JP2008190051A - High-efficiency nonwoven fabric with low pressure loss - Google Patents

High-efficiency nonwoven fabric with low pressure loss Download PDF

Info

Publication number
JP2008190051A
JP2008190051A JP2007022563A JP2007022563A JP2008190051A JP 2008190051 A JP2008190051 A JP 2008190051A JP 2007022563 A JP2007022563 A JP 2007022563A JP 2007022563 A JP2007022563 A JP 2007022563A JP 2008190051 A JP2008190051 A JP 2008190051A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
fiber
low
range
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007022563A
Other languages
Japanese (ja)
Inventor
Yasushi Takemura
康 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Ltd
Original Assignee
Kureha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Ltd filed Critical Kureha Ltd
Priority to JP2007022563A priority Critical patent/JP2008190051A/en
Publication of JP2008190051A publication Critical patent/JP2008190051A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-efficiency nonwoven fabric with a low pressure loss sufficiently reinforced with little reinforcing processing when assembled in a filter unit and having a small load and a long filter life without using a melt-blown nonwoven fabric. <P>SOLUTION: The nonwoven fabric is obtained by forming a staple fiber layer composed of heat adhesive conjugated staple fibers into a dense layer part and forming a staple fiber layer composed of mixed fibers of thermoplastic staple fibers with heat adhesive conjugated staple fibers into a coarse layer part, laminating both the staple fiber layers and integrating the resultant laminate. The nonwoven fabric has a stiffness strength of 2.5-9.0 N and a 1 mm compression deformation stress of 1.5-7.0 N/cm<SP>2</SP>/mm. Preferably, the weight mass of the laminated and integrated nonwoven fabric is within the range of 100-250 g/m<SP>2</SP>, the thickness is within the range of 1.0-4.0 mm, and the mixed fiber range of both the staple fibers in the coarse layer part is within the range of (10/90) to (40/60). The weight mass ratio of the coarse layer to the dense layer of the nonwoven fabric is preferably within the range of (25/75) to (50/50). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はフィルター用不織布に係り、特に低圧損高効率のフィルター不織布に関するものである。   The present invention relates to a non-woven fabric for a filter, and more particularly to a low-pressure loss high efficiency filter non-woven fabric.

近時、都市部における空気の汚れの外にキャビンフィルターとして花粉対応不織布に対する要望が大きくなって、種々の検討がなされ、メルトブロー不織布や、該不織布にエレクトレット処理を施したものが採り上げられている。(例えば特許文献1,2参照)
このうち、メルトブロー不織布は最も一般的であるが、性能はよいが比較的初期圧損が高く、フィルター寿命は短い。また、プリーツ加工してフィルターユニットに組み込んだ場合、襞接触が起こり易く襞接触防止のための襞固定の補強を施す必要がある。これは不織布の腰強度が低いためと考えられ、このためコストも高いものになるという問題がある。
Recently, in addition to air pollution in urban areas, there has been a growing demand for pollen-compatible non-woven fabrics as cabin filters, and various studies have been made, and melt blown non-woven fabrics and those obtained by subjecting non-woven fabrics to electret treatment have been taken up. (For example, see Patent Documents 1 and 2)
Among these, melt blown nonwoven fabric is the most common, but has good performance but relatively high initial pressure loss and a short filter life. In addition, when the pleats are incorporated into the filter unit, the heel contact is likely to occur, and it is necessary to reinforce the heel fixing to prevent the heel contact. This is thought to be due to the low waist strength of the nonwoven fabric, and there is a problem that the cost is high.

一方、低圧損不織布としてコストの低い中性能フィルターはフィルター性能が低く、腰強度も低い。高効率にするには単純には繊維量(目付)を多くすればよいが、逆に初期圧損が高くなるし、また、厚さも厚くなりプリーツ加工のピッチの幅にも制限される難がある。
特開平10−148200号公報 特開2003−236319号公報
On the other hand, a low-cost medium-performance filter as a low-pressure loss nonwoven fabric has low filter performance and low waist strength. In order to achieve high efficiency, it is sufficient to simply increase the amount of fibers (weight per unit area), but conversely, the initial pressure loss increases, and the thickness also increases, and it is difficult to limit the width of the pleating pitch. .
JP-A-10-148200 JP 2003-236319 A

本発明は上記の如き実状に鑑み、フィルターユニットに組み込んだ場合、補強が少なくて済み、しかも負荷が少なく、フィルター寿命の長い、即ち、低圧損かつ高効率で、腰強度の高い不織布が有効であることに着目し、メルトブロー不織布を使用することなく低圧損かつ高効率で腰強度の高い不織布を提供することを目的とするものである。   In view of the actual situation as described above, the present invention requires less reinforcement when incorporated in a filter unit, has a low load, has a long filter life, i.e., low pressure loss and high efficiency, and has high waist strength. It is an object of the present invention to provide a nonwoven fabric having a low pressure loss, high efficiency and high waist strength without using a melt blown nonwoven fabric.

メルトブロー不織布を使用することなく低圧損を得る方法としては、先ず現行粗塵用フィルターを改善することが考えられる。粗塵用フィルターは熱可塑性短繊維と熱接着性複合短繊維の混繊からなるものがあるが、濾過性能が低く、腰強度も低い。そこで、本発明者は熱可塑性短繊維と熱接着性複合短繊維の混繊について種々検討を行い、その結果、熱接着性複合短繊維層を密層として組み合わせる ことを見出し、本発明に到達した。   As a method for obtaining a low pressure loss without using a melt blown nonwoven fabric, it is conceivable to first improve the current filter for coarse dust. Some coarse dust filters are made of a mixture of thermoplastic short fibers and heat-adhesive composite short fibers, but have low filtration performance and low waist strength. Therefore, the present inventor has made various studies on blending of thermoplastic short fibers and heat-adhesive composite short fibers, and as a result, found that the heat-adhesive composite short fiber layer is combined as a dense layer, and reached the present invention. .

即ち、前記目的に適合する本発明は、先ず基本的に熱接着性複合短繊維からなる短繊維層を密層部とし、熱可塑性短繊維と熱接着性複合短繊維の混繊からなる短繊維層を粗層部として両短繊維層を積層一体化せしめた不織布であり、該不織布の腰強度が2.5N〜9.0N、かつ1mm圧縮変形応力が1.5N/cm2/mm〜7.0N/cm2/mmである不織布である。 That is, the present invention suitable for the above-mentioned object is a short fiber composed of a mixture of a thermoplastic short fiber and a heat-adhesive composite short fiber. A nonwoven fabric obtained by laminating and integrating both short fiber layers with a layer as a coarse layer portion. The nonwoven fabric has a waist strength of 2.5 N to 9.0 N, and a 1 mm compressive deformation stress of 1.5 N / cm 2 / mm to 7 It is a nonwoven fabric which is 0.0 N / cm 2 / mm.

ここで、上記粗層及び密層の両短繊維層が一体化された不織布は、その目付質量が100g/m2〜250g/m2であり、厚さが1.0mm〜4.0mmであることが好ましい。また、粗層部における熱可塑性短繊維と、熱接着性複合短繊維の混繊比率は10/90〜40/60の範囲であることが好ましく、積層一体化された不織布の粗層と密層の目付質量比率は25/75〜50/50の範囲であることが有効である。なお、使用する熱接着性複合繊維は鞘芯構造を有する繊維であって、鞘部の融点が芯部より低く100℃〜180℃の範囲のものが好適である。 Here, both short fiber layer of the coarse layer and dense layer are integrated nonwoven fabric, its weight per unit area mass is 100g / m 2 ~250g / m 2 , the thickness is 1.0mm~4.0mm It is preferable. Further, the mixing ratio of the thermoplastic short fibers and the thermoadhesive composite short fibers in the coarse layer portion is preferably in the range of 10/90 to 40/60. It is effective that the basis weight ratio is in the range of 25/75 to 50/50. In addition, the heat-adhesive conjugate fiber to be used is a fiber having a sheath core structure, and a sheath portion having a melting point lower than that of the core portion and having a range of 100 ° C. to 180 ° C. is preferable.

かくして最終的には本発明不織布は熱接着性複合短繊維層からなる密層部と、熱可塑性短繊維と熱接着性短繊維との混繊で、混繊比率が10/90〜40/60である短繊維層からなる粗層部とを積層一体化せしめた不織布であって、不織布の厚さが1.0mm〜4.0mm,目付質量が100g/m2〜250g/m2で、かつ粗層部と密層部の目付質量比率が25/75〜50/50であると共に、不織布の腰強度が2.5N〜9.0N、1mm圧縮変形応力が1.5N/cm2/mm〜7.0N/cm2/mmの範囲である不織布を特徴とする。 Thus, finally, the nonwoven fabric of the present invention is a mixture of a dense layer composed of a heat-adhesive composite short fiber layer and a thermoplastic short fiber and a heat-adhesive short fiber, and the fiber mixture ratio is 10/90 to 40/60. a nonwoven fabric was allowed piece laminate and a rough layer portion made of a short fiber layer is, the thickness of the nonwoven fabric 1.0-4.0 mm, weight per unit area mass with 100g / m 2 ~250g / m 2 , and The mass ratio of the coarse layer portion and the dense layer portion is 25/75 to 50/50, and the nonwoven fabric has a waist strength of 2.5 N to 9.0 N, 1 mm compressive deformation stress of 1.5 N / cm 2 / mm to Features a nonwoven fabric in the range of 7.0 N / cm 2 / mm.

上記本発明不織布は密層部の熱接着性複合短繊維によって適度の通気度を保持して腰強度を向上させることができると共に、熱可塑性短繊維と熱接着性複合短繊維の混繊によって良好な嵩高性を得ることができ、これらの総合により良好な濾過性能を保持することが出来る。また不織布の腰強度,1mm圧縮変形応力を夫々、所定の範囲とすることによりフィルターの成型性がよく、プリーツ加工後のユニットにおける襞接触が抑えられ、襞接触防止の補強加工が低減されると共に、濾過性能も向上する。   The non-woven fabric of the present invention can maintain a proper air permeability by the heat-bonding composite short fibers in the dense layer portion and improve the waist strength, and is good by mixing the thermoplastic short fibers and the heat-bonding composite short fibers. Bulkiness can be obtained, and a good filtration performance can be maintained by the total of these. Also, by setting the waist strength and 1mm compressive deformation stress of the nonwoven fabric within the predetermined ranges, the filter has good moldability, the wrinkle contact in the unit after pleating is suppressed, and the reinforcing processing for preventing wrinkle contact is reduced. The filtration performance is also improved.

以下、更に、本発明の具体的態様を詳述する。   Hereinafter, specific embodiments of the present invention will be described in detail.

本発明不織布は前述の如く密層部が熱接着性複合短繊維層からなり、粗層部が熱可塑性短繊維と熱接着性複合短繊維の混繊からなる短繊維層よりなる密層と粗層が積層一体化された不織布であって、不織布の腰強度が2.5N〜9.0Nであり、1mm圧縮変形応力が1.5N/cm2/mm〜7.0N/cm2/mmの範囲であることによりフィルターの成型性がよく、プリーツ加工後のユニットにおける襞接触が抑えられ、襞接触防止の補強加工が低減し、濾過性能が向上するものである。 As described above, the nonwoven fabric of the present invention has a dense layer portion composed of a heat-adhesive composite short fiber layer, and a coarse layer portion composed of a short fiber layer composed of a mixture of thermoplastic short fibers and heat-adhesive composite short fibers. a nonwoven fabric layers are laminated and integrated, waist strength of the nonwoven fabric is 2.5N~9.0N, 1 mm compressive deformation stress of 1.5N / cm 2 /mm~7.0N/cm 2 / mm By being in the range, the moldability of the filter is good, the wrinkle contact in the unit after the pleating process is suppressed, the reinforcing process for preventing wrinkle contact is reduced, and the filtration performance is improved.

即ち、本発明不織布は先ず、熱接着性複合繊維から密層部と、熱可塑性短繊維と熱接着性複合繊維の混繊からなる粗層部の積層一体化によって構成される。密層部を構成する熱接着性複合短繊維としては、繊度は3.0〜30.0デシテックス(dtex)で平均繊度が3.0〜10.0デシテックスの範囲がよく、密層部はかかる熱接着性複合短繊維のみによって構成される。平均繊度が3.0デシテックス未満では熱接着性複合短繊維による熱融着によって繊度が細すぎて所望の通気度を得ることが難しいので好ましくない。   That is, the nonwoven fabric of the present invention is first constituted by laminating and integrating a dense layer portion from a thermoadhesive conjugate fiber and a coarse layer portion composed of a mixture of thermoplastic short fibers and a thermoadhesive conjugate fiber. As the heat-adhesive composite short fibers constituting the dense layer portion, the fineness is preferably in the range of 3.0 to 30.0 decitex (dtex) and the average fineness is in the range of 3.0 to 10.0 decitex, and the dense layer portion is applied. It is composed only of heat-bondable composite short fibers. If the average fineness is less than 3.0 decitex, it is not preferable because the fineness is too thin and it is difficult to obtain a desired air permeability by heat fusion with the heat-adhesive composite short fiber.

また、熱接着性複合短繊維の繊度が30.0デシテックスを超えると逆に通気が粗いものになり、細かい通気度の設定が難しいので好ましくなく、繊度の組み合わせは平均繊度で3.0〜10.0デシテックスの範囲がよく所望の通気度を得ることができる。   On the other hand, if the fineness of the heat-adhesive composite short fiber exceeds 30.0 decitex, the ventilation becomes rough, and it is not preferable because fine air permeability is difficult to set. The combination of fineness is 3.0 to 10 in average fineness. The range of 0.0 decitex is good and a desired air permeability can be obtained.

また、前記粗層部を構成する前記両短繊維は、このうち熱可塑性短繊維の役割は接着能を有しないので繊維層の中で柱となり、熱接着性複合短繊維の役割は繊維同士の接着の役目をする。この粗層部の上記熱可塑性短繊維の繊度は5.0〜10.0デシテックスの範囲が有効で、繊度が5.0デシテックス未満であると細くて腰がなく嵩の出ない原因となるので好ましくない。逆に繊度が10.0デシテックスを超えると粗くなり過ぎるので好ましくない。   In addition, the short fibers constituting the coarse layer portion have a role in the fiber layer because the role of the thermoplastic short fibers does not have an adhesive ability, and the role of the heat-adhesive composite short fibers is between the fibers. Acts as a glue. The fineness of the thermoplastic short fiber in the coarse layer portion is effectively in the range of 5.0 to 10.0 decitex, and if the fineness is less than 5.0 decitex, it becomes thin and has no waist and bulk. It is not preferable. On the contrary, if the fineness exceeds 10.0 dtex, it becomes too coarse, which is not preferable.

一方、熱接着性複合繊維の繊度は3.0〜30.0デシテックスの範囲が良い。繊度が3.0デシテックス未満であると接着が密になると共に腰のない嵩のでない原因となるのが好ましくなく、逆に繊度が30.0デシテックスを超えると、接着が粗くなり過ぎるので好ましくない。なお、粗層部の熱可塑性短繊維と熱接着性複合短繊維の混繊比率は腰嵩高性の点から10/90〜40/60の範囲が好適であり、熱可塑性短繊維が10未満であると嵩高の効果がでないので好ましくない。また、熱可塑性短繊維が40を超えると嵩高の効果はあるが繊維間の接着の制御が難しくなり適度の嵩高性を得ることが困難になるので好ましくない。そして、本発明不織布は上記両短繊維層が積層され、一体化されるが、短繊維層が積層して一体化された不織布の粗層と密層の目付質量比率は30/70〜50〜50の範囲が好適である。粗層の目付質量比率が30未満であると粗層の効果がなくなり、密層の挙動を示すことにより濾過性能が悪くなる。また、粗層の目付質量比率が50を超えると逆に密層の効果が発揮出来なくなり好ましくない。   On the other hand, the fineness of the heat-adhesive conjugate fiber is preferably in the range of 3.0 to 30.0 dtex. If the fineness is less than 3.0 decitex, it is not preferable that the adhesion becomes dense and causes no loose bulk. Conversely, if the fineness exceeds 30.0 decitex, the adhesion becomes too coarse, which is not preferable. . In addition, the blend ratio of the thermoplastic short fiber and the thermoadhesive composite short fiber in the coarse layer portion is preferably in the range of 10/90 to 40/60 from the point of bulkiness, and the thermoplastic short fiber is less than 10 If it exists, the bulky effect is not obtained, which is not preferable. On the other hand, if the number of thermoplastic short fibers exceeds 40, there is a bulky effect, but it is difficult to control the adhesion between the fibers and it is difficult to obtain an appropriate bulkiness. And although the said short fiber layer is laminated | stacked and integrated in this invention nonwoven fabric, the fabric weight ratio of the rough | crude layer and dense layer of the nonwoven fabric which the short fiber layer laminated | stacked and integrated is 30 / 70-50 ~. A range of 50 is preferred. If the mass ratio of the coarse layer is less than 30, the effect of the coarse layer is lost, and the filtration performance is deteriorated by showing the behavior of the dense layer. On the other hand, if the mass per unit area of the coarse layer exceeds 50, the effect of the dense layer cannot be exhibited.

上記短繊維層が積層して一体化された不織布は目付質量が100g/m2〜250g/m2の範囲が好適であり、また厚さは1.0mm〜4.0mmの範囲が好適である。目付質量が100g/m2未満であると粗層,密層の効果がなくなるので好ましくない。また、目付質量が250g/m2を超えると厚さを薄くすることが難しく適度の厚さにすることが難しいので好ましくない。厚さは1.0mm未満では薄いためにプリーツ加工した場合にプリーツのピッチは細かく出来るが、適度の腰を持たせることが難しく、腰を持たせるとフィルムライクになって 濾過能力がなくになるので好ましくなく、また、厚さが4.0mmを超えるとプリーツ加工でピッチを細かくすることができない。その結果、製品に加工した場合、濾過面積を大きくとることが出来ない難がある。 The nonwoven short fiber layer are integrated by stacking is preferably in a range basis weight mass of 100g / m 2 ~250g / m 2 , and the thickness is preferably in the range of 1.0mm~4.0mm . If the weight per unit area is less than 100 g / m 2 , the effect of the coarse layer and the dense layer is lost. On the other hand, when the mass per unit area exceeds 250 g / m 2 , it is difficult to reduce the thickness and it is difficult to obtain an appropriate thickness. Since the thickness is less than 1.0mm, the pitch of the pleats can be made fine when processed by pleating, but it is difficult to have a moderate waist. Therefore, it is not preferable, and if the thickness exceeds 4.0 mm, the pitch cannot be reduced by pleating. As a result, when processed into a product, there is a difficulty that the filtration area cannot be increased.

ここで、前記密層部,粗層部に用いられる熱接着性複合繊維としては、高融点成分を芯とし、低融点成分を鞘とする鞘芯構造がよく、サイドバイサイド構造では芯鞘構造に比し、半分の接着点しか得られない。   Here, as the heat-adhesive conjugate fiber used for the dense layer portion and the coarse layer portion, a sheath core structure having a high melting point component as a core and a low melting point component as a sheath is good, and a side-by-side structure is compared with a core-sheath structure. However, only half the adhesion point can be obtained.

低融点成分の融点としては高融点成分に比し低く、100℃〜180℃の範囲が好ましく、100℃未満ではフィルターの耐熱性の点から好ましくない。一方、180℃を超えるようだと短繊維間の接着が悪く、接着のために温度を高くすると熱可塑性繊維のダメージが大きくなるので好ましくない。特に粗層部は熱接着性繊維100%であっては接着の交点の芯がなくなるので好ましくないが、密層部では熱接着性複合繊維を100%使用することにより加熱プリーツ加工による成形性が低融点成分の存在により良好である。   The melting point of the low melting point component is lower than that of the high melting point component and is preferably in the range of 100 ° C. to 180 ° C., and less than 100 ° C. is not preferable from the viewpoint of heat resistance of the filter. On the other hand, if the temperature exceeds 180 ° C., the adhesion between the short fibers is poor, and if the temperature is increased for adhesion, the damage to the thermoplastic fibers increases, which is not preferable. In particular, the coarse layer portion is not preferably 100% heat-adhesive fiber because the core of the bonding intersection is lost. However, in the dense layer portion, 100% heat-adhesive conjugate fiber is used, so that the moldability by heat pleating can be improved. Good due to the presence of low melting point components.

なお、熱接着性複合繊維としてはナイロン,ポリエステル等の高融点成分と低融点成分の複合による繊維が使用可能であるが、実用的には高融点ポリエステルを芯とし低融点ポリエステルを鞘とする複合繊維が用いられる。   In addition, as the heat-adhesive conjugate fiber, fibers made of a composite of a high melting point component such as nylon and polyester and a low melting point component can be used, but practically a composite having a high melting point polyester as a core and a low melting point polyester as a sheath. Fiber is used.

本発明は上述の如き密層部と粗層部との積層一体化によるフィルター不織布を基本とするが、上記不織布が所期の低圧損高効率効果を得るためには更に下記腰強度及び1mm圧縮変形応力を有することが肝要である。   The present invention is based on the filter nonwoven fabric obtained by laminating and integrating the dense layer portion and the coarse layer portion as described above. However, in order to obtain the desired low pressure loss high efficiency effect, the nonwoven fabric further has the following waist strength and 1 mm compression. It is important to have deformation stress.

先ず腰強度は下記の方法により求められた数値が2.5N〜7.0Nの範囲であることが重要である。即ち、長さ80mm、幅65mmの長方形の試料を切り出し、密層面を表にして長さの中央から均一に半分(40mm)に折り畳み、試料設定台に試料を載せ折り畳み山部を上にして、底辺のV字巾40mmとして山部の頂点中心に圧縮治具(10mmφ)を当てる。そして、東洋ボールドイン社製100Kgテンシロンを用い、100mmφの圧縮治具で圧縮測定はn=5とし、その平均値で、単位はNに換算して示す。   First, it is important for the waist strength that the numerical value obtained by the following method is in the range of 2.5N to 7.0N. That is, a rectangular sample having a length of 80 mm and a width of 65 mm was cut out, folded into a half (40 mm) uniformly from the center of the length with the dense layer surface facing, the sample was placed on the sample setting table, A compression jig (10 mmφ) is applied to the apex center of the peak with a V-shaped width of 40 mm at the bottom. Then, using a 100 Kg Tensilon manufactured by Toyo Bald-In Co., Ltd., the compression measurement is set to n = 5 with a 100 mmφ compression jig, the average value thereof, and the unit is expressed in terms of N.

そして上記により得られた腰強度が2.5N未満であれば不織布が柔らかくプリーツ加工してフィルターユニットに組み込んだ場合、襞接触し易く、そのために襞固定を数箇所する必要となるので好ましくない。また上記による腰強度が9.0Nを超えると襞接触の点からはよいが、フィルターを通過する通気量が低減し、通過抵抗が高くなる。   If the waist strength obtained as described above is less than 2.5N, the nonwoven fabric is soft, pleated and incorporated into the filter unit, so that it is easy to come into contact with the heel, which requires several heel fixings, which is not preferable. Moreover, when the waist strength by the above exceeds 9.0N, it is good from the point of heel contact, but the ventilation | gas_flow amount which passes a filter reduces and passage resistance becomes high.

一方、もう一つの1mm圧縮変形応力は下記により算出した値が1.5N/cm2/mm〜7.0N/cm2/mm範囲であることが効果的である。この1mm圧縮変形応力は 主に、粗層部の圧縮変形の応力を示し、変形応力が低いということはフィルターが容易に変形することになり、プリーツ加工した後の濾過性能が低下することを示し、逆に高いと粗層部の効果がなくなることを示している。上記1.5N/cm2/mm〜7.0N/cm2/mmの範囲によりキャビンフィルター等のフィラメントの通気量200cc/cm2/sec〜600cc/cm2/secを確保することが可能である。なお1mm圧縮変形応力は下記の如く圧縮試験によって求められる。 On the other hand, another 1mm compressive deformation stress, it is effective values calculated by the following is 1.5N / cm 2 /mm~7.0N/cm 2 / mm range. This 1 mm compressive deformation stress mainly indicates the compressive deformation stress of the coarse layer part. The low deformation stress indicates that the filter is easily deformed and the filtration performance after pleating is reduced. On the other hand, if it is high, the effect of the coarse layer portion is lost. It is possible to secure the 1.5 N / cm 2 aeration of /mm~7.0N/cm 2 / mm filament cabin filters, etc. The range of 200cc / cm 2 / sec~600cc / cm 2 / sec . In addition, 1 mm compressive deformation stress is calculated | required by the compression test as follows.

即ち、東洋ボールドイン社製100Kgテンシロンを用い、圧縮面積2cmφで圧縮速度5mm/minで試料を圧縮し初荷重0.02Kg/cm2として1mm変形した応力を求めた。単位は単位面積あたりの応力で、Nに換算して示す。なお、測定はn=5とし、その平均値で示す。 That is, using a Toyo Bald-In 100 kg Tensilon, the sample was compressed at a compression area of 2 cmφ and a compression speed of 5 mm / min, and an initial load of 0.02 kg / cm 2 was deformed to obtain a stress of 1 mm. The unit is stress per unit area, and is expressed in terms of N. In addition, a measurement is set to n = 5 and shows the average value.

以下、本発明の実施例を比較例と共に示す。   Examples of the present invention are shown below together with comparative examples.

実施例1
繊度6.6デシテックス、繊維長51mmのポリエステル繊維(融点:260℃)10重量%と、繊度4.4デシテックス、繊維長54mmのポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:110℃)10重量%と、繊度16.7デシテックス、繊維長64mmのポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:110℃)80重量%とからなる目付質量65g/m2の粗層用繊維ウエブと、繊度4.4デシテックス、繊維長51mmのポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:110℃)100重量%で目付質量100g/m2の密層用繊維とを積層した後、密層用側より、深さ18mm、打ち込み本数40本/cm2でニードルパンチ処理を施し、165℃のピンテンター式熱処理機で40秒間熱処理し、密層面を表面温度が110℃の熱ロールに接触させ、両面を処理した両側ロール間クリアランスは0.5mmにしてカレンダー処理し、冷却し低圧損高効率不織布を得た。得られた不織布の実側目付質量は167g/m2,厚さは2.2mmであった。
Example 1
10% by weight polyester fiber (melting point: 260 ° C.) having a fineness of 6.6 decitex and a fiber length of 51 mm, and a polyester / low melting point polyester composite fiber having a fineness of 4.4 decitex and a fiber length of 54 mm (melting point of the low melting polyester: 110 ° C.) A coarse layer fiber web having a basis weight of 65 g / m 2 comprising 10% by weight and 80% by weight of a polyester / low-melting polyester composite fiber having a fineness of 16.7 dtex and a fiber length of 64 mm (melting point of low-melting polyester: 110 ° C.). And 100% by weight of polyester / low-melting polyester composite fiber having a fineness of 4.4 dtex and a fiber length of 51 mm (melting point of low-melting polyester: 110 ° C.), and a dense layer fiber having a basis weight of 100 g / m 2 , denser layer side, depth 18 mm, subjected to a needle punching treatment at end counts forty / cm 2, 1 Heat-treated for 40 seconds with a 5 ° C pin tenter heat treatment machine, contacting the dense layer surface with a hot roll with a surface temperature of 110 ° C, calendering with a clearance of 0.5 mm between both rolls treated on both sides, cooling and low pressure loss A highly efficient nonwoven fabric was obtained. The obtained nonwoven fabric had an actual weight per unit area of 167 g / m 2 and a thickness of 2.2 mm.

実施例2
繊度6.0デシテックス、繊維長51mmのポリエステル繊維(融点:260℃)10重量%と、繊度4.4デシテックス、繊維長54mmのポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:110℃)10重量%と、繊度16.7デシテックス、繊維長64mmのポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:100℃)100重量%で目付質量100g/m2の密層用繊維とを積層し、密層側より、深さ12mm、打ち込み本数40本/cm2でニードルパンチ処理を施し、165℃のピンテンター式熱処理機で40秒間熱処理し、密層面を表面温度が110℃の熱ロールに接触させ、両面を処理した両側ロール間クリアランスは0.5mmにしてカレンダー処理し、冷却し低圧損高効率不織布を得た。得られた不織布の実側目付質量は119.9g/m2,厚さは2.3mmであった。
Example 2
Polyester fiber with a fineness of 6.0 dtex and a fiber length of 51 mm (melting point: 260 ° C.) 10% by weight, and a polyester / low melting point polyester composite fiber with a fineness of 4.4 dtex and a fiber length of 54 mm (melting point of the low melting point polyester: 110 ° C.) Laminating 10% by weight, dense layer fiber having a fineness of 16.7 dtex and a fiber length of 64 mm and a polyester / low melting point polyester composite fiber (melting point of low melting point polyester: 100 ° C.) of 100% by weight and a basis weight of 100 g / m 2 Then, from the dense layer side, needle punching is performed at a depth of 12 mm and the number of driven wires is 40 / cm 2 , and heat-treated for 40 seconds with a 165 ° C. pin tenter heat treatment machine, and the dense layer surface is heated to a hot roll having a surface temperature of 110 ° C. The contact between both sides of the rolls, both sides treated with a clearance of 0.5mm, calendered, cooled and low pressure loss high An efficient nonwoven fabric was obtained. The obtained nonwoven fabric had an actual weight per unit area of 119.9 g / m 2 and a thickness of 2.3 mm.

実施例3
繊度6.6デシテックス、繊維長51mmのポリエステル繊維(融点:260℃)10重量%と、繊度4.4デシテックス、繊維長54mmのポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:110℃)80重量%とからなる目付質量45g/m2の粗層用繊維ウエブと、繊度4.4デシテックス、繊維長51mmのポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:110℃)70重量%と繊度16.7デシテックス、繊維長64mmのポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:110℃)30重量%とからなる目付質量100g/m2の密層用繊維とを積層した後、密層側より、深さ12mm、打ち込み本数40本/cm2でニードルパンチ処理を施し、165℃のピンテンター式熱処理機で40秒間熱処理し、密層面を表面温度が110℃の熱ロールに接触させ、両面を処理した両側ロール間クリアランスは0.5mmにしてカレンダー処理し、冷却し低圧損高効率不織布を得た。得られた不織布の実側目付質量は149.0g/m2、厚さは3.3mmであった。
Example 3
10% by weight polyester fiber (melting point: 260 ° C.) having a fineness of 6.6 decitex and a fiber length of 51 mm, and a polyester / low melting point polyester composite fiber having a fineness of 4.4 decitex and a fiber length of 54 mm (melting point of the low melting polyester: 110 ° C.) A coarse layer fiber web having a basis weight of 45 g / m 2 consisting of 80% by weight, a polyester / low melting point polyester composite fiber having a fineness of 4.4 dtex and a fiber length of 51 mm (melting point of low melting point polyester: 110 ° C.) 70% by weight And a dense layer fiber having a basis weight of 100 g / m 2 and a polyester / low melting point polyester composite fiber having a fineness of 16.7 dtex and a fiber length of 64 mm (melting point of low melting point polyester: 110 ° C.) 30% by weight. , from dense layer side, depth 12 mm, subjected to a needle punching treatment at end counts forty / cm 2, Heat treated for 40 seconds with a 65 ° C pin tenter heat treatment machine, the dense layer surface was brought into contact with a hot roll with a surface temperature of 110 ° C, the clearance between both rolls treated on both sides was calendered to 0.5 mm, cooled and low pressure loss A highly efficient nonwoven fabric was obtained. The obtained nonwoven fabric had an actual weight per unit area of 149.0 g / m 2 and a thickness of 3.3 mm.

実施例4
繊度6.6デシテックス、繊維長51mmのポリエステル繊維(融点:260℃)10重量%と、繊度4.4デシテックス、繊維長54mmのポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:110℃)10重量%と、繊度16.7デシテックス、繊維長64mmのポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点110℃)80重量%とからなる目付質量65g/m2の粗層用繊維ウエブと、繊度4.4デシテックス、繊維長51mmのポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点100℃)70重量%と、繊度16.7デシテックス、繊維長64mmのポリエステル/低融点/複合繊維(低融点ポリエステルの融点110℃)30重量%とからなる目付質量135g/m2の密層用繊維とを積層した後、密層側より、深さ12mm、打ち込み本数40本/cm2でニードルパンチ処理を施し、165℃のピンテンター式熱処理機で40秒間熱処理し、密層面を表面温度が110℃の熱ロールに接触させ、両面を処理した両側ロール間クリアランスは0.5mmにしてカレンダー処理し、冷却し低圧損高効率不織布を得た。得られた不織布の実側目付質量は196.0g/m2,厚さは3.8mmであった。
Example 4
10% by weight polyester fiber (melting point: 260 ° C.) having a fineness of 6.6 decitex and a fiber length of 51 mm, and a polyester / low melting point polyester composite fiber having a fineness of 4.4 decitex and a fiber length of 54 mm (melting point of the low melting polyester: 110 ° C.) A coarse layer fiber web having a basis weight of 65 g / m 2 , comprising 10% by weight and 80% by weight of a polyester / low-melting polyester composite fiber having a fineness of 16.7 dtex and a fiber length of 64 mm (melting point of low-melting polyester: 110 ° C.) 70% by weight of polyester / low-melting polyester composite fiber having a fineness of 4.4 dtex and a fiber length of 51 mm (melting point of low-melting polyester: 100 ° C.), and a polyester / low melting point / composite fiber having a fineness of 16.7 dtex and a fiber length of 64 mm ( (Melting point of low melting point polyester 110 ° C.) 30% by weight After laminating a dense layer for fiber 5 g / m 2, from the dense layer side, depth 12 mm, subjected to a needle punching treatment at end counts forty / cm 2, and heat-treated for 40 seconds at 165 ° C. in a pin tenter type heat treatment apparatus The dense layer surface was brought into contact with a hot roll having a surface temperature of 110 ° C., the clearance between both rolls treated on both sides was calendered to 0.5 mm, and cooled to obtain a low-pressure loss high-efficiency nonwoven fabric. The obtained nonwoven fabric had an actual weight per unit area of 196.0 g / m 2 and a thickness of 3.8 mm.

比較例1
繊度6.6デシテックス、繊維長51mmのポリエステル繊維(融点:260℃)10重量%と、繊度16.7デシテックス、繊維長64mmのポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:110℃)90重量%とからなる目付質量110g/m2のウエブを深さ10mm、打ち込み本数40本/cm2でニードルパンチ処理を施し165℃のピンテンター式熱処理機で40秒間熱処理し、密層面を表面温度が110℃の熱ロールに接触させ、両面を処理した両側ロール間クリアランスは0.5mmにしてカレンダー処理し、不織布を得た。得られた不織布の目付質量は110g/m2,厚さは3.0mmであった。
Comparative Example 1
10% by weight of a polyester fiber (melting point: 260 ° C.) having a fineness of 6.6 decitex and a fiber length of 51 mm, and a polyester / low-melting polyester composite fiber having a fineness of 16.7 decitex and a fiber length of 64 mm (melting point of the low-melting polyester: 110 ° C.) A web having a basis weight of 110 g / m 2 consisting of 90% by weight is subjected to needle punching at a depth of 10 mm and a driving number of 40 / cm 2 , and heat treated for 40 seconds with a pin-tenter heat treatment machine at 165 ° C. Was contacted with a hot roll at 110 ° C. and the clearance between both side rolls treated on both sides was calendered to 0.5 mm to obtain a nonwoven fabric. The obtained nonwoven fabric had a weight per unit area of 110 g / m 2 and a thickness of 3.0 mm.

比較例2
ポリプロピレン樹脂からなるメルトブロー不織布(平均繊維径:1.6μmφ)目付質量20g/m2とポリエステル樹脂のスパンボンド不織布(平均繊維径:25.0μmφ)目付質量50g/m2を樹脂接着して総目付質量125g/m2,厚さが0.7mmの不織布を得た。
Comparative Example 2
A melt blown nonwoven fabric (average fiber diameter: 1.6 μmφ) made of polypropylene resin and a basis weight of 20 g / m 2 and a spunbond nonwoven fabric of polyester resin (average fiber diameter: 25.0 μmφ) are 50 g / m 2 and are bonded together. A nonwoven fabric having a mass of 125 g / m 2 and a thickness of 0.7 mm was obtained.

比較例3
繊度6.6デシテックス、繊維長51mmのポリエステル繊維(融点:260℃)10重量%と、繊度4.4デシテックス、繊維長54mmのポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:110℃)10重量%と、繊度16.7デシテックス、繊維長64mmのポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:110℃)80重量%とからなる目付質量65g/m2の粗層用繊維ウエブと、繊度1.3デシテックス、繊維長51mmのポリエステル繊維(融点:260℃)30重量%と、繊度4.4デシテックス、繊維長51mmのポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:110℃)70重量%で、目付質量100g/m2の密層用繊維とを積層した後、密層側より、深さ12mm、打ち込み本数40本/cm2でニードルパンチ処理を施し、165℃のピンテンター式熱処理機で40秒間熱処理し、密層面を表面温度が110℃の熱ロールに接触させ、両面を処理した両側ロール間クリアランスは0.5mmにしてカレンダー処理し、不織布を得た、得られた不織布の目付質量は165g/m2,厚さは3.2mmであった。
Comparative Example 3
10% by weight polyester fiber (melting point: 260 ° C.) having a fineness of 6.6 decitex and a fiber length of 51 mm, and a polyester / low melting point polyester composite fiber having a fineness of 4.4 decitex and a fiber length of 54 mm (melting point of the low melting polyester: 110 ° C.) A coarse layer fiber web having a basis weight of 65 g / m 2 comprising 10% by weight and 80% by weight of a polyester / low-melting polyester composite fiber having a fineness of 16.7 dtex and a fiber length of 64 mm (melting point of low-melting polyester: 110 ° C.). 30% by weight of a polyester fiber (melting point: 260 ° C.) having a fineness of 1.3 dtex and a fiber length of 51 mm, and a polyester / low-melting polyester composite fiber having a fineness of 4.4 dtex and a fiber length of 51 mm (melting point of the low-melting polyester: 110) ° C) 70% by weight, and a dense layer fiber having a mass per unit area of 100 g / m 2 was laminated. After that, from the dense layer side, needle punching is performed at a depth of 12 mm and the number of driven wires is 40 / cm 2 , and heat treated for 40 seconds with a 165 ° C. pin tenter heat treatment machine, and the dense layer surface is heated to a hot roll having a surface temperature of 110 ° C. The clearance between both rolls that were brought into contact with each other and treated on both sides was calendered to 0.5 mm to obtain a nonwoven fabric. The obtained nonwoven fabric had a basis weight of 165 g / m 2 and a thickness of 3.2 mm.

比較例4
繊度6.6デシテックス、繊維長51mmのポリエステル繊維(融点:260℃)10重量%と、繊度4.4デシテックス、繊維長54mmのポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:110℃)10重量%と、繊度16.7デシテックス、繊維長64mmのポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:110℃)80重量%とからなる目付質量110g/m2の粗層用繊維ウエブと、繊度4.4デシテックス、繊維長51mmのポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:110℃)100重量%で目付質量160g/m2の密層用繊維とを積層した後、密層側より、深さ10mm、打ち込み本数40本/cm2でニードルパンチ処理を施し、165℃のピンテンター式熱処理機で40秒間持つ処理し、密層面を表面温度が110℃の熱ロールに接触させ、両面を処理した両側ロール間クリアランスは0.5mmにしてカレンダー処理し、不織布を得た。この不織布を密層部から粗層部に向けて、深さ5mm、打ち込み本数105本/cm2でニードルパンチ処理を施した、得られた不織布の実側目付質量は270g/m2,厚さは4.6mmであった。
Comparative Example 4
10% by weight polyester fiber (melting point: 260 ° C.) having a fineness of 6.6 decitex and a fiber length of 51 mm, and a polyester / low melting point polyester composite fiber having a fineness of 4.4 decitex and a fiber length of 54 mm (melting point of the low melting polyester: 110 ° C.) A coarse layer fiber web having a weight per unit area of 110 g / m 2 consisting of 10% by weight and 80% by weight of polyester / low-melting polyester composite fiber having a fineness of 16.7 dtex and a fiber length of 64 mm (melting point of low-melting polyester: 110 ° C.). And a polyester / low-melting polyester composite fiber having a fineness of 4.4 dtex and a fiber length of 51 mm (melting point of low-melting polyester: 110 ° C.) at 100% by weight and a dense layer fiber having a basis weight of 160 g / m 2 , denser layer side, depth 10 mm, subjected to a needle punching treatment at end counts forty / cm 2, 1 Treated with a pin tenter type heat treatment machine at 5 ° C for 40 seconds, bringing the dense layer surface into contact with a hot roll with a surface temperature of 110 ° C, and calendering the clearance between both rolls treated on both sides to 0.5 mm to obtain a nonwoven fabric It was. The nonwoven fabric was subjected to needle punching at a depth of 5 mm and a driving number of 105 pieces / cm 2 from the dense layer portion toward the coarse layer portion. The obtained nonwoven fabric had an actual weight per unit area of 270 g / m 2 and a thickness. Was 4.6 mm.

以上の各実施例,比較例ににより得られた各不織布について、その性能ならびに製品評価を対比した。その結果を表1に示す。   About each nonwoven fabric obtained by the above each Example and comparative example, the performance and product evaluation were contrasted. The results are shown in Table 1.

Figure 2008190051
なお、上記表中における目付量,厚さ,通気度の測定ならびに各評価は下記に従った。また、腰強度,1mm圧縮変形応力は前述した方法により夫々算出した。
(イ)目付量:g/m2
50cm×50cmの大きさを切り出し、その時の重さを測定し、1m2当たりの重量に換算した。
(ロ)厚さ:mm
15cm×15cmの大きさを切り出し、初荷重15g/cm2をかけて、4隅の高さを測定し、その平均値で示した。
(ハ)通気度
JIS L 1096−1999の827.1のA法により測定した。
(ニ)濾過性能の評価
塵埃捕集性能の試験はJIS D1612の自動車用エアクリーナー試験法に基づいて行なった。但し、試験用のエアークリーナーのエレメントは有効面積1000cm2の円板濾材を使用した。実験条件は、濾材通過見掛け風量を40cm/secとし、JIS Z 8901で指定の8種粉体の塵埃濃度は1g/m3とし、濾過面積1000cm2に対し清浄効率は増加抵抗300mmAq時における捕集効率とした。
評価項目
通気抵抗 (ΔP)
清浄効率 (η)
塵埃保持量 (DHC)
実験条件
JIS8種塵埃(JIS Z8901)塵埃濃度は1g/m3
試験用のエアークリーナーのエレメント 有効面積1000cm3の円板濾材
試験風速 40cm/sec
ΔP :試料セット前後の初期圧力差
η :増加抵抗300mmAq時における塵埃捕集効率
DHC:増加抵抗300mmAq時における塵埃保持量
(ホ)製品評価
(a)試料の調整:試料は巾210mmで山と山の頂点間の距離が10mm、谷と谷の頂点間の距離が10mmで、山と谷の距離が30mmのプリーツ加工をし、山数を15として両側を不織布に接着(クロロプレンゴム:コニシ株式会社製「ボンドG17」)して固定した。
(b)プリーツピッチ10mm以下評価:試料調整した製品の襞の接触状態を評価した。
Figure 2008190051
The measurement of the basis weight, thickness, and air permeability and the evaluations in the above table were as follows. The waist strength and 1 mm compressive deformation stress were calculated by the methods described above.
(A) Weight per unit area: g / m 2
A size of 50 cm × 50 cm was cut out, the weight at that time was measured, and converted to a weight per 1 m 2 .
(B) Thickness: mm
A size of 15 cm × 15 cm was cut out, an initial load of 15 g / cm 2 was applied, the heights of the four corners were measured, and the average value was shown.
(C) Air permeability Measured by the method A of 827.1 of JIS L 1096-1999.
(D) Evaluation of filtration performance The dust collection performance test was conducted based on the automotive air cleaner test method of JIS D1612. However, a disk filter medium having an effective area of 1000 cm 2 was used as an element of the test air cleaner. The experimental conditions are that the apparent air flow rate through the filter medium is 40 cm / sec, the dust concentration of the eight kinds of powders specified in JIS Z 8901 is 1 g / m 3, and the cleaning efficiency is increased at a resistance of 300 mmAq for a filtration area of 1000 cm 2. The efficiency.
Evaluation item Ventilation resistance (ΔP)
Clean efficiency (η)
Dust retention (DHC)
Experimental conditions JIS class 8 dust (JIS Z8901) dust concentration is 1 g / m 3
Air cleaner element for testing Disc filter medium with effective area of 1000 cm 3 Test wind speed 40 cm / sec
ΔP: Initial pressure difference before and after sample setting η: Dust collection efficiency when increasing resistance is 300 mmAq DHC: Dust retention amount when increasing resistance is 300 mmAq (e) Product evaluation (a) Sample adjustment: Sample is 210 mm wide The distance between the vertices is 10mm, the distance between the vertices of the valley and the valley is 10mm, and the distance between the peaks and valleys is 30mm. The number of peaks is 15, and both sides are bonded to the nonwoven fabric (chloroprene rubber: Konishi "Bond G17" manufactured) and fixed.
(B) Pleated pitch of 10 mm or less Evaluation: The contact state of the ridges of the prepared products was evaluated.

襞15全てが接触しない ○
襞15のうち1〜5の範囲が接触している △
襞15のうち6以上接触している ×
(c)プリーツ補強 2点以下評価:試料調整した製品の襞の撓み状態を評価した。
襞 15 does not touch all ○
The range of 1-5 is contacting in 襞 15.
6 or more of 襞 15 are in contact ×
(C) Reinforcement of pleats 2 points or less: Evaluation of the bending state of the wrinkles of the prepared product.

襞の撓みが少なく2点までの補強で固定して良好 ○
襞の撓みが少なく3点の固定で補強が必要 △
襞の撓みが少なく4点以上の固定で補強が必要 ×
(d)形態保持性評価:試料調整した製品の襞の熱処理による状態を評価した。
It is good to fix with reinforcement of up to 2 points with little bending of the heel.
Reinforcement is required by fixing 3 points with little warpage
Reinforcement is required by fixing 4 points or more with little warp deflection ×
(D) Shape retention evaluation: The state of the product prepared after heat treatment was evaluated.

処理状態:粗層部に熱風が当たるようにプリーツ加工したユニットをセットし、温度調節器の排気ダクトで放出風速を調節して処理した。   Treatment state: A pleated unit was set so that hot air hits the coarse layer part, and the discharge air speed was adjusted by the exhaust duct of the temperature controller.

評価装置:タバイエスペック株式会社製のデジタル温度指示調節器 PMS−B
温度: 80℃
風速: 30.0m/sec
処理時間:5.0時間
評価
山山、谷谷の状態が何ら変化なく襞接触もない ○
山山、谷谷の一部がやや凹凸あり、やや襞接触あり △
山山、谷谷の状態が大きく変形、襞接触あり ×
上記の表1より本発明不織布は比較例のものに比し何れも低圧損で、かつ清浄効率が総合的に良好であり、製品評価においてフィルターの成型性がよく、プリーツ加工後のユニットにおける襞接触が抑えられ、襞接触防止の補強加工の低減と共に、形態保持性に優れていることが分かる。
Evaluation device: Digital temperature indicating controller PMS-B manufactured by Tabai Espec
Temperature: 80 ° C
Wind speed: 30.0m / sec
Processing time: 5.0 hour evaluation The state of mountain, valley and valley does not change at all and there is no wrinkle contact ○
Some of the mountains and valleys are slightly uneven, with slight wrinkles △
Mountains and valleys are greatly deformed and wrinkled
From Table 1 above, the nonwoven fabrics of the present invention all have low pressure loss and generally good cleaning efficiency as compared with the comparative example, the filter moldability is good in product evaluation, and the wrinkles in the unit after pleating It can be seen that the contact is suppressed, and the shape retention is excellent as well as the reduction of the reinforcing process for preventing wrinkle contact.

Claims (6)

熱接着性複合短繊維からなる短繊維層を密層部とし、熱可塑性短繊維と熱接着性複合短繊維の混繊からなる短繊維層を粗層部として両短繊維層を積層し一体化せしめた不織布であって、腰強度が2.5N〜9.0Nであり、かつ1mm圧縮変形応力が1.5N/cm2/mm〜7.0N/cm2/mmであることを特徴とする低圧損高効率不織布。 The short fiber layer composed of heat-bondable composite short fibers is used as a dense layer part, and the short fiber layer composed of a mixture of thermoplastic short fibers and heat-adhesive composite short fibers is used as a coarse layer part. a allowed nonwoven, a waist strength 2.5N~9.0N, and is 1mm compressive deformation stress being a 1.5N / cm 2 /mm~7.0N/cm 2 / mm Low pressure loss high efficiency nonwoven fabric. 粗層及び密層の両短繊維層が積層一体化された不織布の目付質量が100g/m2〜250g/m2であり、厚さが1.0mm〜4.0mmの範囲である請求項1記載の低圧損高効率不織布。 The mass per unit area of the nonwoven fabric in which both the coarse and dense short fiber layers are laminated and integrated is 100 g / m 2 to 250 g / m 2 , and the thickness is in the range of 1.0 mm to 4.0 mm. The low-pressure loss high-efficiency nonwoven fabric described. 粗層部の熱可塑性短繊維と、熱接着性複合短繊維の混繊比率が10/90〜40/60の範囲である請求項1又は2記載の低圧損高効率不織布。   The low-pressure-loss high-efficiency nonwoven fabric according to claim 1 or 2, wherein the mixing ratio of the thermoplastic short fibers in the coarse layer portion and the heat-adhesive composite short fibers is in the range of 10/90 to 40/60. 積層一体化された不織布の粗層と密層の目付質量比率が25/75〜50/50の範囲である請求項1,2または3記載の低圧損高効率不織布。   The low-pressure-loss high-efficiency nonwoven fabric according to claim 1, 2 or 3, wherein the mass ratio of the coarse layer and the dense layer of the laminated nonwoven fabric is in the range of 25/75 to 50/50. 熱接着性複合繊維が鞘芯構造を有する繊維であって、鞘部の融点が100℃〜180℃の範囲である請求項1〜4の何れか1項に記載の低圧損高効率不織布。   The low-pressure loss high-efficiency nonwoven fabric according to any one of claims 1 to 4, wherein the heat-adhesive conjugate fiber is a fiber having a sheath-core structure, and the melting point of the sheath is in the range of 100 ° C to 180 ° C. 熱接着性複合短繊維層からなる密層部と、熱可塑性短繊維と熱接着性短繊維の混繊で、その混繊比率が10/90〜40/60である短繊維層からなる粗層部を積層一体化せしめた不織布であって、厚さが1.0mm〜4.0mm,目付質量が100g/m2〜250g/m2で、かつ粗層部と密層部の目付質量比が25/75〜50/50であると共に、腰強度が2.5N〜9.0N、1mm圧縮変形応力が1.5N/cm2/mm〜7.0N/cm2/mmであることを特徴とする低圧損高効率不織布。 A dense layer portion composed of a heat-adhesive composite short fiber layer and a coarse layer composed of a short fiber layer composed of a mixture of thermoplastic short fibers and heat-adhesive short fibers, the mixing ratio of which is 10/90 to 40/60 part a nonwoven fabric was allowed integrally laminated, thickness 1.0-4.0 mm, with a basis weight mass 100g / m 2 ~250g / m 2 , and the basis weight weight ratio of Araso portion and the dense layer portion with a 25/75 to 50/50, and wherein the waist strength 2.5N~9.0N, 1 mm compressive deformation stress is 1.5N / cm 2 /mm~7.0N/cm 2 / mm Low pressure loss high efficiency nonwoven fabric.
JP2007022563A 2007-02-01 2007-02-01 High-efficiency nonwoven fabric with low pressure loss Pending JP2008190051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007022563A JP2008190051A (en) 2007-02-01 2007-02-01 High-efficiency nonwoven fabric with low pressure loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007022563A JP2008190051A (en) 2007-02-01 2007-02-01 High-efficiency nonwoven fabric with low pressure loss

Publications (1)

Publication Number Publication Date
JP2008190051A true JP2008190051A (en) 2008-08-21

Family

ID=39750402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007022563A Pending JP2008190051A (en) 2007-02-01 2007-02-01 High-efficiency nonwoven fabric with low pressure loss

Country Status (1)

Country Link
JP (1) JP2008190051A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010110744A (en) * 2008-11-04 2010-05-20 Nippon Air Filter Kk Automatic rolling-up air filter
JP2012061556A (en) * 2010-09-16 2012-03-29 Kureha Ltd Suction plate made of nonwoven fabric
JP2013544974A (en) * 2010-10-14 2013-12-19 フェアテック インヴェストメント リミテッド Non-woven felt fabric, method for producing the same, and filter made thereby

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3242208B2 (en) * 1993-06-03 2001-12-25 日本バイリーン株式会社 Filter media for air cleaner
JP2004290929A (en) * 2003-03-28 2004-10-21 Japan Vilene Co Ltd Filter for coarse dust

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3242208B2 (en) * 1993-06-03 2001-12-25 日本バイリーン株式会社 Filter media for air cleaner
JP2004290929A (en) * 2003-03-28 2004-10-21 Japan Vilene Co Ltd Filter for coarse dust

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010110744A (en) * 2008-11-04 2010-05-20 Nippon Air Filter Kk Automatic rolling-up air filter
JP2012061556A (en) * 2010-09-16 2012-03-29 Kureha Ltd Suction plate made of nonwoven fabric
JP2013544974A (en) * 2010-10-14 2013-12-19 フェアテック インヴェストメント リミテッド Non-woven felt fabric, method for producing the same, and filter made thereby
JP2017008475A (en) * 2010-10-14 2017-01-12 フェアテック インヴェストメント リミテッド Needle-punch felt fabric of nonwoven fabric, method for producing the same, and filter made by using the same

Similar Documents

Publication Publication Date Title
JP5075679B2 (en) Filter nonwoven fabric
US8034146B2 (en) Filter element, method of manufacture and use
KR101463638B1 (en) Filter medium and filter unit
JP3802839B2 (en) Nonwoven fabric for filters and filters for engines
WO2004082805A1 (en) Nonwoven fabric air filter for internal combustion engine
JP5080753B2 (en) Filter element, manufacturing method and usage thereof
JP3715396B2 (en) Nonwoven fabric for filters
JP2949789B2 (en) Filter unit
JP2002018216A (en) Filter
JP2008190051A (en) High-efficiency nonwoven fabric with low pressure loss
KR101099377B1 (en) Complex media for air filter
JP4804389B2 (en) Filter reinforcement
JP4882985B2 (en) Electret filter media and filter unit
CN111836673B (en) Filter reinforcing material and filter medium for deodorizing filter comprising same
JP2010082596A (en) Filter medium for air filter, manufacturing method therefor, and air filter using the same
JP2002001020A (en) Filtering medium
JP2004051037A (en) Air filter for railroad rolling stock
JP3331651B2 (en) Composite sheet and method for producing the same
JP2006281108A (en) Filter for ventilation fan and production method of the same
JP6143503B2 (en) Filter element and manufacturing method thereof
JP2009195845A (en) Nonwoven fabric for filter
JP4800598B2 (en) Manufacturing method of electret filter material made of pleated folded nonwoven fabric and filter material using the same
JP3196894U (en) Vehicle air conditioning filter
KR101230248B1 (en) Anto-static nonwoven felt with fine fibers for dust collecting filter
JPH08226060A (en) Production of fiber layer material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

RD12 Notification of acceptance of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7432

Effective date: 20111128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121120