JP2009210546A - Method and device for determining lprm signal cable erroneous connection - Google Patents

Method and device for determining lprm signal cable erroneous connection Download PDF

Info

Publication number
JP2009210546A
JP2009210546A JP2008056889A JP2008056889A JP2009210546A JP 2009210546 A JP2009210546 A JP 2009210546A JP 2008056889 A JP2008056889 A JP 2008056889A JP 2008056889 A JP2008056889 A JP 2008056889A JP 2009210546 A JP2009210546 A JP 2009210546A
Authority
JP
Japan
Prior art keywords
lprm
erroneous connection
signal
detector
detectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008056889A
Other languages
Japanese (ja)
Other versions
JP5190282B2 (en
Inventor
Osamu Kubota
修 久保田
Tomomichi Kamigata
知道 上形
Akira Maki
明 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tepco Systems Corp
Original Assignee
Tepco Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tepco Systems Corp filed Critical Tepco Systems Corp
Priority to JP2008056889A priority Critical patent/JP5190282B2/en
Publication of JP2009210546A publication Critical patent/JP2009210546A/en
Application granted granted Critical
Publication of JP5190282B2 publication Critical patent/JP5190282B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

<P>PROBLEM TO BE SOLVED: To confirm whether there is an erroneous connection of signal cables from detectors of an LPRM during the operation of a nuclear reactor. <P>SOLUTION: This LPRM signal cable erroneous connection determining method for determining the erroneous connection of the signal cables from a plurality of detectors fixedly arranged to mutually different heights in a guide tube of the LPRM installed in a pressure vessel of a boiling water reactor, to detect thermal neutrons, is characterized by determining that there is no erroneous connection when the phase delay of signals indicating the variation of thermal neutron flux density based on the variation of cooling material density interlocked with the variation of a void amount has occurred to the upper detectors in sequence from the lower detector and determining that there is the erroneous connection when the phase delay has not occurred to the upper detectors in sequence from the lower detector. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、沸騰水型原子炉の圧力容器内に設置されたLPRM(局部出力領域モニタ)の信号ケーブルの誤接続を判定する方法および装置に関するものである。   The present invention relates to a method and apparatus for determining an erroneous connection of a signal cable of an LPRM (local output region monitor) installed in a pressure vessel of a boiling water reactor.

沸騰水型原子炉においては、図5に示すように、原子炉圧力容器10内の熱中性子束分布を監視するために、原子炉圧力容器10内の燃料11の間に多数の局部出力領域モニタ(LPRM)12が分散して設置されており、各LPRM12は複数の高さで熱中性子を検出するために、原子炉圧力容器10の底壁を貫通して原子炉圧力容器10内に立設されたガイドチューブ13と、そのガイドチューブ13内の互いに異なる高さにそれぞれ固定配置された複数の検出器14A〜14Dと、そのガイドチューブ13内を電動で昇降移動する図示しない移動式炉内計装(TIP)とを有しているが、近年、このLPRM12のガイドチューブ13内の複数の検出器14A〜14Dからの信号ケーブルの、ガイドチューブ13の下端部の下方のコネクタ部15A〜15Dにおいて、熱中性子束分布の監視装置へ至るケーブル16A〜16Dに対する誤接続が散見されている。   In a boiling water reactor, as shown in FIG. 5, in order to monitor the thermal neutron flux distribution in the reactor pressure vessel 10, a number of local output region monitors are provided between the fuels 11 in the reactor pressure vessel 10. (LPRM) 12 are installed in a distributed manner, and each LPRM 12 is installed in the reactor pressure vessel 10 through the bottom wall of the reactor pressure vessel 10 in order to detect thermal neutrons at a plurality of heights. Guide tube 13, a plurality of detectors 14 </ b> A to 14 </ b> D fixedly arranged at different heights in the guide tube 13, and a movable in-core reactor (not shown) that moves up and down electrically in the guide tube 13 In recent years, a signal cable from a plurality of detectors 14A to 14D in the guide tube 13 of the LPRM 12 has a connector below the lower end portion of the guide tube 13. In data section 15A-15D, erroneous connection for cable 16A~16D leading to the monitoring device of the thermal neutron flux distribution is scattered.

当該事象は、LPRM出力値とTIP出力値との差異の確認、あるいは制御棒(CR)挿入・引抜位置とそのCRに近接するLPRM出力値との間の不整合を確認すれば、検知できる可能性はある。しかしながら、最終的な誤接続判定のためには、原子炉の運転を停止し、原子炉格納容器内にある当該ケーブルコネクタ部を目視検査する必要がある。   This event can be detected by checking the difference between the LPRM output value and the TIP output value, or by checking the discrepancy between the control rod (CR) insertion / extraction position and the LPRM output value close to the CR. There is sex. However, in order to determine the final erroneous connection, it is necessary to stop the operation of the nuclear reactor and visually inspect the cable connector portion in the reactor containment vessel.

上記のように当該事象の判定は、従来は運転中にLPRM出力値とTIP出力値との差異が大きい場合、あるいは、CRの挿入・引抜位置が、誤接続LPRM信号に影響を与えるような場合に限られており、見過ごされる可能性が否定できなかった。そして、誤接続を検知したと思われる場合でも、それだけでは誤接続であるのか、あるいはそれ以外の要因、例えばLPRM検出器の信号ドリフト等なのか判別できなかった。また、当該接続部は原子炉格納容器内にあるため、原子炉の運転中の目視検査が不可能である。従って、誤接続の可能性が指摘されても、その対応としては誤接続以外の要因も考慮する必要があるため、必ずしも効率の良い点検・補修の準備はできなかった。   As described above, the judgment of the event is conventionally made when the difference between the LPRM output value and the TIP output value is large during operation, or when the insertion / extraction position of the CR affects the erroneous connection LPRM signal. The possibility of being overlooked cannot be denied. Even if it seems that an erroneous connection has been detected, it cannot be determined whether it is an erroneous connection by itself or other factors such as signal drift of the LPRM detector. Moreover, since the said connection part exists in a nuclear reactor containment vessel, the visual inspection during operation | movement of a nuclear reactor is impossible. Therefore, even if the possibility of an incorrect connection is pointed out, it is necessary to consider factors other than the incorrect connection as a countermeasure, and therefore it is not always possible to prepare for efficient inspection and repair.

それゆえ、原子炉の運転中に誤接続の有無の判定、誤接続チャンネルの断定ができるようにすること、逆に言えば、当該部分の施工に対するトレーサビリティー確保の点において、原子炉の運転中に誤接続が発生していないことの確認ができるようにすることは、効率的なプラント運用保守に繋げるための課題である。   Therefore, it should be possible to determine whether or not there is a misconnection during operation of the nuclear reactor and to determine the misconnection channel, and conversely, in terms of ensuring traceability for the construction of the relevant part, It is a problem to be able to confirm that no erroneous connection has occurred in order to lead to efficient plant operation and maintenance.

この発明は上記課題を有利に解決することを目的とするものであり、この発明のLPRM信号ケーブル誤接続判定方法は、沸騰水型原子炉の圧力容器内に設置されたガイドチューブ内の互いに異なる高さにそれぞれ固定配置されて熱中性子を検出する複数の検出器からの信号ケーブルにおける誤接続を判定するに際し、ボイド量変動に連動する冷却材密度の変動に基づく熱中性子束密度の変動を示す信号の位相遅れが下の検出器に対し上の検出器に順次に生じている場合に誤接続がなく、前記位相遅れが下の検出器に対し上の検出器に順次に生じていない場合に誤接続があると判定することを特徴とするものである。   An object of the present invention is to advantageously solve the above-described problems, and the LPRM signal cable misconnection determination method of the present invention is different from each other in a guide tube installed in a pressure vessel of a boiling water reactor. Shows fluctuations in thermal neutron flux density based on fluctuations in coolant density linked to fluctuations in void volume when determining misconnections in signal cables from multiple detectors that are each fixedly positioned at height and detect thermal neutrons When the phase lag of the signal occurs sequentially in the upper detector with respect to the lower detector, there is no erroneous connection, and when the phase lag does not occur sequentially in the upper detector with respect to the lower detector It is characterized by determining that there is an erroneous connection.

また、この発明のLPRM信号ケーブル誤接続判定装置は、沸騰水型原子炉の圧力容器内に設置されたガイドチューブ内の互いに異なる高さにそれぞれ固定配置されて熱中性子を検出する複数の検出器からの信号ケーブルにおける誤接続を判定する装置において、ボイド量変動に連動する冷却材密度の変動に基づく熱中性子束密度の変動を示す、前記複数の検出器からの信号ケーブルからそれぞれ出力される信号における位相差を検出する位相差検出手段と、前記位相差検出手段が検出した位相差に基づき、位相遅れが下の検出器に対し上の検出器に順次に生じている場合に誤接続がなく、前記位相遅れが下の検出器に対し上の検出器に順次に生じていない場合に誤接続があると判定する接続状態判定手段と、前記接続状態判定手段が行なった判定結果を出力する判定結果出力手段と、を具えることを特徴とするものである。   In addition, the LPRM signal cable misconnection determination device of the present invention includes a plurality of detectors that are fixedly arranged at different heights in guide tubes installed in a pressure vessel of a boiling water reactor and detect thermal neutrons. In the device for determining the erroneous connection in the signal cable from, signals output from the signal cables from the plurality of detectors, each indicating a variation in the thermal neutron flux density based on a variation in the coolant density linked to the variation in the void amount Phase difference detection means for detecting a phase difference in the case of the above, and based on the phase difference detected by the phase difference detection means, there is no erroneous connection when the phase lag occurs sequentially in the upper detector with respect to the lower detector A connection state determination unit that determines that there is an erroneous connection when the phase delay is not sequentially generated in the upper detector with respect to the lower detector, and the connection state determination unit performs And judgment result output means for outputting the judgment result, and is characterized in that it comprises a.

この発明のLPRM信号ケーブル誤接続判定方法によれば、沸騰水型原子炉の圧力容器内に設置されたガイドチューブ内の互いに異なる高さにそれぞれ固定配置されて熱中性子を検出する複数の検出器からの信号ケーブルにおける誤接続を判定するに際し、ボイド量変動に連動する冷却材密度の変動が冷却材の流れに従い炉心下部から炉心上部へ伝播するのに起因して熱中性子束密度の変動も炉心下部から炉心上部へ移動する点に着目し、複数の検出器で検出する熱中性子束密度の変動の位相遅れが下の検出器に対し上の検出器に順次に生じている場合に誤接続がなく、前記位相遅れが下の検出器に対し上の検出器に順次に生じていない場合に誤接続があると判定するので、それらの検出器からの信号ケーブルにおける誤接続の有無を、原子炉の運転中に確認することができる。   According to the LPRM signal cable misconnection determination method of the present invention, a plurality of detectors fixedly arranged at different heights in guide tubes installed in a pressure vessel of a boiling water reactor and detecting thermal neutrons When determining the misconnection in the signal cable from the core, the fluctuation of the thermal neutron flux density is also caused by the fact that the fluctuation of the coolant density linked to the fluctuation of the void amount propagates from the lower core to the upper core according to the coolant flow. Paying attention to the point of movement from the lower part to the upper part of the core, if the phase lag of fluctuations in the thermal neutron flux density detected by multiple detectors occurs sequentially in the upper detector relative to the lower detector, an incorrect connection will occur. Therefore, it is determined that there is a misconnection when the phase lag is not sequentially generated in the upper detector with respect to the lower detector. It can be confirmed during the operation.

また、この発明のLPRM信号ケーブル誤接続判定装置によれば、沸騰水型原子炉の圧力容器内に設置されたガイドチューブ内の互いに異なる高さにそれぞれ固定配置されて熱中性子を検出する複数の検出器からの信号ケーブルにおける誤接続を判定する装置において、ボイド量変動に連動する冷却材密度の変動が冷却材の流れに従い炉心下部から炉心上部へ伝播するのに起因して熱中性子束密度の変動も炉心下部から炉心上部へ移動する点に着目し、位相差検出手段が、ボイド量変動に連動する冷却材密度の変動に基づく熱中性子束密度の変動の、前記複数の検出器からの信号ケーブルからそれぞれ出力される信号における位相差を検出し、接続状態判定手段が、前記位相差検出手段が検出した位相差に基づき、位相遅れが下の検出器に対し上の検出器に順次に生じている場合に誤接続がなく、前記位相遅れが下の検出器に対し上の検出器に順次に生じていない場合に誤接続があると判定し、そして判定結果出力手段が、前記接続状態判定手段が行なった判定結果を出力するので、それらの検出器からの信号ケーブルにおける誤接続の有無を、原子炉の運転中に確認することができる。   In addition, according to the LPRM signal cable misconnection determination device of the present invention, a plurality of thermal neutrons that are fixedly arranged at different heights in the guide tubes installed in the pressure vessel of the boiling water reactor are detected. In a device that determines misconnection in the signal cable from the detector, the fluctuation of the coolant density linked to the fluctuation of the void amount propagates from the lower core to the upper core according to the coolant flow. Focusing on the fact that the fluctuation also moves from the lower core to the upper core, the phase difference detection means is a signal from the plurality of detectors on the fluctuation of the thermal neutron flux density based on the fluctuation of the coolant density linked to the fluctuation of the void amount. The phase difference in each signal output from the cable is detected, and the connection state determination means is connected to the detector with the lower phase delay based on the phase difference detected by the phase difference detection means. It is determined that there is no erroneous connection when the upper detector is sequentially generated, and there is no erroneous connection when the phase lag is not sequentially generated in the upper detector with respect to the lower detector, and the determination result Since the output means outputs the determination result made by the connection state determination means, the presence or absence of erroneous connection in the signal cables from these detectors can be confirmed during operation of the nuclear reactor.

なお、この発明の方法および装置においては、好ましくは下の検出器と上の検出器とでの前記位相遅れの逆転の態様に基づき誤接続の態様を判定する。このようにすれば、誤接続の有無だけでなく、複数の検出器のうちどの検出器で誤接続が生じているかまで判定することができる。   In the method and apparatus of the present invention, it is preferable to determine the misconnection mode based on the phase lag reversal mode between the lower detector and the upper detector. In this way, it is possible to determine not only the presence / absence of erroneous connection, but also which detector among the plurality of detectors is causing the erroneous connection.

また、この発明の方法および装置においては、好ましくは前記熱中性子束密度の変動を、沸騰水型原子炉の核熱水力振動の卓越周波数すなわち0.5Hz付近の周波数の信号によって判定する。このようにすれば、核熱水力振動の卓越周波数は、ボイド量変動に連動する冷却材密度の変動に密接に関連するので、冷却材密度の変動に基づく位相遅れをより正確に検出することができる。   In the method and apparatus of the present invention, preferably, the fluctuation of the thermal neutron flux density is determined by a signal having a dominant frequency of nuclear thermal hydraulic vibration of a boiling water reactor, that is, a signal in the vicinity of 0.5 Hz. In this way, the dominant frequency of nuclear thermal hydraulic vibration is closely related to the variation in coolant density that is linked to the variation in void volume, so the phase lag based on the variation in coolant density can be detected more accurately. Can do.

以下、本発明の実施の形態を、図面に示す実施例に基づき詳細に説明する。ここに、図1は、この発明のLPRM信号ケーブル誤接続判定方法の一実施例を実施するための、この発明のLPRM信号ケーブル誤接続判定装置の一実施例の構成を示すブロック線図であり、この実施例のLPRM信号ケーブル誤接続判定装置は、位相差検出手段としての位相差検出部1と、接続状態判定手段としての接続状態判定部2と、判定結果出力手段としての判定結果出力部3とを具えてなり、具体的には、予め与えられたプログラムに基づきそれら位相差検出部1と接続状態判定部2と判定結果出力部3との機能を果たすパーソナルコンピュータにて構成されている。   Hereinafter, embodiments of the present invention will be described in detail based on examples shown in the drawings. FIG. 1 is a block diagram showing the configuration of an embodiment of the LPRM signal cable erroneous connection determination device of the present invention for carrying out an embodiment of the LPRM signal cable erroneous connection determination method of the present invention. The LPRM signal cable misconnection determination device of this embodiment includes a phase difference detection unit 1 as a phase difference detection unit, a connection state determination unit 2 as a connection state determination unit, and a determination result output unit as a determination result output unit Specifically, it is composed of a personal computer that functions as the phase difference detection unit 1, the connection state determination unit 2, and the determination result output unit 3 based on a program given in advance. .

ところで、図5に示す如き沸騰水型原子炉の図中右側に示す如き圧力容器10内では、図2に示すように各々複数本の燃料11を纏めた複数本の燃料集合体11Aが並んで上下方向へ延在しており、それらの燃料集合体11A内の垂直な流路を冷却材としての冷却水Wが下から上へ流れている。この燃料集合体11A内の冷却水Wには燃料集合体11Aの核反応による熱でボイドが発生し、これにより流路内の冷却水Wは上部程ボイド率が高い気相と液相との二相流となる。この二相流では流路の入口流量が変動するとその変動が流路上部へ時間遅れをもって伝播してゆき、これに伴って冷却水W中を通過する熱中性子束密度の変動も流路下部から流路上部へ時間遅れをもって伝播してゆく。この変動の周波数が核熱水力振動の卓越周波数であり、通常0.5Hz付近の周波数となる。   By the way, in the pressure vessel 10 as shown on the right side of the boiling water reactor as shown in FIG. 5, a plurality of fuel assemblies 11A each including a plurality of fuels 11 are arranged side by side as shown in FIG. The cooling water W as a coolant flows from the bottom to the top through the vertical flow paths in the fuel assemblies 11A. In the cooling water W in the fuel assembly 11A, voids are generated due to the heat generated by the nuclear reaction of the fuel assembly 11A. As a result, the cooling water W in the flow path has a higher void ratio in the upper part between the gas phase and the liquid phase. Two-phase flow. In this two-phase flow, when the flow rate at the inlet of the channel fluctuates, the fluctuation propagates to the upper part of the channel with a time delay, and the fluctuation of the thermal neutron flux passing through the cooling water W is also accompanied by this from the lower part of the channel. Propagates to the upper part of the channel with time delay. The frequency of this fluctuation is the dominant frequency of nuclear thermal hydraulic vibration, and is usually around 0.5 Hz.

図2に示すように、燃料集合体11Aの間には冷却水流路に沿って上下方向へ延在するようにLPRM12のガイドチューブ13が配置され、そのガイドチューブ13内の互いに異なる高さには例えば四つの検出器14A〜14Dがそれぞれ固定配置されて、冷却水W中を通過する熱中性子束の密度を検出する。   As shown in FIG. 2, guide tubes 13 of the LPRM 12 are arranged between the fuel assemblies 11A so as to extend in the vertical direction along the cooling water flow path, and the guide tubes 13 have different heights. For example, four detectors 14 </ b> A to 14 </ b> D are fixedly arranged to detect the density of thermal neutron flux passing through the cooling water W.

しかしてこの実施例の装置では、四つの検出器14A〜14Dからの信号ケーブルの、ガイドチューブ13の下端部の下方のコネクタ部15A〜15Dに接続されたケーブル16A〜16Dが、上記位相差検出部1に接続され、位相差検出部1はそれらのケーブル16A〜16Dからの出力信号をそれぞれバンドパスフィルタに通して、上記核熱水力振動の卓越周波数である0.5Hz付近の信号だけを取り出し、例えば四本のケーブル16A〜16Dのうちの二本ずつの組について相互相関関数を求め、その相互相関関数のピーク位置の時間軸上の正負から時間遅れまたは時間進みを評価するといった方法で、それらの信号の位相差を検出する。   In the apparatus of this embodiment, the cables 16A to 16D connected to the connector portions 15A to 15D below the lower end portion of the guide tube 13 of the signal cables from the four detectors 14A to 14D are detected by the phase difference detection. The phase difference detection unit 1 is connected to the unit 1 and passes the output signals from the cables 16A to 16D through the band-pass filters, respectively, so that only the signal in the vicinity of 0.5 Hz which is the dominant frequency of the nuclear thermal hydraulic vibration is obtained. Taking out, for example, obtaining a cross-correlation function for each pair of four cables 16A to 16D, and evaluating the time delay or time advance from the positive / negative of the peak position of the cross-correlation function on the time axis The phase difference between these signals is detected.

この位相差の検出結果は位相差検出部1から接続状態判定部2に送られる。ここで、四つの検出器14A〜14Dは、最下部の検出器14Aに対し下から上へ、すなわち検出器14B,14C,14Dの順で順次に時間遅れを持って上記0.5Hz付近の信号を出力する。従って、ガイドチューブ13の下端部の下方のコネクタ部15A〜15Dへのケーブル16A〜16Dの接続が正しければ、それらのケーブル16A〜16Dの出力信号は図3に例示するように、最下部の検出器14Aに接続されたケーブル16Aに対し下から上へ、すなわち検出器14B,14C,14Dにそれぞれ接続されたケーブル16B,16C,16Dの順で順次に位相差を持ったものとなる。そこで接続状態判定部2は、上記位相差の検出結果が、ケーブル16Aに対しケーブル16B,16C,16Dの順で順次に位相差を持ったものとなっているか否かを判定する。   The phase difference detection result is sent from the phase difference detection unit 1 to the connection state determination unit 2. Here, the four detectors 14A to 14D have a time delay in the order of the detectors 14B, 14C, and 14D from the bottom to the top, that is, the detectors 14B, 14C, and 14D. Is output. Therefore, if the cables 16A to 16D are correctly connected to the connector portions 15A to 15D below the lower end portion of the guide tube 13, the output signals of those cables 16A to 16D are detected at the bottom as shown in FIG. From the bottom to the top of the cable 16A connected to the detector 14A, that is, the cables 16B, 16C, and 16D connected to the detectors 14B, 14C, and 14D, respectively, have a phase difference sequentially. Therefore, the connection state determination unit 2 determines whether or not the detection result of the phase difference has a phase difference sequentially with respect to the cable 16A in the order of the cables 16B, 16C, and 16D.

具体的には接続状態判定部2は、四本のケーブル16A〜16Dのうちの二本ずつの組について、位相差の態様がどのようであるかを調べ、図4に示す位相差の態様と誤接続の態様との対応表に基づいて、誤接続の有無および態様を判定する。なお、この図4中、A,B,C,Dはケーブル16A,16B,16C,16Dの出力信号をそれぞれ示し、+符号は前者に対し後者の位相が進んでいることを示し、−符号は前者に対し後者の位相が遅れていることを示している。例えば図4(a)の一番上に示すように、ケーブル16Aの信号に対しケーブル16B,16C,16Dの信号が遅れ(−)、ケーブル16Bの信号に対しケーブル16C,16Dの信号が遅れ(−)、ケーブル16Cの信号に対しケーブル16Dの信号が遅れ(−)ていれば誤接続はないと判断し、そうでない場合は、信号の進み(+)があった組の位置に応じて、図4(a),(b)のそれぞれの左端に示す誤接続状態になっていると判断する。   Specifically, the connection state determination unit 2 investigates how the phase difference mode is set for each pair of the four cables 16A to 16D, and the phase difference mode illustrated in FIG. The presence / absence and mode of erroneous connection are determined based on the correspondence table with the mode of erroneous connection. In FIG. 4, A, B, C, and D indicate output signals of the cables 16A, 16B, 16C, and 16D, respectively, + sign indicates that the latter phase is advanced with respect to the former, and-sign indicates It shows that the latter phase is delayed with respect to the former. For example, as shown at the top of FIG. 4A, the signals of the cables 16B, 16C and 16D are delayed (−) with respect to the signal of the cable 16A, and the signals of the cables 16C and 16D are delayed with respect to the signal of the cable 16B ( -), If the signal of the cable 16D is delayed (-) with respect to the signal of the cable 16C, it is determined that there is no erroneous connection, and if not, depending on the position of the set where the signal has advanced (+), It is determined that the erroneous connection state shown at the left end of each of FIGS.

なお、通常、炉心部の気相速度は約7m/s、炉心長が4m弱であるので、上述したボイド量の変動が炉心部を通過する時間は約0.6秒弱となり、核熱水力振動の卓越周波数の逆数である核熱水力振動の周期の約2秒と比較して充分短いため、一番下の検出器14Aと一番上の検出器14Dとで出力信号に1周期分近くの遅れが生ずることはないので、遅れと進みとを誤って判断することはない。   Normally, since the gas phase velocity of the core is about 7 m / s and the core length is less than 4 m, the time for the above-mentioned fluctuation of the void amount to pass through the core is less than about 0.6 seconds. Since the cycle of nuclear thermal hydraulic vibration, which is the reciprocal of the dominant frequency of force vibration, is sufficiently short compared to about 2 seconds, one cycle is output to the output signal by the bottom detector 14A and the top detector 14D. Since there is no minute delay, there is no misjudgment between delay and advance.

上記の判断結果は接続状態判定部2から判定結果出力部3に送られ、判定結果出力部3は、接続状態判定部2から送られた判定結果すなわち誤接続の有無および態様を、例えば画面表示装置の画面上に表示して出力する。   The determination result is sent from the connection state determination unit 2 to the determination result output unit 3, and the determination result output unit 3 displays the determination result sent from the connection state determination unit 2, that is, whether or not there is an erroneous connection, for example, on a screen display. Display on the device screen and output.

以上、図示例に基づき説明したが、この発明は上述の例に限定されるものでなく、特許請求の範囲の記載範囲内で適宜変更し得るものであり、例えばこの発明の方法では、検査員が、位相差検出部1に対応する装置で四本のケーブル16A〜16Dのうちの二本ずつの組について位相差を検出し、その位相差の態様を図4に示す位相差の態様と誤接続の態様との対応表と比較して、誤接続の有無および態様を判定しても良い。また、位相差検出部1は上記実施例ではソフトウェアによるデジタルフィルタを用いているが、代わりにハードウェア(電子回路)によるアナログフィルタを用いても良い。   Although the present invention has been described based on the illustrated examples, the present invention is not limited to the above-described examples, and can be appropriately changed within the scope of the claims. For example, in the method of the present invention, the inspector However, the apparatus corresponding to the phase difference detection unit 1 detects the phase difference for each pair of the four cables 16A to 16D, and the phase difference mode is mistaken for the phase difference mode shown in FIG. The presence / absence and mode of erroneous connection may be determined by comparison with a correspondence table with connection modes. Further, although the phase difference detection unit 1 uses a software digital filter in the above embodiment, an analog filter using hardware (electronic circuit) may be used instead.

かくしてこの発明のLPRM信号ケーブル誤接続判定方法および装置によれば、LPRMの検出器からの信号ケーブルにおける誤接続の有無を、原子炉の運転中に確認することができる。   Thus, according to the LPRM signal cable erroneous connection determination method and apparatus of the present invention, it is possible to confirm during the operation of the nuclear reactor whether or not there is an erroneous connection in the signal cable from the LPRM detector.

この発明のLPRM信号ケーブル誤接続判定方法の一実施例を実施するための、この発明のLPRM信号ケーブル誤接続判定装置の一実施例の構成を示すブロック線図である。It is a block diagram which shows the structure of one Example of the LPRM signal cable incorrect connection determination apparatus of this invention for enforcing one Example of the LPRM signal cable incorrect connection determination method of this invention. 沸騰水型原子炉の圧力容器内の燃料集合体とそれらの間の冷却水流路およびLPRMのガイドチューブを示す説明図である。It is explanatory drawing which shows the fuel assembly in the pressure vessel of a boiling water reactor, the cooling water flow path between them, and the guide tube of LPRM. LPRMの四本のケーブルの出力信号の位相差を示す説明図である。It is explanatory drawing which shows the phase difference of the output signal of four cables of LPRM. (a),(b)は、上記実施例の方法で用いる位相差の態様と誤接続の態様との対応表を示す説明図である。(A), (b) is explanatory drawing which shows the correspondence table with the aspect of the phase difference used with the method of the said Example, and the aspect of a misconnection. 沸騰水型原子炉の圧力容器内の燃料とLPRMのガイドチューブとを示す説明図である。It is explanatory drawing which shows the fuel in the pressure vessel of a boiling water reactor, and the guide tube of LPRM.

符号の説明Explanation of symbols

1 位相差検出部
2 接続状態判定部
3 判定結果出力部
10 原子炉圧力容器
11 燃料
11A 燃料集合体
12 LPRM
13 ガイドチューブ
14A〜D 検出器
15A〜D コネクタ
16A〜D ケーブル
DESCRIPTION OF SYMBOLS 1 Phase difference detection part 2 Connection state determination part 3 Determination result output part 10 Reactor pressure vessel 11 Fuel 11A Fuel assembly 12 LPRM
13 Guide tube 14A to D Detector 15A to D Connector 16A to D Cable

Claims (6)

沸騰水型原子炉の圧力容器内に設置されたLPRMのガイドチューブ内の互いに異なる高さにそれぞれ固定配置されて熱中性子を検出する複数の検出器からの信号ケーブルにおける誤接続を判定するに際し、
ボイド量変動に連動する冷却材密度の変動に基づく熱中性子束密度の変動を示す信号の位相遅れが下の検出器に対し上の検出器に順次に生じている場合に誤接続がなく、前記位相遅れが下の検出器に対し上の検出器に順次に生じていない場合に誤接続があると判定することを特徴とする、LPRM信号ケーブル誤接続判定方法。
In determining an erroneous connection in signal cables from a plurality of detectors that are fixedly arranged at different heights in LPRM guide tubes installed in a pressure vessel of a boiling water reactor and detect thermal neutrons,
When the phase lag of the signal indicating the fluctuation of the thermal neutron flux density based on the fluctuation of the coolant density linked to the fluctuation of the void amount is sequentially generated in the upper detector with respect to the lower detector, there is no erroneous connection, An LPRM signal cable misconnection determination method, wherein a determination is made that there is a misconnection when a phase lag is not sequentially generated in an upper detector with respect to a lower detector.
下の検出器と上の検出器とでの前記位相遅れの逆転の態様に基づき誤接続の態様を判定することを特徴とする、請求項1記載のLPRM信号ケーブル誤接続判定方法。   2. The LPRM signal cable misconnection determination method according to claim 1, wherein a misconnection mode is determined based on a phase delay reversal mode between the lower detector and the upper detector. 前記熱中性子束密度の変動は、沸騰水型原子炉の核熱水力振動の卓越周波数の信号によって判定することを特徴とする、請求項1または2記載のLPRM信号ケーブル誤接続判定方法。   3. The LPRM signal cable misconnection determination method according to claim 1, wherein the fluctuation of the thermal neutron flux density is determined by a signal of a dominant frequency of nuclear thermal hydraulic vibration of a boiling water reactor. 沸騰水型原子炉の圧力容器内に設置されたLPRMのガイドチューブ内の互いに異なる高さにそれぞれ固定配置されて熱中性子を検出する複数の検出器からの信号ケーブルにおける誤接続を判定する装置において、
ボイド量変動に連動する冷却材密度の変動に基づく熱中性子束密度の変動を示す、前記複数の検出器からの信号ケーブルからそれぞれ出力される信号における位相差を検出する位相差検出手段と、
前記位相差検出手段が検出した位相差に基づき、位相遅れが下の検出器に対し上の検出器に順次に生じている場合に誤接続がなく、前記位相遅れが下の検出器に対し上の検出器に順次に生じていない場合に誤接続があると判定する接続状態判定手段と、
前記接続状態判定手段が行なった判定結果を出力する判定結果出力手段と、
を具えることを特徴とする、LPRM信号ケーブル誤接続判定装置。
In an apparatus for judging erroneous connection in signal cables from a plurality of detectors fixedly arranged at different heights in a guide tube of LPRM installed in a pressure vessel of a boiling water reactor and detecting thermal neutrons ,
Phase difference detection means for detecting a phase difference in signals respectively output from signal cables from the plurality of detectors, showing a variation in thermal neutron flux density based on a variation in coolant density linked to a void amount variation;
Based on the phase difference detected by the phase difference detecting means, there is no erroneous connection when the phase lag is sequentially generated in the upper detector with respect to the lower detector, and the phase lag is higher than the lower detector. A connection state determining means for determining that there is an erroneous connection when the detectors of the two are not sequentially generated,
Determination result output means for outputting a determination result made by the connection state determination means;
An LPRM signal cable misconnection determination device comprising:
前記接続状態判定手段は、下の検出器と上の検出器とでの前記位相遅れの逆転の態様に基づき誤接続の態様を判定することを特徴とする、請求項4記載のLPRM信号ケーブル誤接続判定装置。   5. The LPRM signal cable error according to claim 4, wherein the connection state determination means determines an erroneous connection mode based on a reverse mode of the phase delay between the lower detector and the upper detector. Connection determination device. 前記位相差検出手段は、前記熱中性子束密度の変動を、沸騰水型原子炉の核熱水力振動の卓越周波数の信号によって判定することを特徴とする、請求項4または5記載のLPRM信号ケーブル誤接続判定装置。   The LPRM signal according to claim 4 or 5, wherein the phase difference detection means determines the fluctuation of the thermal neutron flux density based on a signal of a dominant frequency of nuclear thermal hydraulic vibration of a boiling water reactor. Cable misconnection determination device.
JP2008056889A 2008-03-06 2008-03-06 LPRM signal cable misconnection determination method and apparatus Active JP5190282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008056889A JP5190282B2 (en) 2008-03-06 2008-03-06 LPRM signal cable misconnection determination method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008056889A JP5190282B2 (en) 2008-03-06 2008-03-06 LPRM signal cable misconnection determination method and apparatus

Publications (2)

Publication Number Publication Date
JP2009210546A true JP2009210546A (en) 2009-09-17
JP5190282B2 JP5190282B2 (en) 2013-04-24

Family

ID=41183839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008056889A Active JP5190282B2 (en) 2008-03-06 2008-03-06 LPRM signal cable misconnection determination method and apparatus

Country Status (1)

Country Link
JP (1) JP5190282B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010271276A (en) * 2009-05-25 2010-12-02 Tepco Systems Corp Method and apparatus for determining lprm signal cable misconnection at starting

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52144595A (en) * 1976-05-28 1977-12-01 Nippon Atom Ind Group Co Ltd Measuring method and device of void distribution
JPS58195191A (en) * 1982-05-10 1983-11-14 日本原子力事業株式会社 Method of monitoring channel stability
JPH09211176A (en) * 1996-02-06 1997-08-15 Toshiba Corp Tester for power range monitor
JPH10115693A (en) * 1996-10-11 1998-05-06 Tokyo Electric Power Co Inc:The Method of monitoring nuclear reactor core
JP2001091600A (en) * 1999-09-22 2001-04-06 Mitsubishi Electric Corp Harmonic wave in power supply suppressing device
JP2004279333A (en) * 2003-03-18 2004-10-07 Tokyo Electric Power Co Inc:The Method of monitoring inside of boiling water nuclear reactor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52144595A (en) * 1976-05-28 1977-12-01 Nippon Atom Ind Group Co Ltd Measuring method and device of void distribution
JPS58195191A (en) * 1982-05-10 1983-11-14 日本原子力事業株式会社 Method of monitoring channel stability
JPH09211176A (en) * 1996-02-06 1997-08-15 Toshiba Corp Tester for power range monitor
JPH10115693A (en) * 1996-10-11 1998-05-06 Tokyo Electric Power Co Inc:The Method of monitoring nuclear reactor core
JP2001091600A (en) * 1999-09-22 2001-04-06 Mitsubishi Electric Corp Harmonic wave in power supply suppressing device
JP2004279333A (en) * 2003-03-18 2004-10-07 Tokyo Electric Power Co Inc:The Method of monitoring inside of boiling water nuclear reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010271276A (en) * 2009-05-25 2010-12-02 Tepco Systems Corp Method and apparatus for determining lprm signal cable misconnection at starting

Also Published As

Publication number Publication date
JP5190282B2 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
Hashemian On-line monitoring applications in nuclear power plants
KR101841806B1 (en) Apparatus and method for monitoring water level in pipe
JP2013124883A (en) Reactor water level gauge
JP5190282B2 (en) LPRM signal cable misconnection determination method and apparatus
JP6004834B2 (en) Reactor water level gauge
JP6591770B2 (en) Reactor temperature measurement device, molten state detection device, and water level measurement device in an emergency
EP2694957B1 (en) Method of detecting the existence of a loose part in a steam generator of a nuclear power plant
JP4659492B2 (en) Noise monitoring system for start-up area monitoring system
JP5260407B2 (en) LPRM signal cable misconnection determination method and apparatus at startup
Rassame et al. Experimental investigation of void distribution in Suppression Pool during the initial blowdown period of a Loss of Coolant Accident using air–water two-phase mixture
Klein et al. Time-frequency analysis of intermittent two-phase flows in horizontal piping
JP2008014705A (en) Nuclear reactor monitoring unit
Streeton et al. Erosion and Sand Detection Testing of a Subsea Multiphase Meter with Integrated Erosion Monitoring System
JP2017026451A (en) Criticality monitoring system and criticality monitoring method
Kickhofel Mixing phenomena relevant to thermal fatigue in T-junctions
Brandal et al. The development of sand monitoring technologies and establishing effective, control and alarm-based sand monitoring on a Norwegian offshore field
JP2006349577A (en) Flow measuring device of nuclear reactor
Pratap et al. Blockage detection in gas pipelines to prevent failure of transmission line
Of MulTIPhaSE flOWS aND ThE VERIfICaTION Of CfD
JP2009258021A (en) Device and method for detecting boiling in by-pass area
JP2018001173A (en) Abnormality detection system of die cooling apparatus
JP2008175561A (en) Core flow measurement device and method of boiling-water reactor
JP2708238B2 (en) Damaged fuel position detector
JP2023135895A (en) Critical approach monitor device, method for monitoring critical approach, and program
JP5191505B2 (en) Radiation measurement equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5190282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250