JP2009209973A - Valve unit and manufacturing method of valve unit - Google Patents

Valve unit and manufacturing method of valve unit Download PDF

Info

Publication number
JP2009209973A
JP2009209973A JP2008051326A JP2008051326A JP2009209973A JP 2009209973 A JP2009209973 A JP 2009209973A JP 2008051326 A JP2008051326 A JP 2008051326A JP 2008051326 A JP2008051326 A JP 2008051326A JP 2009209973 A JP2009209973 A JP 2009209973A
Authority
JP
Japan
Prior art keywords
valve
valve seat
seal portion
seal
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008051326A
Other languages
Japanese (ja)
Other versions
JP5141301B2 (en
Inventor
Takashi Mishima
崇司 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2008051326A priority Critical patent/JP5141301B2/en
Publication of JP2009209973A publication Critical patent/JP2009209973A/en
Application granted granted Critical
Publication of JP5141301B2 publication Critical patent/JP5141301B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lift Valve (AREA)
  • Details Of Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a valve unit which can attain miniaturization and lightweight by securing a seal property of the valve unit. <P>SOLUTION: A clearance generation when closing valve is reduced in such a way that a seal section 22 of a valve element 2 is contacted to a valve port 16 of a valve seat 17, that a shaft member 20 is moved in the valve seat 17 direction, that pressurization and heat-treatment are performed while keeping a deformation of depress direction of the seal section 22, that a compression permanent strain profiled in the valve seat 17 and the valve port 16 is generated in the seal section 22, and that a contact surface profile between the valve seat 17 and the seal section 22 of the valve element 2 is processed in identification. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、流体の流通を制御するバルブ装置およびバルブ装置の製造方法に関する。   The present invention relates to a valve device that controls fluid flow and a method for manufacturing the valve device.

流体(気体または液体)が流通するバルブ装置は、流体の出入り口となる弁座に離接自在な弁体を当接させることで流体の遮断を行っている。この際、弁座と弁体のシール性が悪いと流体の遮断が不完全となり所望の性能が得られなくなる。ここで、弁座と弁体が加工時の平面度(いかに表面が平らであるかの指標)もしくは真直度(いかに真っ直ぐであるかの指標)がともに0であれば弁座と弁体が当接した時には完全に隙間が無くシール性は確保されるが、実際には加工により必ずばらつきが生じてしまう。この結果、平面度もしくは真直度は0にはならずに弁座と弁体が当接した時に隙間が生ずる。このため、弁体を弁座に荷重を加えて押し付けることにより弁体または弁座を変形させることで弁体と弁座間の隙間を無くしてシール性を確保している。この際、弁体に金属材料に比べて変形し易いゴムまたは軟質樹脂材料を使用することがある。しかし、ゴムまたは軟質樹脂材料は成形時の加工精度に限度があり、バルブ装置が大型化してくるとそれにつれて加工精度は悪くなりシール性の確保が難しくなる。また、要求されるシール性が厳しくなると、それにつれてシール性を確保するために弁体を弁座に押し付ける荷重も大きくする必要から弁体を弁座に押し付けるための駆動部分が大きくなり重量増となる。   In a valve device through which fluid (gas or liquid) circulates, the fluid is shut off by bringing a valve body, which can be freely attached and detached, into contact with a valve seat serving as a fluid entrance and exit. At this time, if the sealing performance between the valve seat and the valve body is poor, the fluid is not completely cut off and the desired performance cannot be obtained. Here, if the flatness (indicator of how flat the surface is) or straightness (indicator of how straight) the valve seat and valve body are when both are zero, the valve seat and valve body When contacted, there is no gap and sealing performance is ensured. However, in practice, variations always occur due to processing. As a result, the flatness or straightness does not become zero, but a gap is generated when the valve seat and the valve body come into contact with each other. For this reason, the valve body or the valve seat is deformed by applying a load to the valve seat and pressing the valve body, thereby eliminating a gap between the valve body and the valve seat to ensure sealing performance. At this time, a rubber or a soft resin material that is more easily deformed than a metal material may be used for the valve body. However, rubber or soft resin material has a limit in processing accuracy at the time of molding, and as the valve device becomes larger, the processing accuracy becomes worse and it becomes difficult to ensure sealing performance. In addition, when the required sealing performance becomes stricter, it is necessary to increase the load for pressing the valve body against the valve seat in order to secure the sealing performance, so the drive part for pressing the valve body against the valve seat becomes larger and the weight increases. Become.

シール性を確保するために例えば特許文献1では、弁座2の弁体3と当接する部位が弁体2の接触面33aと密着するように平面状に形成し、弁座2の接触面2aと弁座2の内面2bとが交わる角部2cを円弧状に形状する遮断弁が開示されている。
特開平8−210545号公報(図1、[0015])
In order to ensure the sealing performance, for example, in Patent Document 1, the portion of the valve seat 2 that contacts the valve body 3 is formed in a flat shape so that the contact surface 33a of the valve body 2 is in close contact with the contact surface 2a of the valve seat 2. A shut-off valve is disclosed in which a corner 2c where the valve seat 2 and the inner surface 2b of the valve seat 2 intersect is formed in an arc shape.
JP-A-8-210545 (FIG. 1, [0015])

特許文献1に記載の技術では、弁体の接触面と密着するように弁座を平面状に形成しているが、弁体と弁座の接触面は弁体と弁座の加工時のばらつきにより完全には隙間を無くすことは難しいため、弁体に圧力を加えて弁座に押し付けてこの隙間を無くす必要がある。このため、圧力を加えるための駆動部分の確保および圧力に耐えうる構造にする必要からバルブ装置を小型化、軽量化するには限度がある。   In the technique described in Patent Document 1, the valve seat is formed in a flat shape so as to be in close contact with the contact surface of the valve body. However, the contact surface between the valve body and the valve seat is a variation during processing of the valve body and the valve seat. Therefore, it is difficult to completely eliminate the gap, so it is necessary to apply pressure to the valve body and press it against the valve seat to eliminate this gap. For this reason, there is a limit to reducing the size and weight of the valve device because it is necessary to secure a driving portion for applying pressure and to have a structure that can withstand the pressure.

本発明は上記問題点に鑑みてなされたものであり、バルブ装置のシール性を確保して小型化、軽量化が可能なバルブ装置を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a valve device capable of ensuring the sealing performance of the valve device and reducing the size and weight.

上記課題を解決するために講じた手段は、導入孔と導出孔との間に設けられた弁座と、ゴムまたは軟質樹脂材料を基材とし成形後に加熱されることで圧縮永久歪を生じさせたシール部と、前記シール部と一体になり前記シール部を前記弁座に対して離接させることにより弁座を流通する流体の流れの遮断を行う弁体とを備えたことにある。   The means taken to solve the above-mentioned problems is that a valve seat provided between the introduction hole and the lead-out hole, and a rubber or soft resin material as a base material are heated after molding to cause compression set. And a valve body that is integral with the seal portion and that blocks the flow of fluid flowing through the valve seat by separating the seal portion from the valve seat.

また、シール部は弁座と当接した状態で加熱されると良い。   Moreover, it is good to heat a seal part in the state contact | abutted with the valve seat.

さらに、加熱された結果生ずる圧縮永久歪の歪率を0.7%以上にすると良い。   Furthermore, the distortion rate of the compression set generated as a result of heating is preferably 0.7% or more.

本発明では、ゴムまたは軟質樹脂材料を基材とした弁座に離接するシール部が、成形された後に加熱されて圧縮永久歪が生じているため、シール部の平面度または真直度は加熱されずに圧縮永久歪を生じさせない時よりも小さくなる。このため、シール部と弁座との隙間は加熱されずに圧縮永久歪を生じさせない時よりも小さくなるので、シール部を弁座に押し付ける荷重が小さくてもシール性の確保ができ、バルブ装置の小型化や軽量化が可能となる。   In the present invention, since the seal portion that comes into contact with and separates from the valve seat made of rubber or a soft resin material is heated after being molded to cause compression set, the flatness or straightness of the seal portion is heated. Therefore, it becomes smaller than when no compression set is generated. For this reason, the gap between the seal portion and the valve seat is smaller than when the compression set is not generated without being heated, so that the sealing performance can be ensured even if the load pressing the seal portion against the valve seat is small. Can be reduced in size and weight.

この時、シール部が弁座と当接した状態で加熱されると、シール部は弁座の形に近い形状に変形するためより弁座との隙間が小さくなるのでシール部を弁座に押し付ける荷重をさらに小さくすることができる。   At this time, if the seal part is heated in contact with the valve seat, the seal part is deformed to a shape close to the shape of the valve seat, so the gap with the valve seat becomes smaller, so the seal part is pressed against the valve seat. The load can be further reduced.

また、シール部の圧縮永久歪の歪率が0.7%以上あると、バルブ装置を製造した時に生ずるシール部と弁座との隙間を吸収しやすくなり、シール性の確保が容易になる。   Further, when the distortion ratio of the compression set of the seal portion is 0.7% or more, it becomes easy to absorb the gap between the seal portion and the valve seat that is produced when the valve device is manufactured, and it becomes easy to ensure the sealing performance.

以下、本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本実施形態のバルブ装置1は、図1に示すように、金属または樹脂製のボディ10と、ゴムや軟質樹脂材料等の高分子材料を基材とする膜状のダイヤフラム3と、金属または樹脂製の弁体2とを備えている。ボディ10は、第1ボディ11と、第1ボディ11にボルト等の取付具11kで取り付けられた第2ボディ12(図1中に一部表示)とを備える。第1ボディ11は、流体(空気等の気体または水等の液体)が導入される導入孔14と、流体が導出される導出孔15と、導入孔14および導出孔15の間に形成された円形状をなす弁口16を形成するリング形状をなす弁座17とを備える。導入孔14は、流体を送給する導入源(図示せず)に接続されている。導出孔15は、導入孔14から供給された流体が吐出される導出源(図示せず)に接続されている。   As shown in FIG. 1, the valve device 1 of the present embodiment includes a body 10 made of metal or resin, a membrane-like diaphragm 3 based on a polymer material such as rubber or soft resin material, and metal or resin. And a valve body 2 made of metal. The body 10 includes a first body 11 and a second body 12 (partially shown in FIG. 1) attached to the first body 11 with a fixture 11k such as a bolt. The first body 11 is formed between an introduction hole 14 into which a fluid (a gas such as air or a liquid such as water) is introduced, a lead-out hole 15 through which the fluid is led out, and the introduction hole 14 and the lead-out hole 15. And a valve seat 17 having a ring shape forming a valve port 16 having a circular shape. The introduction hole 14 is connected to an introduction source (not shown) for feeding fluid. The outlet hole 15 is connected to an outlet source (not shown) from which the fluid supplied from the inlet hole 14 is discharged.

また、ゴムや軟質樹脂材料等の高分子材料を基材とするダイヤフラム3がボディ10に設けられ、第1ボディ11を流通する流体が第2ボディ12内へ流入するのを防止している。ダイヤフラム3の外周部30は、第1ボディ11の第1鍔部11cと第2ボディ12の第2鍔部12cとで挟持されることでシールされ、第1ボディ11を流通する流体がダイヤフラム3の外周部30を通じて外部へ漏れるのを防止している。ダイヤフラム3は外周部30と、弁体2の上面側に配置された固定膜部31と、筒形状をなす可動膜部32とを備えている。矢印M1,M2方向における弁体2の開閉作動に応じてダイヤフラム3は第1ボディ11を流通する流体が第2ボディ12内に流入するのを防止した上で作動して変形する。   In addition, a diaphragm 3 based on a polymer material such as rubber or a soft resin material is provided in the body 10 to prevent fluid flowing through the first body 11 from flowing into the second body 12. The outer peripheral portion 30 of the diaphragm 3 is sealed by being sandwiched between the first flange portion 11c of the first body 11 and the second flange portion 12c of the second body 12, and the fluid flowing through the first body 11 is allowed to flow. Leakage to the outside through the outer periphery 30 of the The diaphragm 3 includes an outer peripheral part 30, a fixed film part 31 disposed on the upper surface side of the valve body 2, and a movable film part 32 having a cylindrical shape. In response to the opening / closing operation of the valve body 2 in the directions of the arrows M1 and M2, the diaphragm 3 operates and deforms after preventing the fluid flowing through the first body 11 from flowing into the second body 12.

弁体2は、ダイヤフラム3の下方に位置するように、ダイヤフラム3の中央領域に軸部材20を介して取り付けられている。弁体2は、軸部材20の下端部に固定された金属等の剛性を有する硬質部21と、硬質部21の下面側に硬質部21の周囲を覆って被覆されたゴムや軟質樹脂材料等のシール材料で形成されたシール部22とを備えている。   The valve body 2 is attached to the central region of the diaphragm 3 via the shaft member 20 so as to be positioned below the diaphragm 3. The valve body 2 includes a hard portion 21 having rigidity such as a metal fixed to the lower end portion of the shaft member 20, and a rubber or a soft resin material coated on the lower surface side of the hard portion 21 so as to cover the periphery of the hard portion 21. And a sealing portion 22 formed of the sealing material.

なお、本実施形態では弁体2が平面になっているが、弁体および弁座の形状は、弁体と弁座が当接するものであれば特に限定するものではなく、各種形状に置き換えることができる。また、弁体2の矢印M1,M2方向への開閉方法はエアー、電気等通常のバルブ装置の開閉に使用する駆動方法が適用できる。   In this embodiment, the valve body 2 is flat. However, the shapes of the valve body and the valve seat are not particularly limited as long as the valve body and the valve seat come into contact with each other, and may be replaced with various shapes. Can do. Further, as a method of opening and closing the valve body 2 in the directions of the arrows M1 and M2, a driving method used for opening and closing a normal valve device such as air or electricity can be applied.

次に本実施形態の弁体2のシール部22の製造方法について説明する。   Next, the manufacturing method of the sealing part 22 of the valve body 2 of this embodiment is demonstrated.

軸部材20を閉弁方向(図1中M1方向)に駆動させて弁座17の弁口16に所定の圧力を加えて弁体2のシール部22を押し付けて当接させる。次に、この状態のまま所定の温度に設定された加熱炉に所定の時間保持して加熱処理を行う。このように圧力を加えながら加熱処理を施す加圧・加熱処理を行うことでシール部22における弁座17との当接部位に強制的に圧縮永久歪を生じさせている。この場合、加える圧力(加圧力)、加熱する温度および加熱する時間はシール部22の材質および形状とシールに要求される仕様により適宜決定される。本実施形態では例えば口径φ40mmのバルブ装置を用いて、シール部22は厚み3mmのEPDMゴム(エチレン・プロピレンゴム)を使用し、軸部材20に50Nの加圧力を加えながら、90℃〜120℃の加熱炉に10〜20時間保持して加圧・加熱処理を行った。   The shaft member 20 is driven in the valve closing direction (M1 direction in FIG. 1), a predetermined pressure is applied to the valve port 16 of the valve seat 17, and the seal portion 22 of the valve body 2 is pressed and brought into contact therewith. Next, a heat treatment is performed while maintaining a predetermined temperature in a heating furnace set at a predetermined temperature in this state. In this way, by performing the pressurizing / heating treatment for applying the heat treatment while applying pressure, a compression set is forcibly generated at the contact portion of the seal portion 22 with the valve seat 17. In this case, the pressure to be applied (pressure applied), the heating temperature, and the heating time are appropriately determined depending on the material and shape of the seal portion 22 and the specifications required for the seal. In the present embodiment, for example, a valve device having a diameter of 40 mm is used, and the seal portion 22 is made of EPDM rubber (ethylene / propylene rubber) having a thickness of 3 mm. Was held in the heating furnace for 10 to 20 hours and subjected to pressure and heat treatment.

上記のように加圧・加熱処理した処理品と、未処理品についてシール性の評価をした結果を表1に示す。ここで加圧・加熱処理によりシール部22のEPDMゴムの硬度は変化する(未処理品より硬くなる)。そこで処理品のシール部の硬度が、処理前の硬度が未処理品と同じA58(試験方法JIS K6253)で処理後の硬度が硬いもの(実施例1)と処理前の硬度が柔らかく処理後のEPDMゴムの硬度が未処理品と同じA58(試験方法JIS K6253)に合わせたもの(実施例2)の2種類を使用して評価を行った。また、シール性の評価は以下に示す方法で行った。   Table 1 shows the results of the evaluation of the sealing properties of the treated product subjected to pressure and heat treatment as described above and the untreated product. Here, the hardness of the EPDM rubber in the seal portion 22 changes (becomes harder than the untreated product) by the pressurization and heat treatment. Therefore, the hardness of the seal part of the treated product is A58 (test method JIS K6253) in which the hardness before treatment is the same as that of the untreated product and the hardness after treatment is hard (Example 1) and the hardness before treatment is soft and after treatment. The evaluation was performed using two types (Example 2) of EPDM rubber having the same hardness as A58 (test method JIS K6253) as that of the untreated product. Moreover, the sealing property was evaluated by the following method.

シール部22を弁口16に押し付ける力(押し付け荷重)を軸部材20に加えない状態で当接させる。次に軸部材20の閉弁方向に押し付け荷重を加えて弁口16にシール部22を押し付ける。この押し付け荷重を変化させた時の軸部材20の変位量(シール部22が変形した量と同じになる)をリニアゲージにより測定するとともに、導入孔14からエアーを40〜60KPaの圧力で供給して大気圧に設定された導出孔15からのエアーの漏れを確認する。表1に導出孔15からのエアーの漏れが無くなったときの押し付け荷重と、そのときのシール部22が変形した量(潰し量)を示した。

Figure 2009209973
A force (pressing load) for pressing the seal portion 22 against the valve port 16 is brought into contact with the shaft member 20 without being applied thereto. Next, a pressing load is applied in the valve closing direction of the shaft member 20 to press the seal portion 22 against the valve port 16. The amount of displacement of the shaft member 20 when the pressing load is changed (same as the amount of deformation of the seal portion 22) is measured by a linear gauge, and air is supplied from the introduction hole 14 at a pressure of 40 to 60 KPa. The air leakage from the outlet hole 15 set to atmospheric pressure is confirmed. Table 1 shows the pressing load when air leakage from the lead-out hole 15 is eliminated, and the amount of deformation (crushing amount) of the seal portion 22 at that time.
Figure 2009209973

表1の結果から明らかなように、加圧・加熱処理した処理品は未処理品に比べて押し付け荷重が少なく、またシール部22の潰し量が少なくてエアーの漏れを抑えることができシール性が向上している。さらに、加圧・加熱処理した処理品の実施例1と実施例2を比較すると実施例2は実施例1よりシール性が更に向上している。このことから、加圧・加熱処理した後の硬度を調整すると、調整しないときよりシール性は向上する。   As is apparent from the results in Table 1, the treated product subjected to pressure and heat treatment has a smaller pressing load than the untreated product, and the amount of crushing of the seal portion 22 is small, so that air leakage can be suppressed and the sealing performance. Has improved. Further, when Example 1 and Example 2 of the processed product subjected to pressure and heat treatment are compared, Example 2 is more improved in sealing performance than Example 1. For this reason, when the hardness after pressure and heat treatment is adjusted, the sealing performance is improved as compared with the case where the hardness is not adjusted.

また、表1に加圧・加熱処理した処理品(実施例1)と未処理品(比較例)のシール部22の弁座17の弁口16が当接する面の平面度をレーザ形状測定器(株式会社キーエンス製)にて測定した結果を示した。   Table 1 shows the flatness of the surface of the valve seat 17 of the seal portion 22 of the treated product (Example 1) and the untreated product (Comparative Example) subjected to pressurization and heat treatment. The results measured by (manufactured by Keyence Corporation) are shown.

表1の結果から未処理品の平面度は40μmで、処理品の平面度は16μmである。このことから、加圧・加熱処理を行うことでシール部22のEPDMゴムには加圧力が加わった状態で長時間加熱されたことによりEPDMゴムには圧縮永久歪が生じ、シール部22の平面度が40μmから16μmに低減して良くなったことが分かる。このため、弁口16とシール部22との間に生ずる隙間が小さくなり、小さな押し付け荷重で隙間を無くすことができシール性が向上している。   From the results in Table 1, the flatness of the untreated product is 40 μm, and the flatness of the treated product is 16 μm. From this, by performing the pressure and heat treatment, the EPDM rubber of the seal portion 22 is heated for a long time in a state in which a pressure is applied. It can be seen that the degree is improved from 40 μm to 16 μm. For this reason, the clearance gap produced between the valve port 16 and the seal part 22 becomes small, a clearance gap can be eliminated with a small pressing load, and the sealing performance is improved.

ここで、エアーの漏れを抑えるための軸部材20に加える押し付け荷重およびシール部の潰し量はバルブ装置の口径によって変化し、口径が本実施形態のφ40mmより小さくなれば本実施形態より小さな押し付け荷重で漏れを抑えることができる。また、シール部22の材質および硬度を変えるとシール部22に荷重を加えたときに生ずるシール部22の変形量が変わるので、漏れを抑えるのに必要な変形量を与える押し付け荷重は変化する。このため、材質および硬度(特に加圧・加熱処理後の硬度)を適宜設定することにより、バルブ装置の要求仕様に合うようシールに必要な押し付け荷重を任意に調整することができる。   Here, the pressing load applied to the shaft member 20 for suppressing air leakage and the crushing amount of the seal portion vary depending on the diameter of the valve device. If the diameter is smaller than φ40 mm of the present embodiment, the pressing load smaller than that of the present embodiment. Can suppress leakage. Further, if the material and hardness of the seal portion 22 are changed, the amount of deformation of the seal portion 22 that occurs when a load is applied to the seal portion 22 changes, so that the pressing load that gives the amount of deformation necessary to suppress leakage changes. For this reason, by appropriately setting the material and hardness (particularly, hardness after pressure and heat treatment), the pressing load necessary for the seal can be arbitrarily adjusted so as to meet the required specifications of the valve device.

また、本実施形態ではシール部22の厚みが3mmで、加圧・加熱処理したバルブ装置(実施例1)と未処理のバルブ装置(比較例)とでエアーの漏れが生じない潰し量の差が0.02mmである。加圧・加熱処理したバルブ装置の潰し量が未処理のバルブ装置に比べて0.02mm小さいということは、シール部22の弁座17の弁口16が当接する面の平滑性が向上していることを示している。これは平面度が0.02mm小さくなっていることになる。(表1の平面度の測定結果では40μm−16μm=24μm(0.024mm)となっている。)この0.02mmを歪率(%)で表すと略0.7%となる。従って、歪率0.7%以上の圧縮永久歪をシール部22に与えれば、押し付け荷重を小さくすることができる。   Further, in this embodiment, the seal portion 22 has a thickness of 3 mm, and the difference in the amount of crushing that causes no air leakage between the pressurized and heat-treated valve device (Example 1) and the untreated valve device (Comparative Example). Is 0.02 mm. The fact that the crushing amount of the pressurized and heated valve device is 0.02 mm smaller than that of the untreated valve device means that the smoothness of the surface of the seal portion 22 on which the valve port 16 of the valve seat 17 abuts is improved. It shows that. This means that the flatness is reduced by 0.02 mm. (The flatness measurement results in Table 1 are 40 μm−16 μm = 24 μm (0.024 mm).) When 0.02 mm is expressed in terms of distortion (%), it is approximately 0.7%. Therefore, if a compression set having a distortion rate of 0.7% or more is applied to the seal portion 22, the pressing load can be reduced.

以上本発明の実施形態によると、弁体2のシール部22は加圧力が加わって弁座17の弁口16に当接した状態のまま加熱されて加圧・加熱処理が行われることにより、シール部22の弁口16との当接部位には強制的に圧縮永久歪が生じて変形する。これによりシール部22の弁口16との当接部位が弁座17の弁口16の形状に近い形状に変形して弁口16とシール部22の弁口16との当接部位との間に生じていた隙間が加圧・加熱処理しないときよりも小さくなる。この結果、加圧・加熱処理しないときよりも小さな押し付け荷重でシールすることができるので、シール部22を弁口16に押し付けるための駆動部分を小さくすることができ、また押し付け荷重が小さくなった分バルブ装置の構造を簡略化および薄肉化することができる。このため、バルブ装置の小型化や軽量化が可能となる。   As described above, according to the embodiment of the present invention, the sealing portion 22 of the valve body 2 is heated while being in contact with the valve port 16 of the valve seat 17 and is subjected to pressurization / heating treatment. The contact portion of the seal portion 22 with the valve port 16 is forced to be permanently deformed and deformed. As a result, the contact portion of the seal portion 22 with the valve port 16 is deformed to a shape close to the shape of the valve port 16 of the valve seat 17, and between the valve port 16 and the contact portion of the seal portion 22 with the valve port 16. The gap that has occurred in the gap is smaller than when no pressure or heat treatment is performed. As a result, the seal can be sealed with a smaller pressing load than when no pressurization / heating treatment is performed, so that the driving portion for pressing the seal portion 22 against the valve port 16 can be reduced, and the pressing load is reduced. The structure of the minute valve device can be simplified and thinned. For this reason, the valve device can be reduced in size and weight.

また、シール部22が圧縮永久歪の歪率が0.7%以上あるので、バルブ装置を製造した時に生ずるシール部22と弁座17の弁口16との隙間を吸収して小さくすることができる。この結果、シール部22は小さな変形で隙間を無くしてシール性の確保ができるので押し付け荷重を小さくすることができる。   In addition, since the seal portion 22 has a compression set distortion rate of 0.7% or more, the gap between the seal portion 22 and the valve port 16 of the valve seat 17 generated when the valve device is manufactured can be absorbed and reduced. it can. As a result, the sealing portion 22 can be made with a small deformation to eliminate a gap and ensure sealing performance, so that the pressing load can be reduced.

以上、本発明を上記実施態様に則して説明したが、本発明は上記態様にのみ限定されるものではなく、本発明の原理に準ずる各種態様を含むものである。   As mentioned above, although this invention was demonstrated according to the said embodiment, this invention is not limited only to the said aspect, Various aspects based on the principle of this invention are included.

本発明の実施形態におけるバルブ装置である。It is a valve apparatus in an embodiment of the present invention.

符号の説明Explanation of symbols

1 バルブ装置
10 ボディ
11 第1ボディ
12 第2ボディ
14 導入孔
15 導出孔
16 弁口
17 弁座
2 弁体
22 シール部
DESCRIPTION OF SYMBOLS 1 Valve apparatus 10 Body 11 1st body 12 2nd body 14 Introducing hole 15 Deriving hole 16 Valve port 17 Valve seat 2 Valve body 22 Seal part

Claims (5)

導入孔と導出孔との間に設けられた弁座と、ゴムまたは軟質樹脂材料を基材とし成形後に加熱されることで圧縮永久歪を生じさせたシール部と、前記シール部と一体になり前記シール部を前記弁座に対して離接させることにより弁座を流通する流体の流れの遮断を行う弁体と、を備えたことを特徴とするバルブ装置。   A valve seat provided between the introduction hole and the lead-out hole, a seal part in which compression set is generated by being heated after molding using a rubber or a soft resin material as a base material, and the seal part are integrated. A valve device comprising: a valve body that shuts off a flow of fluid flowing through the valve seat by bringing the seal portion into contact with the valve seat. 前記シール部の前記圧縮永久歪の歪率が0.7%以上であることを特徴とする請求項1に記載のバルブ装置。   The valve device according to claim 1, wherein a distortion rate of the compression set of the seal portion is 0.7% or more. 導入孔と導出孔との間に設けられた弁座と、ゴムまたは軟質樹脂材料を基材としたシール部と、前記シール部と一体になり前記シール部を前記弁座に対して離接させることにより弁座を流通する流体の流れの遮断を行う弁体と、を備えたバルブ装置の製造方法であって、
前記シール部を成形した後に加熱して前記シール部の前記弁座との当接部位に圧縮永久歪を生じさせることを特徴とするバルブ装置の製造方法。
A valve seat provided between the introduction hole and the lead-out hole, a seal portion made of rubber or a soft resin material as a base material, and the seal portion are integrated with the seal portion so as to be separated from and in contact with the valve seat. A valve body that shuts off the flow of fluid flowing through the valve seat,
A method for manufacturing a valve device, comprising: forming a seal portion and heating the seal portion to cause compression set at a contact portion of the seal portion with the valve seat.
前記シール部は、前記弁座と当接した状態で加熱されることを特徴とする請求項3に記載のバルブ装置の製造方法。   The method for manufacturing a valve device according to claim 3, wherein the seal portion is heated while being in contact with the valve seat. 前記シール部に歪率が0.7%以上の前記圧縮永久歪を与えることを特徴とする請求項3または請求項4に記載のバルブ装置の製造方法。   The method for manufacturing a valve device according to claim 3 or 4, wherein the compression set having a strain rate of 0.7% or more is applied to the seal portion.
JP2008051326A 2008-02-29 2008-02-29 Valve device and method for manufacturing valve device Expired - Fee Related JP5141301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008051326A JP5141301B2 (en) 2008-02-29 2008-02-29 Valve device and method for manufacturing valve device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008051326A JP5141301B2 (en) 2008-02-29 2008-02-29 Valve device and method for manufacturing valve device

Publications (2)

Publication Number Publication Date
JP2009209973A true JP2009209973A (en) 2009-09-17
JP5141301B2 JP5141301B2 (en) 2013-02-13

Family

ID=41183328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008051326A Expired - Fee Related JP5141301B2 (en) 2008-02-29 2008-02-29 Valve device and method for manufacturing valve device

Country Status (1)

Country Link
JP (1) JP5141301B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014190452A (en) * 2013-03-27 2014-10-06 Horiba Ltd Fluid control valve
JP2018524529A (en) * 2015-07-09 2018-08-30 ビスタデルテク・リミテッド・ライアビリティ・カンパニーVistadeltek, Llc Control plate in valve
JP2020122534A (en) * 2019-01-31 2020-08-13 株式会社フジキン Diaphragm valve manufacturing method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57171166A (en) * 1981-04-15 1982-10-21 Mitsubishi Electric Corp Assembly method of float valve
JPH04165163A (en) * 1990-10-30 1992-06-10 Toyo Tire & Rubber Co Ltd Diapharagm valve
JPH0854075A (en) * 1994-08-10 1996-02-27 Kobe Steel Ltd Ball valve and manufacture thereof
JP3036809U (en) * 1996-10-15 1997-05-06 広重産業株式会社 Check valve structure
JPH10132094A (en) * 1996-11-01 1998-05-22 Nippon Keystone Kk Double seal valve
JP2000039072A (en) * 1998-05-20 2000-02-08 Nippon Leakless Corp Expanded graphite molded packing and lubricant for this packing
JP2001221347A (en) * 2000-02-09 2001-08-17 Mitsubishi Electric Corp Opening/closing valve and refrigerating cycle device using it
JP2006260385A (en) * 2005-03-18 2006-09-28 Osaka Gas Co Ltd Pressure governor and processing method
JP2006258222A (en) * 2005-03-18 2006-09-28 Kitz Corp Valve

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57171166A (en) * 1981-04-15 1982-10-21 Mitsubishi Electric Corp Assembly method of float valve
JPH04165163A (en) * 1990-10-30 1992-06-10 Toyo Tire & Rubber Co Ltd Diapharagm valve
JPH0854075A (en) * 1994-08-10 1996-02-27 Kobe Steel Ltd Ball valve and manufacture thereof
JP3036809U (en) * 1996-10-15 1997-05-06 広重産業株式会社 Check valve structure
JPH10132094A (en) * 1996-11-01 1998-05-22 Nippon Keystone Kk Double seal valve
JP2000039072A (en) * 1998-05-20 2000-02-08 Nippon Leakless Corp Expanded graphite molded packing and lubricant for this packing
JP2001221347A (en) * 2000-02-09 2001-08-17 Mitsubishi Electric Corp Opening/closing valve and refrigerating cycle device using it
JP2006260385A (en) * 2005-03-18 2006-09-28 Osaka Gas Co Ltd Pressure governor and processing method
JP2006258222A (en) * 2005-03-18 2006-09-28 Kitz Corp Valve

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014190452A (en) * 2013-03-27 2014-10-06 Horiba Ltd Fluid control valve
US9746102B2 (en) 2013-03-27 2017-08-29 Horiba Stec, Co., Ltd. Fluid control valve
JP2018524529A (en) * 2015-07-09 2018-08-30 ビスタデルテク・リミテッド・ライアビリティ・カンパニーVistadeltek, Llc Control plate in valve
JP2020122534A (en) * 2019-01-31 2020-08-13 株式会社フジキン Diaphragm valve manufacturing method

Also Published As

Publication number Publication date
JP5141301B2 (en) 2013-02-13

Similar Documents

Publication Publication Date Title
US9395006B2 (en) Check valve
CN101230247B (en) Rubber/resin composite seal material
KR101312379B1 (en) Valve seat structure of fluid control valve
US11118690B2 (en) Fluid control valve and fluid control valve manufacturing method
JP2008304067A (en) Valve seat arrangement of diaphragm valve
JP2006260385A (en) Pressure governor and processing method
KR102177305B1 (en) Bonding device
KR102346096B1 (en) Diaphragm, fluid control apparatus, and method of manufacturing diaphragm
JP5141301B2 (en) Valve device and method for manufacturing valve device
US20180340620A1 (en) Ball valve and sealing element for ball valve
US10774938B2 (en) Diaphragm valve with metal seat
JP2015132357A (en) pinch valve
EP2875267B1 (en) Temperature compensating flanged joint for a teflon diaphragm valve
KR101362716B1 (en) Rotation shaft seal
JP6162531B2 (en) Seal structure, container, and pump casing structure
US10167958B2 (en) Vacuum pressure control apparatus
JP2017172807A (en) Seal structure, container, and casing structure of pump
JP6274006B2 (en) Seal structure
JP2005351309A (en) Valve body and valve with the valve body
JP6089033B2 (en) Diaphragm structure for fluid equipment
JP3834583B2 (en) Elastic roller
JP6110253B2 (en) Rotary joint
JP7432925B2 (en) Pressure monitoring device, resin sealing device, and pressure monitoring method
JP6309284B2 (en) Metal seal
JP6865625B2 (en) gasket

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5141301

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees