JP2009209874A - Intake device for engine - Google Patents

Intake device for engine Download PDF

Info

Publication number
JP2009209874A
JP2009209874A JP2008056156A JP2008056156A JP2009209874A JP 2009209874 A JP2009209874 A JP 2009209874A JP 2008056156 A JP2008056156 A JP 2008056156A JP 2008056156 A JP2008056156 A JP 2008056156A JP 2009209874 A JP2009209874 A JP 2009209874A
Authority
JP
Japan
Prior art keywords
pipe
wall
intake
side wall
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008056156A
Other languages
Japanese (ja)
Other versions
JP5047842B2 (en
Inventor
Kunihiko Suganuma
邦彦 菅沼
Atsushi Shibui
敦 澁井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2008056156A priority Critical patent/JP5047842B2/en
Publication of JP2009209874A publication Critical patent/JP2009209874A/en
Application granted granted Critical
Publication of JP5047842B2 publication Critical patent/JP5047842B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an intake device for engine, capable of securing sure mixing of intake air with EGR gas, and moreover, which has superior installability. <P>SOLUTION: This intake device for engine comprises a bottomed cylindrical mixing pipe 1 comprising a cylindrical wall 11, to which an intake pipe 2 is connected, and a branch part 4, in which a plurality of branch pipes 5 communicated with each of cylinders are divided, on a downstream side of the mixing pipe 10. Air-fuel mixture of intake air and EGR gas from the intake pipe 2 is led into the mixing pipe 10, from a tangential direction along the inner surface of the cylindrical wall 11 and is mixed by the swirling of the air-fuel mixture formed inside the mixing pipe 10; and thereafter, the air-fuel mixture is divided from the branch part 4 to each of the intake branch pipes 5 and is supplied to each of the cylinders. The mixing pipe 10 is formed with an expansion part 13 which swells continuously, to the cylindrical wall 11 on a side opposite to the branch part 4 relative to an opening 2a of the intake pipe 2, and on a side facing a part of the cylindrical wall 11, in which air-fuel mixture is led, from the intake pipe 2, along the tangent direction. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、エンジンの吸気装置に関し、特に排気系の排気ガスをEGRガスとして吸気系へ再循環させるエンジンにおいて、EGRガスと吸入空気とを混合して各気筒へ供給するエンジンの吸気装置に関する。   The present invention relates to an engine intake device, and more particularly to an engine intake device that mixes EGR gas and intake air and supplies the mixture to each cylinder in an engine that recirculates exhaust gas in an exhaust system as EGR gas to the intake system.

従来、エンジンにおいて、NOx排出量の低減を図るために排気系の排気ガスの一部をEGRガスとして吸気系へ再循環させて燃焼ガスの温度を下げる方法がある。この種のエンジンを効率的に運転するために各気筒間における吸入空気とEGRガスとの混合比の均一化、即ち、EGR率のバラツキを低減させる必要がある。   Conventionally, in an engine, in order to reduce NOx emission, there is a method of reducing the temperature of combustion gas by recirculating a part of exhaust gas in the exhaust system to the intake system as EGR gas. In order to operate this type of engine efficiently, it is necessary to make the mixing ratio of the intake air and the EGR gas uniform among the cylinders, that is, to reduce the variation in the EGR rate.

このため各気筒に連結される吸気枝管より上流側の領域において吸入空気とEGRガスとを十分に混合して均一な混合比の混合気とする技術が種々提案されている。   For this reason, various techniques have been proposed in which the intake air and the EGR gas are sufficiently mixed in the region upstream of the intake branch pipe connected to each cylinder to obtain an air-fuel mixture having a uniform mixing ratio.

例えば、吸入空気とEGRガスが合流する箇所から吸気枝管へ至るまでの経路を長くして吸気空気とEGRガスとの混合距離を伸ばすことが効果的であるが、吸気経路を長くすることは搭載スペースの制約があるエンジンに適用することは極めて困難である。   For example, it is effective to increase the mixing distance between the intake air and the EGR gas by extending the path from the place where the intake air and the EGR gas merge to the intake branch pipe. It is extremely difficult to apply to an engine with limited space.

そこで、特許文献1において、吸入空気とEGRガスとの混合気が流通する上流側配管と下流側配管とを略直交させ、かつ下流側配管の管路軸に対して上流側配管の管路軸をオフセットさせて上流側管路と下流側管路を連結することにより下流側管路内において混合気に旋回力を付与して混合させた後、吸気枝管が設けられるサージタンクに供給する吸気マニホールドが提案されている。   Therefore, in Patent Document 1, the upstream pipe and the downstream pipe through which the mixture of the intake air and the EGR gas flows are substantially orthogonal, and the pipe axis of the upstream pipe with respect to the pipe axis of the downstream pipe. The intake air supplied to the surge tank in which the intake branch pipe is provided after the upstream pipe line and the downstream pipe line are connected to each other so as to impart a swirling force to the air-fuel mixture in the downstream pipe line and mix the mixture. A manifold has been proposed.

また、特許文献2において、各気筒に対応して設けられる複数の吸気枝管の上流側にサージタンクと、円筒状で吸気配管から接線方向に導入された吸入空気とEGRガスとの混合気による旋回流を形成させる旋回流形成室とを備え、旋回流形成室をサージタンク内に収容したエンジンの吸気装置が提案されている。   Further, in Patent Document 2, a surge tank is provided upstream of a plurality of intake branch pipes provided corresponding to each cylinder, and a mixture of intake air and EGR gas that are cylindrical and introduced tangentially from an intake pipe An engine intake device that includes a swirl flow forming chamber for forming a swirl flow and that houses the swirl flow formation chamber in a surge tank has been proposed.

特開2001−73882号公報JP 2001-73882 A 特開2005−98152号公報JP-A-2005-98152

上記特許文献1に記載された吸気マニホールドによると、下流側配管内で吸入空気とEGRガスの混合気に旋回力を付与して混合化を図るものの、旋回流がその流れ方向、即ち下流のサージタンク側に引かれ旋回力が弱まりやすく、吸入空気とEGRガスとが十分に混合しない事態の発生が懸念される。   According to the intake manifold described in the above-mentioned Patent Document 1, although the swirl force is applied to the mixture of the intake air and the EGR gas in the downstream pipe to achieve mixing, the swirl flow is in its flow direction, that is, the downstream surge. There is a concern that a situation in which the intake air and the EGR gas are not sufficiently mixed due to pulling to the tank side and weakening of the turning force tends to occur.

また、特許文献2に記載されたエンジンの吸気装置によると、吸気配管から導入された吸入空気とEGRガスとの混合気による旋回流を形成させる旋回流形成室は、その径方向が大きく更にサージタンク内に収容して形成されることから、吸気装置が大型化して大きな搭載スペースを要し、搭載スペースが制約されるエンジンへの適用が困難になることが懸念される。   Further, according to the engine intake device described in Patent Document 2, the swirl flow forming chamber that forms the swirl flow by the mixture of the intake air introduced from the intake pipe and the EGR gas has a large radial direction and further surges. Since it is housed and formed in the tank, there is a concern that the intake device becomes large and requires a large mounting space, making it difficult to apply to an engine in which the mounting space is restricted.

従って、かかる点に鑑みなされた本発明の目的は、吸入空気とEGRガスとの均一な混合が確保でき、しかも搭載性に優れたエンジンの吸気装置を提供することにある。   Accordingly, an object of the present invention made in view of such points is to provide an engine intake device that can ensure uniform mixing of intake air and EGR gas and is excellent in mountability.

上記目的を達成する請求項1に記載のエンジンの吸気装置の発明は、排気系の排気ガスをEGRガスとして吸気系へ再循環させるエンジンに設けられ、吸気配管と該吸気配管が接続される筒壁を備えた有底筒状の混合配管と該混合配管の下流側に各気筒に連通する複数の吸気枝管に分岐する分岐部とを備え、上記吸気配管の開口部から吸気空気とEGRガスの混合気が上記筒壁の内面に沿う接線方向で混合配管内に導入され、該混合配管内に形成される混合気の旋回流によって上記混合気の吸気空気とEGRガスとが混合された後、該混合気が上記分岐部から各吸気枝管に分配されて各気筒に供給されるエンジンの吸気装置において、上記混合配管には上記吸気配管の開口部に対して上記分岐部と反対側で、かつ上記吸気配管から上記接線方向に沿って混合気が導入される筒壁の部位と対向する側に該混合配管の管路軸方向に膨出する有底状の拡張部を形成したことを特徴とする。   An engine intake device according to claim 1 that achieves the above object is provided in an engine that recirculates exhaust gas in an exhaust system as EGR gas to the intake system, and a cylinder to which the intake pipe and the intake pipe are connected. A bottomed cylindrical mixing pipe provided with a wall, and a branching portion branched into a plurality of intake branch pipes communicating with each cylinder on the downstream side of the mixing pipe, and intake air and EGR gas from the opening of the intake pipe Is introduced into the mixing pipe in a tangential direction along the inner surface of the cylindrical wall, and the intake air of the air-fuel mixture and the EGR gas are mixed by the swirling flow of the air-fuel mixture formed in the mixing pipe. In the engine intake device in which the air-fuel mixture is distributed from the branch part to the intake branch pipes and supplied to the cylinders, the mixed pipe is provided on the opposite side of the branch part with respect to the opening of the intake pipe. And the tangential direction from the intake pipe Air-fuel mixture, characterized in that the formation of the bottomed extension bulging the conduit axis of the mixing pipe on the side facing the part of the cylindrical wall to be introduced along.

この発明によると、吸気配管から吸入空気とEGRガスの混合気が導入される混合配管に接続される吸気配管に対して分岐部と反対側に有底筒状の拡張部を形成する簡単な構成で、混合配管内を流れる混合気に強い旋回流が形成されて混合配管内における混合気の旋回流による混合距離が増大し、吸気空気とEGRガスの均一な混合比、即ちEGR率のバラツキが低減される。   According to the present invention, a simple configuration in which a bottomed cylindrical expansion portion is formed on the side opposite to the branch portion with respect to the intake pipe connected to the mixture pipe into which the mixture of intake air and EGR gas is introduced from the intake pipe. Thus, a strong swirling flow is formed in the air-fuel mixture flowing in the mixing pipe, and the mixing distance due to the swirling flow of the air-fuel mixture in the mixing pipe increases, resulting in a uniform mixing ratio of intake air and EGR gas, that is, variation in the EGR rate. Reduced.

また、強い旋回流により混合配管内から分岐部方向への流れ速度に対して旋回方向の速度が高くなり混合距離が増大することから、混合気の混合区間となる混合配管の管路軸方向の長さの短縮が可能になると共に、管路軸方向に突出する拡張部が部分的でかつ突出量が小さく吸気装置のコンパクト化が可能になり搭載性が向上する。   In addition, the strong swirling flow increases the speed in the swirling direction and increases the mixing distance with respect to the flow speed from the mixing pipe to the branching direction. The length can be shortened, and the extended portion protruding in the pipe axis direction is partial and the amount of protrusion is small, so that the intake device can be made compact, and the mountability is improved.

請求項2に記載の発明は、請求項1のエンジンの吸気装置において、上記混合配管の筒壁が円筒状であって、上記拡張部は、上記筒壁に連続する円筒状でかつ上記接線方向に沿って混合気が導入される筒壁の部位側における上記開口部からの管路軸方向の距離に対して上記対向する側における上記開口部からの管路軸方向の距離が大きくなるように管路軸に対して傾斜する端縁を有する周壁及び、該周壁の端縁を閉塞する底壁によって形成されたことを特徴とする。   According to a second aspect of the present invention, in the engine intake system of the first aspect, the cylindrical wall of the mixing pipe is cylindrical, and the expansion portion is a cylindrical shape continuous to the cylindrical wall and the tangential direction. The distance in the pipe axial direction from the opening on the opposite side is larger than the distance in the pipe axial direction from the opening on the side of the cylindrical wall where the air-fuel mixture is introduced along It is characterized in that it is formed by a peripheral wall having an edge that is inclined with respect to the pipe axis, and a bottom wall that closes the edge of the peripheral wall.

この発明によると、円筒状の筒壁を有する混合配管に接線方向に沿って混合気が導入される筒壁の部位側から対向する側に移行する従って容量が次第に増大するコンパクトな拡張部が形成される。   According to the present invention, a compact extension portion is formed in which a mixture pipe having a cylindrical tube wall is shifted from the side of the tube wall where the air-fuel mixture is introduced along the tangential direction to the opposite side, so that the capacity gradually increases. Is done.

請求項3に記載の発明は、請求項1のエンジンの吸気装置において、上記混合配管の筒壁が円筒状であって、上記拡張部は、上記筒壁に連続する円筒状でかつ上記接線方向に沿って混合気が導入される筒壁の部位側が管路軸方向において上記開口部に位置し上記対向する側における上記開口部から管路軸方向に所定距離離間するように管路軸に対して傾斜する端縁を有する周壁及び、該周壁の端縁を閉塞する底壁によって形成されたことを特徴とする。   According to a third aspect of the present invention, in the engine intake device of the first aspect, the cylindrical wall of the mixing pipe is cylindrical, and the extension portion is a cylindrical shape continuous to the cylindrical wall and the tangential direction. A portion of the cylindrical wall into which the air-fuel mixture is introduced is positioned at the opening in the direction of the pipe axis and is spaced from the opening on the opposite side by a predetermined distance in the direction of the pipe axis with respect to the pipe axis. And a bottom wall that closes the edge of the peripheral wall.

この発明によると、円筒状の筒壁を有する混合配管に、接線方向に沿って混合気が導入される筒壁の部位側から対向する側に移行する従って容量が次第に増大するコンパクトな拡張部が形成される。   According to the present invention, the compact extension portion in which the capacity gradually increases as the transition from the portion side of the cylindrical wall into which the air-fuel mixture is introduced along the tangential direction to the opposite side is performed on the mixing pipe having the cylindrical cylindrical wall. It is formed.

請求項4に記載の発明は、請求項1のエンジンの吸気装置において、上記混合配管の筒壁が円筒状であって、上記拡張部は、上記筒壁に連続する円筒状でかつ上記接線方向に沿って混合気が導入される筒壁の部位に対向する部位側において上記筒壁に連続して形成された断面略半円弧状の周壁及び該周壁の端縁側から周壁の両側縁間及び筒壁との間を閉塞する底壁によって形成されたことを特徴とする。   According to a fourth aspect of the present invention, in the engine intake system of the first aspect, the cylindrical wall of the mixing pipe is cylindrical, and the extension portion is a cylindrical shape continuous to the cylindrical wall and the tangential direction. A circumferential wall having a substantially semicircular cross section formed continuously from the cylindrical wall on the side of the cylindrical wall where the air-fuel mixture is introduced along the cylindrical wall, and between the both side edges of the circumferential wall and the cylinder It is characterized by being formed by a bottom wall that closes between the walls.

この発明によると、円筒状の筒壁を有する混合配管に、接線方向に沿って混合気が導入される筒壁の部位側と対向する側に筒壁に沿ってコンパクトな拡張部が形成される。   According to the present invention, a compact extension portion is formed along the cylindrical wall on the side opposite to the side of the cylindrical wall where the air-fuel mixture is introduced along the tangential direction in the mixing pipe having the cylindrical cylindrical wall. .

請求項5に記載の発明は、請求項1のエンジンの吸気装置において、上記混合配管の筒壁は、第1側壁、第2側壁、第3側壁及び第4側壁を備えた略矩形断面形状で管路軸方向に連続する筒状でかつ上記吸気管路が第2側壁の内面の接線方向に沿って混合気が導入されるように第1側壁に開口し、上記拡張部は、上記第1側壁、第2側壁、第3側壁及び第4側壁にそれぞれ連続する第1側部、第2側部、第3側部、第4側部を有して管路軸方向に延在する断面矩形でかつ第2側部側から第4側部側に移行するに従って上記開口部から管路軸方向に次第に離れるように管路軸に対して傾斜する端縁を有する周壁及び、該周壁の端縁を閉塞する底壁によって形成されたことを特徴とする。   According to a fifth aspect of the present invention, in the engine intake system of the first aspect, the cylinder wall of the mixing pipe has a substantially rectangular cross-sectional shape including a first side wall, a second side wall, a third side wall, and a fourth side wall. A cylindrical shape continuous in the pipe axis direction, and the intake pipe opens to the first side wall so that the air-fuel mixture is introduced along the tangential direction of the inner surface of the second side wall. A cross-sectional rectangle having a first side portion, a second side portion, a third side portion, and a fourth side portion continuous with the side wall, the second side wall, the third side wall, and the fourth side wall, respectively, and extending in the pipe axis direction And a peripheral wall having an edge inclined with respect to the pipe axis so as to gradually move away from the opening in the pipe axis direction as it moves from the second side to the fourth side, and an edge of the peripheral wall It is formed by the bottom wall which obstruct | occludes.

この発明によると、第1側壁、第2側壁、第3側壁及び第4側壁が順に連続する略矩形断面形状で管路軸方向に連続する筒状の筒壁を有する混合配管に、接線方向に混合気が導入される第2側壁側から対向する第4側壁側に移行するに従って容量が次第に増大するコンパクトな拡張部が形成される。   According to this invention, the first side wall, the second side wall, the third side wall, and the fourth side wall are connected in a tangential direction to the mixing pipe having a cylindrical wall that is continuous in the pipe axis direction with a substantially rectangular cross-sectional shape. A compact extension portion is formed in which the capacity gradually increases as the air-fuel mixture is introduced from the second side wall side to the opposing fourth side wall side.

請求項6に記載の発明は、請求項1のエンジンの吸気装置において、上記混合配管の筒壁は、第1側壁、第2側壁、第3側壁及び第4側壁を備えた略矩形断面形状で管路軸方向に連続する筒状でかつ上記吸気管路が第2側壁の内面の接線方向に沿って混合気が導入されるように第1側壁に開口し、上記拡張部は、第1側壁、第3側壁及び第4側壁にそれぞれ連続する第1側部、第3側部、第4側部を有して管路軸方向に延在する断面コ字状で、第2側壁の端縁から第4側部側に移行するに従って開口部から管路軸方向に次第に離れるように管路軸に対して傾斜する端縁を有する周壁及び、第1側壁及び上記周壁の端縁を閉塞する底壁によって形成されたことを特徴とする。   According to a sixth aspect of the present invention, in the engine intake system of the first aspect, the cylindrical wall of the mixing pipe has a substantially rectangular cross-sectional shape including a first side wall, a second side wall, a third side wall, and a fourth side wall. A cylindrical shape continuous in the pipe axis direction, and the intake pipe opens to the first side wall so that the air-fuel mixture is introduced along the tangential direction of the inner surface of the second side wall. The second side wall has a first side part, a third side part, and a fourth side part that are continuous with the third side wall and the fourth side wall, respectively, and has a U-shaped cross section extending in the pipe axis direction. A peripheral wall having an edge inclined with respect to the pipe axis so as to gradually move away from the opening in the pipe axis direction as it moves from the first side to the fourth side, and a bottom closing the first side wall and the edge of the peripheral wall It is characterized by being formed by walls.

この発明によると、第1側壁、第2側壁、第3側壁及び第4側壁が順に連続する略矩形断面形状で管路軸方向に連続する筒状の筒壁を有する混合配管に、接線方向に混合気が導入される第1側壁側から対向する第4側壁側に移行するに従って容量が次第に増大するコンパクトな拡張部が形成される。   According to this invention, the first side wall, the second side wall, the third side wall, and the fourth side wall are connected in a tangential direction to the mixing pipe having a cylindrical wall that is continuous in the pipe axis direction with a substantially rectangular cross-sectional shape. A compact expansion portion is formed in which the capacity gradually increases as the air-fuel mixture is introduced from the first side wall side to the opposing fourth side wall side.

請求項7に記載の発明は、請求項1のエンジンの吸気装置において、上記混合配管の筒壁は、第1側壁、第2側壁、第3側壁及び第4側壁を備えた略矩形断面形状で管路軸方向に連続する筒状でかつ上記吸気管路が第2側壁の内面の接線方向に沿って混合気が導入されるように第1側壁に開口し、上記拡張部は、第1側壁の第4側壁側に設定された範囲、第3側壁、及び第3側壁の第4側壁側に設定された範囲にそれぞれ連続する第1側部、第3側部、第4側部が連続形成された断面略コ字状の周壁及び、該周壁の端縁及び周壁の両側縁間及び筒壁の間を閉塞する底壁によって形成されことを特徴とする。   According to a seventh aspect of the present invention, in the engine intake system of the first aspect, the cylindrical wall of the mixing pipe has a substantially rectangular cross-sectional shape including a first side wall, a second side wall, a third side wall, and a fourth side wall. A cylindrical shape continuous in the pipe axis direction, and the intake pipe opens to the first side wall so that the air-fuel mixture is introduced along the tangential direction of the inner surface of the second side wall. The first side portion, the third side portion, and the fourth side portion are continuously formed in the range set on the fourth side wall side, the third side wall, and the range set on the fourth side wall side of the third side wall. It is characterized in that it is formed by a peripheral wall having a substantially U-shaped cross section and a bottom wall that closes between the edge of the peripheral wall, both side edges of the peripheral wall, and between the cylindrical walls.

この発明によると、第1側壁、第2側壁、第3側壁及び第4側壁が順に連続する略矩形断面形状で管路軸方向に連続する筒状の筒壁を有する混合配管に、接線方向に混合気が導入される第1側壁に対向する第4側壁側に沿って拡張部が形成される。   According to this invention, the first side wall, the second side wall, the third side wall, and the fourth side wall are connected in a tangential direction to the mixing pipe having a cylindrical wall that is continuous in the pipe axis direction with a substantially rectangular cross-sectional shape. An extension portion is formed along the fourth side wall facing the first side wall into which the air-fuel mixture is introduced.

この発明によると、吸気配管から吸入空気とEGRガスの混合気が導入される混合配管に接続される吸気配管に対して分岐部と反対側に有底筒状の拡張部を形成する簡単な構成で、混合配管内を流れる混合気に強い旋回流が形成され、吸気空気とEGRガスの均一な混合が得られる。   According to the present invention, a simple configuration in which a bottomed cylindrical expansion portion is formed on the side opposite to the branch portion with respect to the intake pipe connected to the mixture pipe into which the mixture of intake air and EGR gas is introduced from the intake pipe. Thus, a strong swirl flow is formed in the air-fuel mixture flowing in the mixing pipe, and uniform mixing of the intake air and the EGR gas is obtained.

また、混合気の混合区間となる混合配管の短縮が可能になると共に、管路軸方向に突出する拡張部は局部的でかつ突出量が小さく、吸気装置の搭載性が向上する。   In addition, the mixing pipe serving as the mixing section of the air-fuel mixture can be shortened, and the extended portion protruding in the pipe axis direction is local and has a small protruding amount, so that the mounting capability of the intake device is improved.

本発明に係るエンジンの吸気装置の実施の形態を図を参照して説明する。   An embodiment of an engine intake device according to the present invention will be described with reference to the drawings.

(第1実施の形態)
図1乃至図5を参照して第1実施の形態を説明する。
(First embodiment)
The first embodiment will be described with reference to FIGS.

図1は、本実施の形態におけるエンジンの吸気装置を示すもので、1はエンジンの吸気マニホールドである。吸気マニホールド1は上流にスロットバルブが配設されて吸入空気が導入される吸気配管2と、吸気配管2に接続されて吸気配管2内にEGRガスを導入するEGR配管3と、吸気配管2から導入される吸入空気とEGRガスを混合する有底筒状の混合配管10と、混合配管10の下流側に接続されて各気筒に連通する複数の吸気枝管5に分岐する分岐部4とが連続して一体形成される。   FIG. 1 shows an intake system for an engine according to the present embodiment. Reference numeral 1 denotes an intake manifold for the engine. The intake manifold 1 includes an intake pipe 2 in which a slot valve is disposed upstream to introduce intake air, an EGR pipe 3 that is connected to the intake pipe 2 and introduces EGR gas into the intake pipe 2, and an intake pipe 2. A bottomed cylindrical mixing pipe 10 for mixing the introduced intake air and EGR gas, and a branch section 4 connected to the downstream side of the mixing pipe 10 and branching to a plurality of intake branch pipes 5 communicating with each cylinder. It is integrally formed continuously.

次に、混合配管10を図2に示す吸気マニホールド1の要部斜視図及び混合配管10を模式的に示す図3、図3のI−I線断面を示す図4、図3のII−II線断面を示す図5を参照して混合配管10を説明する。   2 is a perspective view of a main portion of the intake manifold 1 shown in FIG. 2, FIG. 3 schematically shows the mixing pipe 10, FIG. 4 shows a cross section taken along line II in FIG. 3, and II-II in FIG. 3. The mixing pipe 10 will be described with reference to FIG.

混合配管10は略円筒状の筒壁11を備えて下流側が分岐部4に連続し、分岐部4から混合配管10の管路軸10L方向に所定寸法だけ上流側に変移した位置に混合配管10より小径の吸気配管2が接続される。この吸気配管2と混合配管10は互いに直交し、かつ混合配管10の管路軸10Lに対して吸気配管2の管路軸2Lがオフセットして吸気配管2の開口部2aが混合配管10の筒壁11の内面に対して接線方向に接続される。これにより吸気配管2と分岐部4との間において吸気配管2から導入された混合気に旋回力が付与され、混合気よる旋回流を形成する円筒状の混合室12が形成される。   The mixing pipe 10 includes a substantially cylindrical tube wall 11, the downstream side is continuous with the branching section 4, and the mixing pipe 10 is moved to the upstream side by a predetermined dimension in the direction of the pipe axis 10 </ b> L of the mixing pipe 10 from the branching section 4. A smaller-diameter intake pipe 2 is connected. The intake pipe 2 and the mixing pipe 10 are orthogonal to each other, and the pipe axis 2L of the intake pipe 2 is offset from the pipe axis 10L of the mixing pipe 10 so that the opening 2a of the intake pipe 2 is a cylinder of the mixing pipe 10. Connected to the inner surface of the wall 11 in a tangential direction. As a result, a swirl force is applied to the air-fuel mixture introduced from the air intake pipe 2 between the air intake pipe 2 and the branching portion 4, and a cylindrical mixing chamber 12 that forms a swirl flow caused by the air-fuel mixture is formed.

更に、混合配管10には、上記吸気配管2の開口部2aに対して分岐部と反対側で、かつ吸気配管2から接線方向に沿って混合気が導入される筒壁11の部位と対向する側に筒壁11と連続して混合配管10の管路軸10L方向に膨出する有底状の拡張部13が形成される。   Further, the mixing pipe 10 faces the portion of the cylindrical wall 11 where the air-fuel mixture is introduced from the intake pipe 2 along the tangential direction on the side opposite to the branch portion with respect to the opening 2a of the intake pipe 2. On the side, a bottomed extended portion 13 is formed which is continuous with the cylindrical wall 11 and bulges in the direction of the pipe axis 10L of the mixing pipe 10.

図3及び図5に示すように、拡張部13を形成する周壁14は円筒状であって、吸気配管2から接線方向に沿って混合気が導入される筒壁11の部位側における吸気配管2の開口部2aから端縁14aまでの管路軸10L方向の距離aに対し、吸気配管2から接線方向に沿って混合気が導入される筒壁11の部位に対向する側における開口部2aから端縁14aまでの管路軸10L方向の距離bが大きくなるように端縁14aが管路軸10Lに対して傾斜している。   As shown in FIGS. 3 and 5, the peripheral wall 14 forming the expanded portion 13 is cylindrical, and the intake pipe 2 on the side of the cylindrical wall 11 into which the air-fuel mixture is introduced from the intake pipe 2 along the tangential direction. From the opening 2a on the side facing the portion of the cylindrical wall 11 where the air-fuel mixture is introduced from the intake pipe 2 along the tangential direction with respect to the distance a in the direction of the pipe axis 10L from the opening 2a to the end edge 14a The end edge 14a is inclined with respect to the pipe axis 10L so that the distance b in the direction of the pipe axis 10L to the end edge 14a is increased.

この周壁14の端縁14aを閉塞する底壁15は管路軸10Lに対して傾斜して配設される。この周壁14及び底壁15による拡張部13によって、吸気管路2から接線方向に沿って混合気が導入される筒壁11の部位側から、その部位に対向する側に移行する従って容量が次第に増大する有底円筒状の旋回流形成室16が形成される。   The bottom wall 15 that closes the end edge 14a of the peripheral wall 14 is disposed to be inclined with respect to the pipe axis 10L. The expansion portion 13 formed by the peripheral wall 14 and the bottom wall 15 shifts from the portion side of the cylindrical wall 11 where the air-fuel mixture is introduced from the intake pipe line 2 along the tangential direction to the side facing the portion. Therefore, the capacity gradually increases. An increasing bottomed cylindrical swirl flow forming chamber 16 is formed.

このように構成した吸気マニホールド1によると、吸気空気が導入される吸気配管2内にEGR配管3からEGRガスが導入され、吸気空気とEGRガスとの混合気が吸気配管2の開口部2aから混合配管10の筒壁11の接線方向に沿って混合室12内に導入される。   According to the intake manifold 1 configured as described above, EGR gas is introduced from the EGR pipe 3 into the intake pipe 2 through which intake air is introduced, and a mixture of intake air and EGR gas is introduced from the opening 2 a of the intake pipe 2. It is introduced into the mixing chamber 12 along the tangential direction of the cylindrical wall 11 of the mixing pipe 10.

吸気配管2から混合室12内に導入された混合気は筒壁11の内面に沿う旋回力が付与され、その一部は図3に矢印Aで示すように筒壁11の内面に沿って旋回しつつ分岐部4側に流れる主流となって吸気空気とEGRガスとの混合が促進される。   The air-fuel mixture introduced from the intake pipe 2 into the mixing chamber 12 is given a turning force along the inner surface of the cylinder wall 11, and a part of the mixture turns along the inner surface of the cylinder wall 11 as shown by an arrow A in FIG. However, the main flow that flows toward the branching portion 4 is promoted to mix the intake air and the EGR gas.

一方、吸気配管2から混合室12内に導入された混合気の一部は主流Aと分流して筒壁11の内面に沿う旋回力が付与されて矢印Bで示すように旋回流形成室16の周壁14の内面に沿う旋回力が付与されて旋回流成形室16内を周壁14及び底面15に沿って旋回して吸気空気とEGRガスとの混合が促進される。   On the other hand, a part of the air-fuel mixture introduced from the intake pipe 2 into the mixing chamber 12 is divided into the main flow A, and a swirl force along the inner surface of the cylindrical wall 11 is applied to the swirl flow forming chamber 16 as indicated by an arrow B. A swirl force along the inner surface of the peripheral wall 14 is applied to swirl the swirl flow forming chamber 16 along the peripheral wall 14 and the bottom surface 15 to promote mixing of the intake air and the EGR gas.

更に、旋回流成型室16内を旋回した混合気は、旋回しつつ混合室12側に流れ、混合室12内を流れる主流Aと合流して主流Aと共に強い旋回流Cを形成する。この強い旋回流Cにより分岐部4方向への流れ速度に対して旋回方向の速度が高くなり混合室12内における混合気の旋回流による混合距離が増大し、吸気空気とEGRガスの均一な混合比、即ちEGR率のバラツキが低減される。   Further, the air-fuel mixture swirled in the swirling flow molding chamber 16 flows toward the mixing chamber 12 while swirling, and joins the main flow A flowing in the mixing chamber 12 to form a strong swirling flow C together with the main flow A. Due to this strong swirl flow C, the swirl speed becomes higher than the flow speed in the direction of the branching section 4, and the mixing distance by the swirl of the air-fuel mixture in the mixing chamber 12 increases, so that the intake air and EGR gas are uniformly mixed. The variation of the ratio, that is, the EGR rate is reduced.

この混合室12内で十分に混合されて吸気空気とEGRガスが均一に混合した混合気が、混合室12の下流に配設された分岐部4において各吸気枝管5に分配されて各気筒に供給される。   The air-fuel mixture, which is sufficiently mixed in the mixing chamber 12 and uniformly mixed with intake air and EGR gas, is distributed to the intake branch pipes 5 in the branch portions 4 disposed downstream of the mixing chamber 12 to be used for the cylinders. To be supplied.

従って、このように構成された本実施の形態によると、混合配管10に接続される吸気配管2の開口部2aに対して分岐部4と反対側に周壁14及び底壁15を有する有底筒状の拡張部13を形成する簡単な構成で混合配管10内を流れる混合気に強い旋回流が形成されて、旋回流による混合距離が増大し、吸気空気とEGRガスの均一な混合比、即ちEGR率のバラツキが低減される。   Therefore, according to the present embodiment configured as described above, the bottomed cylinder having the peripheral wall 14 and the bottom wall 15 on the opposite side of the branch portion 4 with respect to the opening 2a of the intake pipe 2 connected to the mixing pipe 10. A simple swirling flow is formed in the mixture flowing in the mixing pipe 10 with a simple configuration that forms the expanded portion 13, the mixing distance due to the swirling flow is increased, and a uniform mixing ratio of intake air and EGR gas, that is, The variation in EGR rate is reduced.

また、混合配管10内から分岐部4方向への流れが抑制されて、混合気の混合区間となる混合配管10の管路軸10L方向の長さの短縮が可能になると共に、管路軸10L方向に突出する拡張部13は局部的でかつコンパクトで突出量が小さく、吸気マニホールド1のコンパクト化が可能になり搭載性が向上する。   In addition, the flow from the inside of the mixing pipe 10 toward the branch portion 4 is suppressed, and the length of the mixing pipe 10 in the direction of the pipe axis 10L, which becomes the mixture section of the air-fuel mixture, can be shortened, and the pipe axis 10L. The extending portion 13 protruding in the direction is local and compact and has a small protruding amount, so that the intake manifold 1 can be made compact and mountability is improved.

なお、拡張部13の形状及び大きさは予め実験やシミュレーション等によって容易に設定できる。なお、実験の結果、拡張部13内の容積、即ち旋回流形成室16の容積Vは、混合配管10の内径をDとすると
V>0.5×(D/2)2×π×0.15
即ち、混合配管10の内径D、高さ0.15Dの円柱の半分の容積以上で良好な吸気空気とEGRガスの均一な混合比が確認できた。
It should be noted that the shape and size of the expansion portion 13 can be easily set in advance by experiments, simulations, or the like. As a result of the experiment, the volume in the expansion part 13, that is, the volume V of the swirl flow forming chamber 16 is V> 0.5 × (D / 2) 2 × π × 0. 15
In other words, a good uniform mixing ratio of intake air and EGR gas could be confirmed when the mixing pipe 10 had an inner diameter D and a volume of more than half of a cylinder having a height of 0.15D.

(第2実施の形態)
図6乃至図8を参照して第2実施の形態を説明する。
(Second Embodiment)
A second embodiment will be described with reference to FIGS.

本実施の形態は、混合配管に形成される拡張部の形状が第1実施の形態と異なり、他の構成は第1実施の形態と同様であり、混合配管を主に説明する。なお、説明の便宜上図6乃至図8において図1乃至図5と対応する部位には同一符号を付する。   The present embodiment is different from the first embodiment in the shape of the extended portion formed in the mixing pipe, and other configurations are the same as those in the first embodiment, and the mixing pipe will be mainly described. For convenience of explanation, in FIGS. 6 to 8, parts corresponding to those in FIGS. 1 to 5 are denoted by the same reference numerals.

図6は、本実施の形態における混合配管10を模式的に示す図、図7は図6のIII−III線断面図、図8は図6のIV−IV線断面図である。   6 is a diagram schematically showing the mixing pipe 10 in the present embodiment, FIG. 7 is a sectional view taken along line III-III in FIG. 6, and FIG. 8 is a sectional view taken along line IV-IV in FIG.

混合配管10は筒壁11を備えて下流側が分岐部4に連続し、分岐部4から所定寸法だけ上流側に変移した位置に吸気配管2が接続される。この吸気配管2と混合配管10は略直交し、かつ混合配管10の管路軸10Lに対して吸気配管2の管路軸2Lがオフセットして吸気配管2の開口部2aが混合配管10の筒壁11に対して接線方向に接続される。これにより吸気配管2と分岐部4との間に吸気配管2から導入された混合気による旋回流を形成する混合室12が形成される。   The mixing pipe 10 is provided with a cylindrical wall 11, the downstream side is continuous with the branch portion 4, and the intake pipe 2 is connected to a position that has shifted from the branch portion 4 to the upstream side by a predetermined dimension. The intake pipe 2 and the mixing pipe 10 are substantially orthogonal to each other, and the pipe axis 2L of the intake pipe 2 is offset from the pipe axis 10L of the mixing pipe 10 so that the opening 2a of the intake pipe 2 is a cylinder of the mixing pipe 10. Connected to the wall 11 in a tangential direction. As a result, a mixing chamber 12 is formed between the intake pipe 2 and the branch portion 4 to form a swirl flow by the air-fuel mixture introduced from the intake pipe 2.

更に、混合配管10には吸気配管2の開口部2aに対して分岐部4と反対側で、かつ吸気配管2から接線方向に沿って混合気が導入される筒壁11の部位と対向する側に筒壁11に連続して混合配管10の管路軸10L方向に膨出する周壁14及び底壁15からなる有底状の拡張部13が形成される。   Further, the mixing pipe 10 has a side opposite to the branch part 4 with respect to the opening 2a of the intake pipe 2 and a side facing the portion of the cylindrical wall 11 into which the air-fuel mixture is introduced from the intake pipe 2 along the tangential direction. In addition, a bottomed extended portion 13 including a peripheral wall 14 and a bottom wall 15 bulging in the direction of the pipe axis 10 </ b> L of the mixing pipe 10 is formed continuously with the cylindrical wall 11.

図6及び図8に示すように周壁14は、筒壁11に連続する円筒状でかつ接線方向に沿って混合気が導入される筒壁11の部位側が管路軸10L方向において開口部2aに位置する一方、対向する側における開口部2aからの管路軸10L方向に所定距離離間するように管路軸10Lに対して傾斜する端縁14aを有する。この周壁14の端縁14aを閉塞する底壁15は管路軸10Lに対して傾斜して配設される。この周壁14及び底壁15による拡張部13によって吸気管路2から接線方向に沿って混合気が導入される筒壁11の部位側から、その部位に対向する側に移行する従って容量が次第に増大して吸気配管2から導入される混合気による旋回流を形成する有底円筒状の旋回流形成室16が形成される。   As shown in FIGS. 6 and 8, the peripheral wall 14 has a cylindrical shape that is continuous with the cylindrical wall 11, and a portion of the cylindrical wall 11 into which the air-fuel mixture is introduced along the tangential direction has an opening 2 a in the direction of the pipe axis 10 </ b> L. On the other hand, it has an edge 14a that is inclined with respect to the pipe axis 10L so as to be separated by a predetermined distance in the direction of the pipe axis 10L from the opening 2a on the opposite side. The bottom wall 15 that closes the end edge 14a of the peripheral wall 14 is disposed to be inclined with respect to the pipe axis 10L. The expansion portion 13 formed by the peripheral wall 14 and the bottom wall 15 shifts from the side of the cylindrical wall 11 where the air-fuel mixture is introduced from the intake pipe 2 along the tangential direction to the side opposite to the side, so that the capacity gradually increases. Thus, a bottomed cylindrical swirl flow forming chamber 16 that forms a swirl flow by the air-fuel mixture introduced from the intake pipe 2 is formed.

このように構成した吸気マニホールド1によると、吸気空気とEGRガスとの混合気が吸気配管2の開口部2aから混合配管10の筒壁11の接線方向に沿って混合室12内に導入される。吸気配管2から混合室12内に導入された混合気は筒壁11の内面に沿う旋回力が付与され、その一部は図9に矢印Aで示すように筒壁11の内面に沿って旋回しつつ分岐部4側に流れて混合が促進される。   According to the intake manifold 1 configured as described above, an air-fuel mixture of intake air and EGR gas is introduced into the mixing chamber 12 from the opening 2 a of the intake pipe 2 along the tangential direction of the cylindrical wall 11 of the mixing pipe 10. . The air-fuel mixture introduced from the intake pipe 2 into the mixing chamber 12 is given a turning force along the inner surface of the cylinder wall 11, and a part of the mixture turns along the inner surface of the cylinder wall 11 as shown by an arrow A in FIG. However, it flows to the branch part 4 side and mixing is promoted.

一方、吸気配管2から混合室13内に導入された混合気の一部は主流Aと分流して筒壁11の内面に沿う旋回力が付与されて矢印Bで示すように旋回流形成室16の周壁14の内面に沿う旋回力が付与されて旋回流成形室16内を周壁14及び底面15に沿って旋回して混合が促進される。   On the other hand, a part of the air-fuel mixture introduced from the intake pipe 2 into the mixing chamber 13 is divided into the main flow A and is given a turning force along the inner surface of the cylindrical wall 11 so that the swirling flow forming chamber 16 is indicated by an arrow B. A swirl force along the inner surface of the peripheral wall 14 is applied to swirl the swirl flow forming chamber 16 along the peripheral wall 14 and the bottom surface 15 to promote mixing.

更に、旋回流成型室16内を旋回した混合気は、周壁14及び底壁15に沿って旋回しつつ混合室12側に流れ、混合室12内を流れる主流Aと合流して主流Aと共に強い旋回流Cを形成する。この強い旋回流Cにより分岐部4方向への混合気の流れが抑制されて混合室12内における旋回流による混合距離が増大し、吸気空気とEGRガスの均一な混合が促進される。   Further, the air-fuel mixture swirled in the swirling flow molding chamber 16 flows along the peripheral wall 14 and the bottom wall 15 to the mixing chamber 12 side, merges with the main flow A flowing in the mixing chamber 12, and is strong together with the main flow A. A swirling flow C is formed. This strong swirling flow C suppresses the flow of the air-fuel mixture in the direction of the branching portion 4 and increases the mixing distance due to the swirling flow in the mixing chamber 12, thereby promoting uniform mixing of intake air and EGR gas.

この混合室12内で吸気空気とEGRガスが均一に混合した混合気が、混合室12の下流に配設された分岐部4から各吸気枝管5に分配されて各気筒に供給される。   An air-fuel mixture in which intake air and EGR gas are uniformly mixed in the mixing chamber 12 is distributed to the intake branch pipes 5 from the branch portions 4 disposed downstream of the mixing chamber 12 and supplied to the cylinders.

従って、このように構成された本実施の形態によると、混合配管10に接続される吸気配管2の開口部2aに対して分岐部4と反対側に周壁14及び底壁15を有する有底筒状の拡張部13を形成する簡単な構成で吸気空気とEGRガスの均一な混合が得られる。   Therefore, according to the present embodiment configured as described above, the bottomed cylinder having the peripheral wall 14 and the bottom wall 15 on the opposite side of the branch portion 4 with respect to the opening 2a of the intake pipe 2 connected to the mixing pipe 10. A uniform configuration of the expanded portion 13 can be obtained by uniformly mixing the intake air and the EGR gas.

また、混合気の混合区間となる混合配管10の管路軸10方向の長さの短縮が可能になると共に、管路軸10L方向に突出する拡張部13は局部的でかつコンパクトで突出量が小さく、吸気マニホールド1のコンパクト化が可能になり搭載性が向上する。   In addition, the length of the mixing pipe 10 in the direction of the pipe axis 10 of the mixing pipe 10 serving as the mixture section of the air-fuel mixture can be shortened, and the extension part 13 protruding in the direction of the pipe axis 10L is local and compact, and the protruding amount is large. Smaller, the intake manifold 1 can be made more compact, and the mountability is improved.

なお、拡張部13の形状及び大きさは予め実験やシミュレーション等によって容易に設定できる。なお、実験の結果、拡張部13内の容積、即ち旋回流形成室16の容積Vは、混合配管10の内径をDとすると
V>0.5×(D/2)2×π×0.15
即ち、混合配管10の内径D、高さ0.15Dの円柱の半分の容積以上で良好な吸気空気とEGRガスの均一な混合比が確認できた。
Note that the shape and size of the expansion portion 13 can be easily set in advance by experiments, simulations, or the like. As a result of the experiment, the volume in the expansion part 13, that is, the volume V of the swirl flow forming chamber 16 is V> 0.5 × (D / 2) 2 × π × 0. 15
In other words, a good uniform mixing ratio of intake air and EGR gas could be confirmed when the mixing pipe 10 had an inner diameter D and a volume of more than half of a cylinder having a height of 0.15D.

(第3実施の形態)
図9乃至図11を参照して第3実施の形態を説明する。
(Third embodiment)
A third embodiment will be described with reference to FIGS.

本実施の形態は、混合配管に形成される拡張部の形状が第1実施の形態と異なり、他の構成は第1実施の形態と同様であり、混合配管を主に説明する。なお、説明の便宜上図9乃至図11において図1乃至図5と対応する部位には同一符号を付する。   The present embodiment is different from the first embodiment in the shape of the extended portion formed in the mixing pipe, and other configurations are the same as those in the first embodiment, and the mixing pipe will be mainly described. For convenience of explanation, in FIGS. 9 to 11, parts corresponding to those in FIGS. 1 to 5 are denoted by the same reference numerals.

図9は、本実施の形態における混合配管10を模式的に示す図、図10は図9のV−V線断面図、図11は図9のVI−VI線断面図である。   9 is a diagram schematically showing the mixing pipe 10 in the present embodiment, FIG. 10 is a cross-sectional view taken along line VV in FIG. 9, and FIG. 11 is a cross-sectional view taken along line VI-VI in FIG.

混合配管10は筒壁11を備えて下流側が分岐部4に連続し、分岐部4から所定寸法だけ上流側の位置に吸気配管2が略直交し、かつ混合配管10の管路軸10Lに対して吸気配管2の管路軸2Lがオフセットして吸気配管2の開口部2aが混合配管10の筒壁11に対して接線方向に接続する。これにより吸気配管2と分岐部4との間に円筒状の混合室12が形成される。   The mixing pipe 10 includes a cylindrical wall 11, the downstream side is continuous with the branch portion 4, the intake pipe 2 is substantially orthogonal to the upstream side of the branch portion 4 by a predetermined dimension, and with respect to the pipe axis 10 </ b> L of the mixing pipe 10. As a result, the pipe shaft 2L of the intake pipe 2 is offset, and the opening 2a of the intake pipe 2 is connected to the cylindrical wall 11 of the mixing pipe 10 in the tangential direction. As a result, a cylindrical mixing chamber 12 is formed between the intake pipe 2 and the branch portion 4.

更に、混合配管10には、吸気配管2の開口部2aに対して分岐部と反対側で、かつ吸気配管2から接線方向に沿って混合気が導入される筒壁11の部位と対向する側に筒壁11と連続して混合配管10の管路軸10L方向に膨出する有底状の拡張部13が形成される。   Furthermore, the mixing pipe 10 has a side opposite to the branching portion with respect to the opening 2a of the intake pipe 2 and a side facing the portion of the cylindrical wall 11 into which the air-fuel mixture is introduced from the intake pipe 2 along the tangential direction. A bottomed extended portion 13 bulging in the direction of the pipe axis 10 </ b> L of the mixing pipe 10 is formed continuously with the cylindrical wall 11.

拡張部13は、図9及び図11に示すように吸気配管2から接線方向に沿って混合気が導入される筒壁11の部位と対向する側に筒壁11に連続して突出する断面略半円弧状の周壁14と、周壁14の端縁14a側から周壁14の両側縁14b間及び筒壁11の間を閉塞する底壁15を有し、これら周壁14及び底壁15による拡張部13によって吸気配管2から接線方向に沿って混合気が導入される筒壁11の部位と対向する側に筒壁11に沿って旋回流形成室16が形成される。   As shown in FIGS. 9 and 11, the extended portion 13 has a cross-sectional view that continuously protrudes from the cylindrical wall 11 on the side facing the portion of the cylindrical wall 11 where the air-fuel mixture is introduced from the intake pipe 2 along the tangential direction. A semicircular arc-shaped peripheral wall 14, and a bottom wall 15 that closes between the side walls 14 b of the peripheral wall 14 and between the cylindrical walls 11 from the end edge 14 a side of the peripheral wall 14, and an extension 13 formed by the peripheral wall 14 and the bottom wall 15. Thus, a swirl flow forming chamber 16 is formed along the cylindrical wall 11 on the side facing the portion of the cylindrical wall 11 where the air-fuel mixture is introduced from the intake pipe 2 along the tangential direction.

このように構成した吸気マニホールド1によると、吸気空気とEGRガスとの混合気が吸気配管2の開口部2aから混合配管10の筒壁11の接線方向に沿って混合室12内に導入される。吸気配管2から混合室12内に導入された混合気は筒壁11の内面に沿う旋回力が付与され、その一部は図9に矢印Aで示すように筒壁11の内面に沿って旋回しつつ分岐部4側に流れる主流となって混合を促進する。   According to the intake manifold 1 configured as described above, an air-fuel mixture of intake air and EGR gas is introduced into the mixing chamber 12 from the opening 2 a of the intake pipe 2 along the tangential direction of the cylindrical wall 11 of the mixing pipe 10. . The air-fuel mixture introduced from the intake pipe 2 into the mixing chamber 12 is given a turning force along the inner surface of the cylinder wall 11, and a part of the mixture turns along the inner surface of the cylinder wall 11 as shown by an arrow A in FIG. However, it becomes the mainstream which flows to the branch part 4 side, and promotes mixing.

一方、吸気配管2から混合室12内に導入された混合気の一部は主流Aと分流して筒壁11の内面に沿う旋回力が付与されて矢印Bで示すように旋回流成形室16内を周壁14及び底面15に沿って旋回する。   On the other hand, a part of the air-fuel mixture introduced from the intake pipe 2 into the mixing chamber 12 is divided into the main flow A and is given a turning force along the inner surface of the cylindrical wall 11 so that the swirling flow forming chamber 16 is indicated by an arrow B. The inside turns along the peripheral wall 14 and the bottom surface 15.

更に、旋回流成型室16内を旋回した混合気は周壁14及び底壁15に誘導されて混合室12側に流れ、混合室12内を流れる主流Aと合流して強い旋回流Cを形成する。この強い旋回流Cにより分岐部4方向への流れが抑制されて混合室12内における旋回流による混合距離が確保され、吸気空気とEGRガスの均一な混合が得られる。この吸気空気とEGRガスが均一に混合した混合気が、分岐部4において各吸気枝管5に分岐されて各気筒に供給される。   Further, the air-fuel mixture swirled in the swirling flow molding chamber 16 is guided to the peripheral wall 14 and the bottom wall 15 and flows to the mixing chamber 12 side, and merges with the main flow A flowing in the mixing chamber 12 to form a strong swirling flow C. . This strong swirling flow C suppresses the flow in the direction of the branching section 4 to secure a mixing distance by the swirling flow in the mixing chamber 12, and uniform mixing of intake air and EGR gas is obtained. The air-fuel mixture in which the intake air and the EGR gas are uniformly mixed is branched into the intake branch pipes 5 at the branch portions 4 and supplied to the cylinders.

従って、このように構成された本実施の形態によると、第1実施の形態と同様に混合配管10の吸気配管2の開口部2aより分岐部4と反対側に周壁14及び底壁15を有する有底状の拡張部13を形成する簡単な構成で吸気空気とEGRガスの均一な混合が得られる。   Therefore, according to the present embodiment configured as described above, the peripheral wall 14 and the bottom wall 15 are provided on the opposite side of the branch portion 4 from the opening 2a of the intake pipe 2 of the mixing pipe 10 as in the first embodiment. Uniform mixing of intake air and EGR gas can be obtained with a simple configuration that forms the bottomed expansion portion 13.

また、混合配管10内から分岐部4方向への流れが抑制されることから、混合気の混合区間となる混合配管10の管路軸10L方向の長さの短縮が可能になると共に、管路軸10L方向に突出する拡張部13は局部的でかつコンパクトで吸気マニホールド1の搭載性が向上する。   Further, since the flow from the inside of the mixing pipe 10 toward the branching section 4 is suppressed, the length of the mixing pipe 10 serving as the mixing section of the air-fuel mixture in the direction of the pipe axis 10L can be shortened, and the pipe line The expansion portion 13 projecting in the direction of the shaft 10L is local and compact, and the mountability of the intake manifold 1 is improved.

なお、拡張部13の形状及び大きさは予め実験やシミュレーション等によって容易に設定できる。なお、実験の結果、拡張部13内の容積、即ち旋回流形成室16の容積Vは、混合配管10の内径をDとすると
V>0.5×(D/2)2×π×0.15
即ち、混合配管10の内径D、高さ0.15Dの円柱の半分の容積以上で良好な吸気空気とEGRガスの均一な混合比が確認できた。
It should be noted that the shape and size of the expansion portion 13 can be easily set in advance by experiments, simulations, or the like. As a result of the experiment, the volume in the expansion part 13, that is, the volume V of the swirl flow forming chamber 16 is V> 0.5 × (D / 2) 2 × π × 0. 15
In other words, a good uniform mixing ratio of intake air and EGR gas could be confirmed when the mixing pipe 10 had an inner diameter D and a volume of more than half of a cylinder having a height of 0.15D.

(第4実施の形態)
図12乃至図14を参照して第4実施の形態を説明する。
(Fourth embodiment)
A fourth embodiment will be described with reference to FIGS.

本実施の形態は、混合配管の形状が第1実施の形態と異なり、他の構成は第1実施の形態と同様であり、混合配管を主に説明する。なお、説明の便宜上図12乃至図14において図1乃至図5と対応する部位には同一符号を付する。   In this embodiment, the shape of the mixing pipe is different from that of the first embodiment. Other configurations are the same as those of the first embodiment, and the mixing pipe will be mainly described. For convenience of explanation, portions in FIGS. 12 to 14 corresponding to those in FIGS. 1 to 5 are denoted by the same reference numerals.

図12は、本実施の形態における混合配管10を模式的に示す図、図13は図12のVII−VII線断面図、図14は図12のVIII−VIII線断面図である。   12 is a diagram schematically showing the mixing pipe 10 in the present embodiment, FIG. 13 is a sectional view taken along line VII-VII in FIG. 12, and FIG. 14 is a sectional view taken along line VIII-VIII in FIG.

混合配管10は第1側壁11A、第2側壁11B、第3側壁11C及び第4側壁11Dが順に周方向に連続する断面略矩形の筒壁11を備え、下流側が分岐部4に連続している。第1側壁11Aにおける分岐部4から混合配管10の管路軸10L方向に所定寸法だけ上流側に変移した位置に吸気配管2が接続される。この吸気配管2と混合配管10は略直交しかつ混合配管10の管路軸10Lに対して吸気配管2の管路軸2Lがオフセットして吸気配管2の開口部2aが混合配管10の第2側壁11Bに対して接線方向に接続される。これにより吸気配管2と分岐部4との間に吸気配管2から導入された混合気による旋回流を形成する断面矩形筒状の混合室12を形成する。   The mixing pipe 10 includes a cylindrical wall 11 having a substantially rectangular cross section in which the first side wall 11A, the second side wall 11B, the third side wall 11C, and the fourth side wall 11D are sequentially continuous in the circumferential direction, and the downstream side is continuous with the branch portion 4. . The intake pipe 2 is connected to a position shifted from the branch part 4 in the first side wall 11A to the upstream side by a predetermined dimension in the direction of the pipe axis 10L of the mixing pipe 10. The intake pipe 2 and the mixing pipe 10 are substantially orthogonal to each other, and the pipe axis 2L of the intake pipe 2 is offset with respect to the pipe axis 10L of the mixing pipe 10 so that the opening 2a of the intake pipe 2 is the second of the mixing pipe 10. It is connected to the side wall 11B in a tangential direction. As a result, a mixing chamber 12 having a rectangular cross section is formed between the intake pipe 2 and the branch portion 4 to form a swirling flow caused by the air-fuel mixture introduced from the intake pipe 2.

更に、混合配管10には吸気配管2の開口部2aに対して分岐部4と反対側で、かつ吸気配管2から混合気が接線方向で導入される筒壁11の第2側壁11Bと対向する第4側壁11D側に第4側壁11Dに沿って管路軸10L方向に膨出する周壁14及び底壁15による拡張部13が形成される。   Further, the mixing pipe 10 faces the second side wall 11B of the cylindrical wall 11 on the side opposite to the branching section 4 with respect to the opening 2a of the intake pipe 2 and into which the air-fuel mixture is introduced from the intake pipe 2 in the tangential direction. An extended portion 13 is formed on the fourth side wall 11D side by the peripheral wall 14 and the bottom wall 15 that bulge in the direction of the pipe axis 10L along the fourth side wall 11D.

図12及び図14に示すように周壁14は、第1側壁11A、第2側壁11B、第3側壁11C及び第4側壁11Dとそれぞれ連続する第1側部14A、第2側部14B、第3側部14C、第4側部14Dによって断面略矩形に形成される。この周壁14の端縁14aは、開口部2aからの距離が第2側壁11B側の端縁に対し第4側壁11D側の端縁が大きくなるように管路軸10Lに対して傾斜している。この周壁14の端縁14aを閉塞するように底壁15は管路軸10Lに対して傾斜して配設する。   As shown in FIGS. 12 and 14, the peripheral wall 14 includes a first side portion 14A, a second side portion 14B, and a third side portion that are continuous with the first side wall 11A, the second side wall 11B, the third side wall 11C, and the fourth side wall 11D, respectively. The side portion 14C and the fourth side portion 14D are formed in a substantially rectangular cross section. The edge 14a of the peripheral wall 14 is inclined with respect to the pipe axis 10L so that the distance from the opening 2a is larger on the fourth side wall 11D side than on the second side wall 11B side edge. . The bottom wall 15 is inclined with respect to the pipe axis 10L so as to close the end edge 14a of the peripheral wall 14.

これにより周壁14及び底壁15により形成される拡張部13によって、接線方向に混合気が導入される第2側壁11B側から対向する第4側壁11D側に移行するに従って容量が次第に増大する旋回流形成室16が形成される。   Thus, the swirl flow in which the capacity gradually increases as the expansion portion 13 formed by the peripheral wall 14 and the bottom wall 15 shifts from the second side wall 11B side where the air-fuel mixture is introduced in the tangential direction to the opposing fourth side wall 11D side. A forming chamber 16 is formed.

このように構成した吸気マニホールド1によると、吸気空気とEGRガスとの混合気が吸気配管2の開口部2aから混合配管10の第2側壁11Bに沿って混合室12内に導入される。   According to the intake manifold 1 configured as described above, a mixture of intake air and EGR gas is introduced into the mixing chamber 12 from the opening 2a of the intake pipe 2 along the second side wall 11B of the mixing pipe 10.

吸気配管2から混合室13の第2側壁11Bに沿って導入された混合気は第3側壁11C、第4側壁11D、第1側壁11Aの各内面に沿って流れる旋回力が付与され、その一部は図12に矢印Aで示すように筒壁11の内面に沿って旋回しつつ分岐部4側に流れる主流となって混合を促進する。   The air-fuel mixture introduced from the intake pipe 2 along the second side wall 11B of the mixing chamber 13 is given a swirl force that flows along the inner surfaces of the third side wall 11C, the fourth side wall 11D, and the first side wall 11A. As shown by an arrow A in FIG. 12, the portion turns along the inner surface of the cylindrical wall 11 and becomes a main flow that flows toward the branching portion 4 to promote mixing.

一方、吸気配管2から混合室12内に導入された混合気の一部は主流Aと分流して矢印Bで示すように旋回流形成室16の第2側部14B、第3側部14C、第4側部14D、第1側部14Aの各内面に沿う旋回力が付与されて周壁14及び底面15に沿って旋回流成型室16内を旋回する。   On the other hand, a part of the air-fuel mixture introduced from the intake pipe 2 into the mixing chamber 12 is divided into the main flow A and, as indicated by an arrow B, the second side portion 14B, the third side portion 14C of the swirl flow forming chamber 16; A turning force along each inner surface of the fourth side portion 14 </ b> D and the first side portion 14 </ b> A is applied, and the inside of the swirling flow molding chamber 16 is swung along the peripheral wall 14 and the bottom surface 15.

更に、旋回流成型室16内を旋回した混合気は混合室12側に流れ、混合室13内を流れる主流Aと合流して主流Aと共に強い旋回流Cを形成する。この強い旋回流Cにより分岐部4方向への流れが抑制されて混合室12内における混合気の旋回流による混合距離が増大して、吸気空気とEGRガスの均一な混合が得られる。この吸気空気とEGRガスが均一に混合した混合気を、分岐部4から各吸気枝管5に分配して各気筒に供給する。   Further, the air-fuel mixture swirled in the swirl flow molding chamber 16 flows toward the mixing chamber 12 and joins with the main flow A flowing in the mixing chamber 13 to form a strong swirl flow C together with the main flow A. This strong swirling flow C suppresses the flow in the direction of the branching portion 4 and increases the mixing distance of the air-fuel mixture in the mixing chamber 12 due to the swirling flow, thereby obtaining uniform mixing of the intake air and the EGR gas. The air-fuel mixture in which the intake air and EGR gas are uniformly mixed is distributed from the branch portion 4 to each intake branch pipe 5 and supplied to each cylinder.

従って、このように構成された本実施の形態によると、吸気配管2から吸入空気とEGRガスの混合気が導入される混合配管10における吸気配管2の開口部2aより分岐部4と反対側に第1側部14A、第2側部14B、第3側部14C、第4側部14Dの周壁14及び底壁15による有底筒状の拡張部13を形成する簡単な構成で吸気空気とEGRガスの均一な混合が得られる。   Therefore, according to the present embodiment configured as described above, the opening 2a of the intake pipe 2 in the mixed pipe 10 into which the mixture of the intake air and the EGR gas is introduced from the intake pipe 2 is located on the opposite side to the branch section 4. Intake air and EGR with a simple configuration that forms the bottomed cylindrical expansion portion 13 by the peripheral wall 14 and the bottom wall 15 of the first side portion 14A, the second side portion 14B, the third side portion 14C, and the fourth side portion 14D. A homogeneous mixing of the gas is obtained.

また、混合配管10内から分岐部4方向への流れが抑制されることから、混合気の混合区間となる混合配管10の管路軸10L方向の長さの短縮が可能になると共に、管路軸10L方向に突出する拡張部13は局部的でかつコンパクトで吸気マニホールド1の搭載性が向上する。   Further, since the flow from the inside of the mixing pipe 10 toward the branching section 4 is suppressed, the length of the mixing pipe 10 serving as the mixing section of the air-fuel mixture in the direction of the pipe axis 10L can be shortened, and the pipe line The expansion portion 13 projecting in the direction of the shaft 10L is local and compact, and the mountability of the intake manifold 1 is improved.

なお、拡張部13の形状及び大きさは予め実験やシミュレーション等によって容易に設定できる。なお、実験の結果、拡張部13内の容積、即ち旋回流形成室16の容積Vは、混合配管10の断面積に対して面積が等価となる円形の直径値をDとすると
V>0.5×(D/2)2×π×0.15
即ち、混合配管10の断面積に対して面積が等価となる円形の直径D、高さ0.15Dの円柱の半分の容積以上で良好な吸気空気とEGRガスの均一な混合比が確認できた。
Note that the shape and size of the expansion portion 13 can be easily set in advance by experiments, simulations, or the like. As a result of the experiment, the volume V in the expansion part 13, that is, the volume V of the swirl flow forming chamber 16 is V> 0. 5 × (D / 2) 2 × π × 0.15
That is, a good uniform mixing ratio of intake air and EGR gas could be confirmed at a volume larger than a half of a circular cylinder having a diameter D and a height of 0.15D equivalent to the cross-sectional area of the mixing pipe 10. .

(第5実施の形態)
図15乃至図17を参照して第5実施の形態を説明する。
(Fifth embodiment)
A fifth embodiment will be described with reference to FIGS. 15 to 17.

本実施の形態は、混合配管に形成される拡張部の形状が第4実施の形態と異なり、他の構成は第5実施の形態と同様であり、混合配管を主に説明する。なお、説明の便宜上図15乃至図17において図12乃至図14と対応する部位には同一符号を付する。   The present embodiment is different from the fourth embodiment in the shape of the extended portion formed in the mixing pipe, the other configuration is the same as that of the fifth embodiment, and the mixing pipe will be mainly described. For convenience of explanation, in FIGS. 15 to 17, portions corresponding to FIGS. 12 to 14 are denoted by the same reference numerals.

図15は、本実施の形態における混合配管10を模式的に示す図、図16は図15のIX−IX線断面図、図17は図15のX−X線断面図である。   15 is a diagram schematically showing the mixing pipe 10 in the present embodiment, FIG. 16 is a sectional view taken along line IX-IX in FIG. 15, and FIG. 17 is a sectional view taken along line XX in FIG.

混合配管10は第1側壁11A、第2側壁11B、第3側壁11C及び第4側壁11Dが順に周方向に連続する断面略矩形の筒壁11を備え、下流側が分岐部4に連続している。第1側壁11Aにおける分岐部4から混合配管10の管路軸10L方向に所定寸法だけ上流側に変移した位置に吸気配管2が接続される。この吸気配管2と混合配管10は略直交しかつ混合配管10の管路軸10Lに対して吸気配管2の管路軸2Lがオフセットして吸気配管2の開口部2aが混合配管10の第2側壁11Bに対して接線方向に接続される。これにより吸気配管2と分岐部4との間に吸気配管2から導入された混合気による旋回流を形成する混合室12を形成する。   The mixing pipe 10 includes a cylindrical wall 11 having a substantially rectangular cross section in which the first side wall 11A, the second side wall 11B, the third side wall 11C, and the fourth side wall 11D are sequentially continuous in the circumferential direction, and the downstream side is continuous with the branch portion 4. . The intake pipe 2 is connected to a position shifted from the branch part 4 in the first side wall 11A to the upstream side by a predetermined dimension in the direction of the pipe axis 10L of the mixing pipe 10. The intake pipe 2 and the mixing pipe 10 are substantially orthogonal to each other, and the pipe axis 2L of the intake pipe 2 is offset with respect to the pipe axis 10L of the mixing pipe 10 so that the opening 2a of the intake pipe 2 is the second of the mixing pipe 10. It is connected to the side wall 11B in a tangential direction. As a result, a mixing chamber 12 is formed between the intake pipe 2 and the branch portion 4 to form a swirling flow by the air-fuel mixture introduced from the intake pipe 2.

更に、混合配管10には吸気配管2の開口部2aに対して分岐部4と反対側で、かつ吸気配管2から接線方向で混合気が導入される筒壁11の第2側壁11Bと対向する第4側壁11D側に第4側壁11Dに沿って管路軸10L方向に膨出する周壁14及び底壁15によって拡張部13が形成される。   Further, the mixing pipe 10 is opposed to the second side wall 11B of the cylindrical wall 11 into which the air-fuel mixture is introduced in the tangential direction from the intake pipe 2 on the side opposite to the branch portion 4 with respect to the opening 2a of the intake pipe 2. The extended portion 13 is formed by the peripheral wall 14 and the bottom wall 15 that bulge in the direction of the pipe axis 10L along the fourth side wall 11D on the fourth side wall 11D side.

図15及び図17に示すように周壁14は、第1側壁11A、第3側壁11C及び第4側壁11Dにそれぞれ連続する第1側部14A、第3側部14C、第4側部14Dを備えた断面略コ字状で、第1側部14A及び第3側部14Cの端縁が第4側部14D側に移行するに従って開口部2aから管路軸10L方向に離れる略三角形であり、第4側部14Dはほぼ矩形に形成される。この第2側壁11Bの端縁及び周壁14の端縁14aを閉塞するように底壁15が管路軸10Lに対して傾斜して配設される。   As shown in FIGS. 15 and 17, the peripheral wall 14 includes a first side portion 14A, a third side portion 14C, and a fourth side portion 14D that are continuous with the first side wall 11A, the third side wall 11C, and the fourth side wall 11D, respectively. It has a substantially U-shaped cross section, and is a substantially triangular shape that separates from the opening 2a in the direction of the pipe axis 10L as the edges of the first side portion 14A and the third side portion 14C move to the fourth side portion 14D side, The four side portions 14D are formed in a substantially rectangular shape. The bottom wall 15 is disposed to be inclined with respect to the pipe axis 10L so as to close the end edge of the second side wall 11B and the end edge 14a of the peripheral wall 14.

これにより周壁14及び底壁15により形成される拡張部13によって、接線方向に混合気が導入される第2側壁11B側から対向する第4側壁11D側に移行するに従って容量が次第に増大する旋回流形成室16が形成される。   Thus, the swirl flow in which the capacity gradually increases as the expansion portion 13 formed by the peripheral wall 14 and the bottom wall 15 shifts from the second side wall 11B side where the air-fuel mixture is introduced in the tangential direction to the opposing fourth side wall 11D side. A forming chamber 16 is formed.

このように構成した吸気マニホールド1によると、吸気空気が導入される吸気配管2内にEGR配管3からEGRガスが導入され、吸気空気とEGRガスとの混合気が吸気配管2の開口部2aから混合配管10の第2側壁11Bに沿って混合室13内に導入される。   According to the intake manifold 1 configured as described above, EGR gas is introduced from the EGR pipe 3 into the intake pipe 2 through which intake air is introduced, and a mixture of intake air and EGR gas is introduced from the opening 2 a of the intake pipe 2. It is introduced into the mixing chamber 13 along the second side wall 11B of the mixing pipe 10.

吸気配管2から混合室13の第2側壁11Bに沿って導入された混合気は、第3側壁11C、第4側壁11D、第1側壁11Aの各内面に沿って流れる旋回力が付与され、その一部は図15に矢印Aで示すように筒壁11の内面に沿って旋回しつつ分岐部4側に流れる主流となって混合を促進する。   The air-fuel mixture introduced from the intake pipe 2 along the second side wall 11B of the mixing chamber 13 is given a swirl force that flows along the inner surfaces of the third side wall 11C, the fourth side wall 11D, and the first side wall 11A. A part of the gas flows along the inner surface of the cylindrical wall 11 as indicated by an arrow A in FIG.

一方、吸気配管2から混合室12内に導入された混合気の一部は主流Aと分流して矢印Bで示すように旋回流形成室16の第3側部14C、第4側部14D、第1側部14Aの各内面に沿って流れる旋回力が付与されて周壁14及び底面15に沿って旋回流成型室16内を旋回する。   On the other hand, a part of the air-fuel mixture introduced from the intake pipe 2 into the mixing chamber 12 is divided into the main flow A, and the third side portion 14C, the fourth side portion 14D, A swirl force that flows along each inner surface of the first side portion 14 </ b> A is applied and swirls in the swirl flow molding chamber 16 along the peripheral wall 14 and the bottom surface 15.

更に、旋回流成型室16内を旋回した混合気は混合室12側に流れ、混合室13内を流れる主流Aと合流して主流Aと共に強い旋回流Cを形成する。この強い旋回流Cにより混合室12内における混合気の旋回流による混合距離が増大して、吸気空気とEGRガスの均一な混合が促進される。この吸気空気とEGRガスが均一に混合した混合気を、分岐部4において各吸気枝管5に分配して各気筒に供給する。   Further, the air-fuel mixture swirled in the swirl flow molding chamber 16 flows toward the mixing chamber 12 and joins with the main flow A flowing in the mixing chamber 13 to form a strong swirl flow C together with the main flow A. The strong swirl flow C increases the mixing distance due to the swirl of the air-fuel mixture in the mixing chamber 12 and promotes uniform mixing of the intake air and the EGR gas. The air-fuel mixture in which the intake air and the EGR gas are uniformly mixed is distributed to the intake branch pipes 5 in the branch portion 4 and supplied to the cylinders.

従って、本実施の形態によると、吸気配管2から吸入空気とEGRガスの混合気が導入される混合配管10の吸気配管2との接合部10aより分岐部4と反対側に周壁14及び底壁15を有する有底筒状の拡張部13を形成する簡単な構成で吸気空気とEGRガスの均一な混合が得られる。   Therefore, according to the present embodiment, the peripheral wall 14 and the bottom wall on the opposite side of the branch portion 4 from the joint portion 10a of the intake pipe 2 to the intake pipe 2 into which the mixture of intake air and EGR gas is introduced from the intake pipe 2. With the simple configuration of forming the bottomed cylindrical extension 13 having 15, uniform mixing of intake air and EGR gas can be obtained.

また、混合配管10内から分岐部4方向への流れが抑制されて、混合気の混合区間となる混合配管10の管路軸10L方向の長さの短縮が可能になると共に、管路軸10L方向に突出する拡張部13は局部的でかつコンパクトで吸気マニホールド1の搭載性が向上する。   In addition, the flow from the inside of the mixing pipe 10 toward the branch portion 4 is suppressed, and the length of the mixing pipe 10 in the direction of the pipe axis 10L, which becomes the mixture section of the air-fuel mixture, can be shortened, and the pipe axis 10L. The extending portion 13 protruding in the direction is local and compact, and the mountability of the intake manifold 1 is improved.

なお、拡張部13の形状及び大きさは予め実験やシミュレーション等によって容易に設定できる。なお、実験の結果、拡張部13内の容積、即ち旋回流形成室16の容積Vは、混合配管10の断面積に対して面積が等価となる円形の直径値をDとすると
V>0.5×(D/2)2×π×0.15
即ち、混合配管10の断面積に対して面積が等価となる円形の直径D、高さ0.15Dの円柱の半分の容積以上で良好な吸気空気とEGRガスの均一な混合比が確認できた。
It should be noted that the shape and size of the expansion portion 13 can be easily set in advance by experiments, simulations, or the like. As a result of the experiment, the volume V in the expansion part 13, that is, the volume V of the swirl flow forming chamber 16 is V> 0. 5 × (D / 2) 2 × π × 0.15
That is, a good uniform mixing ratio of intake air and EGR gas could be confirmed at a volume larger than a half of a circular cylinder having a diameter D and a height of 0.15D equivalent to the cross-sectional area of the mixing pipe 10. .

(第6実施の形態)
図18乃至図20を参照して第5実施の形態を説明する。
(Sixth embodiment)
A fifth embodiment will be described with reference to FIGS.

本実施の形態は、混合配管に形成される拡張部の形状が第4実施の形態と異なり、他の構成は第4実施の形態と同様であり、混合配管を主に説明する。なお、説明の便宜上図18乃至図20において図12乃至図14と対応する部位には同一符号を付する。   The present embodiment is different from the fourth embodiment in the shape of the extended portion formed in the mixing pipe, and other configurations are the same as those in the fourth embodiment, and the mixing pipe will be mainly described. For convenience of explanation, in FIGS. 18 to 20, the same reference numerals are given to the portions corresponding to FIGS. 12 to 14.

図18は、本実施の形態における混合配管10を模式的に示す図、図19は図18のXI−XI線断面図、図17は図15のXII−XII線断面図である。   18 is a diagram schematically showing the mixing pipe 10 in the present embodiment, FIG. 19 is a cross-sectional view taken along the line XI-XI in FIG. 18, and FIG. 17 is a cross-sectional view taken along the line XII-XII in FIG.

混合配管10は第1側壁11A、第2側壁11B、第3側壁11C及び第4側壁11Dが順に周方向に連続する断面略矩形の筒壁11を備え、下流側が分岐部4に連続している。第1側壁11Aにおける分岐部4から混合配管10の管路軸10L方向に所定寸法だけ上流側に変移した位置に吸気配管2が接続される。この吸気配管2と混合配管10は略直交しかつ混合配管10の管路軸10Lに対して吸気配管2の管路軸2Lがオフセットして吸気配管2の開口部2aが混合配管10の第2側壁11Bに対して接線方向に接続される。これにより吸気配管2と分岐部4との間に吸気配管2から導入された混合気による旋回流を形成する断面矩形筒状の混合室12を形成する。   The mixing pipe 10 includes a cylindrical wall 11 having a substantially rectangular cross section in which the first side wall 11A, the second side wall 11B, the third side wall 11C, and the fourth side wall 11D are sequentially continuous in the circumferential direction, and the downstream side is continuous with the branch portion 4. . The intake pipe 2 is connected to a position shifted from the branch part 4 in the first side wall 11A to the upstream side by a predetermined dimension in the direction of the pipe axis 10L of the mixing pipe 10. The intake pipe 2 and the mixing pipe 10 are substantially orthogonal to each other, and the pipe axis 2L of the intake pipe 2 is offset with respect to the pipe axis 10L of the mixing pipe 10 so that the opening 2a of the intake pipe 2 is the second of the mixing pipe 10. It is connected to the side wall 11B in a tangential direction. As a result, a mixing chamber 12 having a rectangular cross section is formed between the intake pipe 2 and the branch portion 4 to form a swirling flow caused by the air-fuel mixture introduced from the intake pipe 2.

更に、混合配管10には吸気配管2の開口部2aに対して分岐部4と反対側で、かつ吸気配管2から接線方向に混合気が導入される筒壁11の第2側壁11Bと対向する第4側壁11D側に第4側壁11Dに沿って管路軸10L方向に膨出する周壁14及び底壁15によって形成される拡張部13が連続形成される。   Further, the mixing pipe 10 is opposed to the second side wall 11B of the cylindrical wall 11 into which the air-fuel mixture is introduced in the tangential direction from the intake pipe 2 on the side opposite to the branch portion 4 with respect to the opening 2a of the intake pipe 2. The extended portion 13 formed by the peripheral wall 14 and the bottom wall 15 bulging in the direction of the pipe axis 10L along the fourth side wall 11D is continuously formed on the fourth side wall 11D side.

図18及び図20に示すように周壁14は、第1側壁11Aの第4側壁11D側の予め設定された範囲、第3側壁11C、及び第3側壁11Cの第4側壁11Dの予め設定された範囲にそれぞれ連続する矩形の第1側部14A、第3側部14C、第4側部14Dが連続形成された断面略コ字状に形成される。この周壁14の端部14aから周壁14の両側縁14b間及び筒壁11の間を閉塞する底壁15を備える。これにより周壁14及び底壁15により形成される拡張部13によって第4側壁14D側沿って管路軸10L方向に膨出する旋回流形成室16を形成する。   As shown in FIGS. 18 and 20, the peripheral wall 14 has a preset range on the fourth side wall 11D side of the first side wall 11A, a third side wall 11C, and a fourth side wall 11D of the third side wall 11C. A rectangular first side portion 14A, a third side portion 14C, and a fourth side portion 14D that are continuous in the range are formed in a substantially U-shaped cross section. A bottom wall 15 that closes between the end 14a of the peripheral wall 14 and both side edges 14b of the peripheral wall 14 and between the cylindrical walls 11 is provided. As a result, the swirling flow forming chamber 16 that swells in the direction of the pipe axis 10L along the fourth side wall 14D side is formed by the extended portion 13 formed by the peripheral wall 14 and the bottom wall 15.

このように構成した吸気マニホールド1によると、吸気空気とEGRガスとの混合気が吸気配管2の開口部2aから混合配管10の第2側壁11Bに沿って混合室13内に導入される。   According to the intake manifold 1 configured as described above, an air-fuel mixture of intake air and EGR gas is introduced into the mixing chamber 13 along the second side wall 11B of the mixing pipe 10 from the opening 2a of the intake pipe 2.

吸気配管2から混合室12の第2側壁11Bに沿って導入された混合気は第3側壁11C、第4側壁11D、第1側壁11Aの各内面に沿って流れる旋回力が付与され、その一部は図15に矢印Aで示すように筒壁11の内面に沿って旋回しつつ分岐部4側に流れる主流となって吸気空気とEGRガスとの混合を促進する。   The air-fuel mixture introduced from the intake pipe 2 along the second side wall 11B of the mixing chamber 12 is given a swirl force that flows along the inner surfaces of the third side wall 11C, the fourth side wall 11D, and the first side wall 11A. As shown by an arrow A in FIG. 15, the portion becomes a main flow that flows toward the branching portion 4 while turning along the inner surface of the cylindrical wall 11 and promotes mixing of the intake air and the EGR gas.

一方、吸気配管2から混合室12内に導入された混合気の一部は主流Aと分流して矢印Bで示すように旋回流形成室16の第3側部14C、第4側部14D、第1側部14Aの各内面に沿う旋回力が付与されて周壁14及び底面15に沿って旋回流成型室16内を旋回する。   On the other hand, a part of the air-fuel mixture introduced from the intake pipe 2 into the mixing chamber 12 is divided into the main flow A, and the third side portion 14C, the fourth side portion 14D, A turning force along each inner surface of the first side portion 14 </ b> A is applied, and the inside of the swirling flow molding chamber 16 is swung along the peripheral wall 14 and the bottom surface 15.

更に、旋回流成型室16内を旋回した混合気は混合室12側に流れ、混合室12内を流れる主流Aと合流して主流Aと共に強い旋回流Cを形成する。この強い旋回流Cにより分岐部4方向への流れが抑制されて混合室12内における混合気の旋回流による混合距離が増大して、吸気空気とEGRガスの均一な混合が促進される。この吸気空気とEGRガスが均一に混合した混合気を、分岐部4において各吸気枝管5に分配して各気筒に供給する。   Further, the air-fuel mixture swirled in the swirling flow molding chamber 16 flows toward the mixing chamber 12 and joins the main flow A flowing in the mixing chamber 12 to form a strong swirling flow C together with the main flow A. This strong swirling flow C suppresses the flow in the direction of the branching portion 4 and increases the mixing distance of the air-fuel mixture in the mixing chamber 12 by the swirling flow, thereby promoting uniform mixing of the intake air and the EGR gas. The air-fuel mixture in which the intake air and the EGR gas are uniformly mixed is distributed to the intake branch pipes 5 in the branch portion 4 and supplied to the cylinders.

従って、本実施の形態によると、吸気配管2から吸入空気とEGRガスの混合気が導入される混合配管10の吸気配管2の開口部aより分岐部4と反対側に周壁14及び底壁15を有する有底筒状の拡張部13を形成する簡単な構成で吸気空気とEGRガスの均一な混合比、即ちEGR率のバラツキが低減される。   Therefore, according to the present embodiment, the peripheral wall 14 and the bottom wall 15 are located on the opposite side of the branch part 4 from the opening a of the intake pipe 2 of the mixed pipe 10 into which the mixture of intake air and EGR gas is introduced from the intake pipe 2. With a simple configuration in which the bottomed cylindrical expansion portion 13 having the above is formed, a uniform mixing ratio of intake air and EGR gas, that is, variation in EGR rate is reduced.

また、混合配管10内から分岐部4方向への流れが抑制されることから、混合気の混合区間となる混合配管10の管路軸10L方向の長さの短縮が可能になると共に、管路軸10L方向に突出する拡張部13は第4側壁11D側に沿って突出する局部的でかつコンパクトで吸気マニホールド1の搭載性が向上する。   Further, since the flow from the inside of the mixing pipe 10 toward the branching section 4 is suppressed, the length of the mixing pipe 10 serving as the mixing section of the air-fuel mixture in the direction of the pipe axis 10L can be shortened, and the pipe line The extended portion 13 protruding in the direction of the shaft 10L is local and compact protruding along the fourth side wall 11D side, and the mountability of the intake manifold 1 is improved.

なお、拡張部13の形状及び大きさは予め実験やシミュレーション等によって容易に設定できる。なお、実験の結果、拡張部13内の容積、即ち旋回流形成室16の容積Vは、混合配管10の断面積に対して面積が等価となる円形の直径値をDとすると
V>0.5×(D/2)2×π×0.15
即ち、混合配管10の断面積に対して面積が等価となる円形の直径D、高さ0.15Dの円柱の半分の容積以上で良好な吸気空気とEGRガスの均一な混合比が確認できた。
It should be noted that the shape and size of the expansion portion 13 can be easily set in advance by experiments, simulations, or the like. As a result of the experiment, the volume V in the expansion part 13, that is, the volume V of the swirl flow forming chamber 16 is V> 0. 5 × (D / 2) 2 × π × 0.15
That is, a good uniform mixing ratio of intake air and EGR gas was confirmed at a volume more than half of a circular diameter D and a height of 0.15 D with an equivalent area to the cross-sectional area of the mixing pipe 10. .

なお、本発明は上記各実施の形態に限定されることなく、発明の趣旨を逸脱しない範囲で種々変更可能である。例えば上記各実施の形態では円筒状の混合配管10の管路軸10Lに対して吸気配管2の管路軸2Lをオフセットして混合配管10の筒壁11の接線方向に沿って混合気を導入するように構成したが、吸気配管2内を流れる混合気が一方に偏ったいわゆる偏流状態で流れる場合には、混合配管10の管路軸10Lと吸気配管2の管路軸2Lをオフセットさせることなく混合配管10内に旋回流が形成されることから、吸気配管2内を流れる混合気が一方に偏ったいわゆる偏流状態で流れる場合には、混合配管10の管路軸10Lと吸気配管2の管路軸2Lをオフセットさせることなく構成することもできる。   The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the invention. For example, in each of the above embodiments, the air-fuel mixture is introduced along the tangential direction of the cylindrical wall 11 of the mixing pipe 10 by offsetting the pipe axis 2L of the intake pipe 2 with respect to the pipe axis 10L of the cylindrical mixing pipe 10. However, when the air-fuel mixture flowing in the intake pipe 2 flows in a so-called drift state where the air-fuel mixture is biased to one side, the pipe axis 10L of the mixed pipe 10 and the pipe axis 2L of the intake pipe 2 are offset. Since a swirl flow is formed in the mixing pipe 10 without any change, when the air-fuel mixture flowing in the intake pipe 2 flows in a so-called uneven flow state biased to one side, the pipe shaft 10L of the mixing pipe 10 and the intake pipe 2 It is also possible to configure the pipe shaft 2L without offsetting it.

また、上記実施の形態では混合配管10が円筒状或いは矩形断面形状の場合を例に説明したが、他の断面形状に形成することもできる。   Moreover, although the case where the mixing pipe 10 has a cylindrical shape or a rectangular cross-sectional shape has been described as an example in the above-described embodiment, it can be formed in other cross-sectional shapes.

第1実施の形態におけるエンジンの吸気装置となる吸気マニホールドの斜視図である。It is a perspective view of the intake manifold used as the engine intake device in the first embodiment. 吸気マニホールドの要部斜視図である。It is a principal part perspective view of an intake manifold. 混合部を模式的に示す図である。It is a figure which shows a mixing part typically. 図3のI−I線断面図である。It is the II sectional view taken on the line of FIG. 図3のII−II線断面図である。It is the II-II sectional view taken on the line of FIG. 第2実施の形態における混合部を模式的に示す図である。It is a figure which shows typically the mixing part in 2nd Embodiment. 図6のIII−III線断面図である。It is the III-III sectional view taken on the line of FIG. 図6のIV−IV線断面図である。It is the IV-IV sectional view taken on the line of FIG. 第3実施の形態における混合部を模式的に示す図である。It is a figure which shows typically the mixing part in 3rd Embodiment. 図9のV−V線断面図である。It is the VV sectional view taken on the line of FIG. 図9のVI−VI線断面図である。It is the VI-VI sectional view taken on the line of FIG. 第4実施の形態における混合部を模式的に示す図である。It is a figure which shows typically the mixing part in 4th Embodiment. 図12のVII−VII線断面図である。It is the VII-VII sectional view taken on the line of FIG. 図12のVIII−VIII線断面図である。It is the VIII-VIII sectional view taken on the line of FIG. 第5実施の形態における混合部を模式的に示す図である。It is a figure which shows typically the mixing part in 5th Embodiment. 図15のIX−IX線断面図である。It is the IX-IX sectional view taken on the line of FIG. 図15のX−X線断面図である。It is XX sectional drawing of FIG. 第6実施の形態における混合部を模式的に示す図である。It is a figure which shows typically the mixing part in 6th Embodiment. 図18のXI−XI線断面図である。It is the XI-XI sectional view taken on the line of FIG. 図18のXII−XII線断面図である。It is the XII-XII sectional view taken on the line of FIG.

符号の説明Explanation of symbols

1 吸気マニホールド(吸気装置)
2 吸気配管
2a 開口部
2L 管路軸
3 EGR配管
4 分岐部
5 吸気枝管
10 混合配管
10L 管路軸
11 筒壁
11A 第1側壁
11B 第2側壁
11C 第3側壁
11D 第4側壁
12 混合室
13 拡張部
14 周壁
14a 端縁
14A 第1側部
14B 第2側部
14C 第3側部
14D 第4側部
15 底部
16 旋回流形成室
1 Intake manifold (intake device)
2 intake pipe 2a opening 2L pipe shaft 3 EGR pipe 4 branching section 5 intake branch pipe 10 mixing pipe 10L pipe shaft 11 cylinder wall 11A first side wall 11B second side wall 11C third side wall 11D fourth side wall 12 mixing chamber 13 Expansion part 14 Peripheral wall 14a Edge 14A 1st side part 14B 2nd side part 14C 3rd side part 14D 4th side part 15 Bottom part 16 Swirling flow formation chamber

Claims (7)

排気系の排気ガスをEGRガスとして吸気系へ再循環させるエンジンに設けられ、吸気配管と該吸気配管が接続される筒壁を備えた有底筒状の混合配管と該混合配管の下流側に各気筒に連通する複数の吸気枝管に分岐する分岐部とを備え、上記吸気配管の開口部から吸気空気とEGRガスの混合気が上記筒壁の内面に沿う接線方向で混合配管内に導入され、該混合配管内に形成される混合気の旋回流によって上記混合気の吸気空気とEGRガスとが混合された後、該混合気が上記分岐部から各吸気枝管に分配されて各気筒に供給されるエンジンの吸気装置において、
上記混合配管には上記吸気配管の開口部に対して上記分岐部と反対側で、かつ上記吸気配管から上記接線方向に沿って混合気が導入される筒壁の部位と対向する側に該混合配管の管路軸方向に膨出する有底状の拡張部を形成したことを特徴とするエンジンの吸気装置。
Provided in an engine that recirculates exhaust gas from the exhaust system as EGR gas to the intake system, and has a bottomed cylindrical mixing pipe having a cylindrical wall to which the intake pipe and the intake pipe are connected, and downstream of the mixing pipe A branch portion that branches into a plurality of intake branch pipes communicating with each cylinder, and a mixture of intake air and EGR gas is introduced into the mixture pipe from the opening of the intake pipe in a tangential direction along the inner surface of the cylinder wall Then, after the intake air of the mixture and the EGR gas are mixed by the swirling flow of the mixture formed in the mixture pipe, the mixture is distributed from the branch portion to each intake branch pipe, and each cylinder In the intake system of the engine supplied to
The mixing pipe has the mixing pipe on the side opposite to the branch portion with respect to the opening of the intake pipe and on the side facing the portion of the cylindrical wall where the air-fuel mixture is introduced from the intake pipe along the tangential direction. An intake device for an engine, wherein a bottomed expansion portion that bulges in a pipe axial direction of a pipe is formed.
上記混合配管の筒壁が円筒状であって、
上記拡張部は、
上記筒壁に連続する円筒状でかつ上記接線方向に沿って混合気が導入される筒壁の部位側における上記開口部からの管路軸方向の距離に対して上記対向する側における上記開口部からの管路軸方向の距離が大きくなるように管路軸に対して傾斜する端縁を有する周壁及び、該周壁の端縁を閉塞する底壁によって形成されたことを特徴とする請求項1に記載のエンジンの吸気装置。
The cylindrical wall of the mixing pipe is cylindrical,
The above extension is
The opening on the opposite side to the distance in the direction of the pipe axis from the opening on the side of the cylindrical wall where the air-fuel mixture is introduced along the tangential direction and is cylindrical. 2. A peripheral wall having an edge that is inclined with respect to the pipe axis so that a distance in the pipe axis direction from the pipe increases, and a bottom wall that closes the edge of the peripheral wall. The engine intake system described in 1.
上記混合配管の筒壁が円筒状であって、
上記拡張部は、
上記筒壁に連続する円筒状でかつ上記接線方向に沿って混合気が導入される筒壁の部位側が管路軸方向において上記開口部に位置し上記対向する側における上記開口部から管路軸方向に所定距離離間するように管路軸に対して傾斜する端縁を有する周壁及び、該周壁の端縁を閉塞する底壁によって形成されたことを特徴とする請求項1に記載のエンジンの吸気装置。
The cylindrical wall of the mixing pipe is cylindrical,
The above extension is
A cylindrical side continuous with the cylindrical wall and a portion of the cylindrical wall into which the air-fuel mixture is introduced along the tangential direction is located in the opening in the pipe axis direction, and the pipe axis extends from the opening on the opposite side. 2. The engine according to claim 1, wherein the engine is formed by a peripheral wall having an edge that is inclined with respect to a pipe axis so as to be separated by a predetermined distance in a direction, and a bottom wall that closes the edge of the peripheral wall. Intake device.
上記混合配管の筒壁が円筒状であって、
上記拡張部は、
上記筒壁に連続する円筒状でかつ上記接線方向に沿って混合気が導入される筒壁の部位に対向する側において上記筒壁に連続して形成された断面略半円弧状の周壁及び、該周壁の端縁から周壁の両側縁間及び筒壁との間を閉塞する底壁によって形成されたことを特徴とする請求項1に記載のエンジンの吸気装置。
The cylindrical wall of the mixing pipe is cylindrical,
The above extension is
A cylindrical wall continuous with the cylindrical wall and a peripheral wall having a substantially semicircular cross section formed continuously with the cylindrical wall on the side facing the cylindrical wall portion into which the air-fuel mixture is introduced along the tangential direction; 2. The engine intake device according to claim 1, wherein the engine intake device is formed by a bottom wall that closes between an edge of the peripheral wall and both side edges of the peripheral wall and a cylindrical wall.
上記混合配管の筒壁は、第1側壁、第2側壁、第3側壁及び第4側壁を備えた略矩形断面形状で管路軸方向に連続する筒状でかつ上記吸気管路が第2側壁の内面の接線方向に沿って混合気が導入されるように第1側壁に開口し、
上記拡張部は、上記第1側壁、第2側壁、第3側壁及び第4側壁にそれぞれ連続する第1側部、第2側部、第3側部、第4側部を有して管路軸方向に延在する断面矩形でかつ第2側部側から第4側部側に移行するに従って上記開口部から管路軸方向に次第に離れるように管路軸に対して傾斜する端縁を有する周壁及び、該周壁の端縁を閉塞する底壁によって形成されたことを特徴とする請求項1に記載のエンジンの吸気装置。
The cylinder wall of the mixing pipe has a substantially rectangular cross-sectional shape having a first side wall, a second side wall, a third side wall, and a fourth side wall and is continuous in the pipe axis direction, and the intake pipe line is a second side wall. Opening the first side wall so that the air-fuel mixture is introduced along the tangential direction of the inner surface of
The extension has a first side, a second side, a third side, and a fourth side that are continuous with the first side wall, the second side wall, the third side wall, and the fourth side wall, respectively. It has a rectangular cross section extending in the axial direction and has an edge that is inclined with respect to the pipe axis so as to gradually move away from the opening in the pipe axis direction as it moves from the second side to the fourth side. The engine intake device according to claim 1, wherein the intake device is formed by a peripheral wall and a bottom wall that closes an edge of the peripheral wall.
上記混合配管の筒壁は、第1側壁、第2側壁、第3側壁及び第4側壁を備えた略矩形断面形状で管路軸方向に連続する筒状でかつ上記吸気管路が第2側壁の内面の接線方向に沿って混合気が導入されるように第1側壁に開口し、
上記拡張部は、第1側壁、第3側壁及び第4側壁にそれぞれ連続する第1側部、第3側部、第4側部を有して管路軸方向に延在する断面コ字状で、第2側壁の端縁から第4側部側に移行するに従って開口部から管路軸方向に次第に離れるように管路軸に対して傾斜する端縁を有する周壁及び、第1側壁及び上記周壁の端縁を閉塞する底壁によって形成されたことを特徴とする請求項1に記載のエンジンの吸気装置。
The cylinder wall of the mixing pipe has a substantially rectangular cross-sectional shape having a first side wall, a second side wall, a third side wall, and a fourth side wall and is continuous in the pipe axis direction, and the intake pipe line is a second side wall. Opening the first side wall so that the air-fuel mixture is introduced along the tangential direction of the inner surface of
The extended portion has a first side portion, a third side portion, and a fourth side portion continuous to the first side wall, the third side wall, and the fourth side wall, respectively, and has a U-shaped cross section extending in the pipe axis direction. The peripheral wall having an edge inclined with respect to the pipe axis so as to gradually move away from the opening in the pipe axis direction as it moves from the edge of the second side wall to the fourth side, and the first side wall and the above 2. The engine intake device according to claim 1, wherein the engine intake device is formed by a bottom wall that closes an edge of the peripheral wall.
上記混合配管の筒壁は、第1側壁、第2側壁、第3側壁及び第4側壁を備えた略矩形断面形状で管路軸方向に連続する筒状でかつ上記吸気管路が第2側壁の内面の接線方向に沿って混合気が導入されるように第1側壁に開口し、
上記拡張部は、第1側壁の第4側壁側に設定された範囲、第3側壁、及び第3側壁の第4側壁側に設定された範囲にそれぞれ連続する第1側部、第3側部、第4側部が連続形成された断面略コ字状の周壁及び、該周壁の端縁及び周壁の両側縁間及び筒壁の間を閉塞する底壁によって形成されことを特徴とする請求項1に記載のエンジンの吸気装置。
The cylinder wall of the mixing pipe has a substantially rectangular cross-sectional shape having a first side wall, a second side wall, a third side wall, and a fourth side wall and is continuous in the pipe axis direction, and the intake pipe line is a second side wall. Opening the first side wall so that the air-fuel mixture is introduced along the tangential direction of the inner surface of
The extension portion includes a first side portion and a third side portion that are respectively continuous with a range set on the fourth side wall side of the first side wall, a third side wall, and a range set on the fourth side wall side of the third side wall. The fourth side portion is formed by a peripheral wall having a substantially U-shaped cross section formed continuously, and a bottom wall that closes between an edge of the peripheral wall, both side edges of the peripheral wall, and between the cylindrical walls. The engine intake device according to claim 1.
JP2008056156A 2008-03-06 2008-03-06 Engine intake system Expired - Fee Related JP5047842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008056156A JP5047842B2 (en) 2008-03-06 2008-03-06 Engine intake system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008056156A JP5047842B2 (en) 2008-03-06 2008-03-06 Engine intake system

Publications (2)

Publication Number Publication Date
JP2009209874A true JP2009209874A (en) 2009-09-17
JP5047842B2 JP5047842B2 (en) 2012-10-10

Family

ID=41183260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008056156A Expired - Fee Related JP5047842B2 (en) 2008-03-06 2008-03-06 Engine intake system

Country Status (1)

Country Link
JP (1) JP5047842B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073882A (en) * 1999-09-06 2001-03-21 Nissan Motor Co Ltd Exhaust gas recirculation device of internal-combustion engine
JP2004225670A (en) * 2003-01-27 2004-08-12 Toyota Industries Corp Intake device of engine
JP2004232617A (en) * 2003-01-31 2004-08-19 Toyota Industries Corp Engine intake device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073882A (en) * 1999-09-06 2001-03-21 Nissan Motor Co Ltd Exhaust gas recirculation device of internal-combustion engine
JP2004225670A (en) * 2003-01-27 2004-08-12 Toyota Industries Corp Intake device of engine
JP2004232617A (en) * 2003-01-31 2004-08-19 Toyota Industries Corp Engine intake device

Also Published As

Publication number Publication date
JP5047842B2 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
JP6434749B2 (en) Exhaust gas recirculation device and engine system including the exhaust gas recirculation device
JP5983770B2 (en) Intake device for internal combustion engine
US20090158717A1 (en) Exhaust gas purification device of internal combustion engine
EP2182189A1 (en) Exhaust system for internal combustion engine
CN102767411B (en) Mixing element
JP2009216074A (en) Exhaust emission control device, exhaust pipe for diesel engine
JP2014516392A (en) Turbine for exhaust gas turbocharger
JPS5932648B2 (en) Internal combustion engine intake passage structure
CN102444461A (en) Intake arrangement for combustion chamber
JP2008248746A (en) Muffler with exhaust emission control function
JP2011106359A (en) Urea reduction type scr device for internal combustion engine
CN103352774A (en) Gas fully-mixing structure and exhaust gas recycling system
JP5047842B2 (en) Engine intake system
JP6120333B2 (en) Exhaust gas purification device
JP6023151B2 (en) Fuel injection valve
JP6127740B2 (en) Surge tank
JPH11210563A (en) Exhaust gas recirculation system for engine
JP6304022B2 (en) Internal combustion engine
JP2016188582A (en) Connecting structure of egr piping, internal combustion engine, and egr gas flow-in method
KR102055547B1 (en) Amplifier of Engine Power
CN217300737U (en) Gas flow system for an engine
JP2009281333A (en) Exhaust manifold
JP2013036358A (en) Intake device of engine
JP2004232617A (en) Engine intake device
KR101920248B1 (en) Fuel Saving Device for Vehicle and Manufacturing Method Thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5047842

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees