be swingable, an optical deflection device, and an optical apparatus using the optical deflection device. In particular, the present invention relates to an optical deflection apparatus that has a configuration capable of executing a distortion correction function of a scanning line and can be manufactured by a micromachining technique, and an optical apparatus using the optical deflection apparatus.

光偏向装置は、例えばレーザ光を偏向する用途などに利用される。レーザ光を偏向・走査する走査ミラーとしてガルバノミラーがある。ガルバノミラーの駆動原理は次の様なものである。磁界中に配置した可動コイルに電流を流すと、電流と磁束とに関連して電磁力が発生して電流に比例したトルクが生じる。このトルクとバネ力とが平衡する角度まで可動コイルが回転し、この可動コイルを介して指針を振らせて電流の有無や大小を検出する。ガルバノミラーは、こうしたガルバノメータの原理を利用したもので、可動コイルと一体に回転する軸に、前記指針の代わりに反射鏡を設けて構成される。 The optical deflecting device is used for, for example, an application for deflecting laser light. There is a galvanometer mirror as a scanning mirror for deflecting and scanning a laser beam. The driving principle of the galvanometer mirror is as follows. When a current is passed through a moving coil arranged in a magnetic field, an electromagnetic force is generated in relation to the current and the magnetic flux, and a torque proportional to the current is generated. The movable coil rotates to an angle at which the torque and the spring force are balanced, and the presence or absence or magnitude of the current is detected by swinging the pointer through the movable coil. The galvanometer mirror uses the principle of such a galvanometer, and is configured by providing a reflecting mirror instead of the pointer on an axis that rotates integrally with the movable coil.

しかしながら、ガルバノミラーでは機械巻きの駆動コイルと磁界発生のための大型ヨークが必要であり、主に出力トルクの理由から、これらの機械要素の小型化には限度がある。また同時に、各構成部材を組み上げる際のスペース等から、光偏向のための装置全体のサイズが大きくなり易い。 However, a galvanomirror requires a mechanically wound drive coil and a large yoke for generating a magnetic field, and there is a limit to downsizing these mechanical elements mainly because of output torque. At the same time, the size of the entire device for light deflection tends to increase due to the space for assembling each component.

小型の光偏向装置としては、半導体製造技術を応用して微小機械を半導体基板上に一体形成するマイクロマシニング技術を用いて作製した光偏向装置がある。こうした光偏向装置として、K.E.Petersen等により、シリコンで形成されるTorsional-Scanning-Mirrorが提案されている(非特許文献1参照)。この光偏向装置では、図14(a)に示す様に、機械的可動部3が、光偏向板としてのミラー3aとこのミラーを支持する梁3bからなる。ミラー3aと基板上に形成した固定電極2との間に駆動電圧を印加し、生じる静電引力により、梁3bにねじりモーメントを与えてねじり回転させ、ミラー3aの偏向角度を変えるものである。ミラー3aの最大偏向角はミラー3aと基板との空隙間隔t0にて一義的に決定される。この様な構成の光偏向装置は、例えば、後述する図12に示す様な画像形成装置において、入射光を1次元に走査する光スキャナ装置として用いることができる。 As a small-sized optical deflecting device, there is an optical deflecting device manufactured by using a micromachining technique in which a micromachine is integrally formed on a semiconductor substrate by applying a semiconductor manufacturing technique. As such an optical deflecting device, K.E.Petersen et al. Has proposed Torsional-Scanning-Mirror formed of silicon (see Non-Patent Document 1). In this optical deflecting device, as shown in FIG. 14 (a), the mechanically movable portion 3 includes a mirror 3a as an optical deflecting plate and a beam 3b that supports the mirror. A driving voltage is applied between the mirror 3a and the fixed electrode 2 formed on the substrate, and a torsional moment is applied to the beam 3b by the generated electrostatic attraction force to rotate it to change the deflection angle of the mirror 3a. The maximum deflection angle of the mirror 3a is uniquely determined by the gap interval t0 between the mirror 3a and the substrate. The optical deflecting device having such a configuration can be used as an optical scanner device that scans incident light in a one-dimensional manner, for example, in an image forming apparatus as shown in FIG.

また、図14(b)に示す様なミラー16を2軸回りで偏向可能に配置した構造のアクチュエータ10も開示されている(特許文献1参照)。すなわち、可動ミラー12B、16が2つのトーションバー13Bでジンバル12Aに支持され、ジンバルが2つのトーションバー13Aで基板11に支持され、可動ミラー12B、16とジンバル12Aとの揺動軸が互いに直交する構造を有する。この構成の可動ミラー及びジンバル上の周縁部に駆動コイル15Bを形成し、可動ミラー及びジンバルの1つの対角線方向に、該可動ミラー及びジンバルを挟んで永久磁石4、5を配置することで、可動ミラー及びジンバルを駆動する。この様な構成の光偏向装置は、例えば、図13に示す様な画像表示装置において、入射光を2次元に走査する光スキャナ装置として用いることができる。
IBM J.RES. DEVELOP.,VOL.24,NO5,9,1980.P631-637 特開平8-322227号公報
Further, an actuator 10 having a structure in which a mirror 16 as shown in FIG. 14B is arranged to be deflectable around two axes is also disclosed (see Patent Document 1). That is, the movable mirrors 12B and 16 are supported by the gimbal 12A with the two torsion bars 13B, the gimbal is supported by the substrate 11 with the two torsion bars 13A, and the swing axes of the movable mirrors 12B and 16 and the gimbal 12A are orthogonal to each other It has the structure to do. The drive coil 15B is formed on the peripheral part of the movable mirror and gimbal with this configuration, and the permanent magnets 4 and 5 are arranged in the diagonal direction of the movable mirror and the gimbal with the movable mirror and the gimbal sandwiched therebetween. Drive the mirror and gimbal. The optical deflecting device having such a configuration can be used as an optical scanner device that scans incident light two-dimensionally in an image display device as shown in FIG. 13, for example.
IBM J.RES.DEVELOP., VOL.24, NO5,9,1980.P631-637 JP-A-8-322227

上記の様な1軸光偏向装置や2軸光偏向装置を用いた画像形成装置、画像表示装置などの光学機器では、感光体上に書き込まれるレーザ光の走査軌跡、或いは投影面で画像を形成するレーザ光の走査軌跡は、一般に図11(a)の様になる。図11(a)から分かる様に、走査パターンの端部近くで折り返す走査線の間隔が狭くなってしまっている。これにより、走査パターンの端部付近では画素間隔が不均等になって、充分な解像度の画像を得るのが容易ではない。また、複数の光源からの光を同時に走査する所謂マルチビーム走査の場合は、走査線を整列して揃えるのが容易ではなく、前記の課題は著しくなり易い。 In an optical device such as an image forming apparatus or an image display apparatus using a uniaxial light deflector or a biaxial light deflector as described above, an image is formed on the scanning trajectory of the laser beam written on the photosensitive member or on the projection surface. The scanning trajectory of the laser beam is generally as shown in FIG. As can be seen from FIG. 11 (a), the interval between the scanning lines turned back near the end of the scanning pattern is narrowed. As a result, the pixel spacing becomes uneven near the end of the scanning pattern, and it is not easy to obtain an image with sufficient resolution. In the case of so-called multi-beam scanning in which light from a plurality of light sources is simultaneously scanned, it is not easy to align the scanning lines and the problem described above is likely to be significant.

本発明に係る第1の揺動体装置は次の特徴を有する。すなわち、本揺動体装置は、可動体と、直交する2つの揺動軸の回りに揺動可能に可動体を支持枠に対して支持する梁構造体と、可動体を駆動するための駆動手段及び可動体の動きを検出するための検出手段の少なくとも一方を有する。前記梁構造体は、少なくともねじれ変形可能なねじり梁と、少なくとも曲げ変形可能な複数の曲がり梁とを有する。前記ねじり梁は、一端が前記可動体に連結され、他端が接続部を介して前記各曲がり梁の一端に連結され、前記各曲がり梁の他端は前記支持枠に連結される。前記駆動手段は、駆動信号により、前記複数の曲がり梁の曲げ変形の態様の組み合わせを選択し、前記2つの揺動軸のうちの少なくとも1つの揺動軸を選んで該揺動軸の回りの前記可動体の角変位を起こす。前記検出手段は、前記複数の曲がり梁の曲げ変形の態様の組み合わせに応じた作用を受けて、前記2つの揺動軸のうちの少なくとも1つの揺動軸の回りの前記可動体の角変位を検出する。 The first oscillator device according to the present invention has the following characteristics. That is, the present oscillator device includes a movable body, a beam structure that supports the movable body with respect to the support frame so as to be swingable about two orthogonal swing shafts, and a driving means for driving the movable body. And at least one of detecting means for detecting the movement of the movable body. The beam structure includes at least a torsional beam that can be torsionally deformed and at least a plurality of bending beams that can be bent and deformed. One end of the torsion beam is connected to the movable body, the other end is connected to one end of each bending beam via a connection portion, and the other end of each bending beam is connected to the support frame. The drive means selects a combination of bending deformation modes of the plurality of bending beams according to a drive signal, selects at least one of the two swing shafts, and rotates around the swing shaft. An angular displacement of the movable body is caused. The detection means receives an action corresponding to a combination of bending deformation modes of the plurality of bending beams, and detects an angular displacement of the movable body around at least one of the two swing shafts. To detect.

また、本発明に係る第2の揺動体装置は次の特徴を有する。すなわち、本揺動体装置は、可動体と、直交する2つの揺動軸の回りに揺動可能に可動体を支持枠に対して支持する梁構造体を有する。前記梁構造体は、少なくともねじれ変形可能なねじり梁と、少なくとも曲げ変形可能な複数の曲がり梁とを有する。前記ねじり梁は、一端が前記可動体に連結され、他端が直接に前記各曲がり梁の一端に連結され、前記各曲がり梁の他端は前記支持枠に連結される。 The second oscillator device according to the present invention has the following characteristics. In other words, the oscillator device includes a movable body and a beam structure that supports the movable body with respect to the support frame so as to be swingable about two orthogonal swing axes. The beam structure includes at least a torsional beam that can be torsionally deformed and at least a plurality of bending beams that can be bent and deformed. One end of the torsion beam is connected to the movable body, the other end is directly connected to one end of each bending beam, and the other end of each bending beam is connected to the support frame.

また、本発明に係る光偏向装置は、前記揺動体装置を有し、前記可動体に光偏向素子が設けられ、光偏向素子に入射する光ビームを偏向することを特徴とする。 An optical deflection apparatus according to the present invention includes the oscillator device, wherein the movable body is provided with an optical deflection element, and deflects a light beam incident on the optical deflection element.

また、本発明に係る光学機器は、前記光偏向装置を有し、光偏向装置が、光源からの光ビームを偏向し、該光ビームの少なくとも一部を光照射対象物に入射させることを特徴とする。 An optical apparatus according to the present invention includes the light deflection device, wherein the light deflection device deflects a light beam from a light source and causes at least a part of the light beam to enter a light irradiation object. And

本発明によれば、上記の如き梁構造体を用いて可動体を揺動可能に支持しているので、前記複数の曲がり梁の曲げ変形の態様の多様な組み合わせを種々の用途に利用することができる。例えば、上記の如き駆動手段や検出手段により、可動体の角変位運動を柔軟に制御したり、可動体の角変位を介して外部から加わる加速度を検出したりすることができる。代表的な用途として、本発明の揺動体装置を光偏向装置に適用して、偏向光の走査パターンの端部で折り返す走査線の間隔を補正することができる。これにより、利用可能な走査線の範囲を広くすることができ、高解像度の画像形成が可能となる。 According to the present invention, since the movable body is swingably supported using the beam structure as described above, various combinations of the bending deformation modes of the plurality of bent beams can be used for various applications. Can do. For example, it is possible to flexibly control the angular displacement movement of the movable body or to detect acceleration applied from the outside through the angular displacement of the movable body by the driving means and the detection means as described above. As a typical application, the oscillator device of the present invention can be applied to an optical deflecting device to correct the interval between scanning lines that are folded back at the end of a scanning pattern of deflected light. Thereby, the range of available scanning lines can be widened, and high-resolution image formation is possible.

本発明の基本構成と原理を説明する。本発明による揺動体装置の第1の実施形態は、基本的に、可動体と、直交する2つの揺動軸の回りに揺動可能に可動体を支持枠に対して支持する梁構造体を有する。梁構造体は、典型的には、可動体を挟んで1対設けられるが、片持ち梁式に1つの梁構造体で可動体を揺動可能に支持してもよい。梁構造体は、ねじれ変形可能な1つのねじり梁と、曲げ変形可能な複数(典型的には1対であるが、複数対でもよい)の曲がり梁とを有する。ねじり梁は、一端が可動体に連結され、他端が接続部を介して各曲がり梁の一端に連結され、各曲がり梁の他端は支持枠に連結される。こうした構造に、可動体を駆動するための駆動手段及び可動体の動きを検出するための検出手段の少なくとも一方が設けられる。駆動手段は、駆動信号により、複数の曲がり梁の曲げ変形の態様の多様な組み合わせの中から用途に応じた適切なものを選択し、前記2つの揺動軸のうちの少なくとも1つの揺動軸を選んで該揺動軸回りの可動体の角変位を起こす。検出手段は、複数の曲がり梁の曲げ変形の態様の組み合わせに応じた作用を受けて、前記2つの揺動軸のうちの少なくとも1つの揺動軸の回りの可動体の角変位を検出する。これにより、外部から加わる加速度を検出するセンサとして用いることができたり、可動体の角変位の検出結果をフィードバックして駆動手段に印加する駆動信号を制御し、可動体の角変位運動を調整できる揺動体装置として用いることができたりする。 The basic configuration and principle of the present invention will be described. The first embodiment of the oscillator device according to the present invention basically includes a movable body and a beam structure that supports the movable body with respect to a support frame so as to be swingable around two orthogonal swing axes. Have. Typically, a pair of beam structures is provided with a movable body sandwiched therebetween, but the movable body may be swingably supported by one beam structure in a cantilever manner. The beam structure has one torsional beam that can be torsionally deformed and a plurality of bending beams that can be bent and deformed (typically one pair, but may be a plurality of pairs). One end of the torsion beam is connected to the movable body, the other end is connected to one end of each bending beam via a connection portion, and the other end of each bending beam is connected to the support frame. In such a structure, at least one of driving means for driving the movable body and detection means for detecting the movement of the movable body is provided. The driving means selects an appropriate one according to the application from various combinations of bending deformation modes of the plurality of bending beams according to the driving signal, and at least one of the two oscillating shafts Is selected to cause angular displacement of the movable body around the swing axis. The detecting means detects an angular displacement of the movable body around at least one of the two oscillating shafts by receiving an action corresponding to a combination of bending deformation modes of the plurality of bending beams. Thereby, it can be used as a sensor for detecting acceleration applied from the outside, or the angular displacement movement of the movable body can be adjusted by controlling the drive signal applied to the driving means by feeding back the detection result of the angular displacement of the movable body. It can be used as an oscillator device.

また、本発明による揺動体装置の第2の実施形態は、基本的に、可動体と、直交する2つの揺動軸の回りに揺動可能に可動体を支持枠に対して支持する梁構造体を有する。ここでも、梁構造体は、典型的には、可動体を挟んで1対設けられるが、片持ち梁式に1つの梁構造体で可動体を揺動可能に支持してもよい。梁構造体は、ねじれ変形可能な1つのねじり梁と、曲げ変形可能な複数の曲がり梁とを有し、ねじり梁は、一端が可動体に連結され、他端が直接に各曲がり梁の一端に連結される。各曲がり梁の他端は支持枠に連結される。ここにおいて、各曲がり梁は、典型的には、ねじり梁の他端に直角に連結される。また、上記の如き駆動手段及び検出手段の少なくとも一方を有してもよい。複数の曲がり梁の曲げ変形の態様の多様な組み合わせを種々の用途に利用することができて、上記の如き動作をさせることができる点は、上記第1の実施形態と同様である。 Further, the second embodiment of the oscillator device according to the present invention basically has a beam structure that supports the movable body and the support frame so as to be swingable around two orthogonal swing axes. Have a body. Here, typically, a pair of beam structures is provided with the movable body sandwiched therebetween, but the movable body may be swingably supported by one beam structure in a cantilever manner. The beam structure has one torsional beam that can be torsionally deformed and a plurality of bending beams that can be bent and deformed, and the torsional beam has one end connected to the movable body and the other end directly connected to one end of each bending beam. Connected to The other end of each bending beam is connected to a support frame. Here, each curved beam is typically connected at a right angle to the other end of the torsion beam. Moreover, you may have at least one of the above drive means and a detection means. Similar to the first embodiment, various combinations of bending deformation modes of a plurality of bending beams can be used for various purposes, and the above-described operation can be performed.

上記基本構成を備える実施形態は、入射する光を1次元または2次元に走査する光偏向装置に適用された場合、例えば、本来的な光走査機能と共に、走査パターンの端部付近の走査線の間隔を補正する機能を遂行することができる。 When the embodiment having the above basic configuration is applied to an optical deflecting device that scans incident light in one or two dimensions, for example, along with the original optical scanning function, the scanning line near the end of the scanning pattern The function of correcting the interval can be performed.

以下、実施例を挙げて本発明を詳細に説明する。
(実施例1)
図1(a)は本発明の揺動体装置を用いる光偏向装置に係る実施例1の構成を示す上面図である。図1(b)は図1(a)のA-A’矢視断面図である。図1(c)は図1(a)のB-B’ 矢視断面図である。図1(d)は図1(a)のC-C’ 矢視断面図である。図1(e)は図1(a)のD-D’ 矢視断面図である。図2(a)乃至(c)、図3(a)、図3(b)は、図1(b)の断面図を用いて、Y方向の光走査のための駆動方法を説明する図である。図4(a)乃至(c)、図5(a)、図5(b)は、図1(e)の断面図を用いて、X方向の走査のための駆動方法を説明する図である。
Hereinafter, the present invention will be described in detail with reference to examples.
(Example 1)
FIG. 1 (a) is a top view showing a configuration of a first embodiment relating to an optical deflection device using the oscillator device of the present invention. FIG. 1B is a cross-sectional view taken along the line AA ′ in FIG. FIG. 1 (c) is a cross-sectional view taken along the line BB ′ of FIG. 1 (a). FIG. 1 (d) is a cross-sectional view taken along the line CC ′ of FIG. 1 (a). FIG. 1 (e) is a cross-sectional view taken along the line DD ′ of FIG. 1 (a). 2 (a) to 2 (c), 3 (a), and 3 (b) are diagrams illustrating a driving method for optical scanning in the Y direction, using the cross-sectional view of FIG. 1 (b). is there. 4 (a) to 4 (c), 5 (a), and 5 (b) are diagrams illustrating a driving method for scanning in the X direction, using the cross-sectional view of FIG. 1 (e). .

本実施例において、可動体に光偏向素子である反射面が設けられて入射光ビームを偏向する可動ミラー101は、梁構造体により、直交する2つの揺動軸の回りに揺動可能に支持枠105に対して支持されている。梁構造体は、少なくともねじれ変形可能なねじり梁102、少なくとも曲げ変形可能な複数(ここでは2つ)の曲がり梁103、接続部104を有する。ねじり梁102は、一端が可動ミラー101に連結され、他端が接続部104を介して各曲がり梁103の一端に連結される。各曲がり梁103の他端は支持枠105に連結される。 In this embodiment, the movable mirror 101, which is provided with a reflecting surface as a light deflecting element on the movable body and deflects the incident light beam, is supported by the beam structure so as to be swingable around two orthogonal swing axes. The frame 105 is supported. The beam structure includes at least a torsion beam 102 that can be torsionally deformed, a plurality (two in this case) of bending beams 103 that can be bent and deformed, and a connecting portion 104. One end of the torsion beam 102 is connected to the movable mirror 101, and the other end is connected to one end of each bending beam 103 via the connection portion 104. The other end of each bending beam 103 is connected to the support frame 105.

本実施例では、前記直交する2つの揺動軸は夫々X方向とY方向に伸びる。また、各接続部104は、ねじり梁102の前記他端と各曲がり梁103の前記一端に夫々ほぼ直角に連結され、ねじり梁102と各曲がり梁103は互いにほぼ平行に伸びる。2つの曲がり梁103は、ねじり梁102の伸長方向で規定されるY方向に伸びる揺動軸を挟んで、対称に配置される。ここでは、梁構造体は、可動ミラー101を挟んで一対設けられていて、この形態は安定した動作のために好ましい形態であるが、可動ミラー101が片持ち梁式に1つの梁構造体で揺動可能に支持枠105に対して支持されてもよい。可動ミラー101、ねじり梁101、曲がり梁103、接続部104、支持枠105は、平板状の単結晶シリコンを除去加工して一体形成することができる。 In the present embodiment, the two orthogonal swing axes extend in the X direction and the Y direction, respectively. Each connecting portion 104 is connected to the other end of the torsion beam 102 and the one end of each bending beam 103 at substantially right angles, and the torsion beam 102 and each bending beam 103 extend substantially parallel to each other. The two bent beams 103 are arranged symmetrically with a swing shaft extending in the Y direction defined by the extension direction of the torsion beam 102 interposed therebetween. Here, a pair of beam structures are provided across the movable mirror 101, and this form is a preferred form for stable operation, but the movable mirror 101 is a single beam structure in a cantilever manner. The support frame 105 may be swingably supported. The movable mirror 101, the torsion beam 101, the bending beam 103, the connection portion 104, and the support frame 105 can be integrally formed by removing the flat single crystal silicon.

各曲がり梁103上には、可動ミラー101を駆動するための駆動手段である伸縮運動可能なアクチュエータが設けられている。伸縮運動可能なアクチュエータには、例えば、電圧信号が印加されることで梁の長さ方向に伸縮運動可能な圧電体106乃至113を用いることができる。圧電体106乃至113は絶縁層(不図示)を形成した曲がり梁103上に配置される。絶縁層には酸化膜を用いることができる。また、圧電体106乃至113には、夫々、運動を制御できる様に配線が形成されている(不図示)。駆動手段は、駆動信号により、複数の曲がり梁103の曲げ変形の態様の組み合わせを選択し、前記2つの揺動軸のうちの少なくとも1つの揺動軸を選んで該揺動軸回りの可動ミラー101の角変位を起こす。 On each bending beam 103, an actuator capable of extending and contracting, which is a driving means for driving the movable mirror 101, is provided. As the actuator that can be expanded and contracted, for example, piezoelectric bodies 106 to 113 that can expand and contract in the length direction of the beam by applying a voltage signal can be used. The piezoelectric bodies 106 to 113 are disposed on the bending beam 103 on which an insulating layer (not shown) is formed. An oxide film can be used for the insulating layer. In addition, wirings are formed in the piezoelectric bodies 106 to 113 so that the movement can be controlled (not shown). The driving means selects a combination of bending deformation modes of the plurality of bending beams 103 according to the driving signal, selects at least one of the two swing shafts, and a movable mirror around the swing shaft Causes 101 angular displacement.

本実施例では、全ての曲がり梁103の上下面に、夫々、圧電体106乃至113が配置されているが、駆動手段の前記機能を実行できる配置ならば、どの様な配置で圧電体が設けられてもよい。例えば、全ての曲がり梁103の上面または下面にのみ圧電体が設けられてもよい。また、図1(a)の可動ミラー101を挟んで右側の2つの曲がり梁103の上面及び左側の2つの曲がり梁103の下面にのみ圧電体が設けられてもよい。或いは、図1(a)のY方向に伸びる揺動軸を挟んで上側の2つの曲がり梁103の上面及び下側の2つの曲がり梁103の下面にのみ圧電体が設けられたりしてもよい。 In this embodiment, the piezoelectric bodies 106 to 113 are arranged on the upper and lower surfaces of all the bending beams 103, but any arrangement may be used as long as the arrangement can execute the function of the driving means. May be. For example, the piezoelectric body may be provided only on the upper surface or the lower surface of all the bending beams 103. Further, a piezoelectric body may be provided only on the upper surface of the two right bending beams 103 and the lower surface of the two left bending beams 103 with the movable mirror 101 in FIG. Alternatively, a piezoelectric body may be provided only on the upper surface of the upper two bending beams 103 and the lower surface of the lower two bending beams 103 across the swing shaft extending in the Y direction in FIG. .

上記構成の光偏向装置の駆動方法を図2乃至図5を用いて説明する。
圧電体107、109、110、112にのみ定電圧信号を印加するとき、図2(a)の様に可動ミラー102は、X方向に伸びる揺動軸の回りに角変位する。また、圧電体106、108、111、113にのみ定電圧信号を印加するとき、図2(c)の様に可動ミラー102は、図2(a)のときとは反対の向きにX方向に伸びる揺動軸の回りに角変位する。図2(b)は、何れの圧電体にも定電圧信号を印加していないときに可動ミラー102がとる中立位置の状態を示す。圧電体107、109、110、112に図3(a)の駆動電圧信号、圧電体106、108、111、113に図3(b)の駆動電圧信号を周期的に加えることで、可動ミラー102は図2(a)→(b)→(c)→(b)→(a)の様に角変位運動を繰り返す。
A method of driving the optical deflector having the above configuration will be described with reference to FIGS.
When a constant voltage signal is applied only to the piezoelectric bodies 107, 109, 110, and 112, the movable mirror 102 is angularly displaced about the swing axis extending in the X direction as shown in FIG. In addition, when applying a constant voltage signal only to the piezoelectric bodies 106, 108, 111, 113, the movable mirror 102 moves in the X direction in the opposite direction to that in FIG. 2 (a) as shown in FIG. 2 (c). Angular displacement about the extending swing axis. FIG. 2 (b) shows the state of the neutral position taken by the movable mirror 102 when no constant voltage signal is applied to any piezoelectric body. By periodically applying the drive voltage signal of FIG. 3 (a) to the piezoelectric bodies 107, 109, 110, 112 and the drive voltage signal of FIG. 3 (b) to the piezoelectric bodies 106, 108, 111, 113, the movable mirror 102 Repeats the angular displacement motion as shown in Fig. 2 (a)->(b)->(c)->(b)-> (a).

他方、圧電体106、110、109、113にのみ定電圧信号を印加するとき、図4(a)の様に可動ミラー102は、Y方向に伸びる揺動軸の回りに角変位する。また、圧電体107、111、108、112にのみ定電圧信号を印加するとき、図4(c)の様に可動ミラー102は、図4(a)のときとは反対の向きにY方向に伸びる揺動軸の回りに角変位する。図4(b)は、何れの圧電体にも定電圧信号を印加していないときに可動ミラー102がとる中立位置の状態を示す。圧電体106、110、109、113に図5(a)の駆動電圧信号、圧電体107、111、108、112に図5(b)の駆動電圧信号を周期的に加えることで、可動ミラー102は図4(a)→(b)→(c)→(b)→(a)の様に角変位運動を繰り返す。 On the other hand, when a constant voltage signal is applied only to the piezoelectric bodies 106, 110, 109, 113, the movable mirror 102 is angularly displaced about the swing axis extending in the Y direction as shown in FIG. In addition, when applying a constant voltage signal only to the piezoelectric bodies 107, 111, 108, 112, the movable mirror 102 moves in the Y direction in the opposite direction to that in FIG. 4 (a) as shown in FIG. 4 (c). Angular displacement about the extending swing axis. FIG. 4B shows a state of the neutral position that the movable mirror 102 takes when no constant voltage signal is applied to any piezoelectric body. By periodically applying the drive voltage signal of FIG. 5A to the piezoelectric bodies 106, 110, 109, and 113 and applying the drive voltage signal of FIG. 5B to the piezoelectric bodies 107, 111, 108, and 112, the movable mirror 102 Repeats the angular displacement motion as shown in Fig. 4 (a)-> (b)-> (c)-> (b)-> (a).

図2と図4に示す角変位運動を重ね合わせることで可動ミラー102は前記2つの揺動軸の回りに揺動し、ここに入射する光をX方向及びY方向に偏向可能となる。本実施例では、このときのY方向の走査スピードはX方向の走査スピードの2倍になる様に駆動電圧信号の周波数を夫々設定する。すなわち、図3の駆動電圧信号の周波数を、図5の駆動電圧信号の周波数の2倍にする。この様に、前記電圧信号が、前記2つの揺動軸の一方の揺動軸の回りの可動体の角変位を起こす第1駆動電圧信号と、他方の揺動軸の回りの可動体の角変位を起こす第2駆動電圧信号とから成る様にする。勿論、図2と図4に示す角変位運動を夫々単独で可動ミラー102に起こさせる様にすることもできる。 By superimposing the angular displacement motions shown in FIGS. 2 and 4, the movable mirror 102 swings around the two swing axes, and light incident thereon can be deflected in the X direction and the Y direction. In this embodiment, the frequency of the drive voltage signal is set so that the scanning speed in the Y direction at this time is twice the scanning speed in the X direction. That is, the frequency of the drive voltage signal in FIG. 3 is set to twice the frequency of the drive voltage signal in FIG. In this way, the voltage signal causes the first drive voltage signal that causes the angular displacement of the movable body around one of the two swing shafts, and the angle of the movable body around the other swing shaft. And a second drive voltage signal that causes displacement. Of course, the angular displacement motion shown in FIG. 2 and FIG.

ここで、図12を用いて、上記構成の光偏向装置を用いた画像形成装置の一実施形態を説明する。601は図1に示された光偏向装置であり、この場合は入射光を走査する光スキャナ装置として用いている。602はレーザ光源である。603はレンズ或いはレンズ群であり、604は書き込みレンズ或いはレンズ群、605は、光照射対象物である一定速度で回転する感光体である。レーザ光源602から射出されたレーザ光は光走査のタイミングと関係した所定の強度変調を受けて、光偏向装置601により偏向・走査される。走査されたレーザ光は、書き込みレンズ604により感光体605上へ画像を形成する。感光体605は、図示しない帯電器により一様に帯電されており、この上に光を走査することで静電潜像が形成される。更に、図示しない現像器により静電潜像の画像部分にトナー像を形成し、これを、例えば図示しない用紙に転写・定着することで、用紙上に可視像が形成される。 Here, with reference to FIG. 12, an embodiment of an image forming apparatus using the light deflection apparatus having the above-described configuration will be described. Reference numeral 601 denotes an optical deflecting device shown in FIG. 1, which is used as an optical scanner device for scanning incident light in this case. Reference numeral 602 denotes a laser light source. Reference numeral 603 denotes a lens or a lens group, reference numeral 604 denotes a writing lens or lens group, and reference numeral 605 denotes a photoconductor that rotates at a constant speed as a light irradiation target. The laser light emitted from the laser light source 602 is subjected to predetermined intensity modulation related to the optical scanning timing, and is deflected and scanned by the optical deflecting device 601. The scanned laser light forms an image on the photosensitive member 605 by the writing lens 604. The photosensitive member 605 is uniformly charged by a charger (not shown), and an electrostatic latent image is formed by scanning light thereon. Further, a toner image is formed on the image portion of the electrostatic latent image by a developing device (not shown), and this is transferred and fixed on a paper (not shown), for example, thereby forming a visible image on the paper.

感光体605の回転方向と垂直な方向(X方向)の光走査は図4に示した角変位運動により行われる。例えば、このX方向の走査を行う駆動電圧信号の周波数を20kHzに設定することができる。この駆動電圧信号は、好適には、可動体及びねじり梁をねじり共振させる電圧信号である。このとき、X方向と直交するY方向への走査は図2に示した角変位運動により行われ、この駆動電圧信号の周波数はX方向の駆動周波数の2倍の40kHzに設定する。Y方向の駆動信号の振幅は、走査線の間隔が等しくなる様に適宜設定する。つまり、このY方向の走査が、走査パターン端部の走査線間隔補正の機能を果たす。Y方向走査がない場合の感光体上の走査線軌跡は図11(a)に示す様になるのに対して、補正機能を用いた場合の走査線軌跡は図11(b)に示す様になる。 The optical scanning in the direction (X direction) perpendicular to the rotation direction of the photosensitive member 605 is performed by the angular displacement motion shown in FIG. For example, the frequency of the drive voltage signal for scanning in the X direction can be set to 20 kHz. This drive voltage signal is preferably a voltage signal that causes the movable body and the torsion beam to torsionally resonate. At this time, scanning in the Y direction orthogonal to the X direction is performed by the angular displacement motion shown in FIG. 2, and the frequency of the drive voltage signal is set to 40 kHz, which is twice the drive frequency in the X direction. The amplitude of the drive signal in the Y direction is appropriately set so that the scanning line intervals are equal. That is, the scanning in the Y direction fulfills the function of correcting the scanning line interval at the end of the scanning pattern. The scanning line locus on the photosensitive member when there is no Y-direction scanning is as shown in FIG. 11 (a), whereas the scanning line locus when the correction function is used is as shown in FIG. 11 (b). Become.

上記構成において、可動体を駆動するための駆動手段の一部の圧電体を、可動体の動きを検出するための検出手段として用いることもできる。この検出手段は、複数の曲がり梁の曲げ変形の態様の組み合わせに応じた作用を該圧電体で受けて、前記2つの揺動軸のうちの少なくとも1つの揺動軸の回りの可動体の角変位を電圧信号として検出する機能を持つ。この場合、検出手段による可動体の角変位の検出結果は、フィードバックして駆動手段に印加する駆動信号を制御し、可動体の角変位運動を調整・制御するのに用いることができる。 In the above configuration, a part of the piezoelectric body of the driving unit for driving the movable body can be used as a detection unit for detecting the movement of the movable body. The detecting means receives an action corresponding to a combination of bending deformation modes of a plurality of bending beams by the piezoelectric body, and an angle of the movable body around at least one of the two swing shafts. It has a function to detect displacement as a voltage signal. In this case, the detection result of the angular displacement of the movable body by the detection means can be used to adjust and control the angular displacement motion of the movable body by controlling the drive signal fed back and applied to the drive means.

また、上記構成において、全部の圧電体を、可動体の動きを検出するための検出手段として用いて、上記揺動体装置を、外部から加わる軸回りの加速度を検出するセンサとして用いることもできる。この場合、後述の実施例3で述べる第2の駆動手段を更に設けて、検出手段による可動体の角変位の検出結果を、該第2の駆動手段のための上記フィードバック制御用の信号として用いることもできる。或いは、図2の様に可動ミラー102をX方向の揺動軸回りに角変位させる働きに上記全部の圧電体の機能を特化して、走査パターン端部の走査線間隔補正の機能のみを果たす様にしてもよい。更には、実施例3で述べる第2の駆動手段を前記駆動手段に替えて設けることもできる。 Further, in the above configuration, all the piezoelectric bodies can be used as detection means for detecting the movement of the movable body, and the oscillator device can be used as a sensor for detecting the acceleration around the axis applied from the outside. In this case, the second drive means described in Example 3 to be described later is further provided, and the detection result of the angular displacement of the movable body by the detection means is used as the feedback control signal for the second drive means. You can also Alternatively, as shown in FIG. 2, the functions of all the piezoelectric bodies are specialized in the function of angularly displacing the movable mirror 102 about the swing axis in the X direction, and only the function of correcting the scanning line interval at the end of the scanning pattern is achieved. You may do it. Furthermore, the second driving means described in the third embodiment can be provided in place of the driving means.

以上の様に、上記構成の本実施例の光偏向装置においては、走査パターンの端部近くで折り返す走査線の間隔を補正することが可能で、利用可能な走査線の範囲を広くできる。こうして、高解像度を有する画像形成が可能となる。また、本実施例の光偏向装置は容易に小型にすることができ、本実施例の光偏向装置を用いた画像形成装置も小型化が可能である。 As described above, in the optical deflecting device of this embodiment having the above-described configuration, it is possible to correct the interval between the scanning lines that are folded back near the end portion of the scanning pattern, and to widen the range of usable scanning lines. In this way, it is possible to form an image having a high resolution. In addition, the light deflection apparatus of this embodiment can be easily reduced in size, and the image forming apparatus using the light deflection apparatus of this embodiment can also be reduced in size.

(実施例2)
本発明の揺動体装置を用いる光偏向装置に係る実施例2を説明する。本実施例では、図6に示す様に光偏向装置を設計、製作した。図6(a)は本実施例の光偏向装置の構成を示す上面図、図6(b)は図6(a)の光偏向装置のA-A’矢視断面図である。
(Example 2)
[Embodiment 2] A second embodiment relating to an optical deflection apparatus using the oscillator device of the present invention will be described. In this example, an optical deflector was designed and manufactured as shown in FIG. FIG. 6A is a top view showing the configuration of the optical deflecting device of this embodiment, and FIG. 6B is a cross-sectional view taken along the line AA ′ of the optical deflecting device of FIG.

本実施例における光偏向装置の構成は、図1の光偏向装置の曲がり梁の配置をねじり梁に対して直交する様に変更したものである。つまり、本実施例は、可動体である可動ミラー801と、直交する2つの揺動軸の回りに揺動可能に可動ミラー801を支持枠805に対して支持する梁構造体を有する。梁構造体は、少なくともねじれ変形可能なねじり梁802と、少なくとも曲げ変形可能な複数の曲がり梁803とを有する。ねじり梁802は、一端が可動ミラー801に連結され、他端がほぼ直接に各曲がり梁803の一端に連結され、各曲がり梁803の他端は支持枠805に連結される。ここでは、強度上の補強のために、ねじり梁802と曲がり梁803の間にフィレットが設けられているが、これは省略することもできる。また、各曲がり梁803は、ねじり梁802の前記他端にほぼ直角に連結されている。この角度は変更することもできて、ねじり梁802と2つの曲がり梁803をY字状に連結することもできる。 The configuration of the optical deflection apparatus in the present embodiment is obtained by changing the arrangement of the bending beams of the optical deflection apparatus in FIG. 1 so as to be orthogonal to the torsion beams. That is, the present embodiment includes a movable mirror 801 that is a movable body and a beam structure that supports the movable mirror 801 with respect to the support frame 805 so as to be swingable about two orthogonal swing axes. The beam structure includes at least a torsion beam 802 that can be torsionally deformed and a plurality of bending beams 803 that can be at least bent and deformed. One end of the torsion beam 802 is connected to the movable mirror 801, the other end is connected almost directly to one end of each bending beam 803, and the other end of each bending beam 803 is connected to the support frame 805. Here, a fillet is provided between the torsion beam 802 and the bending beam 803 for reinforcement in strength, but this may be omitted. Each bending beam 803 is connected to the other end of the torsion beam 802 at a substantially right angle. This angle can be changed, and the torsion beam 802 and the two bending beams 803 can be connected in a Y shape.

本実施例でも、可動ミラー801を駆動するための駆動手段及び可動ミラー801の動きを検出するための検出手段の少なくとも一方を設けることができる。ここでも、曲がり梁803の長さ方向に伸縮運動可能な圧電体806乃至813(ただし、圧電体811と圧電体813は図6では見えない)を用いることができる。上記実施例1で説明した様に、圧電体を駆動手段として用いることができる。この場合、駆動手段は、駆動信号により、複数の曲がり梁803の曲げ変形の態様の組み合わせを選択し、前記2つの揺動軸のうちの少なくとも1つの揺動軸を選んで該揺動軸の回りの可動ミラー801の角変位を起こす。圧電体を検出手段として用いる場合は、検出手段は、複数の曲がり梁803の曲げ変形の態様の組み合わせに応じた作用を受けて、前記2つの揺動軸のうちの少なくとも1つの揺動軸の回りの可動ミラー801の角変位を検出する。その他の構成、駆動方法、変更可能な態様は、上記実施例1の説明で述べたものと同様である。 Also in this embodiment, at least one of a driving unit for driving the movable mirror 801 and a detection unit for detecting the movement of the movable mirror 801 can be provided. Also here, piezoelectric bodies 806 to 813 that can expand and contract in the length direction of the bending beam 803 (however, the piezoelectric bodies 811 and 813 are not visible in FIG. 6) can be used. As described in the first embodiment, a piezoelectric body can be used as a driving unit. In this case, the driving means selects a combination of bending deformation modes of the plurality of bending beams 803 according to the driving signal, selects at least one of the two oscillating shafts, and selects the oscillating shaft. Angular displacement of the surrounding movable mirror 801 occurs. When a piezoelectric body is used as the detection means, the detection means receives an action corresponding to a combination of bending deformation modes of the plurality of bending beams 803, and receives at least one of the two swing shafts. The angular displacement of the surrounding movable mirror 801 is detected. Other configurations, driving methods, and changeable modes are the same as those described in the description of the first embodiment.

本実施例の光偏向装置を図12に示した画像形成装置に用いる場合も、走査パターンの端部近くで折り返す走査線の間隔を補正することが可能で、利用可能な走査線の範囲を広くできる。こうして、高解像度を有する画像形成が可能となる。また、本実施例の光偏向装置も容易に小型にすることができ、本実施例の光偏向装置を用いた画像形成装置も小型化が可能である。 Even when the light deflecting device of this embodiment is used in the image forming apparatus shown in FIG. 12, it is possible to correct the spacing of the scanning lines that are folded back near the end of the scanning pattern, thereby widening the range of usable scanning lines. it can. In this way, it is possible to form an image having a high resolution. In addition, the light deflection apparatus of this embodiment can be easily reduced in size, and the image forming apparatus using the light deflection apparatus of this embodiment can also be reduced in size.

(実施例3)
本発明の揺動体装置を用いる光偏向装置に係る実施例3を説明する。本実施例では、図7に示す様に光偏向装置を設計、製作した。図7は本実施例の光偏向装置の構成を示す上面図であり、図9と図10は、図7の光偏向装置のA-A’矢視断面における構造の動作中の様子を説明する図である。
(Example 3)
[Embodiment 3] A third embodiment relating to an optical deflector using the oscillator device of the present invention will be described. In this example, an optical deflector was designed and manufactured as shown in FIG. FIG. 7 is a top view showing the configuration of the optical deflecting device of the present embodiment, and FIGS. 9 and 10 illustrate the operation of the structure in the cross section taken along the line AA ′ of the optical deflecting device of FIG. FIG.

本実施例において、可動ミラー901は、梁構造体(第1のねじり梁902、曲がり梁903、接続部904)により、前記2つの揺動軸の回りで可動に支持枠905に支持されている。支持枠905は、弾性支持部である第2のねじり梁914により、ねじり回転可能に固定部915に支持されている。第1のねじり梁902と第2のねじり梁914は直交する様な位置関係に配置されている。可動ミラー901、ねじり梁901、曲がり梁903、接続部904、支持枠905、第2のねじり梁914、固定部915は、平板状の単結晶シリコンを除去加工して一体形成することができる。弾性支持部である第2のねじり梁914は、前記2つの揺動軸とは異なる他の揺動軸の回りに揺動可能に支持枠905を固定部915に対して支持できるが、ここでは、X方向に伸びる揺動軸の回りで可動に支持枠905を支持している。すなわち、前記他の揺動軸は、前記2つの揺動軸の一方の揺動軸と一致する。 In the present embodiment, the movable mirror 901 is supported by the support frame 905 so as to be movable around the two swing axes by a beam structure (a first torsion beam 902, a bending beam 903, and a connecting portion 904). . The support frame 905 is supported by the fixed portion 915 so as to be torsionally rotatable by a second torsion beam 914 that is an elastic support portion. The first torsion beam 902 and the second torsion beam 914 are arranged so as to be orthogonal to each other. The movable mirror 901, the torsion beam 901, the bending beam 903, the connection portion 904, the support frame 905, the second torsion beam 914, and the fixing portion 915 can be integrally formed by removing flat single crystal silicon. The second torsion beam 914 that is an elastic support portion can support the support frame 905 with respect to the fixed portion 915 so as to be swingable around another swing shaft different from the two swing shafts. The support frame 905 is movably supported around a swing shaft extending in the X direction. In other words, the other swing shaft coincides with one swing shaft of the two swing shafts.

曲がり梁903上には、可動ミラー901を駆動するための駆動手段である伸縮運動可能なアクチュエータが設けられている。伸縮運動可能なアクチュエータには、例えば、梁の長さ方向に伸縮運動可能な圧電体906乃至913を用いることができる。圧電体906乃至913は絶縁層(不図示)を形成した曲がり梁903上に配置される。絶縁層には酸化膜を用いることができる。また、圧電体906乃至913には、夫々、運動を制御できる様に配線が形成されている(不図示)。その他、これらの圧電体については、上記実施例1で述べた通りである。 On the bending beam 903, an actuator capable of extending and contracting, which is a driving means for driving the movable mirror 901, is provided. As the actuator that can extend and contract, for example, piezoelectric bodies 906 to 913 that can extend and contract in the length direction of the beam can be used. The piezoelectric bodies 906 to 913 are disposed on a bending beam 903 on which an insulating layer (not shown) is formed. An oxide film can be used for the insulating layer. In addition, wirings are formed on the piezoelectric bodies 906 to 913 (not shown) so that the movement can be controlled. In addition, these piezoelectric bodies are as described in the first embodiment.

また、本実施例では、絶縁層(不図示)を形成した支持枠905上には、可動ミラー901及び梁構造体を周回する様にコイル916が形成されている。電流信号が印加されることで磁場を生じるコイル916の外側には、異なる磁極が対向する様に永久磁石917を配置される。第1及び第2のねじり梁902、914の伸長方向から夫々45°傾いた方向において永久磁石917が配置されている。コイル916と永久磁石917は、前記第2の駆動手段を構成する。この第2の駆動手段は、支持枠905を駆動するためのものである。 In this embodiment, a coil 916 is formed on the support frame 905 on which an insulating layer (not shown) is formed so as to go around the movable mirror 901 and the beam structure. A permanent magnet 917 is arranged outside the coil 916 that generates a magnetic field by applying a current signal so that different magnetic poles face each other. Permanent magnets 917 are arranged in directions inclined 45 ° from the extending directions of the first and second torsion beams 902 and 914, respectively. The coil 916 and the permanent magnet 917 constitute the second driving means. This second driving means is for driving the support frame 905.

図8(a)乃至(c)、図9(a)乃至(c)は本実施例の駆動方法を説明する図である。図9は図7のA−A’での矢視断面図である。 8A to 8C and FIGS. 9A to 9C are diagrams for explaining the driving method of this embodiment. FIG. 9 is a cross-sectional view taken along the line A-A ′ of FIG.

可動ミラー901を支持枠905に対して角変位運動させるために、コイル906に正弦波の第1駆動電流信号(図8(a))を印加する。この正弦波の周波数は、可動ミラー901及び第1のねじり梁902の支持枠905に対するねじり共振周波数20kHzに設定した。これにより、可動ミラー901は、支持枠905に対する角変位が正弦波状となる角変位運動をする(図9(a)参照)。また、支持枠905を固定部915に対して角変位運動させるために、コイル906にノコギリ波形状の第2駆動電流信号(図8(b))を印加する。この駆動周波数は60Hzに設定した。このとき、シンバルである支持枠905の角変位はノコギリ波状になる(図9(b)参照)。第2駆動電流信号のみをコイル906に印加したとき、可動ミラー901は、第1のねじり梁902を含む梁構造体により支持枠905と連結しているため、支持枠905と一緒に、第2のねじり梁914により固定部915に対して角変位運動をする。第1駆動電流信号と第2駆動電流信号を重畳して(図8(c))コイル906に印加することで、可動ミラー901を固定部915に対して2次元に角変位運動させることが可能となる(図9(c)参照)。このときの走査パターンを図11(a)に示す。 In order to cause the movable mirror 901 to undergo angular displacement movement with respect to the support frame 905, a sine wave first drive current signal (FIG. 8A) is applied to the coil 906. The frequency of the sine wave was set to a torsional resonance frequency of 20 kHz with respect to the support frame 905 of the movable mirror 901 and the first torsion beam 902. As a result, the movable mirror 901 performs an angular displacement motion in which the angular displacement with respect to the support frame 905 is sinusoidal (see FIG. 9A). In addition, a sawtooth-shaped second drive current signal (FIG. 8B) is applied to the coil 906 in order to cause the support frame 905 to undergo angular displacement movement with respect to the fixed portion 915. This driving frequency was set to 60 Hz. At this time, the angular displacement of the support frame 905, which is a cymbal, becomes a sawtooth waveform (see FIG. 9B). When only the second drive current signal is applied to the coil 906, the movable mirror 901 is connected to the support frame 905 by the beam structure including the first torsion beam 902. The torsion beam 914 makes an angular displacement movement with respect to the fixed portion 915. By superimposing the first drive current signal and the second drive current signal (Fig. 8 (c)) and applying them to the coil 906, the movable mirror 901 can be angularly displaced in two dimensions with respect to the fixed portion 915. (See Fig. 9 (c)). The scanning pattern at this time is shown in FIG.

他方、圧電体907、909、910、912に図3(a)の駆動電圧信号、圧電体906、908、911、913に図3(b)の駆動電圧信号を加えることで、可動ミラー901は図10(a)→(b)→(c)→(b)→(a)の様に角変位運動を繰り返す。この駆動電圧信号の周波数を40kHz(上記共振周波数20kHzの2倍)に設定した。 On the other hand, by applying the drive voltage signal of FIG. 3A to the piezoelectric bodies 907, 909, 910, and 912 and the drive voltage signal of FIG. 3B to the piezoelectric bodies 906, 908, 911, and 913, the movable mirror 901 is Repeated angular displacement motion as shown in Fig. 10 (a)-> (b)-> (c)-> (b)-> (a). The frequency of this drive voltage signal was set to 40 kHz (twice the resonance frequency of 20 kHz).

コイル906に第1駆動電流信号と第2駆動電流信号を重畳して印加するとともに、複数の圧電体に上述した様に駆動電圧信号を印加することで、走査パターンの端部近くで折り返す走査線の間隔を補正することが可能となる(図11(b)参照)。ここでの補正原理は上述の実施例で説明した通りである。 The first drive current signal and the second drive current signal are superimposed and applied to the coil 906, and the drive voltage signal is applied to the plurality of piezoelectric bodies as described above, so that the scan line is folded back near the end of the scan pattern. Can be corrected (see FIG. 11B). The correction principle here is as described in the above embodiment.

図13を用いて、本実施例の光偏向装置を用いた画像表示装置の一実施形態を説明する。まず、光源変調駆動部1201から出た変調信号1202により直接変調光源1203の変調を行う。本形態においては、直接変調光源1203として赤色の半導体レーザを用いた。直接変調光源1203としては、赤色、青色、緑色の直接変調可能な光源を用い、これらを混色光学系にて混色して用いてもよい。直接変調光源1203から直接変調された出力光1204は、光偏向装置1205の反射面に照射される。更に、光偏向装置1205により偏向された反射光は、補正光学系1206を通って、照射対象物である画像表示体1207上に画像として表示される。補正光学系1206は、共振走査による画像の歪みを補正する光学系である。 With reference to FIG. 13, an embodiment of an image display apparatus using the optical deflection apparatus of the present embodiment will be described. First, the modulation light source 1203 is directly modulated by the modulation signal 1202 output from the light source modulation drive unit 1201. In this embodiment, a red semiconductor laser is used as the direct modulation light source 1203. As the direct modulation light source 1203, red, blue, and green light sources that can be directly modulated may be used by mixing them with a color mixing optical system. The output light 1204 directly modulated from the direct modulation light source 1203 is applied to the reflection surface of the light deflector 1205. Further, the reflected light deflected by the light deflecting device 1205 passes through the correction optical system 1206 and is displayed as an image on the image display body 1207 that is an irradiation object. The correction optical system 1206 is an optical system that corrects image distortion due to resonance scanning.

光偏向装置1205は図7に示した光偏向装置であり、光偏向装置1205を用いて出力光1204をラスタ走査することにより、画像表示体1207に画像を高解像度で表示することができる。 The optical deflecting device 1205 is the optical deflecting device shown in FIG. 7, and an image can be displayed on the image display body 1207 with high resolution by performing raster scanning of the output light 1204 using the optical deflecting device 1205.

本実施例の光偏向装置も、走査パターンの端部近くで折り返す走査線の間隔を補正することが可能で、利用可能な走査線の範囲を広くすることができ、高解像度を有する画像形成が可能である。また、本実施例の光偏向装置も小型にでき、本実施例の光偏向装置を用いた画像表示装置は高精細化且つ小型化が可能となる。 The optical deflecting device of this embodiment can also correct the interval of the scanning lines that are folded back near the end of the scanning pattern, can widen the range of usable scanning lines, and can form an image with high resolution. Is possible. In addition, the optical deflecting device of the present embodiment can also be reduced in size, and an image display device using the optical deflecting device of the present embodiment can be made high definition and downsized.

本実施例のコイルと永久磁石から成る前記第2の駆動手段は、上記実施例2に用いることもできる。また、本実施例でも、圧電体から成る手段は、検出手段としてのみ用いたりすることができる。 The second driving means comprising the coil and permanent magnet of this embodiment can also be used in the second embodiment. Also in this embodiment, the means made of the piezoelectric material can be used only as the detecting means.

(a)は本発明の光偏向装置の実施例1を示す上面図、(b)は実施例1を示すA-A’矢視断面図、(c)は実施例1を示すB-B’ 矢視断面図、(d)は実施例1を示すC-C’ 矢視断面図、(e)は実施例1を示すD-D’ 矢視断面図である。(A) is a top view showing Example 1 of the optical deflecting device of the present invention, (b) is a cross-sectional view taken along the line AA ′ showing Example 1, and (c) is BB ′ showing Example 1. FIG. 4D is a cross-sectional view taken along the line CC ′ of Example 1, and FIG. 5E is a cross-sectional view taken along the line DD ′ of Example 1. FIG. 実施例1のY方向の走査のための駆動を説明する断面図である。3 is a cross-sectional view illustrating driving for scanning in the Y direction according to Embodiment 1. FIG. Y方向の走査のための駆動信号を説明する図である。It is a figure explaining the drive signal for the scanning of a Y direction. 実施例1のX方向の走査のための駆動を説明する断面図である。FIG. 3 is a cross-sectional view illustrating driving for scanning in the X direction according to the first embodiment. X方向の走査のための駆動信号を説明する図である。It is a figure explaining the drive signal for the scanning of a X direction. (a)は本発明の光偏向装置の実施例2の上面図、(b)は実施例2を示すA-A’矢視断面図である。(A) is a top view of the second embodiment of the optical deflecting device of the present invention, and (b) is a cross-sectional view taken along the line A-A ′ showing the second embodiment. 本発明の光偏向装置の実施例3を示す上面図である。FIG. 6 is a top view showing Embodiment 3 of the optical deflecting device of the present invention. 実施例3の駆動信号を説明する図である。FIG. 6 is a diagram for explaining a drive signal of Example 3. 実施例3の駆動方法を説明する図である。FIG. 10 is a diagram for explaining a driving method according to the third embodiment. 実施例3の走査線間隔補正のための駆動を説明する図である。FIG. 10 is a diagram illustrating driving for scanning line interval correction according to the third embodiment. 走査軌跡を説明する図である。It is a figure explaining a scanning locus. 本発明の光偏向装置を用いた画像形成装置の一実施形態を説明する図である。It is a figure explaining one Embodiment of the image forming apparatus using the optical deflection | deviation apparatus of this invention. 本発明の光偏向装置を用いた画像形成装置の他の形態を説明する図である。It is a figure explaining the other form of the image forming apparatus using the optical deflection | deviation apparatus of this invention. 従来例を説明する図である。It is a figure explaining a prior art example.

符号の説明Explanation of symbols

101、801、901 可動体(可動ミラー)
102、802、902 ねじり梁(第1のねじり梁)
103、803、903 曲がり梁
104、904 接続部
105、805、905 支持枠
106乃至113、806乃至813、906乃至913 駆動手段(検出手段、圧電体)
601、1205 光偏向装置
602、1203 光源(レーザ光源、直接変調光源)
605、1207 照射対象物(感光体、画像表示体)
914 弾性支持部(第2のねじり梁)
915 固定部
916 第2の駆動手段(コイル)
917 第2の駆動手段(永久磁石)
101, 801, 901 Movable body (movable mirror)
102, 802, 902 torsion beam (first torsion beam)
103, 803, 903 Curved beam
104, 904 connection
105, 805, 905 Support frame
106 to 113, 806 to 813, 906 to 913 Driving means (detection means, piezoelectric body)
601, 1205 Optical deflection device
602, 1203 Light source (laser light source, direct modulation light source)
605, 1207 Irradiation target (photoreceptor, image display)
914 Elastic support (second torsion beam)
915 Fixed part
916 Second drive means (coil)
917 Second drive means (permanent magnet)

Claims (10)

可動体と、
直交する2つの揺動軸の回りに揺動可能に前記可動体を支持枠に対して支持する梁構造体と、
前記可動体を駆動するための駆動手段及び前記可動体の動きを検出するための検出手段の少なくとも一方と、
を有する揺動体装置であって、
前記梁構造体は、少なくともねじれ変形可能なねじり梁と、少なくとも曲げ変形可能な複数の曲がり梁とを有し、
前記ねじり梁は、一端が前記可動体に連結され、他端が接続部を介して前記各曲がり梁の一端に連結され、
前記各曲がり梁の他端は前記支持枠に連結され、
前記駆動手段は、駆動信号により、前記複数の曲がり梁の曲げ変形の態様の組み合わせを選択し、前記2つの揺動軸のうちの少なくとも1つの揺動軸を選んで該揺動軸の回りの前記可動体の角変位を起こし、前記検出手段は、前記複数の曲がり梁の曲げ変形の態様の組み合わせに応じた作用を受けて、前記2つの揺動軸のうちの少なくとも1つの揺動軸の回りの前記可動体の角変位を検出することを特徴とする揺動体装置。
A movable body,
A beam structure that supports the movable body with respect to a support frame so as to be swingable around two orthogonal swing axes;
At least one of drive means for driving the movable body and detection means for detecting movement of the movable body;
An oscillator device comprising:
The beam structure has at least a torsional beam that can be torsionally deformed, and at least a plurality of bending beams that can be bent and deformed.
One end of the torsion beam is connected to the movable body, and the other end is connected to one end of each bending beam through a connection portion,
The other end of each bending beam is connected to the support frame,
The drive means selects a combination of bending deformation modes of the plurality of bending beams according to a drive signal, selects at least one of the two swing shafts, and rotates around the swing shaft. An angular displacement of the movable body is caused, and the detection means is subjected to an action according to a combination of bending deformation modes of the plurality of bending beams, and at least one of the two oscillating shafts. An oscillator device characterized by detecting angular displacement of the surrounding movable body.
前記各接続部は、前記ねじり梁の他端と前記各曲がり梁の一端に夫々直角に連結され、
前記ねじり梁と前記各曲がり梁は互いに平行に伸びることを特徴とする請求項1記載の揺動体装置。
Each connecting portion is connected to the other end of the torsion beam and one end of each bending beam at right angles,
2. The oscillator device according to claim 1, wherein the torsion beam and each bending beam extend in parallel to each other.
可動体と、直交する2つの揺動軸の回りに揺動可能に前記可動体を支持枠に対して支持する梁構造体とを有する揺動体装置であって、
前記梁構造体は、少なくともねじれ変形可能なねじり梁と、少なくとも曲げ変形可能な複数の曲がり梁とを有し、
前記ねじり梁は、一端が前記可動体に連結され、他端が直接に前記各曲がり梁の一端に連結され、
前記各曲がり梁の他端は前記支持枠に連結されることを特徴とする揺動体装置。
An oscillator device having a movable body and a beam structure that supports the movable body with respect to a support frame so as to be swingable around two orthogonal swing axes,
The beam structure has at least a torsional beam that can be torsionally deformed, and at least a plurality of bending beams that can be bent and deformed.
The torsion beam has one end connected to the movable body and the other end directly connected to one end of each bending beam,
The other end of each bending beam is connected to the support frame.
前記各曲がり梁は、前記ねじり梁の他端に直角に連結されることを特徴とする請求項3記載の揺動体装置。 4. The oscillator device according to claim 3, wherein each of the bending beams is connected to the other end of the torsion beam at a right angle. 前記可動体を駆動するための駆動手段及び前記可動体の動きを検出するための検出手段の少なくとも一方を有し、
前記駆動手段は、駆動信号により、前記複数の曲がり梁の曲げ変形の態様の組み合わせを選択し、前記2つの揺動軸のうちの少なくとも1つの揺動軸を選んで該揺動軸の回りの前記可動体の角変位を起こし、前記検出手段は、前記複数の曲がり梁の曲げ変形の態様の組み合わせに応じた作用を受けて、前記2つの揺動軸のうちの少なくとも1つの揺動軸の回りの前記可動体の角変位を検出することを特徴とする請求項3または4記載の揺動体装置。
Having at least one of drive means for driving the movable body and detection means for detecting movement of the movable body;
The drive means selects a combination of bending deformation modes of the plurality of bending beams according to a drive signal, selects at least one of the two swing shafts, and rotates around the swing shaft. An angular displacement of the movable body is caused, and the detection means is subjected to an action according to a combination of bending deformation modes of the plurality of bending beams, and at least one of the two oscillating shafts. 5. The oscillator device according to claim 3, wherein an angular displacement of the surrounding movable body is detected.
前記駆動手段は、電圧信号が印加されることで伸縮運動する少なくとも1つの圧電体が前記各曲がり梁に設けられて構成されることを特徴とする請求項1、2、及び5の何れか1項に記載の揺動体装置。 6. The driving device according to claim 1, wherein at least one piezoelectric body that expands and contracts when a voltage signal is applied is provided on each of the bending beams. The oscillator device according to the item. 前記電圧信号が、
前記2つの揺動軸の一方の揺動軸の回りの前記可動体の角変位を起こす第1駆動電圧信号と、
前記2つの揺動軸の他方の揺動軸の回りの前記可動体の角変位を起こす第2駆動電圧信号とから成ることを特徴とする請求項6記載の揺動体装置。
The voltage signal is
A first drive voltage signal for causing an angular displacement of the movable body around one of the two swing shafts;
7. The oscillator device according to claim 6, further comprising a second drive voltage signal that causes an angular displacement of the movable body around the other oscillation shaft of the two oscillation shafts.
揺動軸の回りに揺動可能に前記支持枠を固定部に対して支持する弾性支持部と、前記支持枠を駆動するための第2の駆動手段とを有することを特徴とする請求項1から7の何れか1項に記載の揺動体装置。 2. An elastic support portion that supports the support frame with respect to a fixed portion so as to be swingable around a swing shaft, and a second drive means for driving the support frame. 8. The oscillator device according to any one of 1 to 7. 請求項1から8の何れか1項に記載の揺動体装置を有し、前記可動体に光偏向素子が設けられ、前記光偏向素子に入射する光ビームを偏向することを特徴とする光偏向装置。 9. An optical deflection device comprising the oscillator device according to claim 1, wherein the movable body is provided with an optical deflection element, and deflects a light beam incident on the optical deflection element. apparatus. 請求項9に記載の光偏向装置を有し、
前記光偏向装置が、光源からの光ビームを偏向し、該光ビームの少なくとも一部を光照射対象物に入射させることを特徴とする光学機器。
It has an optical deflecting device according to claim 9,
An optical apparatus, wherein the light deflector deflects a light beam from a light source and causes at least a part of the light beam to enter a light irradiation target.
JP2008055626A 2008-03-05 2008-03-05 Oscillating body device, light deflection device, and optical instrument using optical deflection device Pending JP2009210946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008055626A JP2009210946A (en) 2008-03-05 2008-03-05 Oscillating body device, light deflection device, and optical instrument using optical deflection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008055626A JP2009210946A (en) 2008-03-05 2008-03-05 Oscillating body device, light deflection device, and optical instrument using optical deflection device

Publications (1)

Publication Number Publication Date
JP2009210946A true JP2009210946A (en) 2009-09-17

Family

ID=41184143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008055626A Pending JP2009210946A (en) 2008-03-05 2008-03-05 Oscillating body device, light deflection device, and optical instrument using optical deflection device

Country Status (1)

Country Link
JP (1) JP2009210946A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011064928A (en) * 2009-09-17 2011-03-31 Brother Industries Ltd Two-dimensional optical scanner
JP2014182225A (en) * 2013-03-18 2014-09-29 Seiko Epson Corp Optical scanner, actuator, image display device, and head-mounted display

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011064928A (en) * 2009-09-17 2011-03-31 Brother Industries Ltd Two-dimensional optical scanner
US8587853B2 (en) 2009-09-17 2013-11-19 Brother Kogyo Kabushiki Kaisha Two-dimensional optical scanner and image display apparatus
JP2014182225A (en) * 2013-03-18 2014-09-29 Seiko Epson Corp Optical scanner, actuator, image display device, and head-mounted display

Similar Documents

Publication Publication Date Title
US8254007B2 (en) Scanner and image forming apparatus including the same
US8395834B2 (en) Deflecting mirror for deflecting and scanning light beam
JP4928301B2 (en) Oscillator device, driving method thereof, optical deflector, and image display device using optical deflector
JP4574396B2 (en) Optical deflector
JP5310566B2 (en) Micro scanner device and control method of micro scanner device
JP6333079B2 (en) Optical scanner
JP2007310196A (en) Optical scanner and scanning type projector
JP2007316443A (en) Light deflector and optical equipment using the same
JP2012063413A (en) Optical scanner, image forming apparatus incorporating this optical scanner, and projection device
JP5296427B2 (en) Optical scanning device, control method therefor, image reading device, and display device
JP2020034942A (en) Piezoelectric optical deflector, optical scanning device, image forming apparatus, and image projection device
JP2012198314A (en) Actuator device, optical deflector, optical scanner, image forming device and image projection device
JP2008191537A (en) Vibrating element and light deflector equipped with the same
WO2009081858A1 (en) Micro scanner and method for controlling micro scanner
JP2008111882A (en) Actuator, optical scanner and image forming apparatus
JP5554895B2 (en) Oscillator structure and oscillator device using the oscillator structure
JP2013020124A (en) Optical deflector, optical scanner, image forming device, and image projection device
JP2006323001A (en) Oscillating body apparatus and optical deflector using same
JP2009210946A (en) Oscillating body device, light deflection device, and optical instrument using optical deflection device
JP2006313216A (en) Oscillator device and optical deflector using the same
JP2009122293A (en) Oscillating body apparatus, optical deflector, and optical equipment using the same
JP5716992B2 (en) Optical deflection apparatus, optical scanning apparatus, image forming apparatus, and image projection apparatus
JP2011013621A (en) Light deflector, image forming apparatus and image projector
JP2015210451A (en) Vibration element, optical scanner, image forming apparatus, image projection device, and optical pattern reading device
JP5092406B2 (en) Actuator, optical scanner and image forming apparatus