JP2009210496A - Current sensor - Google Patents

Current sensor Download PDF

Info

Publication number
JP2009210496A
JP2009210496A JP2008055807A JP2008055807A JP2009210496A JP 2009210496 A JP2009210496 A JP 2009210496A JP 2008055807 A JP2008055807 A JP 2008055807A JP 2008055807 A JP2008055807 A JP 2008055807A JP 2009210496 A JP2009210496 A JP 2009210496A
Authority
JP
Japan
Prior art keywords
printed wiring
wiring board
current
conductor pattern
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008055807A
Other languages
Japanese (ja)
Inventor
Kazuyuki Yamaguchi
和行 山口
Tomoyuki Mori
智幸 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2008055807A priority Critical patent/JP2009210496A/en
Publication of JP2009210496A publication Critical patent/JP2009210496A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a current sensor of non-contact detection for improving detection characteristics while achieving miniaturization and cost reduction. <P>SOLUTION: The current sensor is incorporated while sandwiching bus bars 7u-7w interposed in a detection object electric path into a printed wiring board 9, and in the printed wiring board 9, a conductor pattern 10 is formed so as to surround the bus bars 7u-7w by sandwiching the printed wiring board 9. A resistor 12 is provided on the way of the conductor pattern 10, and a current of the bus bars 7u-7w is detected by a voltage between terminals of the resistor 12 in non-contact. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、負荷給電路等の電流を非接触検出する電流センサに関し、詳しくは、小型化及びコストダウンを図りつつ検出特性を向上する新規な構成に関する。   The present invention relates to a current sensor for non-contact detection of current in a load power supply path and the like, and more particularly to a novel configuration for improving detection characteristics while reducing size and cost.

従来、電気自動車(EV)やハイブリッド車(HEV)等の車両においては、電源装置のインバータから走行用のモータに給電される電流を検出して、前記インバータを制御する。   Conventionally, in a vehicle such as an electric vehicle (EV) or a hybrid vehicle (HEV), the inverter is controlled by detecting a current supplied from a power supply device inverter to a running motor.

そして、前記モータ等の各種負荷給の給電路等の電流(交流電流やパルス電流や直流電流等)は、多くの場合、磁気検知素子であるホール素子を用いた電流センサにより非接触に検出される(例えば、特許文献1参照)。   In many cases, the current (AC current, pulse current, DC current, etc.) of the power supply path for various loads such as the motor is detected in a non-contact manner by a current sensor using a Hall element that is a magnetic sensing element. (For example, see Patent Document 1).

前記従来のホール素子タイプの電流センサは、概略図6に示すように構成され、例えば前記モータの給電路等に介挿されるバスバー100とセンサ本体200とを備える。センサ本体200は、フェライトコア等の磁性体コア、ホール素子、そのバイアス回路等を内蔵し、バスバー100が中央部の孔201を貫通する。   The conventional Hall element type current sensor is configured as shown in FIG. 6, and includes a bus bar 100 and a sensor body 200 that are inserted in a power supply path of the motor, for example. The sensor body 200 incorporates a magnetic core such as a ferrite core, a Hall element, a bias circuit thereof, and the like, and the bus bar 100 penetrates the hole 201 in the center.

そして、バスバー100の電流変化に基づく前記磁性体コアの磁力線の変化によりホール素子の出力電圧が変化し、ホール素子の出力電圧により、バスバー100を通流する電流、すなわち、前記モータの給電路の電流や、その電源であるインバータの入力の電流を非接触検出する。なお、実際には、前記モータは3相ブラシレスモータ等であり、電流センサはモータの相毎やインバータの入力毎に上記のバスバー100とセンサ本体200の構成を備え、各相の電流を個別に検出する。   Then, the output voltage of the Hall element changes due to a change in the magnetic field lines of the magnetic core based on the current change of the bus bar 100, and the current flowing through the bus bar 100 by the Hall element output voltage, that is, the power supply path of the motor Non-contact detection of current and input current of the inverter that is the power source. Actually, the motor is a three-phase brushless motor or the like, and the current sensor has the above-described configuration of the bus bar 100 and the sensor body 200 for each phase of the motor and each input of the inverter, and the current of each phase is individually supplied. To detect.

このような構成の非接触検出タイプの電流センサは、例えば前記インバータの200V〜300Vの高電圧の電路を検出対象の電路とする場合、高電圧側と低電圧側(制御系側)とを電気的に絶縁分離して前記検出対象の電路の電流を検出できるため、シャント抵抗により前記高電圧側の電流を直接検出する接触検出タイプの電流センサに比して、前記制御系側の安全に優れ、しかも、前記シャント抵抗のような高電圧大電流に耐える大型の部品は不要であり、その上、測定側(前記高電圧側)に損失を発生させることもない。
特開2002−303642号(要約書、段落[0037]、図3等)
In the non-contact detection type current sensor having such a configuration, for example, when a high voltage circuit of 200V to 300V of the inverter is used as a detection target circuit, the high voltage side and the low voltage side (control system side) are electrically connected. Therefore, it is possible to detect the current of the electric circuit to be detected by electrically isolating it. Therefore, it is superior in safety on the control system side than the contact detection type current sensor that directly detects the current on the high voltage side by a shunt resistor. In addition, a large component that can withstand high voltage and large current such as the shunt resistor is not required, and furthermore, no loss occurs on the measurement side (the high voltage side).
JP 2002-303642 (abstract, paragraph [0037], FIG. 3 etc.)

前記従来の非接触検出タイプの電流センサは、図6からも明らかなように、バスバー100より大型のセンサ本体200を要し、大型で嵩張る問題がある。また、ホール素子やそのバスバ回路等を要し、高価である。さらに、車両の振動等によってバスバー100と本体ケース200の距離変動等が生じ易く、検出特性にばらつきが生じ易い問題もある。   As is clear from FIG. 6, the conventional non-contact detection type current sensor requires a sensor body 200 larger than the bus bar 100, and has a problem of being large and bulky. In addition, a Hall element and its bus bar circuit are required and expensive. Furthermore, there is a problem that the distance between the bus bar 100 and the main body case 200 is likely to change due to vibrations of the vehicle and the like, and the detection characteristics are likely to vary.

本発明は、小型化及びコストダウンを図りつつ検出特性を向上するようにした非接触検出タイプの電流センサを提供することを目的とする。   An object of the present invention is to provide a non-contact detection type current sensor that improves detection characteristics while reducing size and cost.

上記した目的を達成するために、本発明の電流センサは、検出対象電路に介挿されるバスバーをプリント配線板に挟み込んだ状態に内蔵し、前記プリント配線板に、該プリント配線板を挟んで前記バスバーを囲むように導体パターンを形成し、前記導体パターンの途中に抵抗体を設け、前記抵抗体の端子間電圧により前記バスバーの電流を非接触検出することを特徴としている(請求項1)。   In order to achieve the above-described object, the current sensor of the present invention incorporates a bus bar inserted in a detection target electric circuit in a state of being sandwiched between printed wiring boards, and the printed wiring board sandwiches the printed wiring board. A conductor pattern is formed so as to surround the bus bar, a resistor is provided in the middle of the conductor pattern, and the current of the bus bar is detected in a non-contact manner by the voltage between the terminals of the resistor (claim 1).

本発明の電流センサの場合、プリント配線板(プリント配線基板とも称される)にバスバーが貫通状態で内蔵されてプリント配線板とバスバーが一体化される。また、バスバーを囲むコイルを形成するようにプリント配線板に導体パターンが形成されるので、バスバーを1次側、導体パターンの前記コイルを2次側とする変成器が前記プリント配線板内に形成され、その磁電変換構造が導体パターンによって形成される。   In the case of the current sensor of the present invention, the bus bar is incorporated in a printed wiring board (also referred to as a printed wiring board) in a through state, and the printed wiring board and the bus bar are integrated. In addition, since a conductor pattern is formed on the printed wiring board so as to form a coil surrounding the bus bar, a transformer with the bus bar as the primary side and the coil of the conductor pattern as the secondary side is formed in the printed wiring board. The magnetoelectric conversion structure is formed by the conductor pattern.

そして、バスバーに電流(1次側電流)が流れると、導体パターンに相当する電流(2次側電流)が流れる。このとき、導体パターンの途中に設けられた抵抗体の端子間電圧が導体パターンの電流に応じて変化し、抵抗体の端子間電圧から検出対象電路の電流が非接触検出される。   When a current (primary side current) flows through the bus bar, a current (secondary side current) corresponding to the conductor pattern flows. At this time, the voltage between the terminals of the resistor provided in the middle of the conductor pattern changes according to the current of the conductor pattern, and the current of the detection target circuit is detected in a non-contact manner from the voltage between the terminals of the resistor.

この場合、プリント配線板にバスバーが内蔵されてプリント配線板とバスバーが一体化され、しかも、プリント配線板に導体パターンが形成され、抵抗体もプリント配線板に設けられるため、前記図6のセンサ本体200のようなバスバーを囲む大型の部品がなく、極めて小型に形成できる。なお、部品の組立作業等が不要である利点もある。   In this case, the bus bar is built in the printed wiring board, the printed wiring board and the bus bar are integrated, the conductor pattern is formed on the printed wiring board, and the resistor is also provided on the printed wiring board. There is no large part surrounding the bus bar like the main body 200, and it can be formed extremely small. In addition, there is an advantage that an assembling operation of parts is unnecessary.

また、高価なホール素子等に代えて、導体パターン及び安価な抵抗体を用いて形成されるので、極めて安価である。   Moreover, since it is formed using a conductor pattern and an inexpensive resistor instead of an expensive Hall element or the like, it is extremely inexpensive.

さらに、導体パターンがプリント配線板に形成され、抵抗体もプリント配線板に設けられるので、車両等の振動の多い環境下であっても、振動等による検出特性のばらつきはほとんどなく、前記磁電変換構造の変換特性が向上して電流センサの検出特性が向上する。   Furthermore, since the conductor pattern is formed on the printed wiring board and the resistor is also provided on the printed wiring board, there is almost no variation in detection characteristics due to vibration even in an environment with a lot of vibration such as a vehicle. The conversion characteristic of the structure is improved and the detection characteristic of the current sensor is improved.

したがって、小型化及びコストダウンを図りつつ検出特性を向上するようにした、従来にない新規な非接触検出の電流センサを提供することができる。なお、前記トランスの2次側の巻数や線径等は、導体パターンの本数や太さを変えることで容易に調整することができ、設計や製造の自由度が大きくなる利点もある。   Accordingly, it is possible to provide a novel non-contact detection current sensor which has been improved in detection characteristics while reducing the size and cost. Note that the number of turns and the wire diameter on the secondary side of the transformer can be easily adjusted by changing the number and thickness of the conductor patterns, and there is an advantage that the degree of freedom in design and manufacturing is increased.

つぎに、本発明をより詳細に説明するため、一実施形態について、図1〜図5を参照して詳述する。   Next, in order to describe the present invention in more detail, one embodiment will be described in detail with reference to FIGS.

本実施形態は、電気自動車(EV)やハイブリッド車(HEV)等の車両の電流センサに適用した場合を示し、図1は車両1の模式図、図2は車両1の走行用のモータ2の給電路部分の構成を示し、(a)は平面図、(b)はその正面図である。図3は図2の電流センサ3の拡大した模式図、図4はその一部の断面図である。図5は図1のインバータ4の回路結線図である。   This embodiment shows a case where the present invention is applied to a current sensor of a vehicle such as an electric vehicle (EV) or a hybrid vehicle (HEV). FIG. 1 is a schematic diagram of the vehicle 1 and FIG. The structure of a feed path part is shown, (a) is a top view, (b) is the front view. 3 is an enlarged schematic view of the current sensor 3 of FIG. 2, and FIG. 4 is a partial cross-sectional view thereof. FIG. 5 is a circuit connection diagram of the inverter 4 of FIG.

図1に示すように、車両1は例えば水素ニッケル電池等で構成された走行用のバッテリ4を搭載し、このバッテリ4の出力はインバータ5に給電される。   As shown in FIG. 1, a vehicle 1 is equipped with a traveling battery 4 made of, for example, a hydrogen nickel battery, and the output of the battery 4 is fed to an inverter 5.

インバータ5は例えば図5に示すように、IGBTや電力用FETが形成する複数個のスイッチング半導体Qの周知の3相フルブリッジ回路で形成され、後述のインバータ制御に基づくU、V、Wの各相のスイッチング半導体Qのスイッチングにより、300Vい高電圧の3相U、V、Wの出力を電流センサ3を介してモータ2に給電する。なお、図5の5p、5nは正、負の直流端子、5u、5v、5wは3相の出力端子であり、gは各スイッチング半導体Qのゲート端子である。   For example, as shown in FIG. 5, the inverter 5 is formed of a well-known three-phase full bridge circuit of a plurality of switching semiconductors Q formed by IGBTs and power FETs, and each of U, V, and W based on inverter control described later. By switching the phase switching semiconductor Q, the output of the three-phase U, V, W having a high voltage of 300 V is supplied to the motor 2 via the current sensor 3. In FIG. 5, 5p and 5n are positive and negative DC terminals, 5u, 5v and 5w are three-phase output terminals, and g is a gate terminal of each switching semiconductor Q.

そして、図2の(a)、(b)に示すように、バッテリ4とインバータ5の入力側は正極側のバスバー6a及び負極側のバスバー6bにより接続され、インバータ5の出力側は電流センサ3の3相のバスバー7u、7v、7wの一端に接続される。なお、バスバー7u、7v、7wの他端は端子台等を介してモータ2に接続される。また、図2の(b)に示すように、電流センサ3は適当な高さのシャーシ8の上面にボルト締め等で固定される。   As shown in FIGS. 2A and 2B, the input side of the battery 4 and the inverter 5 is connected by a positive bus bar 6a and a negative bus bar 6b, and the output side of the inverter 5 is a current sensor 3. Are connected to one end of the three-phase bus bars 7u, 7v, 7w. The other ends of the bus bars 7u, 7v, 7w are connected to the motor 2 via terminal blocks or the like. Further, as shown in FIG. 2B, the current sensor 3 is fixed to the upper surface of the chassis 8 having an appropriate height by bolting or the like.

検出対象電路であるモータ2の3相給電路に介挿された電流センサ3の各相のバスバー7u〜7Wは、プリント配線板9に適当な間隔で並べた状態でプリント配線板9に挟み込まれて内蔵される。   The bus bars 7u to 7W of each phase of the current sensor 3 inserted in the three-phase power feeding path of the motor 2 that is the detection target electric path are sandwiched by the printed wiring board 9 in a state of being arranged on the printed wiring board 9 at an appropriate interval. Built in.

プリント配線板9はいわゆる両面基板であり、図3、図4に示すように、例えばプリント配線板9の表面中央に、バスバー7u〜7Wそれぞれを横切る適当な長さ及び太さの各相の導体パターン10が両面に形成される。また、両面の導体パターン10の端部はプリント配線板9の例えばスルーホール(ビアホールを含む)11により電気的に接続される。   The printed wiring board 9 is a so-called double-sided board. As shown in FIGS. 3 and 4, for example, at the center of the surface of the printed wiring board 9, each phase conductor having an appropriate length and thickness crossing each of the bus bars 7 u to 7 W. A pattern 10 is formed on both sides. Further, the end portions of the conductive patterns 10 on both sides are electrically connected by, for example, through holes (including via holes) 11 of the printed wiring board 9.

したがって、図4からも明らかなように、プリント配線板9に、このプリント配線板9を挟んでバスバー7u〜7wそれぞれを囲むように導体パターン10が形成され、プリント配線板9の両面の各相の導体パターン10と、その両端部のスルーホール11とにより、各相のバスバー7u〜7wが貫通したコアに相当するループコイルが形成される。   Therefore, as is clear from FIG. 4, the conductor pattern 10 is formed on the printed wiring board 9 so as to surround each of the bus bars 7 u to 7 w with the printed wiring board 9 interposed therebetween. The conductor pattern 10 and the through holes 11 at both ends thereof form a loop coil corresponding to the core through which the bus bars 7u to 7w of each phase pass.

このとき、各相のバスバー7u〜7wと、前記ループコイルとにより、プリント配線板9内に、バスバー7u〜7wそれぞれを1次側、前記ループコイルを2次側とする各相の変成器が形成され、バスバー7u〜7wそれぞれに電流(1次側電流)が流れると、前記変成器の磁電変換により各相の導体パターン10に1次側電流に相当する電流(2次側電流)が流れる。   At this time, each phase bus bar 7u to 7w and the loop coil are used in the printed wiring board 9, and each phase transformer having the bus bar 7u to 7w as the primary side and the loop coil as the secondary side is provided. When a current (primary side current) flows through each of the bus bars 7u to 7w, a current corresponding to the primary side current (secondary side current) flows through the conductor pattern 10 of each phase due to the magnetoelectric conversion of the transformer. .

さらに、例えばプリント配線板9の表面側の各相の導体パターン10の途中に、チップ部品である抵抗体12が設けられ、各相の前記ループ状のコイルの2次側電流が各相の抵抗体12を通流することにより、各相の抵抗体12の端子間にバスバー7u〜7wそれぞれの電流に応じた例えば数百mV程度の電圧(端子間電圧)が発生し、これらの端子間電圧によりモータ2の各相の電流が非接触に検出される。   Further, for example, a resistor 12 that is a chip component is provided in the middle of the conductor pattern 10 of each phase on the surface side of the printed wiring board 9, and the secondary side current of the loop-shaped coil of each phase is the resistance of each phase. By flowing the body 12, a voltage (inter-terminal voltage) of, for example, about several hundred mV corresponding to the current of each of the bus bars 7u to 7w is generated between the terminals of the resistor 12 of each phase. Thus, the current of each phase of the motor 2 is detected in a non-contact manner.

そして、基板表面側の各相の導体パターン10は、抵抗体12の両端子の部分から引出線パターン13が分枝して形成され、各相の抵抗体12の端子間電圧は引出線パターン13を通ってプリント配線板9に設けられたチップIC構成のインバータ制御のECU14に取り込まれる。ECU14は、各相の抵抗体12の端子間電圧に基づくマイクロコンピュータのフィードバック制御(ソフトウエア制御)を実行し、各相のインバータ制御信号を形成して、これらのインバータ制御信号を図2に示す制御信号ケーブル15を介してインバータ5の各相のスイッチング半導体Qのゲートgに与える。   The conductor pattern 10 of each phase on the substrate surface side is formed by branching a lead line pattern 13 from both terminal portions of the resistor 12, and the voltage between the terminals of the resistor 12 of each phase is the lead line pattern 13. And is taken into an inverter-controlled ECU 14 having a chip IC configuration provided on the printed wiring board 9. The ECU 14 performs microcomputer feedback control (software control) based on the voltage across the terminals of the resistors 12 of each phase, forms inverter control signals for each phase, and these inverter control signals are shown in FIG. The signal is supplied to the gate g of the switching semiconductor Q of each phase of the inverter 5 through the control signal cable 15.

なお、バスバー7u〜7wは、プリント配線板9の製造工程において、硬化前のプリント配線板9にバスバー7u〜7wを押し入れる等してプリント配線板9に内蔵される。また、導体パターン10や引出線パターン13は、例えば銅パターンであり、プリント配線板9のパターン形成工程により、プリント配線板9の他の電極や配線等のパターンとともに形成される。また、抵抗体12やECU14は、例えばプリント配線板9の表面実装工程により自動挿入でプリント配線板9に実装される。   The bus bars 7u to 7w are built into the printed wiring board 9 by, for example, pressing the bus bars 7u to 7w into the printed wiring board 9 before curing in the manufacturing process of the printed wiring board 9. In addition, the conductor pattern 10 and the lead line pattern 13 are, for example, copper patterns, and are formed together with other electrodes and wiring patterns of the printed wiring board 9 by a pattern forming process of the printed wiring board 9. Moreover, the resistor 12 and ECU14 are mounted in the printed wiring board 9 by the automatic insertion by the surface mounting process of the printed wiring board 9, for example.

以上のように、前記実施形態の場合、プリント配線板9内に形成された各相の前記変成器の磁電変換構造が、各相の導体パターン10によって形成され、導体パターン10の途中に設けられた抵抗体12の端子間電圧からモータ2の給電路(検出対象電路)の電流が非接触に検出される。   As described above, in the case of the embodiment, the magnetoelectric conversion structure of the transformer of each phase formed in the printed wiring board 9 is formed by the conductor pattern 10 of each phase and provided in the middle of the conductor pattern 10. The current in the power supply path (detection target circuit) of the motor 2 is detected in a non-contact manner from the voltage between the terminals of the resistor 12.

この場合、プリント配線板9にバスバー7u〜7wが内蔵されてプリント配線板9とバスバー7u〜7wが一体化され、しかも、プリント配線板9に各相の導体パターン10が形成され、抵抗体12もプリント配線板に設けられるため、極めて小型に形成できる。しかも、部品の組立作業等はほとんど必要がない。   In this case, the bus bars 7u to 7w are incorporated in the printed wiring board 9, the printed wiring board 9 and the bus bars 7u to 7w are integrated, and the conductor pattern 10 of each phase is formed on the printed wiring board 9, and the resistor 12 Is also provided on the printed wiring board, so that it can be formed extremely small. Moreover, almost no assembly work or the like is required.

また、高価なホール素子等に代えて、導体パターン10及び安価な抵抗体12を用いて形成されるので、極めて安価である。   Further, since the conductive pattern 10 and the inexpensive resistor 12 are used instead of the expensive Hall element or the like, it is extremely inexpensive.

さらに、導体パターン10がプリント配線板9に形成され、抵抗体12もプリント配線板12に設けられるので、車両1振動等による検出特性のばらつきはほとんどなく、前記磁電変換構造の変換特性が向上して電流センサ3の検出特性が向上する。   Furthermore, since the conductor pattern 10 is formed on the printed wiring board 9 and the resistor 12 is also provided on the printed wiring board 12, there is almost no variation in detection characteristics due to vibration of the vehicle 1 and the conversion characteristics of the magnetoelectric conversion structure are improved. Thus, the detection characteristics of the current sensor 3 are improved.

したがって、小型化及びコストダウンを図りつつ検出特性を向上するようにした、従来にない新規な非接触検出タイプの電流センサ3を提供することができる。なお、前記ループコイルの線径や巻き数は、各相の導体パターン10の幅を変えたり各相の導体パターン10を複数パターンとすること等によって容易に調整することができ、設計や製造の自由度が大きくなる利点もある。   Accordingly, it is possible to provide a novel non-contact detection type current sensor 3 which has been improved in detection characteristics while reducing size and cost. The wire diameter and the number of turns of the loop coil can be easily adjusted by changing the width of the conductor pattern 10 of each phase or by forming a plurality of conductor patterns 10 of each phase. There is also an advantage that the degree of freedom is increased.

そして、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行なうことが可能であり、例えば前記実施形態においては、検出対象電路が3相電路であって、3相の電流検出を行うため、プリント配線板9に3本のバスバー7u〜7wを内蔵してバスバー7u〜7w毎に導体パターン10を形成し、3相分(3個)の抵抗体12を設けたが、検出対象電路が単相電路の場合には、プリント配線板9に単相用の1本のバスバーを内蔵してそのバスバーについて導体パターン等を形成し、1個の抵抗体12を設ければよい。また、検出対象電路が3相より多相の電路の場合には、プリント配線板9に各相のバスバーを内蔵してバスバーの個数の導体パターンを形成し、相毎に抵抗体12を設ければよい。さらに、バッテリ4とインバータ5との間に本発明の電流センサを設け、インバータ5の入力電流を非接触検出するようにしてもよい。そして、本発明は、インバータ5の入力電流等のモータ2の相電流以外の検出したい部分(どこであってもよい)の電流の検出にも適用することができ、この場合、それに必要な個数のバスバーをプリント配線板に内蔵して導体パターンを形成し、相毎に抵抗体を設ければよい。   The present invention is not limited to the above-described embodiment, and various modifications other than those described above can be made without departing from the spirit thereof. For example, in the above-described embodiment, the detection target electric circuit Is a three-phase circuit, and in order to detect a three-phase current, the printed wiring board 9 includes three bus bars 7u to 7w, and a conductor pattern 10 is formed for each bus bar 7u to 7w. 3) The resistor 12 is provided. When the detection target circuit is a single-phase circuit, a single-phase bus bar is built in the printed wiring board 9, and a conductor pattern or the like is formed on the bus bar. One resistor 12 may be provided. If the circuit to be detected is a multi-phase circuit from three phases, a bus bar for each phase is built in the printed wiring board 9 to form a conductor pattern corresponding to the number of bus bars, and a resistor 12 is provided for each phase. That's fine. Furthermore, the current sensor of the present invention may be provided between the battery 4 and the inverter 5 to detect the input current of the inverter 5 in a non-contact manner. The present invention can also be applied to the detection of the current of a portion to be detected (anywhere) other than the phase current of the motor 2 such as the input current of the inverter 5. A bus bar may be incorporated in a printed wiring board to form a conductor pattern, and a resistor may be provided for each phase.

つぎに、プリント配線板9は、いわゆる片面基板やフレキシブル基板であってもよく、例えば片面基板の場合、配線パターンの形成面(例えば裏面)に導体パターン10を形成して部品実装面(例えば表面)に抵抗体12等を実装し、部品実装面の導体パターン10に対応する位置には、導体パターン10の代わりにジャンパー線を実装して本発明を実施すればよい。   Next, the printed wiring board 9 may be a so-called single-sided board or a flexible board. For example, in the case of a single-sided board, the conductor pattern 10 is formed on the wiring pattern forming surface (for example, the back surface) and the component mounting surface (for example, the front surface) ) And the like, and a jumper wire may be mounted instead of the conductor pattern 10 at a position corresponding to the conductor pattern 10 on the component mounting surface.

また、導体パターン10等は、アルミパターン等の銅パターン以外の種々の導体パターンであってもよく、プリント配線板9にどのような部品が実装されていてもよい。   The conductor pattern 10 and the like may be various conductor patterns other than a copper pattern such as an aluminum pattern, and any component may be mounted on the printed wiring board 9.

そして、本発明の電流センサは検出対象電路の電流の大きさ等はどのようであってもよく、本発明は、電気自動車(EV)、ハイブリッド車(HEV)、燃料電池車(FCV)等の車両の種々の電流の非接触検出に適用することができる。さらに、本発明は、車両に限らず、種々の機械や装置等の非接触検出タイプの電流センサに適用することができる。   The current sensor of the present invention may have any current magnitude in the detection target circuit, and the present invention can be applied to electric vehicles (EV), hybrid vehicles (HEV), fuel cell vehicles (FCV), etc. It can be applied to non-contact detection of various currents of a vehicle. Furthermore, the present invention can be applied not only to vehicles but also to non-contact detection type current sensors such as various machines and devices.

本発明の一実施形態が適用される車両の模式図である。1 is a schematic diagram of a vehicle to which an embodiment of the present invention is applied. 図1の走行用のモータの給電路部分の構成を示し、(a)は平面図、(b)はその正面図である。The structure of the electric power feeding path part of the motor for driving | running | working of FIG. 1 is shown, (a) is a top view, (b) is the front view. 図2の電流センサ3の拡大した模式図である。FIG. 3 is an enlarged schematic diagram of the current sensor 3 of FIG. 2. 図3の一部の断面図である。FIG. 4 is a partial cross-sectional view of FIG. 3. 図1のインバータの回路結線図である。FIG. 2 is a circuit connection diagram of the inverter of FIG. 1. 従来例の斜視図である。It is a perspective view of a prior art example.

符号の説明Explanation of symbols

7u〜7w バスバー
9 プリント配線板
10 導体パターン
12 抵抗体
7u-7w Bus bar 9 Printed wiring board 10 Conductor pattern 12 Resistor

Claims (1)

検出対象電路に介挿されるバスバーをプリント配線板に挟み込んだ状態に内蔵し、
前記プリント配線板に、該プリント配線板を挟んで前記バスバーを囲むように導体パターンを形成し、
前記導体パターンの途中に抵抗体を設け、
前記抵抗体の端子間電圧により前記バスバーの電流を非接触検出することを特徴とする電流センサ。
Built-in bus bar inserted in the printed circuit board, inserted into the detection target circuit,
On the printed wiring board, a conductor pattern is formed so as to surround the bus bar with the printed wiring board interposed therebetween,
A resistor is provided in the middle of the conductor pattern,
A current sensor, wherein the current of the bus bar is detected in a non-contact manner by a voltage between terminals of the resistor.
JP2008055807A 2008-03-06 2008-03-06 Current sensor Pending JP2009210496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008055807A JP2009210496A (en) 2008-03-06 2008-03-06 Current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008055807A JP2009210496A (en) 2008-03-06 2008-03-06 Current sensor

Publications (1)

Publication Number Publication Date
JP2009210496A true JP2009210496A (en) 2009-09-17

Family

ID=41183795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008055807A Pending JP2009210496A (en) 2008-03-06 2008-03-06 Current sensor

Country Status (1)

Country Link
JP (1) JP2009210496A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109001518A (en) * 2017-06-07 2018-12-14 现代自动车株式会社 Current sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109001518A (en) * 2017-06-07 2018-12-14 现代自动车株式会社 Current sensor
KR20180133598A (en) * 2017-06-07 2018-12-17 현대자동차주식회사 Current sensor
KR102287317B1 (en) * 2017-06-07 2021-08-10 현대자동차주식회사 Current sensor

Similar Documents

Publication Publication Date Title
JP5622043B2 (en) Inverter device
US9006883B2 (en) Semiconductor module with switching elements
US8482904B2 (en) Power module with current sensing
CN111886507B (en) Integrated current measuring device
US9431776B2 (en) Connector
US7221143B2 (en) Hall IC type current sensor of vehicle-mounted power converter
WO2011004671A1 (en) Inverter device relay-connecting member
US20070229050A1 (en) Power converter
US20180156847A1 (en) Current detection device
JP2015049184A (en) Inverter device
JP4731418B2 (en) Semiconductor module
JP4818218B2 (en) Power supply for vehicle
JP2010175276A (en) Magnetic proportion system current sensor
CN115882265A (en) Magnetic current sensor integration into high current connector devices
JP6808989B2 (en) Inverter module
JP2014119315A (en) Current sensor and current sensor unit
JP2009210496A (en) Current sensor
CN109001518B (en) Current sensor
CN208188190U (en) Busbar, circuit integration device and vehicle control device
JP2005278296A (en) Capacitor device and power supply system having the same
JP6417756B2 (en) Current detector
JP2014055839A (en) Current detector
US11293949B2 (en) Current detection apparatus and power conversion apparatus
CN109074109B (en) Power conversion device and electric power steering device using same
JP2020136321A (en) Electrical machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120918