JP2009209456A - Filter nonwoven fabric - Google Patents

Filter nonwoven fabric Download PDF

Info

Publication number
JP2009209456A
JP2009209456A JP2008050349A JP2008050349A JP2009209456A JP 2009209456 A JP2009209456 A JP 2009209456A JP 2008050349 A JP2008050349 A JP 2008050349A JP 2008050349 A JP2008050349 A JP 2008050349A JP 2009209456 A JP2009209456 A JP 2009209456A
Authority
JP
Japan
Prior art keywords
fiber
melting point
nonwoven fabric
polyester
fineness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008050349A
Other languages
Japanese (ja)
Other versions
JP5075679B2 (en
Inventor
Hiroki Yamanaka
浩樹 山中
Hiroyuki Nakajima
博幸 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Ltd
Original Assignee
Kureha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Ltd filed Critical Kureha Ltd
Priority to JP2008050349A priority Critical patent/JP5075679B2/en
Publication of JP2009209456A publication Critical patent/JP2009209456A/en
Application granted granted Critical
Publication of JP5075679B2 publication Critical patent/JP5075679B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Filtering Materials (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a filter nonwoven fabric which holds a filtration performance, has a high nerve without enlarging a basis mass, and has improved pleat forming processability. <P>SOLUTION: This nonwoven fabric is prepared by laminating a rough layer portion web, a middle layer portion web, and a tight layer portion web containing thermally adhesive staple conjugated fibers, respectively, processing the laminate with needles, heating the processed laminate to apply a thermal adhesive treatment to the laminate, and then processing the treated laminate with a binder. The nonwoven fabric has characteristics comprising a basis mass of 180 to 280 g/m<SP>2</SP>, a tensile elongation of 20 to 50%, an initial tensile elastic modulus of 1,500 to 3,000 N/5 cm/100%, and a nerve of 8.0 to 20.0 N/cm. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はフィルタ不織布、特に低目付で濾過性能,腰強度に優れ、加工性良好なフィルタ不織布に関するものである。   The present invention relates to a filter nonwoven fabric, and particularly to a filter nonwoven fabric having a low basis weight, excellent filtration performance and waist strength, and good workability.

従来、一体成形用フィルタにおいて、良好なフィルタ性能を有する多層構造フィルタが種々提案されている。(例えば特許文献1,2参照)例えば特許文献1では接着繊維と高融点繊維よりなる繊維で流体の流入側より流出側にかけて平均デニールが大から小になるように複数層積層し、ニードルパンチを施して一体とすると共に、流入側繊維層の構成繊維をデニールが4〜12d,空隙率95〜99%,流出側の繊維層の構成繊維を0.6〜3d、密度を0.07〜0.35g/ccとし、加熱して接着繊維を溶融させて被接着繊維と接着せしめたフィルタ不織布が提案されており、特許文献2には平均繊径が0.5〜6.0μm、嵩密度0.05〜0.50g/m2の極細不織布を積層した成形フィルターが提案されている。しかし、これらの不織布は平板から一体成型でプリーツ加工した場合、加工による破れや出来上がった製品のフィルタ性能が低減することが屡々見られる。 Conventionally, various multi-layer filters having good filter performance have been proposed for integral molding filters. (For example, refer to Patent Documents 1 and 2) For example, in Patent Document 1, a plurality of layers are laminated so that the average denier decreases from large to small from the fluid inflow side to the outflow side with fibers composed of adhesive fibers and high melting point fibers, and needle punches are formed. The denier is 4 to 12d, the porosity is 95 to 99%, the constituent fiber of the outflow side fiber layer is 0.6 to 3d, and the density is 0.07 to 0. A filter non-woven fabric has been proposed in which the adhesive fiber is melted by heating and bonded to the fiber to be bonded, and the average fiber diameter is 0.5 to 6.0 μm and the bulk density is 0. A molded filter in which ultrafine nonwoven fabrics of 0.05 to 0.50 g / m 2 are laminated has been proposed. However, when these non-woven fabrics are pleated by integral molding from a flat plate, it is often seen that processing breaks and the filter performance of the finished product are reduced.

ところで、一般にフィルタ製品の濾過能力を上げるためにはフィルタ容積を大きくすることがなされている。このフィルタ容積は濾過面積と厚さが関係するが、濾過面積を大きくする方法としてフィルタの長さを多くするプリーツ(襞)加工が知られている。(例えば特許文献3参照)
プリーツ加工はより大きな濾過面積を得るためには出来るだけプリーツの数を多くすればよいが、平板の特性によって同じプリーツ数でもヒダ接触が生じ、濾過能力が低下することが起こる。これはフィルタ自身の構造、厚さ、硬さが関係する。平板によっては成型加工が劣るものがあったり、成型加工の過程でフィルタの構造が変わったり、加工後の形態(プリーツ加工等)によってフィルタ性能が充分に発揮出来なくなったりすることが生じるためである。実際に製品についてフィルタ性能を評価した場合、プリーツ同士がヒダ接触して実濾過面積が減少するためにフィルタ性能が劣ることが観察されている。
By the way, generally, in order to increase the filtration capacity of the filter product, the filter volume is increased. Although the filter volume is related to the filtration area and thickness, pleat processing for increasing the filter length is known as a method for increasing the filtration area. (For example, see Patent Document 3)
In the pleating process, the number of pleats needs to be increased as much as possible in order to obtain a larger filtration area. However, due to the characteristics of the flat plate, the pleat contact occurs even at the same pleat number, and the filtration ability is lowered. This is related to the structure, thickness and hardness of the filter itself. This is because some flat plates may be inferior in molding process, the filter structure may change during the molding process, or the filter performance may not be fully exhibited depending on the form after processing (pleating, etc.). . When the filter performance is actually evaluated for the product, it has been observed that the filter performance is inferior because the pleats contact each other and the actual filtration area decreases.

フィルタ性能は通常、目付質量が大きい程、剛性は大きく、通気抵抗は高くなるが、フィルタ性能は良い傾向にある。唯、これまでの結果から目付質量範囲が180〜280g/m2では剛性が低く、その結果、腰強度が低くなる。また、フィルタ性能としては通気抵抗を低くすると濾過性能は低下する問題がある。
特開平10−180023号公報 特開平4−180808号公報 特開平9−173747号公報
In general, the larger the mass per unit area, the greater the rigidity and the higher the ventilation resistance, but the filter performance tends to be good. However, from the results so far, in the mass range of 180 to 280 g / m 2 , the rigidity is low, and as a result, the waist strength is low. Further, as a filter performance, there is a problem that if the ventilation resistance is lowered, the filtration performance is lowered.
Japanese Patent Laid-Open No. 10-180023 JP-A-4-180808 JP-A-9-173747

本発明は上記の如き目付質量,腰強度,加工性等の問題について着目し、特に濾過性能を保持しつつ目付質量を大きくすることなくプリーツ加工性を良好ならしめる構造,特性を見出すことにより効果的なフィルタ不織布を提供することを目的とするものである。   The present invention pays attention to the problems such as the weight per unit area, waist strength, and processability as described above, and is particularly effective by finding the structure and characteristics that can improve the pleat processability without increasing the mass per unit area while maintaining the filtration performance. It aims at providing a typical filter nonwoven fabric.

本発明者らは上記目的を達成するたるためフィルタ不織布の目付質量範囲を180〜280g/m2の範囲としてその加工性評価とフィルタ性能評価を試みた。その結果、
(1)一般に目付が低くなると濾過性能と腰強度が低下する傾向がある。
(2)不織布の成型加工においては低目付になると加工時に破れを生じ易い。目付質量が低下すると濾過性能と腰強度に必要な繊維本数が少なくなるためで、これは繊維間の交点が有効に働きにくくなるためで、例えば交点を多くするために熱接着性短繊維を多くすると、腰強度には有効であるが、不織布の嵩高性は低下し、濾過性能は逆に悪くなる。
In order to achieve the above object, the present inventors tried to evaluate the workability and the filter performance by setting the basis weight range of the filter nonwoven fabric to be in the range of 180 to 280 g / m 2 . as a result,
(1) Generally, when the basis weight is lowered, the filtration performance and the waist strength tend to be lowered.
(2) When molding nonwoven fabrics, if the basis weight is low, tearing tends to occur during processing. If the mass per unit area decreases, the number of fibers required for filtration performance and waist strength decreases. This is because the intersections between the fibers become difficult to work effectively. For example, in order to increase the number of intersections, more heat-adhesive short fibers are used. Then, although it is effective for waist strength, the bulkiness of the nonwoven fabric is lowered, and the filtration performance is worsened.

また、繊維間の交点が少なくなると、成型時に不織布の変形歪の大きな場所が、例えば襞部の側面と山部の歪の大きな部位が破壊され穴が開くようになる。これは特に熱接着性短繊維の少ないところに起こり易い。このために嵩高性を持たせて交点を安定にするために熱接着後のバインダー接着は有効である。また、成型加工では不織布の伸度が関係することが解った。即ち、不織布において濾過性能は主に粗層部と密層部が、そして中層部は主に腰強力に関係し不足の分をバインダー加工で繊維交点を接着し三次元編目構造となして不織布の所定以上の伸度を有することが有効であることを知見した。   Also, when the number of intersections between the fibers decreases, a place where the deformation strain of the nonwoven fabric is large at the time of molding, for example, a side portion of the heel portion and a portion of the strain portion where the strain is large is broken and a hole is opened. This is particularly likely to occur where there are few heat-bondable short fibers. For this reason, binder bonding after heat bonding is effective in order to provide bulkiness and stabilize the intersection. Further, it has been found that the elongation of the nonwoven fabric is related to the molding process. That is, the filtration performance of the nonwoven fabric is mainly related to the coarse layer portion and the dense layer portion, and the middle layer portion is mainly related to the low back strength. It has been found that it is effective to have an elongation greater than or equal to a predetermined value.

即ち、本発明の特徴とするところは、上記知見にもとづき熱接着性複合短繊維を含む粗層部,中層部,密層部それぞれのウエブを積層してニードル加工し、引き続き加熱して熱接着処理した後、バインダー加工してなる不織布であって、該不織布の目付質量が180〜280g/m2で、引張伸度が20〜50%、初期引張弾性率が1500〜3000N/5cm/100%、腰強度が8.0〜20.0N/cmの特性を有する点にある。 That is, the feature of the present invention is that, based on the above knowledge, each of the coarse layer portion, the middle layer portion, and the dense layer portion containing the heat-adhesive composite short fibers is laminated and needle-processed, followed by heating and thermal bonding. A non-woven fabric obtained by processing a binder after the treatment, wherein the non-woven fabric has a basis weight of 180 to 280 g / m 2 , a tensile elongation of 20 to 50%, and an initial tensile elastic modulus of 1500 to 3000 N / 5 cm / 100%. The waist strength has a characteristic of 8.0 to 20.0 N / cm.

ここで前記粗層部は高融点短繊維と熱接着性複合短繊維の混繊からなり、混繊比率が30/70〜50/50で、該高融点短繊維が高融点樹脂で、熱接着性複合短繊維がポリエステルの低融点樹脂と高融点樹脂の芯鞘複合であって、該各短繊維の繊度が6.0〜20.0デシテックス(dtex)であることが好ましく、前記中層部は熱接着性複合短繊維100重量%からなり、目付質量が50〜90g/m2で、該短繊維の繊度が1.0〜10.0デシテックス(dtex)の範囲であることが好ましい。 Here, the coarse layer portion is composed of a mixed fiber of a high melting point short fiber and a heat-bonding composite short fiber, the fiber mixing ratio is 30/70 to 50/50, the high melting point short fiber is a high melting point resin, and is thermally bonded. The composite short fiber is a core / sheath composite of a low melting point resin of polyester and a high melting point resin, and the fineness of each short fiber is preferably 6.0 to 20.0 dtex, and the middle layer portion is It is preferably composed of 100% by weight of the heat-adhesive composite short fiber, the basis weight is 50 to 90 g / m 2 , and the fineness of the short fiber is preferably in the range of 1.0 to 10.0 dtex.

また、前記密層部は高融点短繊維と熱接着性複合短繊維の混繊からなり、混繊比率が30/70〜50/50で、該短繊維の繊度が0.8〜6.0デシテックス(dtex)の範囲であることが好ましく、前記バインダーの付着量は15〜30g/m2であることが好適である。 The dense layer portion is composed of a mixture of high melting point short fibers and heat-bondable composite short fibers, the fiber mixture ratio is 30/70 to 50/50, and the fineness of the short fibers is 0.8 to 6.0. It is preferably in the range of decitex (dtex), and the adhesion amount of the binder is preferably 15 to 30 g / m 2 .

本発明不織布は上述した構成と、特性を具備することにより、濾過性能は主に粗層部と密層部が、また腰強力は主に中層部が関係して、比較的低目付であっても腰強力を有して襞接触を起こさないプリーツ加工が可能となり、濾過面積が大きく、濾過能力を充分に得ることができる効果を有する。   The nonwoven fabric of the present invention has the above-described configuration and characteristics, so that the filtration performance is mainly related to the coarse layer portion and the dense layer portion, and the waist strength is mainly related to the middle layer portion. The pleat processing which has low waist strength and does not cause wrinkle contact is possible, has a large filtration area, and has an effect of sufficiently obtaining filtration ability.

以下、更に本発明不織布の具体的態様について詳述する。本発明は前述の如く先ず熱接着性複合短繊維を含む粗層,中層,密層の異なる各ウエブを積層してニードル加工し、引き続き加熱して熱接着処理した後、バインダー加工してなる不織布により構成される。   Hereinafter, the specific aspect of this invention nonwoven fabric is explained in full detail. In the present invention, as described above, a nonwoven fabric obtained by first laminating each of webs having different layers, middle layers, and dense layers containing heat-adhesive composite short fibers, needle processing, subsequently heating and heat bonding treatment, and then binder processing. Consists of.

ここで、不織布を構成する各層としては、熱接着性複合短繊維を含む繊維層であり、一部に高融点短繊維が混繊される。混繊される高融点短繊維の融点は、高融点短繊維に用いられる高融点樹脂あるいはそれと同等の融点を有することが好ましく、具体的にはポリエステル樹脂,ポリエチレン樹脂,ポリプロピレン樹脂,ポリアミド系樹脂の高融点成分繊維が挙げられる。   Here, as each layer which comprises a nonwoven fabric, it is a fiber layer containing a heat bondable composite staple fiber, and a high melting point staple fiber is mixed in part. The melting point of the high melting point short fiber to be mixed is preferably a high melting point resin used for the high melting point short fiber or a melting point equivalent thereto, specifically, polyester resin, polyethylene resin, polypropylene resin, polyamide resin Examples include high-melting component fibers.

一方、熱接着性複合短繊維は芯鞘型が好ましく、サイドバイサイド型は接着面が反面となるので好ましくない。複合繊維を構成する高融点成分の融点は、低融点成分の融点より50℃以上高いこと、また、成分の融点が100℃〜180℃の範囲にあることが好ましい。高融点成分の融点が低融点成分の融点より50℃未満であると単繊維間の接着時に高融点繊維側も軟化して所望のフィルタを得ることができない。また、低融点成分の融点が100℃未満であると繊維間の接着を実施する処理条件が難しく、耐熱性の点から好ましくなく、低融点成分の融点が180℃を超えると高融点繊維の熱特性に影響し、接着を実施することでフィルタ特性が変動するので好ましくない。   On the other hand, the heat-bondable composite short fiber is preferably a core-sheath type, and the side-by-side type is not preferable because the bonding surface is opposite. The melting point of the high melting point component constituting the composite fiber is preferably higher by 50 ° C. than the melting point of the low melting point component, and the melting point of the component is preferably in the range of 100 ° C. to 180 ° C. When the melting point of the high melting point component is less than 50 ° C. than the melting point of the low melting point component, the high melting point fiber side is also softened during bonding between the single fibers, and a desired filter cannot be obtained. Also, if the melting point of the low melting point component is less than 100 ° C., the processing conditions for carrying out adhesion between the fibers are difficult, which is not preferable from the viewpoint of heat resistance, and if the melting point of the low melting point component exceeds 180 ° C., the heat of the high melting point fiber It affects the characteristics and is not preferable because the filter characteristics fluctuate by performing bonding.

熱融着性複合繊維を構成するポリマーは、例えば、ポリエステル系樹脂,ポリエチレン系樹脂,ポリプロピレン系樹脂,ポリアミド系樹脂の何れかの熱可塑性樹脂の高融点成分と低融点成分からなる。具体例としては、高融点ポリエステル繊維(融点250℃〜270℃程度)と低融点ポリエステル繊維(融点100℃〜200℃程度)の複合繊維、同様な融点のエステル/ナイロン複合繊維,ポリエステル/ポリエチレン複合繊維、ポリプロピレン/ポリエチレン複合繊維などが挙げられ、特に高融点ポリエステルと、低融点ポリエステルとの複合繊維は最も実用的である。   The polymer constituting the heat-fusible conjugate fiber is composed of, for example, a high melting point component and a low melting point component of a thermoplastic resin of any one of a polyester resin, a polyethylene resin, a polypropylene resin, and a polyamide resin. Specific examples include composite fibers of high-melting polyester fibers (melting point of about 250 ° C. to 270 ° C.) and low-melting polyester fibers (melting point of about 100 ° C. to 200 ° C.), similar melting point ester / nylon composite fibers, polyester / polyethylene composites. Examples thereof include fibers and polypropylene / polyethylene composite fibers, and in particular, composite fibers of high-melting polyester and low-melting polyester are most practical.

そして、不織布を構成する各層において、粗層部は主に濾過性能に関係する。構成は高融点短繊維と熱接着性複合短繊維の混繊からなり、混率比率が30/70〜50/50で、高融点短繊維が高融点樹脂で、熱接着性複合短繊維がポリエステルの低融点樹脂と高融点樹脂の芯鞘複合で、短繊維の繊度が6.0〜20.0デシテックス(dtex)の範囲が好ましい。   And in each layer which comprises a nonwoven fabric, a coarse layer part is mainly related to filtration performance. The composition is composed of a mixture of high melting point short fibers and heat-adhesive composite short fibers, with a mixture ratio of 30/70 to 50/50, the high melting point short fibers being a high melting point resin, and the heat adhesive composite short fibers being polyester. A core-sheath composite of a low-melting resin and a high-melting resin, and the fineness of the short fibers is preferably in the range of 6.0 to 20.0 dtex.

この粗層部を構成する高融点短繊維と熱接着性複合短繊維の混繊比率において、高融点短繊維が30未満では濾過性能を発揮する嵩高性に乏しくなり、50を超えると接着繊維との交点が少なくなり嵩高になり過ぎて、濾過性能にはよいが、腰強度の核となる量が少なくなるので好ましくない。熱融着繊維複合繊維の繊度は6.0〜20.0dtex(dtex)が効果的で、繊度が6.0デシテックス未満であると濾過性能を有する充分な嵩高性のあるフィルタを得ることが難しい。また、繊度が20.0デシテックスを超えると繊維本数が減少し、繊維間接着点も減少して嵩高性は得られるが、所望の濾過性能を有するフィルタを得ることが難しい。   When the high melting point short fiber is less than 30 in the mixed fiber ratio of the high melting point short fiber and the heat-adhesive composite short fiber constituting the coarse layer portion, the bulkiness that exhibits filtration performance is poor, and when it exceeds 50, However, it is not preferable because the amount of the core of waist strength is reduced. The fineness of the heat-fusible fiber composite fiber is effectively 6.0 to 20.0 dtex (dtex), and if the fineness is less than 6.0 decitex, it is difficult to obtain a sufficiently bulky filter having filtration performance. . In addition, when the fineness exceeds 20.0 dtex, the number of fibers is reduced and the inter-fiber adhesion point is reduced to obtain bulkiness, but it is difficult to obtain a filter having desired filtration performance.

中層部は主に腰強度に関係する。構成は熱接着性複合短繊維100重量%がよく、目付質量は50〜90g/m2で、短繊維の繊度が1.0〜10.0デシテックス(dtex)の範囲がよい。この中層部の構成は高融点短繊維を僅かに含まれてもよいが、腰強度に寄与する繊維間の交点が少なくなるので混繊量は考慮する必要がある。目付質量は50〜90g/m2がよく、50g/m2未満であると、腰強度に寄与する量が少なくなり濾過性能の効果が出にくい。90g/m2を超えると、腰強度には十分であるが、濾過性能に関係する他の粗層,密層の量が少なくなり、濾過性能の効果が出にくいので好ましくない。 The middle layer is mainly related to waist strength. The composition is preferably 100% by weight of heat-adhesive composite short fibers, the weight per unit area is 50 to 90 g / m 2 , and the fineness of the short fibers is preferably in the range of 1.0 to 10.0 dtex. The middle layer portion may contain a few high melting point short fibers, but the number of intersections between the fibers contributing to the waist strength is reduced, so the amount of fiber blending needs to be considered. Basis weight mass 50~90g / m 2 C., is less than 50 g / m 2, hardly out the effect of filtration performance becomes less weight contributes to lower back strength. If it exceeds 90 g / m 2 , the waist strength is sufficient, but the amount of other coarse layers and dense layers related to the filtration performance is reduced, and the effect of the filtration performance is hardly obtained, which is not preferable.

この中層部における短繊維の繊度は1.0〜10.0デシテックス(dtex)の範囲が良い。1.0デシテックス未満であると同じ目付質量では繊維量が多いので繊維間の交点にはよいが短繊維の繊度が小さいために腰強度は弱くなるので好ましくない。一方、10.0デシテックス(dtex)を超えると繊維間の交点の量が少なくなり腰強度が低下するようになるので好ましくない。   The fineness of the short fibers in the middle layer is preferably in the range of 1.0 to 10.0 decitex (dtex). If it is less than 1.0 dtex, the amount of fiber is large at the same basis weight, so it is good for the intersection between the fibers, but it is not preferable because the low strength of the short fiber is low and the waist strength becomes weak. On the other hand, if it exceeds 10.0 decitex (dtex), the amount of intersections between fibers is reduced, and the waist strength is lowered.

密層部は粗層部と同様に主に濾過性能に関係する。構成は高融点短繊維と熱接着性複合短繊維の混繊からなり、混繊比率が30/70〜50/50で、高融点短繊維が高融点樹脂で、熱接着性複合短繊維がポリエステルの低融点樹脂と芯鞘複合で、短繊維の繊度が0.8〜6.0デシテックス(dtex)の範囲が好ましい。   The dense layer portion is mainly related to the filtration performance like the coarse layer portion. The composition consists of a mixture of high melting point short fibers and heat-bonding composite short fibers, the fiber mixing ratio is 30 / 70-50 / 50, the high melting point short fibers are high melting point resins, and the heat bonding composite short fibers are polyester. A low-melting resin and a core / sheath composite, and the fineness of the short fibers is preferably in the range of 0.8 to 6.0 dtex.

密層部を構成する高融点短繊維と熱接着性複合短繊維の混繊比率において、高融点短繊維が30未満では濾過性能を発揮する嵩高性に乏しくなり、50を超えると接着繊維との交点が少なくなり、腰強度の核となる量が少なくなるので好ましくない。熱融着性複合繊維の繊度は0.8〜6.0デシテックス(dtex)が好ましく、繊度は0.8デシテックス未満であると繊度が細かすぎて濾過性能能力が低下するので好ましくない。逆に繊度が6.0デシテックスを超えると繊維本数が減少し、密層部が働く濾過性能が低下する。   In the mixed fiber ratio of the high melting point short fiber and the heat-adhesive composite short fiber constituting the dense layer portion, if the high melting point short fiber is less than 30, the bulkiness that exhibits filtration performance is poor, and if it exceeds 50, This is not preferable because the number of intersections is reduced and the amount of the core of waist strength is reduced. The fineness of the heat-fusible conjugate fiber is preferably 0.8 to 6.0 decitex (dtex), and if the fineness is less than 0.8 decitex, the fineness is too fine and the filtration performance is reduced. On the other hand, when the fineness exceeds 6.0 dtex, the number of fibers decreases, and the filtration performance at which the dense layer portion works decreases.

本発明は上記粗層部,中層部,密層部を積層し、ニードルパンチ加工により交絡一体化し、引き続き加熱して熱接着処理することによって構成繊維間を接着した後、バインダー加工することによって不織布に形成する。ニードル加工は通常の打ち込み本数でよく、略30〜80本/cm2程度、好ましくは45〜55本/cm2である。しかしこれに限らないことは勿論である。 The present invention is a non-woven fabric obtained by laminating the rough layer portion, the middle layer portion, and the dense layer portion, confounding and integrating by needle punching, and subsequently bonding the constituent fibers by heat and heat bonding treatment, followed by binder processing. To form. Needle processing may be performed with a normal driving number, which is about 30 to 80 / cm 2 , preferably 45 to 55 / cm 2 . However, it is of course not limited to this.

また、加熱は通常、ピンテンター熱処理機で40〜50秒間熱処理し、密層面に表面温度が200℃の熱ロールを接触させ粗層面に常温程度のロールを接触両者のクリアランスを略2.5mm位にしてカレンダー処理し、冷却して不織布に巻き取る。そして、この巻き取った不織布に対し、バインダー加工を施すことによって最終的に構成繊維間の熱融着繊維の未接着繊維間の接着を十分にするが、このバインダー加工はアクリル酸エステル系バインダーの使用が一般的であるが、酢酸ビニル系でも差し支えない。付着量は15〜30g/m2の範囲がよく、15g/m2未満であると繊維間の熱融着繊維の未接着繊維間の接着に乏しく、腰強度に寄与する度合いが低くなるので好ましくないことは前述の通りである。
30g/m2を超えると繊維間の熱融着繊維の未接着繊維間の接着は十分であるが、濾過性能の低下を招くので好ましくない。
Also, the heating is usually performed for 40 to 50 seconds with a pin tenter heat treatment machine, a hot roll having a surface temperature of 200 ° C. is brought into contact with the dense layer surface, and a roll at room temperature is brought into contact with the rough layer surface, and the clearance between both is set to about 2.5 mm. And calendered, cooled and wound on a non-woven fabric. Then, the wound nonwoven fabric is finally subjected to binder processing to finally ensure sufficient adhesion between the non-bonded fibers of the heat-bonded fibers between the constituent fibers. Although it is generally used, vinyl acetate may be used. Deposition amount may in the range of 15 to 30 g / m 2, poor adhesion between unbonded fibers heat fusion fiber between the fibers is less than 15g / m 2, since the degree contribute to the waist strength is lowered preferably As described above, it is not present.
If it exceeds 30 g / m 2 , the adhesion between unbonded fibers of the heat-sealed fibers between the fibers is sufficient, but it is not preferable because the filtration performance is deteriorated.

かくして形成された上記不織布において、本発明は特に目付質量が180〜280g/m2の範囲にある不織布の引張伸度が20〜50%であり、初期引張弾性率が1500〜3000N/5cm/100%で、腰強度が8.0〜20.0N/cmである特性を有することによって達成される。引張伸度は成形加工において重要な要素であり、上記20〜50%の範囲が好ましく、20%未満であれば襞部の側面と山の部分の歪の大きな部位が破壊され、穴が開くようになるので好ましくない。また伸度が50%を超えると成形性には良いが過剰性能となるので好ましくない。 In the nonwoven fabric thus formed, the present invention has a tensile elongation of 20 to 50% and an initial tensile elastic modulus of 1500 to 3000 N / 5 cm / 100, particularly in a nonwoven fabric having a basis weight of 180 to 280 g / m 2. %, And having a characteristic that the waist strength is 8.0 to 20.0 N / cm. Tensile elongation is an important factor in the molding process, and is preferably in the range of 20 to 50%. If it is less than 20%, a portion having a large strain on the side surface of the buttock and the mountain portion is destroyed and a hole is opened. This is not preferable. On the other hand, if the elongation exceeds 50%, the moldability is good, but excessive performance is not preferable.

初期引張弾性率は1500〜3000N/5cm/100%の範囲がよく、1500N/5cm/100%未満ではプリーツ加工後の襞の形状、不織布の張りが弱くなる。逆に3000N/5cm/100%を超えると不織布の状態がばりばりになっており、プリーツ加工時の襞の折り目部分の形状が破壊されてしまうので好ましくない。また腰強度は8.0〜20.0N/cmが好ましく、8.0N/cm未満では初期引張弾性率が所定の範囲であっても不織布は軟らかいものとなり、フィルタの濾過状態で微量の風圧でも容易に襞接触を起こすので好ましくない。一方、腰強度が20.0N/cmを超えると、初期引張弾性率が所定の範囲にあってもフィルタの濾過性能が低下する。従って、前記特性を具備することは本発明の重要な特徴である。   The initial tensile elastic modulus is preferably in the range of 1500 to 3000 N / 5 cm / 100%, and if it is less than 1500 N / 5 cm / 100%, the shape of the ridge after pleating and the tension of the nonwoven fabric become weak. On the other hand, if it exceeds 3000 N / 5 cm / 100%, the state of the nonwoven fabric is scattered, and the shape of the crease part of the ridge during pleating is destroyed, which is not preferable. The waist strength is preferably 8.0 to 20.0 N / cm, and if it is less than 8.0 N / cm, the nonwoven fabric is soft even if the initial tensile elastic modulus is within a predetermined range. This is not preferable because it easily causes wrinkle contact. On the other hand, when the waist strength exceeds 20.0 N / cm, the filtration performance of the filter is lowered even if the initial tensile elastic modulus is within a predetermined range. Therefore, having the above characteristics is an important feature of the present invention.

以下、更に本発明実施例について比較例と共に説明する。   Examples of the present invention will be described below together with comparative examples.

繊度16.7デシテックス、繊維長51mmのポリエステル繊維(融点:260℃)30重量%と、繊度2.2デシテックス、繊維長51mmのポリエステル繊維20重量%と、繊度4.4デシテックス、繊維長51mm、ポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:110℃)50重量%の目付質量81g/m2の粗層用繊維層と、繊度2.2デシテックス、繊維長51mmのポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:110℃)100重量%の目付質量63g/m2の中層用繊維層と、繊度0.8デシテックス、繊維長51mmのポリエステル繊維(融点:260℃)50重量%と、繊度2.2デシテックス、繊維長51mmのポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:110℃)50重量%とからなる目付質量63g/m2の密層用繊維層とを積層した後、ニードルパンチ処理を施し、200℃のピンテンター式熱処理機で47秒間熱処理し、密層面を表面温度が200℃の熱ロールに接触させ、粗層面側は常温程度の温度であるロールで、両者のロール間クリアランスは2.5mmにしてカレンダー処理し、冷却し不織布を巻き取った。引き続き不織布をアクリル酸エステルバインダーに浸漬して150℃で乾燥し付与両25g/m2を付与した。得られた不織布は目付質量231g/m2、厚さ4.9mmの不織布であった。 30% by weight of polyester fiber (melting point: 260 ° C.) with a fineness of 16.7 decitex and a fiber length of 51 mm, 20% by weight of polyester fiber with a fineness of 2.2 decitex and a fiber length of 51 mm, a fineness of 4.4 decitex, a fiber length of 51 mm, Polyester / low-melting polyester composite fiber (melting point of low-melting polyester: 110 ° C.) 50% by weight of coarse layer fiber layer with a basis weight of 81 g / m 2 , a fineness of 2.2 dtex and a fiber length of 51 mm polyester / low-melting polyester Composite fiber (melting point of low-melting polyester: 110 ° C.) 100% by weight per unit mass of 63 g / m 2 middle layer fiber layer, polyester fiber having a fineness of 0.8 dtex and a fiber length of 51 mm (melting point: 260 ° C.) 50% by weight And a polyester / low-melting polyester composite fiber having a fineness of 2.2 decitex and a fiber length of 51 mm ( After laminating a dense fiber layer with a mass per unit area of 63 g / m 2 consisting of 50% by weight (melting point of low-melting polyester: 110 ° C.), needle punching is performed, and heat treatment is performed for 47 seconds with a pin tenter heat treatment machine at 200 ° C. Then, the dense layer surface is brought into contact with a hot roll having a surface temperature of 200 ° C., the rough layer surface side is a roll having a temperature of about room temperature, the clearance between the two rolls is calendered, cooled, and the nonwoven fabric is wound. I took it. Subsequently, the nonwoven fabric was dipped in an acrylate binder and dried at 150 ° C. to give both 25 g / m 2 . The obtained nonwoven fabric was a nonwoven fabric having a basis weight of 231 g / m 2 and a thickness of 4.9 mm.

繊度16.7デシテックス、繊維長51mmのポリエステル繊維(融点:260℃)30重量%と、繊度2.2デシテックス、繊維長51mmのポリエステル繊維20重量%と、繊度4.4デシテックス、繊維長51mm、ポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:110℃)50重量%の目付質量81g/m2の粗層用繊維層と、繊度2.2デシテックス、繊維長51mmのポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:110℃)100重量%の目付質量63g/m2の中層用繊維層と、繊度0.8デシテックス、繊維長51mmのポリエステル繊維(融点:260℃)50重量%と、繊度2.2デシテックス、繊維長51mmのポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:110℃)50重量%とからなる目付質量%63g/m2の密層用繊維層とを積層した後、ニードルパンチ処理を施し、200℃のピンテンター式熱処理機で47秒間熱処理し、密層面に表面温度が200℃の熱ロールを接触させ、粗層面側は常温程度の温度であるロールで、両者のロール間クリアランスは2.5mmにしてカレンダー処理し、冷却し不織布を巻き取った。引き続き不織布をアクリル酸エステルバインダーに浸漬して150℃で乾燥し付与量で23g/m2を付与した。得られた不織布は目付質量261g/m2、厚さ5.2mmの不織布であった。 30% by weight of polyester fiber (melting point: 260 ° C.) with a fineness of 16.7 decitex and a fiber length of 51 mm, 20% by weight of polyester fiber with a fineness of 2.2 decitex and a fiber length of 51 mm, a fineness of 4.4 decitex, a fiber length of 51 mm, Polyester / low-melting polyester composite fiber (melting point of low-melting polyester: 110 ° C.) 50% by weight of coarse layer fiber layer with a basis weight of 81 g / m 2 , a fineness of 2.2 dtex and a fiber length of 51 mm polyester / low-melting polyester Composite fiber (melting point of low-melting polyester: 110 ° C.) 100% by weight per unit mass of 63 g / m 2 middle layer fiber layer, polyester fiber having a fineness of 0.8 dtex and a fiber length of 51 mm (melting point: 260 ° C.) 50% by weight And a polyester / low-melting polyester composite fiber having a fineness of 2.2 decitex and a fiber length of 51 mm ( After laminating a dense fiber layer having a basis weight of 63 g / m 2 consisting of 50% by weight (melting point of low-melting polyester: 110 ° C.), needle punching is performed, and a pin tenter heat treatment machine at 200 ° C. for 47 seconds. Heat treatment is performed, a hot roll having a surface temperature of 200 ° C. is brought into contact with the dense layer surface, a rough layer surface side is a roll having a temperature of about room temperature, a clearance between both rolls is calendered to 2.5 mm, and the non-woven fabric is cooled. Winded up. Subsequently, the nonwoven fabric was immersed in an acrylate binder and dried at 150 ° C. to give 23 g / m 2 in an applied amount. The obtained nonwoven fabric was a nonwoven fabric having a mass per unit area of 261 g / m 2 and a thickness of 5.2 mm.

繊度16.7デシテックス、繊維長51mmのポリエステル繊維(融点:260℃)30重量%と、繊度2.2デシテックス、繊維長51mmのポリエステル繊維20重量%と、繊度4.4デシテックス、繊維長51mm、ポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:110℃)50重量%の目付質量69g/m2の粗層用繊維層と、繊度2.2デシテックス、繊維長51mmのポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:110℃)100重量%の目付質量60g/m2の中層用繊維層と、繊度0.8デシテックス、繊維長51mmのポリエステル繊維(融点:260℃)50重量%と、繊度2.2デシテックス、繊維長51mmのポリエステル繊維(融点:260℃)50重量%と、繊度2.2デシテックス、繊維長51mmのポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:110℃)50重量%とからなる目付質量50g/m2の密層用繊維層とを積層した後、ニードルパンチ処理を施し、200℃のピンテンター式熱処理機で47秒間熱処理し、密層面に表面温度が200℃の熱ロールを接触させ、粗層面側は常温程度の温度であるロールで、両者のロール間クリアランスは2.5mmにしてカレンダー処理し、冷却し不織布を巻き取った。引き続き不織布をアクリル酸エステルバインダーに浸漬して150℃で乾燥し付与量で20g/m2を付与した。得られた不織布は目付質量199g/m2、厚さ4.9mmの不織布であった。 30% by weight of polyester fiber (melting point: 260 ° C.) with a fineness of 16.7 decitex and a fiber length of 51 mm, 20% by weight of polyester fiber with a fineness of 2.2 decitex and a fiber length of 51 mm, a fineness of 4.4 decitex, a fiber length of 51 mm, Polyester / low melting point polyester composite fiber (melting point of low melting point polyester: 110 ° C.) 50% by weight of coarse layer fiber layer having a basis weight of 69 g / m 2 , a fineness of 2.2 dtex, and a fiber length of 51 mm polyester / low melting point polyester Composite fiber (melting point of low-melting polyester: 110 ° C.) 100% by weight Fiber mass for middle layer of 60 g / m 2 and polyester fiber (melting point: 260 ° C.) 50% by weight with fineness of 0.8 dtex and fiber length of 51 mm And 50 weight of polyester fiber (melting point: 260 ° C.) having a fineness of 2.2 decitex and a fiber length of 51 mm. % And a fiber layer for a dense layer having a basis weight of 50 g / m 2 and a polyester / low melting point polyester composite fiber having a fineness of 2.2 dtex and a fiber length of 51 mm (melting point of low melting point polyester: 110 ° C.) After lamination, needle punching is performed, and heat treatment is performed for 47 seconds with a 200 ° C. pin tenter heat treatment machine, a hot roll having a surface temperature of 200 ° C. is brought into contact with the dense layer surface, and the rough layer surface side is a roll having a temperature of about room temperature. The clearance between the rolls was set to 2.5 mm, calendared, cooled, and the nonwoven fabric was wound up. Subsequently, the nonwoven fabric was immersed in an acrylate binder and dried at 150 ° C. to give 20 g / m 2 in an applied amount. The obtained nonwoven fabric was a nonwoven fabric having a basis weight of 199 g / m 2 and a thickness of 4.9 mm.

繊度16.7デシテックス、繊維長51mmのポリエステル繊維(融点:260℃)30重量%と、繊度2.2デシテックス、繊維長51mmのポリエステル繊維20重量%と、繊度4.4デシテックス、繊維長51mm、ポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:110℃)50重量%の目付質量100g/m2の粗層用繊維層と、繊度2.2デシテックス、繊維長51mmのポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:110℃)100重量%の目付質量88g/m2の中層用繊維層と、繊度0.8デシテックス、繊維長51mmのポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:110℃)60重量%とからなる目付質量90g/m2の密層用繊維層とを積層した後、ニードルパンチ処理を施し、200℃のピンテンター式熱処理機で47秒間熱処理し、密層面に表面温度が200℃の熱ロールを接触させ、粗層面側は常温程度の温度であるロールで、両者のロール間クリアランスは2.5mmにしてカレンダー処理し、冷却し不織布を巻き取った。引き続き不織布をアクリル酸エステルバインダーに浸漬して150℃で乾燥し付与量で20g/m2を付与した。得られた不織布は目付質量278g/m2、厚さ5.4mmの不織布を得た。 30% by weight of polyester fiber (melting point: 260 ° C.) with a fineness of 16.7 decitex and a fiber length of 51 mm, 20% by weight of polyester fiber with a fineness of 2.2 decitex and a fiber length of 51 mm, a fineness of 4.4 decitex, a fiber length of 51 mm, Polyester / low-melting polyester composite fiber (melting point of low-melting polyester: 110 ° C.) 50% by weight of coarse layer fiber layer having a basis weight of 100 g / m 2 , a fineness of 2.2 dtex and a fiber length of 51 mm polyester / low-melting polyester Composite fiber (melting point of low-melting polyester: 110 ° C.) 100% by weight fiber weight for middle layer of 88 g / m 2 , polyester / low-melting polyester composite fiber (low-melting polyester) with fineness of 0.8 dtex and fiber length of 51 mm melting point: for 110 ° C.) 60 wt% dense layer having a basis weight of mass 90 g / m 2 consisting of fiber After laminating the layers, needle punching is performed, heat treatment is performed for 47 seconds with a 200 ° C. pin tenter heat treatment machine, a hot roll having a surface temperature of 200 ° C. is brought into contact with the dense layer surface, and the rough layer surface side is at a room temperature. With a certain roll, the clearance between both rolls was set to 2.5 mm, calendared, cooled, and the nonwoven fabric was wound up. Subsequently, the nonwoven fabric was immersed in an acrylate binder and dried at 150 ° C. to give 20 g / m 2 in an applied amount. The obtained nonwoven fabric obtained a nonwoven fabric having a mass per unit area of 278 g / m 2 and a thickness of 5.4 mm.

〔比較例1〕
繊度16.7デシテックス、繊維長51mmのポリエステル繊維(融点:260℃)30重量%と、繊度2.2デシテックス、繊維長51mmのポリエステル繊維20重量%と繊度4.4デシテックス、繊維長51mm、ポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:110℃)50重量%の目付質量101g/m2の粗層用繊維層と、繊度2.2デシテックス、繊維長51mmのポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:110℃)100重量%の目付質量80g/m2の中層用繊維層と、繊度0.8デシテックス、繊維長51mmのポリエステル繊維(融点:260℃)40重量%と、繊度2.2デシテックス、繊維長51mmのポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:110℃)60重量%とからなる目付質量79g/m2の密層用繊維層とを積層した後、ニードルパンチ処理を施し、200℃のピンテンター式熱処理機で47秒間熱処理し、密層面に表面温度が200℃の熱ロールを接触させ、粗層面側は常温程度の温度であるロールで、両者のロール間クリアランスは2.5mmにしてカレンダー処理し、冷却し不織布を巻き取った。得られた不織布は目付質量260g/m2、厚さ5.2mmの不織布であった
〔比較例2〕
繊度16.7デシテックス、繊維長51mmのポリエステル繊維(融点:260℃)30重量%と、繊度2.2デシテックス、繊維長51mmのポリエステル繊維20重量%と、繊度4.4デシテックス、繊維長51mm、ポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:110℃)50重量%の目付質量90g/m2の粗層用繊維層と、繊度4.4デシテックス、繊維長51mmのポリエステル繊維(融点:260℃)50重量%、繊度4.4デシテックス、繊維長51mmのポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:110℃)50重量%の目付質量70g/m2の中層用繊維層と、繊度2.2デシテックス、繊維長51mmのポリエステル繊維(融点:260℃)50重量%と、繊度2.2デシテックス、繊維長51mmのポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:110℃)50重量%とからなる目付質量70g/m2の密層用繊維層とを積層した後、ニードルパンチ処理を施し、200℃のピンテンター式熱処理機で47秒間熱処理し、密層面に表面温度が200℃の熱ロールを接触させ、粗層面側は常温程度の温度であるロールで、両者のロール間クリアランスは2.5mmにしてカレンダー処理し、冷却し不織布を巻き取った。引き続き不織布をアクリル酸エステバインダーに浸漬して150℃で乾燥し、付与量を220g/m2を付与した。得られた不織布は目付質量252g/m2、厚さ1mmの不織布であった。
[Comparative Example 1]
30% by weight of polyester fiber (melting point: 260 ° C.) with a fineness of 16.7 decitex and a fiber length of 51 mm, 20% by weight of polyester fiber with a fineness of 2.2 decitex and a fiber length of 51 mm, a fineness of 4.4 decitex, a fiber length of 51 mm, polyester / Low melting point polyester composite fiber (melting point of low melting point polyester: 110 ° C.) 50% by weight of fiber layer for coarse layer with basis weight of 101 g / m 2 , polyester / low melting point polyester composite with fineness of 2.2 dtex and fiber length of 51 mm Fiber (melting point of low melting point polyester: 110 ° C.) 100% by weight basis weight 80 g / m 2 middle layer fiber layer, fineness 0.8 decitex, fiber length 51 mm polyester fiber (melting point: 260 ° C.) 40% by weight Polyester / low-melting polyester composite fiber with a fineness of 2.2 decitex and a fiber length of 51 mm ( After laminating a dense fiber layer with a mass per unit mass of 79 g / m 2 consisting of 60% by weight of a melting point of low-melting polyester: 110 ° C., needle punching was performed, followed by heat treatment for 47 seconds with a 200 ° C. pin tenter heat treatment machine. Then, a hot roll having a surface temperature of 200 ° C. is brought into contact with the dense layer surface, and the coarse layer surface side is a roll having a temperature of about room temperature. The clearance between the two rolls is calendered, cooled, and wound with a nonwoven fabric. I took it. The obtained nonwoven fabric was a nonwoven fabric having a basis weight of 260 g / m 2 and a thickness of 5.2 mm [Comparative Example 2].
30% by weight of polyester fiber (melting point: 260 ° C.) with a fineness of 16.7 decitex and a fiber length of 51 mm, 20% by weight of polyester fiber with a fineness of 2.2 decitex and a fiber length of 51 mm, a fineness of 4.4 decitex, a fiber length of 51 mm, Polyester / low-melting polyester composite fiber (melting point of low-melting polyester: 110 ° C.) 50% by weight of coarse layer fiber layer having a weight of 90 g / m 2 , polyester fiber having a fineness of 4.4 dtex and a fiber length of 51 mm (melting point: 260 ° C.) 50% by weight, fineness 4.4 decitex, fiber length 51 mm polyester / low melting point polyester composite fiber (melting point of low melting point polyester: 110 ° C.) 50% by weight basis weight mass 70 g / m 2 middle layer fiber layer 50% by weight of polyester fiber having a fineness of 2.2 decitex and a fiber length of 51 mm (melting point: 260 ° C.) And a dense fiber layer having a basis weight of 70 g / m 2 consisting of 50% by weight of a polyester / low melting point polyester composite fiber having a fineness of 2.2 dtex and a fiber length of 51 mm (melting point of low melting point polyester: 110 ° C.). After that, needle punching is performed, heat treatment is performed for 47 seconds with a 200 ° C. pin tenter type heat treatment machine, a hot roll having a surface temperature of 200 ° C. is brought into contact with the dense layer surface, and the rough layer surface side is a roll having a temperature of about room temperature. The clearance between the rolls was calendered to 2.5 mm, cooled, and the nonwoven fabric was wound up. Subsequently, the non-woven fabric was immersed in an acrylic ester binder and dried at 150 ° C. to give an applied amount of 220 g / m 2 . The obtained nonwoven fabric was a nonwoven fabric having a mass per unit area of 252 g / m 2 and a thickness of 1 mm.

〔比較例3〕
繊度16.7デシテックス、繊維長51mmのポリエステル繊維(融点:260℃)30重量%と、繊度2.2デシテックス、繊維長51mmのポリエステル繊維20重量%と、繊度4.4デシテックス、繊維長51mm、ポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:110℃)50重量%の目付質量95g/m2の粗層用繊維層と、繊度1.3デシテックス、繊維長51mmのポリエステル繊維(融点:260℃)50重量%と、繊度2.2デシテックス、繊維長51mmのポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:110℃)50重量%とからなる目付質量126g/m2の密層用繊維層とを積層した後、ニードルパンチ処理を施し、200℃のピンテンター式熱処理機で47秒間熱処理し、密層面に表面温度が200℃の熱ロールを接触させ、粗層面側は常温程度の温度であるロールで、両者のロール間クリアランスは2.5mmにしてカレンダー処理し、冷却し不織布を巻き取った。引き続き不織布をスチレンアクリルバインダーに浸漬して150℃で乾燥し、付与量で25g/m2を付与した。得られた不織布は目付質量268g/m2、厚さ3.6mmの不織布てあった。
[Comparative Example 3]
30% by weight of polyester fiber (melting point: 260 ° C.) with a fineness of 16.7 decitex and a fiber length of 51 mm, 20% by weight of polyester fiber with a fineness of 2.2 decitex and a fiber length of 51 mm, a fineness of 4.4 decitex, a fiber length of 51 mm, Polyester / low-melting polyester composite fiber (melting point of low-melting polyester: 110 ° C.) 50% by weight of the coarse layer fiber layer with a mass of 95 g / m 2 , polyester fiber having a fineness of 1.3 dtex and a fiber length of 51 mm (melting point: 260 ° C.) 50% by weight and a dense layer having a basis weight of 126 g / m 2 consisting of 50% by weight of polyester / low-melting polyester composite fiber having a fineness of 2.2 dtex and a fiber length of 51 mm (melting point of low-melting polyester: 110 ° C.). After laminating the fiber layer, a needle punching process is performed, and a pin tenter heat treatment machine at 200 ° C. is used. Heat-treat for 7 seconds, bring a hot roll with a surface temperature of 200 ° C. into contact with the dense layer surface, roll on the rough layer surface side at room temperature, and make a clearance between the rolls of 2.5 mm, calender and cool The nonwoven fabric was wound up. Subsequently, the nonwoven fabric was immersed in a styrene acrylic binder and dried at 150 ° C. to give 25 g / m 2 in an applied amount. The obtained nonwoven fabric was a nonwoven fabric having a mass per unit area of 268 g / m 2 and a thickness of 3.6 mm.

〔比較例4〕
繊度16.7デシテックス、繊維長51mmのポリエステル繊維(融点:260℃)30重量%と、繊度2.2デシテックス、繊維長51mmのポリエステル繊維20重量%と、繊度4.4デシテックス、繊維長51mm、ポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:110℃)50重量%の目付質量76g/m2の粗層用繊維層と、繊度2.2デシテックス、繊維長51mmのポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:110℃)100重量%の目付質量60g/m2の中層用繊維層と、繊度1.3デシテックス、繊維長51mmのポリエステル/低融点ポリエステル複合繊維(低融点:260℃)50重量%と、繊度2.2デシテックス、繊維長51mmのポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:110℃)50重量%とからなる目付質量50g/m2の密層用繊維層とを積層した後、ニードルパンチ処理を施し、200℃のピンテンター式熱処理機で47秒間熱処理し、密層面に表面温度が200℃の熱ロールを接触させ、粗層面側は常温程度の温度であるロールで、両者のロール間クリアランスは2.5mmにしてカレンダー処理し、冷却し不織布を巻き取った。得られた不織布は目質量186g/m2、厚さ3.2mmの不織布であった。
[Comparative Example 4]
30% by weight of polyester fiber (melting point: 260 ° C.) with a fineness of 16.7 decitex and a fiber length of 51 mm, 20% by weight of polyester fiber with a fineness of 2.2 decitex and a fiber length of 51 mm, a fineness of 4.4 decitex, a fiber length of 51 mm, Polyester / low-melting polyester composite fiber (melting point of low-melting polyester: 110 ° C.) 50% by weight of coarse layer fiber layer having a weight of 76 g / m 2 , a fineness of 2.2 dtex, and a fiber length of 51 mm polyester / low-melting polyester Composite fiber (melting point of low-melting polyester: 110 ° C.) 100% by weight fiber layer for middle layer of 60 g / m 2 , polyester / low-melting polyester composite fiber having a fineness of 1.3 dtex and a fiber length of 51 mm (low melting point: 260 ° C) 50% by weight, fineness 2.2 decitex, fiber length 51 mm polyester / low After laminating a fiber layer for a dense layer having a basis weight of 50 g / m 2 consisting of 50% by weight of a melting point polyester composite fiber (melting point of low melting point polyester: 110 ° C.), needle punching is performed, and a pin tenter heat treatment at 200 ° C. Heat treatment with a machine for 47 seconds, a hot roll having a surface temperature of 200 ° C. is brought into contact with the dense layer surface, the coarse layer surface side is a roll having a temperature of about room temperature, and the clearance between both rolls is calendered to 2.5 mm, Cooled and wound up the nonwoven fabric. The obtained nonwoven fabric was a nonwoven fabric having a mass of 186 g / m 2 and a thickness of 3.2 mm.

次に上記各実施例,比較例について夫々の内容を別表1にまとめて記載すると共に、得られた各不織布について濾過性能ならびに成形性を対比した。その結果を 別表2に示す。表中の各項目は下記の説明に基づくと共に、測定法,試験法に基づいて評価した。
(a)目付質量:g/m2
50cm×50cmの大きさを切り出し、そのときの重さを測定し、1m2当たりの重量に換算する。
(b)厚さ:mm
15cm×15cmの大きさを切り出し、初荷重15g/cm2を掛けて4隅の高さを測定し、その平均値で示す。
Next, the contents of each of the above Examples and Comparative Examples are summarized and described in Attached Table 1, and the filtration performance and moldability of the obtained nonwoven fabrics were compared. The results are shown in Appendix 2. Each item in the table was evaluated based on the following explanation and also based on the measurement method and the test method.
(A) Mass per unit area: g / m 2
A size of 50 cm × 50 cm is cut out, the weight at that time is measured, and converted to a weight per 1 m 2 .
(B) Thickness: mm
A size of 15 cm × 15 cm is cut out, an initial load of 15 g / cm 2 is applied, the heights of the four corners are measured, and the average value is shown.

強伸度測定
東洋ボールドイン社製500kgテンシロンを用い、下記条件で測定した。
Strength measurement The measurement was performed under the following conditions using Toyo Bald Inn 500 kg Tensilon.

試料:200mm、 試料巾:15mm
測定試長:150mm、 試料巾:15mm
引張り速度:200mm/min
n=5
初期引張弾性率 N/5cm/100%
試料の強伸度を測定し強伸度曲線の初期勾配から算出した。
Sample: 200 mm, Sample width: 15 mm
Measurement length: 150mm, Sample width: 15mm
Tensile speed: 200 mm / min
n = 5
Initial tensile modulus N / 5cm / 100%
The strength of the sample was measured and calculated from the initial slope of the strength elongation curve.

破断強度 %
試料の強伸度を測定し強伸度曲線の破断の伸度点から算出した。
Breaking strength %
The strength of the sample was measured and calculated from the elongation at break of the strength-elongation curve.

腰強度:N/cm
試料調整は長さ80mm、巾65mmの長方形を切り出し、粗層面を表にして長さ の中央から均一に半分(40mm)に折り畳む。試料設定台に試料を載せ折り畳み山 部を上にして、底辺V字巾40mmとして山部の頂点中心に圧縮治具(10mmφ) を当てる。腰強力試験は東洋ボールドイン社製100Kgテンシロンを用い、10m φの腰強力とする。測定は5回(n=5)とし、その平均値で示す。単位はNに換算して示す。
Waist strength: N / cm
To prepare the sample, cut out a rectangle with a length of 80 mm and a width of 65 mm, and fold it into half (40 mm) uniformly from the center of the length with the rough surface as the front. Place the sample on the sample setting table, fold it up, and place a compression jig (10 mmφ) at the apex center of the peak with a V-shaped width of 40 mm. In the waist strength test, 100 kg of Tensilon manufactured by Toyo Bald Inn Co., Ltd. is used, and the waist strength is 10 mφ. The measurement is performed 5 times (n = 5), and the average value is shown. The unit is shown in terms of N.

濾過性能の評価
塵埃捕集性能の試験はJIS D1612の自動車用エアクリーナー試験法に基づ いて行なった。但し、試験用のエアクリーナーのエレメントは有効面積1000c m2の円板濾材を使用した。実験条件は、濾材通過見掛け風量を40cm/sec とし、JIS Z8901で指定の8種粉体の塵埃で、濃度は1g/m3とし、濾 過面積1000cm3に対し清浄効率は増加抵抗300mmAq時における捕集効 率とした。
Evaluation of Filtration Performance Dust collection performance was tested based on the JIS D1612 automotive air cleaner test method. However, a disk filter medium having an effective area of 1000 cm 2 was used as an element of the test air cleaner. Experimental conditions, the filter medium passing apparent airflow and 40 cm / sec, in dust eight powder specified in JIS Z8901, concentration was 1 g / m 3, relative Filtration area 1000 cm 3 during cleaning efficiency is increased resistance 300mmAq The collection efficiency was assumed.

評価項目
通気抵抗 ΔP(Pa) 試料セット前後の初期圧力差
清浄効率 η (%) 増加抵抗300mmAq時における塵埃捕集効率
塵埃保持量 DHC(g/0.1mm2)増加抵抗300mmAq時における塵埃 保持量
成形性の評価
シート状資料を襞折してプリーツ加工し、波状形態にした後、その試料巾より稍狭 い幅を熱外周枠に被着し、外周枠に設けた突部に熱型下部の凹部を嵌合着させて位置 を決め、加熱溶融することにより両側面部と外周枠へ固着を同時に行い熱降下して一 挙に成形品を得た。成形品について下記の評価を行なった。
Evaluation item Ventilation resistance ΔP (Pa) Initial pressure difference before and after sample setting Cleaning efficiency η (%) Dust collection efficiency at increased resistance of 300 mmAq Dust retention amount DHC (g / 0.1 mm 2 ) Dust retention amount at increased resistance of 300 mmAq Formability evaluation Sheet material is folded and pleated to form a corrugated shape, then a width narrower than the sample width is applied to the thermal outer frame, and the lower part of the thermal mold is attached to the protrusion provided on the outer frame. The recesses were fitted and fixed, the position was determined, and heat fusion was performed to fix both sides and the outer frame at the same time. The molded product was evaluated as follows.

成型部に破れがなく襞の状態もよい。 ○
成型部に破れはないが、襞がやや多い。 △
成型部に破れあり、襞も多い。 ×
There is no tearing in the molded part, and the state of the heel is good. ○
There is no tear in the molded part, but there are a little more wrinkles. △
There are tears in the molding part, and there are many defects. ×

Figure 2009209456
Figure 2009209456

Figure 2009209456
上記表2より本発明に係る不織布は比較不織布に比し、塵埃保持量が多く、捕集効率に優れていると共に、成形性においても極めて優れていることが理解される。
Figure 2009209456
From Table 2 above, it is understood that the nonwoven fabric according to the present invention has a large amount of dust retention, excellent collection efficiency and extremely excellent moldability as compared with the comparative nonwoven fabric.

Claims (5)

熱接着性複合繊短繊維を含む粗層部,中層部,密層部それぞれのウエブを積層してニードル加工し、引き続き加熱して熱接着処理した後、バインダー加工してなる不織布であって、該不織布は目付質量が180〜280g/m2で、引張伸度が20〜50%、初期引張弾性率が1500〜3000N/5cm/100%、腰強度が8.0〜20.0N/cmの特性を有することを特徴とするフィルタ不織布。 A non-woven fabric formed by laminating the web of each of the rough layer portion, the middle layer portion, and the dense layer portion including the heat-adhesive composite short fiber, needle processing, subsequently heating and heat bonding treatment, and then binder processing, The nonwoven fabric has a basis weight of 180 to 280 g / m 2 , a tensile elongation of 20 to 50%, an initial tensile elastic modulus of 1500 to 3000 N / 5 cm / 100%, and a waist strength of 8.0 to 20.0 N / cm. A filter nonwoven fabric characterized by having properties. 前記粗層部が高融点短繊維と熱接着性複合短繊維の混繊からなり、混繊比率が30/70〜50/50で、該高融点短繊維が高融点樹脂で、該熱接着性複合短繊維がポリエステルの低融点樹脂と高融点樹脂の芯鞘複合であって、該各短繊維の繊度が6.0〜20.0デシテックス(dtex)である請求項1記載のフィルタ不織布。   The coarse layer portion is composed of a mixed fiber of a high melting point short fiber and a heat-bonding composite short fiber, the fiber mixing ratio is 30/70 to 50/50, the high melting point short fiber is a high melting point resin, and the heat bonding property The filter nonwoven fabric according to claim 1, wherein the composite short fiber is a core-sheath composite of a low melting point resin of polyester and a high melting point resin, and the fineness of each short fiber is 6.0 to 20.0 dtex. 前記中層部が熱接着性複合短繊維100重量%からなり、目付質量が50〜90g/m2で、該短繊維の繊度が1.0〜10.0デシテックス(dtex)の範囲である請求項1又は2記載のフィルタ不織布。 The middle layer portion is composed of 100% by weight of a heat-adhesive composite short fiber, the basis weight is 50 to 90 g / m 2 , and the fineness of the short fiber is in the range of 1.0 to 10.0 decitex (dtex). The filter nonwoven fabric according to 1 or 2. 前記密層部が高融点短繊維と熱接着性複合短繊維の混繊からなり、混繊比率が30/70〜50/50で、該短繊維の繊度が0.8〜6.0デシテックス(dtex)の範囲である請求項1,2又は3記載のフィルタ不織布。   The dense layer portion is composed of a mixture of high melting point short fibers and heat-bondable composite short fibers, the fiber mixture ratio is 30/70 to 50/50, and the fineness of the short fibers is 0.8 to 6.0 dtex ( The filter nonwoven fabric according to claim 1, 2 or 3, which is in a range of dtex). 前記バインダーの付着量が15〜30g/m2である請求項1〜4の何れかの項に記載のフィルタ不織布。 Filter nonwoven fabric according to any one of claims 1 to 4 attached amount of the binder is 15 to 30 g / m 2.
JP2008050349A 2008-02-29 2008-02-29 Filter nonwoven fabric Expired - Fee Related JP5075679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008050349A JP5075679B2 (en) 2008-02-29 2008-02-29 Filter nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008050349A JP5075679B2 (en) 2008-02-29 2008-02-29 Filter nonwoven fabric

Publications (2)

Publication Number Publication Date
JP2009209456A true JP2009209456A (en) 2009-09-17
JP5075679B2 JP5075679B2 (en) 2012-11-21

Family

ID=41182887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008050349A Expired - Fee Related JP5075679B2 (en) 2008-02-29 2008-02-29 Filter nonwoven fabric

Country Status (1)

Country Link
JP (1) JP5075679B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012245449A (en) * 2011-05-26 2012-12-13 Kureha Ltd High-efficiency nonwoven fabric filter medium for large particle diameter dust
JP2013544974A (en) * 2010-10-14 2013-12-19 フェアテック インヴェストメント リミテッド Non-woven felt fabric, method for producing the same, and filter made thereby
JP2015192964A (en) * 2014-03-31 2015-11-05 呉羽テック株式会社 Filter medium for automobile engine and method for manufacturing the same
JP2016211081A (en) * 2015-04-28 2016-12-15 呉羽テック株式会社 Nonwoven fabric for integral molding and pleat-flange integrally molded filter element formed of the same
JP2017029959A (en) * 2015-08-05 2017-02-09 呉羽テック株式会社 Filter medium for automobile engine
JP2017051953A (en) * 2015-08-07 2017-03-16 ダイキン工業株式会社 Air filter filtering medium, filter pack and air filter unit
WO2017208952A1 (en) * 2016-06-01 2017-12-07 ダイニック株式会社 Air-filter medium
JP2021167492A (en) * 2020-04-09 2021-10-21 花王株式会社 Nonwoven fabric
CN114126742A (en) * 2019-07-16 2022-03-01 可乐丽可乐富丽世股份有限公司 Fiber structure and method for producing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103422254B (en) * 2012-05-23 2018-01-02 东丽纤维研究所(中国)有限公司 One kind heat bonding non-woven fabrics and its production method and purposes
KR101907558B1 (en) * 2018-04-13 2018-10-15 주식회사 하코 Non-woven fabric for dustproof mask

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10180023A (en) * 1996-12-26 1998-07-07 Kureha Tec Kk Nonwoven fabric for filter
JPH11335955A (en) * 1998-05-21 1999-12-07 Toray Ind Inc Nonwoven fabric

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10180023A (en) * 1996-12-26 1998-07-07 Kureha Tec Kk Nonwoven fabric for filter
JPH11335955A (en) * 1998-05-21 1999-12-07 Toray Ind Inc Nonwoven fabric

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013544974A (en) * 2010-10-14 2013-12-19 フェアテック インヴェストメント リミテッド Non-woven felt fabric, method for producing the same, and filter made thereby
JP2017008475A (en) * 2010-10-14 2017-01-12 フェアテック インヴェストメント リミテッド Needle-punch felt fabric of nonwoven fabric, method for producing the same, and filter made by using the same
JP2012245449A (en) * 2011-05-26 2012-12-13 Kureha Ltd High-efficiency nonwoven fabric filter medium for large particle diameter dust
JP2015192964A (en) * 2014-03-31 2015-11-05 呉羽テック株式会社 Filter medium for automobile engine and method for manufacturing the same
JP2016211081A (en) * 2015-04-28 2016-12-15 呉羽テック株式会社 Nonwoven fabric for integral molding and pleat-flange integrally molded filter element formed of the same
JP2017029959A (en) * 2015-08-05 2017-02-09 呉羽テック株式会社 Filter medium for automobile engine
JP2017051953A (en) * 2015-08-07 2017-03-16 ダイキン工業株式会社 Air filter filtering medium, filter pack and air filter unit
US10335728B2 (en) 2015-08-07 2019-07-02 Daikin Industries, Ltd. Filter medium for air filter, filter pack, and air filter unit
JPWO2017208952A1 (en) * 2016-06-01 2018-08-02 ダイニック株式会社 Air filter material
CN109152971A (en) * 2016-06-01 2019-01-04 大尼克株式会社 Air filting material
WO2017208952A1 (en) * 2016-06-01 2017-12-07 ダイニック株式会社 Air-filter medium
CN109152971B (en) * 2016-06-01 2019-07-09 大尼克株式会社 Air filting material
CN114126742A (en) * 2019-07-16 2022-03-01 可乐丽可乐富丽世股份有限公司 Fiber structure and method for producing same
CN114126742B (en) * 2019-07-16 2024-05-03 可乐丽可乐富丽世股份有限公司 Fiber structure and method for producing same
JP2021167492A (en) * 2020-04-09 2021-10-21 花王株式会社 Nonwoven fabric
JP7033684B2 (en) 2020-04-09 2022-03-10 花王株式会社 Non-woven fabric
CN115003873A (en) * 2020-04-09 2022-09-02 花王株式会社 Nonwoven fabric
CN115003873B (en) * 2020-04-09 2024-01-05 花王株式会社 Nonwoven fabric

Also Published As

Publication number Publication date
JP5075679B2 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
JP5075679B2 (en) Filter nonwoven fabric
JP5609334B2 (en) Spunbond nonwoven fabric and filter using the same
US8083828B2 (en) Fiber web having a high stiffness
US20080120954A1 (en) Tackified And Non-Tackified Nonwovens Of Controlled Stiffness And Retained Foldability
US6797226B2 (en) Process of making microcreped wipers
JPH04180808A (en) Molded filter
HU224280B1 (en) Filter, especially for vacuum cleaner bag
US20030077969A1 (en) Sound absorption material having excellent moldability
JP2010234285A (en) Filter medium for air filter
JP4923353B2 (en) Electret filter medium and method for producing the same
JP2009226321A (en) Flame-retardant electret filter medium and filter unit
US20090288558A1 (en) Nonwovens of controlled stiffness and retained foldability
JPH08120552A (en) Conjugated fiber nonwoven fabric
JP3715396B2 (en) Nonwoven fabric for filters
JP4882985B2 (en) Electret filter media and filter unit
JP5267809B2 (en) Filter base material and filter using the same
JP4804389B2 (en) Filter reinforcement
JP2008190051A (en) High-efficiency nonwoven fabric with low pressure loss
JP2001248056A (en) Composite filament nonwoven fabric and filter obtained therefrom
JP7287385B2 (en) Long fiber nonwoven fabric and filter reinforcing material using the same
JP2007077522A (en) Laminated nonwoven fabric and filtration material produced by using the same
WO2020116569A1 (en) Long-fiber nonwoven fabric and filter reinforcing material using same
JP2010259633A (en) Cleaning sheet and method of manufacturing the same
JP4800598B2 (en) Manufacturing method of electret filter material made of pleated folded nonwoven fabric and filter material using the same
JP2018061924A (en) Nonwoven fabric filter medium for air filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120827

R150 Certificate of patent or registration of utility model

Ref document number: 5075679

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees