JP2009208041A - Electric precipitator - Google Patents

Electric precipitator Download PDF

Info

Publication number
JP2009208041A
JP2009208041A JP2008056131A JP2008056131A JP2009208041A JP 2009208041 A JP2009208041 A JP 2009208041A JP 2008056131 A JP2008056131 A JP 2008056131A JP 2008056131 A JP2008056131 A JP 2008056131A JP 2009208041 A JP2009208041 A JP 2009208041A
Authority
JP
Japan
Prior art keywords
plate
semiconductive
ground electrode
charging unit
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008056131A
Other languages
Japanese (ja)
Other versions
JP5125626B2 (en
Inventor
Tetsuya Ueda
哲也 上田
Kengo Nakahara
健吾 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008056131A priority Critical patent/JP5125626B2/en
Publication of JP2009208041A publication Critical patent/JP2009208041A/en
Application granted granted Critical
Publication of JP5125626B2 publication Critical patent/JP5125626B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • Y02A50/2351Atmospheric particulate matter [PM], e.g. carbon smoke microparticles, smog, aerosol particles, dust

Landscapes

  • Electrostatic Separation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly durable electric precipitator which generates corona discharge and prevents spark discharge from generating. <P>SOLUTION: An electric precipitator is provided with a charged part 21, a dust collecting part 31, a blower 2 and a high voltage electric source 3. A semi-conducting electric plate 28 designed by a semi-conducting ceramic of which the electric resistance per unit area of the electric current flowing in a width direction is 10<SP>8</SP>-10<SP>10</SP>Ω cm<SP>2</SP>is located on the surface of a ground electrode 23 of the charged part 21. Then, a discharge electrode 22 of the charged part 21 is constituted of a plurality of a needle-shaped electrodes 27 projecting from a supporting part 26 arranged in parallel to the ground electrode 23. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、空気中の浮遊粒子状物質を捕集し空気清浄を行うための電気集じん機に関するものである。   The present invention relates to an electric dust collector for collecting airborne particulate matter and cleaning the air.

従来、この種の電気集じん機は、例えば特許文献1のようなものが知られている。以下、その電気集じん機について図8および図9を参照しながら説明する。   Conventionally, this kind of electrostatic precipitator is known, for example, as disclosed in Patent Document 1. Hereinafter, the electric dust collector will be described with reference to FIGS. 8 and 9. FIG.

図8に示すように、電気集じん機は帯電部81と集じん部82と送風ファン83と電子コントロールボックス84からなり、電子コントロールボックス84内に図示しない高圧電源と電気集じん機を制御する図示しない制御器を備えている。帯電部81と集じん部82は図9に示すように、帯電部81には高圧電源に接続された放電電極91と接地された接地電極92とが交互にお互いが接触せずに平行に一定の間隔を保って配置されている。また、同じように集じん部82には高圧電源に接続された荷電極板93と接地された接地極板94とが交互にお互いが接触せずに平行に一定の間隔を保って配置されている。高圧電源から高電圧を印加することで、帯電部81では高電圧の印加された放電電極91と接地された接地電極92との間でコロナ放電を発生させ空気中の浮遊粒子状物質を帯電させ、集じん部82では高圧電源に接続された荷電極板93と接地された接地極板94との間で発生している電界により、帯電した浮遊粒子状物質が接地極板94に付着し捕集されることにより、空気中の浮遊粒子状物質を除去し、空気を清浄化することができる。
特開平2−114286号公報
As shown in FIG. 8, the electric dust collector includes a charging unit 81, a dust collector 82, a blower fan 83, and an electronic control box 84, and controls a high voltage power source and an electric dust collector (not shown) in the electronic control box 84. A controller (not shown) is provided. As shown in FIG. 9, the charging unit 81 and the dust collection unit 82 have a discharge electrode 91 connected to a high-voltage power supply and a grounded electrode 92 that are connected to a high-voltage power source alternately and in parallel without contacting each other. It is arranged with an interval of. Similarly, a load electrode plate 93 connected to a high voltage power source and a grounded electrode plate 94 connected to a high voltage power source are alternately arranged in parallel at a constant interval without contacting each other. Yes. By applying a high voltage from a high-voltage power supply, the charging unit 81 generates a corona discharge between the discharge electrode 91 to which the high voltage is applied and the grounded electrode 92 to charge the suspended particulate matter in the air. In the dust collector 82, the charged suspended particulate matter adheres to the ground electrode plate 94 due to the electric field generated between the load electrode plate 93 connected to the high voltage power source and the grounded electrode plate 94. By being collected, airborne particulate matter can be removed and air can be purified.
Japanese Patent Laid-Open No. 2-114286

このような従来の電気集じん機では、高電圧を印加した帯電部81の高圧電源に接続された放電電極91と接地された接地電極92、および集じん部82の高圧電源に接続された荷電極板93と接地された接地極板94は、それぞれ導電体が露出して対向しているため、印加電圧や空間の温湿度条件によっては火花放電が発生することがある。運転中に火花放電が発生すると、帯電部81の接地電極92および集じん部82の接地極板94に付着した可燃性物質が部分的に異常過熱され、接地電極92や接地極板94が熱により変形し耐久寿命が短くなるという課題があった。   In such a conventional electrostatic precipitator, the discharge electrode 91 connected to the high voltage power source of the charging unit 81 to which a high voltage is applied, the ground electrode 92 grounded, and the load connected to the high voltage power source of the dust collector 82. Since the electrode plate 93 and the grounded electrode plate 94 that are grounded face each other with the conductor exposed, spark discharge may occur depending on the applied voltage and the temperature and humidity conditions of the space. When a spark discharge occurs during operation, the combustible material adhering to the ground electrode 92 of the charging unit 81 and the ground electrode plate 94 of the dust collection unit 82 is partially abnormally overheated, and the ground electrode 92 and the ground electrode plate 94 are heated. Due to the deformation, there is a problem that the durability life is shortened.

本発明は、このような従来の課題を解決するものであり、コロナ放電量を確保した上で、火花放電の発生を防止し、耐久性の高い電気集じん機を提供することを目的としている。   An object of the present invention is to solve such a conventional problem and to provide a highly durable electric dust collector that prevents the occurrence of spark discharge while ensuring a corona discharge amount. .

本発明の電気集じん機は、上記目的を達成するために、帯電部と集じん部と送風機と高圧電源とを備え、厚さ方向に流れる電流に対する単位面積当りの電気抵抗が108〜1010Ω・cm2の半導電性セラミックスで構成された半導電板を帯電部の接地電極の表面に配置したものである。 In order to achieve the above object, the electric dust collector of the present invention includes a charging unit, a dust collecting unit, a blower, and a high-voltage power source, and has an electric resistance per unit area of 10 8 to 10 for a current flowing in the thickness direction. A semiconductive plate made of 10 Ω · cm 2 of semiconductive ceramic is disposed on the surface of the ground electrode of the charging portion.

この手段により、帯電部においてコロナ放電を発生させ空気中の浮遊粒子状物質を帯電させた上で、火花放電を防止し耐久性を確保することができる。   By this means, corona discharge is generated in the charging portion to charge the suspended particulate matter in the air, and spark discharge can be prevented to ensure durability.

また、他の手段は、半導電板が少なくとも酸化ジルコニウム、炭化珪素、酸化チタンのいずれかを主成分とする半導電性セラミックスで構成されたものである。   Another means is that the semiconductive plate is made of a semiconductive ceramic whose main component is at least one of zirconium oxide, silicon carbide, and titanium oxide.

これにより、火花放電を防止するための半導電性セラミックスの、単位面積当りの電気抵抗を容易に調整することができる。   Thereby, the electrical resistance per unit area of the semiconductive ceramic for preventing spark discharge can be easily adjusted.

また、他の手段は、半導電板が酸化ジルコニウム63%以上、酸化第二鉄30%以上、酸化イットリウム5%以下を含有する半導電性セラミックスで構成されたものである。   Another means is that the semiconductive plate is made of a semiconductive ceramic containing 63% or more of zirconium oxide, 30% or more of ferric oxide, and 5% or less of yttrium oxide.

これにより、火花放電を防止するための半導電性セラミックスの、単位面積当りの電気抵抗を最適にすることができる。   Thereby, the electrical resistance per unit area of the semiconductive ceramic for preventing spark discharge can be optimized.

また、他の手段は、半導電板が、厚さが0.5〜5mmである半導電性セラミックスで構成されたものである。   Another means is that the semiconductive plate is made of a semiconductive ceramic having a thickness of 0.5 to 5 mm.

これにより、火花放電を防止するための半導電性セラミックスの、単位面積当りの電気抵抗を最適にすることができる。   Thereby, the electrical resistance per unit area of the semiconductive ceramic for preventing spark discharge can be optimized.

また、他の手段は、半導電板が絶縁性ネジによって帯電部の接地電極に固定されたものである。   Another means is that the semiconductive plate is fixed to the ground electrode of the charging unit with an insulating screw.

これにより、火花放電を確実に防止した上で、半導電板を帯電部の接地電極に確実に固定することができる。   Thereby, it is possible to reliably fix the semiconductive plate to the ground electrode of the charging unit while preventing spark discharge with certainty.

また、他の手段は、半導電板が導電性の接着剤または導電性の熱溶着フィルムによって帯電部の接地電極に貼付けられたものである。   Another means is that the semiconductive plate is attached to the ground electrode of the charging portion with a conductive adhesive or a conductive heat welding film.

これにより、コロナ放電の電流値を確保した上で、半導電板を帯電部の接地電極に確実に固定することができる。   Accordingly, the semiconductive plate can be reliably fixed to the ground electrode of the charging unit while securing the current value of the corona discharge.

また、他の手段は、帯電部の接地電極は導電性フィルムであって、半導電板は、導電性の接着剤または導電性の熱溶着フィルムによって導電性フィルムに貼付けられたものである。   Another means is that the ground electrode of the charging unit is a conductive film, and the semiconductive plate is affixed to the conductive film with a conductive adhesive or a conductive heat welding film.

これにより、接地電極を軽量化することができる。   Thereby, the ground electrode can be reduced in weight.

また、他の手段は、帯電部の放電電極が、接地電極に平行に配置された支持部と、この支持部から突出した複数の針状電極で構成されたものである。   Another means is that the discharge electrode of the charging unit is composed of a support part arranged in parallel to the ground electrode and a plurality of needle-like electrodes protruding from the support part.

これにより、コロナ放電の効率が向上し、帯電部で同じコロナ放電量を得る場合でも、帯電部への印加電圧を下げることができ、火花放電を確実に防止することができる。   Thereby, the efficiency of corona discharge is improved, and even when the same amount of corona discharge is obtained at the charging portion, the voltage applied to the charging portion can be lowered, and spark discharge can be reliably prevented.

また、他の手段は、半導電板が対向する針状電極の先端本数と略同数に分割され、となり合う半導電板どうしの隙間には絶縁物が充填されたものである。   Another means is that the semiconductive plates are divided into approximately the same number as the tips of the opposing needle electrodes, and the gaps between the adjacent semiconductive plates are filled with an insulator.

これにより、半導電板の製造を容易に行うことができ、コストを安くすることができる。   Thereby, manufacture of a semiconductive board can be performed easily and cost can be reduced.

また、他の手段は、針状電極先端の曲面半径を0.1mm以下としたものである。   Another means is that the radius of the curved surface of the tip of the needle electrode is 0.1 mm or less.

これにより、コロナ放電の効率をさらに向上させることができる。   Thereby, the efficiency of corona discharge can be further improved.

また、他の手段は、帯電部に平行配置された放電電極と接地電極との距離Dに対し、針状電極の支持部からの突出長さHが、H/D=0.5〜1.5の範囲に設定されたものである。   The other means is that the protrusion length H from the support portion of the needle-like electrode is H / D = 0.5 to 1. with respect to the distance D between the discharge electrode and the ground electrode arranged in parallel with the charging portion. 5 is set.

これにより、コロナ放電の効率をさらに向上させることができる。   Thereby, the efficiency of corona discharge can be further improved.

また、他の手段は、帯電部に平行配置された放電電極と接地電極との距離Dに対し、1つの支持部に配置されたとなり合う針状電極の針ピッチPが、P/D=1.0〜1.5の範囲に設定されたものである。   Another means is that the needle pitch P of the adjacent needle-like electrodes arranged on one support portion is P / D = 1 with respect to the distance D between the discharge electrode arranged in parallel with the charging portion and the ground electrode. It is set in the range of .0 to 1.5.

これにより、コロナ放電の効率をさらに向上させることができる。   Thereby, the efficiency of corona discharge can be further improved.

また、他の手段は、帯電部の放電電極と接地電極との間にコロナ放電として流れる電流が所定の値となるように、高圧電源から供給される帯電部への印加電圧が制御されたものである。   Another means is that the voltage applied to the charging unit supplied from the high voltage power source is controlled so that the current flowing as a corona discharge between the discharge electrode and the ground electrode of the charging unit has a predetermined value. It is.

これにより、帯電部においてコロナ放電電流を適正化し、不要に高い印加電圧をかけることがないため、火花放電を確実に防止することができる。   As a result, the corona discharge current is optimized in the charging unit, and an unnecessarily high applied voltage is not applied, so that spark discharge can be reliably prevented.

また、他の手段は、半導電板の耐電圧Vmと高圧電源から供給される帯電部への印加電圧Vaとの差K=Vm−Vaが、常に所定値以上を確保するように印加電圧Vaが制限されたものである。   Another means is to apply the applied voltage Va so that the difference K = Vm−Va between the withstand voltage Vm of the semiconductive plate and the applied voltage Va applied to the charging unit supplied from the high-voltage power supply always keeps a predetermined value or more. Is limited.

これにより、半導電板に耐電圧以上の電圧がかかることがないため、半導電板の絶縁破壊に起因する火花放電を確実に防止することができる。   Thereby, since the voltage beyond a withstand voltage is not applied to a semiconductive plate, the spark discharge resulting from the dielectric breakdown of a semiconductive plate can be prevented reliably.

また、他の手段は、厚さ方向に流れる電流に対する単位面積当りの電気抵抗が1010Ω・cm2以上の樹脂フィルムまたは絶縁性セラミックスで構成された絶縁板を集じん部の荷電極板の表面に配置したものである。 Another means is that an insulating plate made of a resin film or an insulating ceramic having an electric resistance per unit area with respect to a current flowing in the thickness direction of 10 10 Ω · cm 2 or more is used for the load electrode plate of the dust collecting portion. It is arranged on the surface.

これにより、帯電部だけでなく、集じん部の火花放電も防止し耐久性を確保することができる。   Thereby, not only the charging part but also the spark discharge of the dust collecting part can be prevented and the durability can be ensured.

また、他の手段は、絶縁板の耐電圧Vnと高圧電源から供給される集じん部への印加電圧Vbとの差K=Vn−Vbが、常に所定値以上を確保するように印加電圧Vbが制限されたものである。   Another means is to apply the applied voltage Vb so that the difference K = Vn−Vb between the withstand voltage Vn of the insulating plate and the applied voltage Vb to the dust collector supplied from the high-voltage power supply always keeps a predetermined value or more. Is limited.

これにより、絶縁板に耐電圧以上の電圧がかかることがないため、絶縁板の絶縁破壊に起因する火花放電を確実に防止することができる。   Thereby, since the voltage beyond a withstand voltage is not applied to an insulating board, the spark discharge resulting from the dielectric breakdown of an insulating board can be prevented reliably.

本発明によれば、コロナ放電量を十分確保した上で、火花放電の発生を防止し耐久性の高い電気集じん機を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, after ensuring the corona discharge amount enough, generation | occurrence | production of spark discharge can be prevented and a highly durable electric dust collector can be provided.

また、火花放電を確実に防止しコロナ放電の電流値を確保した上で、半導電板を帯電部の接地電極に確実に固定することができる。   In addition, it is possible to reliably prevent the spark discharge and secure the current value of the corona discharge, and to securely fix the semiconductive plate to the ground electrode of the charging unit.

また、コロナ放電の効率が向上し、帯電部で同じコロナ放電量を得る場合でも帯電部への印加電圧を下げることができるとともに、コロナ放電電流を適正化し不要に高い印加電圧をかけることがないため、火花放電を確実に防止することができる。   In addition, the efficiency of corona discharge is improved, and even when the same amount of corona discharge is obtained in the charging portion, the applied voltage to the charging portion can be lowered, and the corona discharge current is optimized so that an unnecessary high applied voltage is not applied. Therefore, spark discharge can be reliably prevented.

また、帯電部だけでなく、集じん部の火花放電も防止し耐久性を確保するという効果も奏する。   Further, not only the charging portion but also the spark discharge of the dust collection portion is prevented, and the effect of ensuring the durability is also exhibited.

また、半導電板および絶縁板に耐電圧以上の電圧がかかることがないため、絶縁破壊に起因する火花放電を確実に防止するという効果も奏する。   In addition, since a voltage higher than the withstand voltage is not applied to the semiconductive plate and the insulating plate, there is an effect that the spark discharge caused by the dielectric breakdown is surely prevented.

本発明の請求項1記載の発明は、厚さ方向に流れる電流に対する単位面積当りの電気抵抗が108〜1010Ω・cm2の半導電性セラミックスで構成された半導電板を帯電部の接地電極の表面に配置することによって、帯電部においてコロナ放電を発生させ空気中の浮遊粒子状物質を帯電させた上で、火花放電を防止し耐久性を確保するという作用を有する。 According to the first aspect of the present invention, a semiconductive plate made of a semiconductive ceramic having an electric resistance per unit area of 10 8 to 10 10 Ω · cm 2 with respect to a current flowing in the thickness direction is used as a charging portion. By disposing on the surface of the ground electrode, corona discharge is generated in the charging portion to charge the suspended particulate matter in the air, and spark discharge is prevented and durability is ensured.

本発明の請求項2記載の発明は、半導電板が少なくとも酸化ジルコニウム、炭化珪素、酸化チタンのいずれかを主成分とする半導電性セラミックスで構成されることによって、火花放電を防止するための半導電性セラミックスの、単位面積当りの電気抵抗を容易に調整できるという作用を有する。   According to a second aspect of the present invention, the semiconductive plate is made of a semiconductive ceramic whose main component is at least one of zirconium oxide, silicon carbide, and titanium oxide. The semiconductive ceramic has an effect that the electric resistance per unit area can be easily adjusted.

本発明の請求項3記載の発明は、半導電板が酸化ジルコニウム63%以上、酸化第二鉄30%以上、酸化イットリウム5%以下を含有する半導電性セラミックスで構成されることによって、火花放電を防止するための半導電性セラミックスの、単位面積当りの電気抵抗を最適にするという作用を有する。   The invention according to claim 3 of the present invention is such that the semiconductive plate is made of a semiconductive ceramic containing 63% or more of zirconium oxide, 30% or more of ferric oxide, and 5% or less of yttrium oxide, thereby causing a spark discharge. This has the effect of optimizing the electric resistance per unit area of the semiconductive ceramics for preventing the above.

本発明の請求項4記載の発明は、半導電板が、厚さが0.5〜5mmである半導電性セラミックスで構成されることによって、火花放電を防止するための半導電性セラミックスの、単位面積当りの電気抵抗を最適にするという作用を有する。   The invention according to claim 4 of the present invention is that the semiconductive plate is made of a semiconductive ceramic having a thickness of 0.5 to 5 mm, so that the semiconductive ceramic for preventing spark discharge is provided. It has the effect of optimizing the electrical resistance per unit area.

本発明の請求項5記載の発明は、半導電板が絶縁性ネジによって帯電部の接地電極に固定されたことによって、火花放電を確実に防止した上で、半導電板を帯電部の接地電極に確実に固定するという作用を有する。   According to a fifth aspect of the present invention, the semiconductive plate is fixed to the ground electrode of the charging unit by an insulating screw, so that spark discharge is reliably prevented, and then the semiconductive plate is connected to the ground electrode of the charging unit. It has the effect | action of fixing to a certain.

本発明の請求項6記載の発明は、半導電板が導電性の接着剤または導電性の熱溶着フィルムによって帯電部の接地電極に貼付けられたことによって、コロナ放電の電流値を確保した上で、半導電板を帯電部の接地電極に確実に固定するという作用を有する。   In the invention according to claim 6 of the present invention, the semiconductive plate is adhered to the ground electrode of the charging portion with a conductive adhesive or a conductive heat welding film, thereby ensuring a current value of corona discharge. The semiconductive plate is reliably fixed to the ground electrode of the charging unit.

本発明の請求項7記載の発明は、帯電部の接地電極は導電性フィルムであって、半導電板は、導電性の接着剤または導電性の熱溶着フィルムによって導電性フィルムに貼付けられたことによって、接地電極を軽量化できるという作用を有する。   According to the seventh aspect of the present invention, the ground electrode of the charging portion is a conductive film, and the semiconductive plate is attached to the conductive film with a conductive adhesive or a conductive heat welding film. Therefore, the ground electrode can be reduced in weight.

本発明の請求項8記載の発明は、帯電部の放電電極が、接地電極に平行に配置された支持部と、この支持部から突出した複数の針状電極で構成されることによって、コロナ放電の効率が向上し、帯電部で同じコロナ放電量を得る場合でも、帯電部への印加電圧を下げることができ、火花放電を確実に防止できるという作用を有する。   The invention according to claim 8 of the present invention is such that the discharge electrode of the charging portion is constituted by a support portion arranged in parallel to the ground electrode and a plurality of needle-like electrodes protruding from the support portion, whereby corona discharge Even when the same corona discharge amount is obtained at the charging portion, the voltage applied to the charging portion can be lowered and spark discharge can be reliably prevented.

本発明の請求項9記載の発明は、半導電板が対向する針状電極の先端本数と略同数に分割され、となり合う半導電板どうしの隙間には絶縁物が充填されたことによって、半導電板の製造を容易に行うことができ、コストを安くできるという作用を有する。   According to the ninth aspect of the present invention, the semiconductive plate is divided into approximately the same number as the tips of the opposing needle-like electrodes, and the gap between the adjacent semiconductive plates is filled with an insulating material. The conductive plate can be easily manufactured, and the cost can be reduced.

本発明の請求項10記載の発明は、針状電極先端の曲面半径を0.1mm以下とすることによって、コロナ放電の効率をさらに向上させるという作用を有する。   The invention according to claim 10 of the present invention has the effect of further improving the efficiency of corona discharge by setting the radius of curvature of the tip of the needle electrode to 0.1 mm or less.

本発明の請求項11記載の発明は、帯電部に平行配置された放電電極と接地電極との距離Dに対し、針状電極の支持部からの突出長さHが、H/D=0.5〜1.5の範囲に設定されたことによって、コロナ放電の効率をさらに向上させるという作用を有する。   According to the eleventh aspect of the present invention, with respect to the distance D between the discharge electrode arranged in parallel to the charging portion and the ground electrode, the protrusion length H from the support portion of the needle electrode is H / D = 0. By being set to the range of 5-1.5, it has the effect | action which further improves the efficiency of a corona discharge.

本発明の請求項12記載の発明は、帯電部に平行配置された放電電極と接地電極との距離Dに対し、1つの支持部に配置されたとなり合う針状電極の針ピッチPが、P/D=1.0〜1.5の範囲に設定されたことによって、コロナ放電の効率をさらに向上させるという作用を有する。   According to the twelfth aspect of the present invention, the needle pitch P of the adjacent needle-like electrodes arranged on one supporting portion is P with respect to the distance D between the discharge electrode arranged in parallel to the charging portion and the ground electrode. By being set in the range of /D=1.0 to 1.5, it has the effect of further improving the efficiency of corona discharge.

本発明の請求項13記載の発明は、帯電部の放電電極と接地電極との間にコロナ放電として流れる電流が所定の値となるように、高圧電源から供給される帯電部への印加電圧が制御されることによって、帯電部においてコロナ放電電流を適正化し、不要に高い印加電圧をかけることがないため、火花放電を確実に防止できるという作用を有する。   According to the thirteenth aspect of the present invention, the voltage applied to the charging unit supplied from the high voltage power source is such that the current flowing as a corona discharge between the discharge electrode and the ground electrode of the charging unit becomes a predetermined value. By being controlled, the corona discharge current is optimized in the charging portion, and an unnecessary high applied voltage is not applied, so that spark discharge can be reliably prevented.

本発明の請求項14記載の発明は、半導電板の耐電圧Vmと高圧電源から供給される帯電部への印加電圧Vaとの差K=Vm−Vaが、常に所定値以上を確保するように印加電圧Vaが制限されることによって、半導電板に耐電圧以上の電圧がかかることがないため、半導電板の絶縁破壊に起因する火花放電を確実に防止するという作用を有する。   According to the fourteenth aspect of the present invention, the difference K = Vm−Va between the withstand voltage Vm of the semiconductive plate and the applied voltage Va to the charging unit supplied from the high voltage power source is always kept at a predetermined value or more. Since the applied voltage Va is limited to the above, since the voltage higher than the withstand voltage is not applied to the semiconductive plate, the spark discharge due to the dielectric breakdown of the semiconductive plate is surely prevented.

本発明の請求項15記載の発明は、厚さ方向に流れる電流に対する単位面積当りの電気抵抗が1010Ω・cm2以上の樹脂フィルムまたは絶縁性セラミックスで構成された絶縁板を集じん部の荷電極板の表面に配置したことによって、帯電部だけでなく、集じん部の火花放電も防止し耐久性を確保するという作用を有する。 According to a fifteenth aspect of the present invention, there is provided an insulating plate made of a resin film or insulating ceramic having an electric resistance per unit area of 10 10 Ω · cm 2 or more with respect to a current flowing in the thickness direction. By arranging on the surface of the load electrode plate, not only the charging part but also the spark discharge of the dust collecting part is prevented, and the durability is ensured.

本発明の請求項16記載の発明は、絶縁板の耐電圧Vnと高圧電源から供給される集じん部への印加電圧Vbとの差K=Vn−Vbが、常に所定値以上を確保するように印加電圧Vbが制限されることによって、絶縁板に耐電圧以上の電圧がかかることがないため、絶縁板の絶縁破壊に起因する火花放電を確実に防止するという作用を有する。   According to the sixteenth aspect of the present invention, the difference K = Vn−Vb between the withstand voltage Vn of the insulating plate and the voltage Vb applied to the dust collector supplied from the high-voltage power supply always ensures a predetermined value or more. When the applied voltage Vb is limited, the insulating plate is not applied with a voltage higher than the withstand voltage, so that spark discharge caused by dielectric breakdown of the insulating plate is reliably prevented.

以下、本発明の実施の形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1は、本発明の実施の形態1における電気集じん機の断面構成図、図2は本発明の実施の形態1における帯電部と集じん部の斜視構成図、図3は本発明の実施の形態1における帯電部の詳細図で、図3(a)は図2におけるA方向矢視平面図、図3(b)は図2におけるB方向矢視断面図、図4は本発明の実施の形態1における集じん部荷電極板の断面図である。
(Embodiment 1)
1 is a cross-sectional configuration diagram of an electric dust collector according to Embodiment 1 of the present invention, FIG. 2 is a perspective configuration diagram of a charging unit and a dust collector according to Embodiment 1 of the present invention, and FIG. 3 is an embodiment of the present invention. 3A is a detailed view of the charging unit in Embodiment 1, FIG. 3A is a plan view taken in the direction of arrow A in FIG. 2, FIG. 3B is a sectional view taken in the direction of arrow B in FIG. 2, and FIG. It is sectional drawing of the dust collection part load electrode plate in the form 1.

図1に示すように、ダクト1内に、空気中の浮遊粒子状物質を帯電させる帯電部21と、帯電された浮遊粒子状物質を捕集する集じん部31とを備え、集じん部31の下流には、ダクト1内に浮遊粒子状物質を含んだ空気を引き込むための送風機2を備えている。3は、帯電部21と集じん部31に高電圧を供給する高圧電源で、電流検知器4と制御器5に電気的に接続されている。   As shown in FIG. 1, a duct 1 is provided with a charging unit 21 that charges floating particulate matter in the air, and a dust collecting unit 31 that collects the charged suspended particulate matter. A blower 2 for drawing air containing suspended particulate matter into the duct 1 is provided downstream. Reference numeral 3 denotes a high voltage power source that supplies a high voltage to the charging unit 21 and the dust collecting unit 31, and is electrically connected to the current detector 4 and the controller 5.

つぎに、図1における動作を説明する。送風機2の吸引によって、ダクト1内に流入した浮遊粒子状物質を含む空気は、帯電部21を通過する際にコロナ放電により浮遊粒子状物質が帯電され、集じん部31の電界のクーロン力によって極板に捕集、除去され、清浄空気となって送風機2から機外へ排出される。この時、帯電部21および集じん部31へは、高圧電源3から直流高電圧(例えば、帯電部21へは−8kV、集じん部31へは−8kV)が供給され、これらの制御は制御器5によって行われる。   Next, the operation in FIG. 1 will be described. The air containing the suspended particulate matter that has flowed into the duct 1 due to the suction of the blower 2 is charged by the suspended particulate matter due to corona discharge when passing through the charging portion 21, and is caused by the Coulomb force of the electric field of the dust collection portion 31. It is collected and removed by the electrode plate, becomes clean air, and is discharged from the blower 2 to the outside. At this time, a DC high voltage (for example, −8 kV to the charging unit 21 and −8 kV to the dust collecting unit 31) is supplied from the high-voltage power supply 3 to the charging unit 21 and the dust collecting unit 31, and these controls are controlled. This is done by the vessel 5.

図2は帯電部21と集じん部31の斜視構成図であり、帯電部21は高電圧を印加する放電電極22とアースに接続された接地電極23が空気の流れ方向(矢印方向)に平行に積層配置されており、集じん部31は高電圧を印加する荷電極板32とアースに接続された接地極板33(一例としてステンレス板)が空気の流れ方向(矢印方向)に平行に積層配置されている。図2においては、帯電部21の放電電極22と接地電極23との隙間、および集じん部31の荷電極板32と接地極板33との隙間を矢印の如く空気が流れ、帯電部21において放電電極22と接地電極23との間に発生したコロナ放電(本実施の形態1ではマイナス放電)によって空気中の浮遊粒子状物質が負電位に帯電され、集じん部31において荷電極板32(本実施の形態1では負極)と接地極板33(本実施の形態1では正極)との間に発生した電界によって、負電位に帯電した浮遊粒子状物質がクーロン力により接地極板33(正極)に付着し捕集される。   FIG. 2 is a perspective configuration diagram of the charging unit 21 and the dust collecting unit 31. The charging unit 21 includes a discharge electrode 22 for applying a high voltage and a ground electrode 23 connected to the ground in parallel to the air flow direction (arrow direction). The dust collector 31 has a load electrode plate 32 for applying a high voltage and a ground electrode plate 33 (for example, a stainless steel plate) connected to the ground, which are stacked in parallel to the air flow direction (arrow direction). Has been placed. In FIG. 2, air flows through the gap between the discharge electrode 22 and the ground electrode 23 of the charging unit 21 and the gap between the load electrode plate 32 and the ground electrode plate 33 of the dust collection unit 31 as indicated by arrows. The suspended particulate matter in the air is charged to a negative potential by corona discharge (negative discharge in the first embodiment) generated between the discharge electrode 22 and the ground electrode 23, and the load electrode plate 32 ( The floating particulate matter charged to a negative potential due to the electric field generated between the negative electrode in the first embodiment and the ground electrode plate 33 (the positive electrode in the first embodiment) causes the ground electrode plate 33 (the positive electrode) by the Coulomb force. ) And collected.

図3は帯電部の詳細図であり、図3(a)A方向矢視平面図は図2においてA方向から放電電極22を見た平面図、図3(b)B方向矢視断面図は図2においてB方向から放電電極22と接地電極23を見た断面図である。図3(a)A方向矢視平面図に示すように、放電電極22は空気の流れ方向の上流部24から下流部25にかけて複数個(本実施の形態1では2個)配置された支持部26(一例としてステンレス板)に針状電極27(一例としてステンレス針)がそれぞれ複数個、突出して溶接などにより取り付けられている。また、図3(b)B方向矢視断面図に示すように、接地電極23(一例としてステンレス板)の表面には、厚さ方向に流れる電流に対する単位面積当りの電気抵抗が108〜1010Ω・cm2の半導電性セラミックスで構成された半導電板28が配置されている。半導電板28は、本実施の形態1では、絶縁性ネジ41によって接地電極23に固定されている。絶縁性ネジ41を用いた理由は、もし導電性ネジで接地電極23に固定した場合は、導電性ネジと針状電極27との間で火花放電が発生する可能性があり、これを防止するためである。すなわち、絶縁性ネジ41を用いることによって、火花放電を確実に防止した上で半導電板28を接地電極23に確実に固定することができる。 3 is a detailed view of the charging unit. FIG. 3A is a plan view as viewed from the direction of the arrow A, and FIG. 3B is a plan view of the discharge electrode 22 viewed from the direction A. FIG. 3 is a cross-sectional view of the discharge electrode 22 and the ground electrode 23 viewed from the direction B in FIG. As shown in the plan view of FIG. 3 (a), a plurality of discharge electrodes 22 (two in the first embodiment) are arranged from the upstream portion 24 to the downstream portion 25 in the air flow direction. A plurality of needle-like electrodes 27 (stainless steel needles as an example) protrude from 26 (stainless steel plate as an example) and are attached by welding or the like. Further, as shown in the cross-sectional view in the direction of arrow B in FIG. 3B, the electric resistance per unit area with respect to the current flowing in the thickness direction is 10 8 to 10 on the surface of the ground electrode 23 (stainless steel plate as an example). A semiconductive plate 28 made of 10 Ω · cm 2 of semiconductive ceramic is disposed. In the first embodiment, the semiconductive plate 28 is fixed to the ground electrode 23 by an insulating screw 41. The reason for using the insulating screw 41 is that if it is fixed to the ground electrode 23 with a conductive screw, a spark discharge may occur between the conductive screw and the needle electrode 27, and this is prevented. Because. That is, by using the insulating screw 41, it is possible to reliably prevent the spark discharge and securely fix the semiconductive plate 28 to the ground electrode 23.

ここで、半導電板28を接地電極23表面に配置することによって、火花放電を防止する作用について説明する。通常、接地電極23が導電性ステンレス板の生地のままであると、コロナ放電中に空気の絶縁破壊が起きた時に、その箇所の空気の電気抵抗が限りなくゼロに近づき、集中して電流が流れ火花放電が発生する。一方、接地電極23の表面に半導電板28を配置した場合は、もし、コロナ放電中に空気の絶縁破壊が起き、その箇所の空気の電気抵抗が限りなくゼロに近づいた時でも、半導電板28の抵抗が直列にあるため、他の箇所の抵抗(空気抵抗+半導電板抵抗)と比べて抵抗値の差が少なく、電流を分散させ一箇所に集中して電流が流れずに火花放電の発生を防止することができる。この時、半導電板28の電気抵抗は、大きすぎるとコロナ放電を十分行うことができず、また、小さすぎると前述の電流を分散させ火花放電を防止する効果がなくなる。   Here, the effect | action which prevents a spark discharge by arrange | positioning the semiconductive board 28 on the surface of the ground electrode 23 is demonstrated. Normally, if the ground electrode 23 is made of a conductive stainless steel sheet, when the dielectric breakdown of air occurs during corona discharge, the electrical resistance of the air at that point approaches zero as much as possible, and the current concentrates. Flow spark discharge occurs. On the other hand, when the semiconductive plate 28 is arranged on the surface of the ground electrode 23, even if the dielectric breakdown of air occurs during corona discharge and the electrical resistance of the air at that location approaches zero as much as possible, the semiconductive plate 28 is disposed. Since the resistance of the plate 28 is in series, there is little difference in resistance value compared to the resistance of other locations (air resistance + semiconductive plate resistance), the current is dispersed and concentrated in one location, and the spark does not flow. The occurrence of discharge can be prevented. At this time, if the electrical resistance of the semiconductive plate 28 is too large, corona discharge cannot be sufficiently performed. If it is too small, the effect of dispersing the above-described current and preventing spark discharge is lost.

半導電板28の物性としては、電気抵抗を表す体積抵抗率(単位体積当りを流れる電気の抵抗(Ω・cm))が一般的であり、火花放電を防止する効果と相関があるが、半導電板28の厚さにも関係がある。すなわち、本質を言えば、半導電板28の厚さ方向に流れる電流に対する単位面積当りの抵抗(つまり、体積抵抗率に厚さをかけた値。以降、面積抵抗率(Ω・cm2)と呼ぶ)を適正範囲に設定することが肝要である。本発明者らは、この面積抵抗率の値を、108〜1010Ω・cm2とすることが最適であるということを見出した。この範囲は、例えば0.5mmの半導電板28では、体積抵抗率が2×109〜2×1011Ω・cmに、また、5mmの半導電板28では、体積抵抗率が2×108〜2×1010Ω・cmに相当する。 The physical property of the semiconductive plate 28 is generally a volume resistivity representing the electric resistance (resistance of electricity flowing per unit volume (Ω · cm)), which correlates with the effect of preventing spark discharge. The thickness of the conductive plate 28 is also related. That is, in essence, the resistance per unit area against the current flowing in the thickness direction of the semiconductive plate 28 (that is, the value obtained by multiplying the volume resistivity by the thickness. Hereinafter, the area resistivity (Ω · cm 2 ) It is important to set a proper range. The present inventors have found that it is optimal to set the value of the sheet resistivity to 10 8 to 10 10 Ω · cm 2 . This range is, for example, that the volume resistivity is 2 × 10 9 to 2 × 10 11 Ω · cm for the semiconductive plate 28 of 0.5 mm, and the volume resistivity is 2 × 10 5 for the semiconductive plate 28 of 5 mm. It corresponds to 8 to 2 × 10 10 Ω · cm.

半導電板28の材質は、前述の面積抵抗率を得ることができれば何でもよいが、樹脂材料を用いた場合は、高電圧をかけた時に高分子材料が経年的に劣化し、いずれは絶縁破壊を起こして所望の機能を果さない可能性があるため、本発明においては、半導電性セラミックスを用いている。セラミックスは電気抵抗を調整することが難しいが、少なくとも酸化ジルコニウム、炭化珪素、酸化チタンのいずれかを主成分とするセラミックスを用いることにより、所望の面積抵抗率108〜1010Ω・cm2を得ることができる。最適の材質は、酸化ジルコニウム63%以上、酸化第二鉄30%以上、酸化イットリウム5%以下を含有したものである。この時の半導電板28の厚さは0.5〜5mmが最適である。これは、0.5mmよりも薄いと、セラミックスを成形することが難しく、5mmよりも厚いと、体積抵抗率を小さくする必要がありセラミックスでは電気抵抗を調整することが難しいためである。 Any material can be used for the semiconductive plate 28 as long as the above-described sheet resistivity can be obtained. However, when a resin material is used, the polymer material deteriorates with time when a high voltage is applied, and eventually the dielectric breakdown occurs. In the present invention, semiconductive ceramics are used because there is a possibility that the desired function is not achieved. Although it is difficult to adjust the electrical resistance of ceramics, a desired sheet resistivity of 10 8 to 10 10 Ω · cm 2 can be obtained by using a ceramic mainly composed of at least zirconium oxide, silicon carbide, or titanium oxide. Obtainable. The most suitable material contains zirconium oxide 63% or more, ferric oxide 30% or more, and yttrium oxide 5% or less. The thickness of the semiconductive plate 28 at this time is optimally 0.5 to 5 mm. This is because if it is thinner than 0.5 mm, it is difficult to mold the ceramic, and if it is thicker than 5 mm, it is necessary to reduce the volume resistivity, and it is difficult to adjust the electrical resistance with ceramics.

つぎに、針状電極27の構成について説明する。図3に示すように、放電電極22は接地電極23に平行に配置された支持部26の端面に突起状の針状電極27を長手方向に複数個並べたもので、針の先端が尖っていることにより、コロナ放電の電荷が集中し、コロナ放電効率を向上させることができる。針状電極27先端の曲面半径は0.1mm以下とすることが望ましい。これにより、帯電部21で同じコロナ放電量を得る場合でも、帯電部21への印加電圧を下げることができ、火花放電をさらに確実に防止することができる。本実施の形態1では、放電電極22と接地電極23との距離Dに対し、針状電極27の支持部26からの突出長さHが、H/D=0.5〜1.5の範囲に設定されている。また、放電電極22と接地電極23との距離Dに対し、1つの支持部26に配置されたとなり合う針状電極27の針ピッチPが、P/D=1.0〜1.5の範囲に設定されている。このH/DおよびP/Dの値は、大きすぎるとコロナ放電の単位面積当りの密度が低くなりコロナ放電効率が低下し、小さすぎても針状電極27と支持部26およびとなり合う針状電極どうしの放電が干渉してかえってコロナ放電効率が低下する。本発明者らは、H/D=0.5〜1.5、P/D=1.0〜1.5の範囲がコロナ放電の効率が最も良好であることを見出した。これにより、コロナ放電の効率がさらに向上し、帯電部21で同じコロナ放電量を得る場合でも、帯電部21への印加電圧をさらに下げることができ、火花放電をさらに確実に防止することができる。   Next, the configuration of the needle electrode 27 will be described. As shown in FIG. 3, the discharge electrode 22 has a plurality of protruding needle-like electrodes 27 arranged in the longitudinal direction on the end face of a support portion 26 arranged in parallel to the ground electrode 23, and the tip of the needle is sharp. As a result, the charge of corona discharge is concentrated, and the corona discharge efficiency can be improved. The radius of the curved surface at the tip of the needle electrode 27 is preferably 0.1 mm or less. Thereby, even when the same corona discharge amount is obtained by the charging unit 21, the voltage applied to the charging unit 21 can be lowered, and the spark discharge can be further reliably prevented. In the first embodiment, with respect to the distance D between the discharge electrode 22 and the ground electrode 23, the protruding length H of the needle electrode 27 from the support portion 26 is in the range of H / D = 0.5 to 1.5. Is set to Further, the needle pitch P of the adjacent needle-like electrodes 27 arranged on one support portion 26 with respect to the distance D between the discharge electrode 22 and the ground electrode 23 is in the range of P / D = 1.0 to 1.5. Is set to If the values of H / D and P / D are too large, the density per unit area of the corona discharge is lowered and the corona discharge efficiency is lowered, and if it is too small, the needle-like electrode 27 and the support portion 26 are in contact with each other. Corona discharge efficiency decreases because the discharge between the electrodes interferes. The present inventors have found that the efficiency of corona discharge is the best in the ranges of H / D = 0.5 to 1.5 and P / D = 1.0 to 1.5. Thereby, the efficiency of the corona discharge is further improved, and even when the same corona discharge amount is obtained in the charging unit 21, the voltage applied to the charging unit 21 can be further reduced, and the spark discharge can be further reliably prevented. .

つぎに、高圧電源3による帯電部21への印加電圧制御について述べる。図1に示すように、高圧電源3には電流検知器4が接続されており、コロナ放電量を適正にするためには、帯電部21への供給電流を電流検知器4で測定し、所定の値(一例として10mA)となるように、制御器5によって帯電部21への印加電圧を制御している。これにより、帯電部21においてコロナ放電電流を適正化し、不要に高い印加電圧をかけることがないため、火花放電を確実に防止することができる。また、本実施の形態1では、半導電板28の耐電圧Vmと高圧電源から供給される帯電部21への印加電圧Vaとの差K=Vm−Vaが、常に所定値以上を確保するように印加電圧Vaが制限されている。一例を述べると、半導電板28としての半導電性セラミックスの耐電圧がVm=15kVの場合、印加電圧をVa≦10kVに制御することにより、K=Vm−Vaが常に5kV以上の安全率を確保することができる。この安全率は高ければ高いほど望ましいが、半導電性セラミックスの物性に関わる耐電圧によっても左右され、コストを勘案した合理的な数値が決定されるものである。これにより、半導電板28に耐電圧以上の電圧がかかることがないため、半導電板28の絶縁破壊に起因する火花放電を確実に防止することができる。   Next, control of applied voltage to the charging unit 21 by the high-voltage power supply 3 will be described. As shown in FIG. 1, a current detector 4 is connected to the high-voltage power source 3, and in order to make the corona discharge amount appropriate, the current supplied to the charging unit 21 is measured by the current detector 4, The voltage applied to the charging unit 21 is controlled by the controller 5 so as to be a value of 10 (10 mA as an example). Thereby, since the corona discharge current is optimized in the charging unit 21 and an unnecessarily high applied voltage is not applied, spark discharge can be reliably prevented. In the first embodiment, the difference K = Vm−Va between the withstand voltage Vm of the semiconductive plate 28 and the applied voltage Va applied to the charging unit 21 supplied from the high voltage power source is always kept at a predetermined value or more. The applied voltage Va is limited. For example, when the withstand voltage of the semiconductive ceramic as the semiconductive plate 28 is Vm = 15 kV, by controlling the applied voltage to Va ≦ 10 kV, K = Vm−Va always has a safety factor of 5 kV or more. Can be secured. The higher the safety factor, the better. However, it depends on the withstand voltage related to the physical properties of the semiconductive ceramic, and a reasonable numerical value is determined in consideration of the cost. Thereby, since the voltage beyond a withstand voltage is not applied to the semiconductive board 28, the spark discharge resulting from the dielectric breakdown of the semiconductive board 28 can be prevented reliably.

図4は、集じん部31の荷電極板32の断面図である。図4を参照しながら、集じん部31の火花放電を防止する手段について説明する。集じん部31の荷電極板32(一例としてステンレス板)表面には、厚さ方向に流れる電流に対する単位面積当りの電気抵抗(面積抵抗率)が1010Ω・cm2以上の樹脂フィルム(一例としてPET、PP、PVDFなど)または絶縁性セラミックス(一例としてアルミナ)などで構成された絶縁板34を配置している。絶縁板34は、図3の帯電部21と同様、絶縁性ネジによって接地極板33に固定してもよいし、図4に示すように熱溶着フィルム35(絶縁性でも導電性でもいずれでも可)によって接地極板33に固定してもよい。通常、荷電極板32が導電性ステンレス板の生地のままであると、空気の絶縁破壊が起きた時に、その箇所の空気の電気抵抗が限りなくゼロに近づき、集中して電流が流れ火花放電が発生する。一方、荷電極板32の表面に絶縁板34を配置した場合は、もし、空気の絶縁破壊が起き、その箇所の空気の電気抵抗が限りなくゼロに近づいた時でも、絶縁板34の抵抗が直列にあるため、他の箇所の抵抗(空気抵抗+絶縁板抵抗)と比べて抵抗値の差が少なく、電流を分散させ一箇所に集中して電流が流れずに火花放電の発生を防止することができる。集じん部31の役割は、荷電極板32と接地極板33との間に発生した電界によって、帯電した浮遊粒子状物質がクーロン力により接地極板33に付着、捕集させるもので、帯電部21と違いコロナ放電を行う必要がないため、前述の絶縁板34の面積抵抗率は1010Ω・cm2以上あれば集じん部31も火花放電を防止する効果を奏する。 FIG. 4 is a cross-sectional view of the load electrode plate 32 of the dust collection portion 31. With reference to FIG. 4, means for preventing the spark discharge of the dust collection portion 31 will be described. On the surface of the load electrode plate 32 (as an example, a stainless steel plate) of the dust collecting portion 31, a resin film (an example of an electrical resistance (area resistivity) per unit area with respect to a current flowing in the thickness direction is 10 10 Ω · cm 2 or more. Insulating plate 34 made of, for example, PET, PP, PVDF, etc.) or insulating ceramics (alumina as an example) is disposed. The insulating plate 34 may be fixed to the ground electrode plate 33 with an insulating screw as in the charging unit 21 of FIG. 3, or may be a heat welding film 35 (either insulating or conductive as shown in FIG. 4). ) May be fixed to the ground electrode plate 33. Normally, if the load electrode plate 32 is made of a conductive stainless steel cloth, when the dielectric breakdown of the air occurs, the electric resistance of the air at that location approaches zero as much as possible, and the current flows intensively and spark discharge occurs. Occurs. On the other hand, when the insulating plate 34 is disposed on the surface of the load electrode plate 32, even if the insulation breakdown of the air occurs and the electric resistance of the air at that location approaches zero as much as possible, the resistance of the insulating plate 34 is reduced. Because it is in series, there is little difference in resistance compared to the resistance of other locations (air resistance + insulation plate resistance), and the current is dispersed and concentrated in one location, preventing the occurrence of spark discharge without flowing current be able to. The role of the dust collecting portion 31 is to cause charged floating particulate matter to adhere to and collect on the ground electrode plate 33 by Coulomb force due to the electric field generated between the load electrode plate 32 and the ground electrode plate 33. Unlike the portion 21, it is not necessary to perform corona discharge. Therefore, if the area resistivity of the insulating plate 34 is 10 10 Ω · cm 2 or more, the dust collecting portion 31 also has an effect of preventing spark discharge.

また、本実施の形態1では、絶縁板34の耐電圧Vnと高圧電源から供給される集じん部31への印加電圧Vbとの差K=Vn−Vbが、常に所定値以上を確保するように印加電圧Vbが制限されている。一例を述べると、絶縁板34の耐電圧がVn=25kVの場合、印加電圧をVb≦10kVに制御することにより、K=Vn−Vbが常に15kV以上の安全率を確保することができる。この安全率は高ければ高いほど望ましいが、絶縁板34の物性に関わる耐電圧によっても左右され、コストを勘案した合理的な数値が決定されるものである。これにより、絶縁板34に耐電圧以上の電圧がかかることがないため、絶縁板34の絶縁破壊に起因する火花放電を確実に防止することができる。   In the first embodiment, the difference K = Vn−Vb between the withstand voltage Vn of the insulating plate 34 and the voltage Vb applied to the dust collection portion 31 supplied from the high-voltage power supply always ensures a predetermined value or more. The applied voltage Vb is limited. For example, when the withstand voltage of the insulating plate 34 is Vn = 25 kV, the safety factor of K = Vn−Vb can always be 15 kV or more by controlling the applied voltage to Vb ≦ 10 kV. The higher the safety factor, the better. However, it depends on the withstand voltage related to the physical properties of the insulating plate 34, and a reasonable numerical value is determined in consideration of the cost. Thereby, since the voltage beyond a withstand voltage is not applied to the insulating board 34, the spark discharge resulting from the dielectric breakdown of the insulating board 34 can be prevented reliably.

以上の構成により、コロナ放電量を十分確保し集じん効率を高めた上で、運転中に火花放電が発生し接地電極23や接地極板33に付着した可燃性物質が部分的に異常過熱され、接地電極23や接地極板33が熱により変形することがないため、電気集じん機の耐久性を高めることができるものである。   With the above configuration, the corona discharge amount is sufficiently secured and the dust collection efficiency is increased, and then a spark discharge is generated during operation, and the combustible material adhering to the ground electrode 23 and the ground electrode plate 33 is partially abnormally overheated. Since the ground electrode 23 and the ground electrode plate 33 are not deformed by heat, the durability of the electrostatic precipitator can be improved.

(実施の形態2)
図5は、本発明の実施の形態2における電気集じん機の帯電部の詳細図で、図5(a)は図2におけるA方向矢視平面図、図5(b)は図2におけるB方向矢視断面図である。図1〜図3と同じ構成要素については同じ符号を用い、説明を省略する。
(Embodiment 2)
FIG. 5 is a detailed view of the charging unit of the electric dust collector according to the second embodiment of the present invention, FIG. 5 (a) is a plan view in the direction of arrow A in FIG. 2, and FIG. 5 (b) is B in FIG. It is direction arrow sectional drawing. The same components as those in FIGS. 1 to 3 are denoted by the same reference numerals, and description thereof is omitted.

図5に示すように、半導電板28は導電性の熱溶着フィルム51によって帯電部21の接地電極23に貼付けられている。あるいは、導電性の熱溶着フィルム51に代わって、導電性の接着剤で貼付けてもよい。貼付手段として導電性材料を用いた理由は、帯電部21でコロナ放電に必要な電流を、接地電極23に流す必要があるためである。この方式は、ネジによる締結に比べて、自動化設備で半導電板28を貼付けることができるため、大量生産する場合の製造コストを安価にすることができる。これにより、コロナ放電の電流値を確保した上で、半導電板28を接地電極23に確実に固定することができるものである。   As shown in FIG. 5, the semiconductive plate 28 is attached to the ground electrode 23 of the charging unit 21 with a conductive heat welding film 51. Alternatively, instead of the conductive heat welding film 51, a conductive adhesive may be used. The reason why the conductive material is used as the pasting means is that a current necessary for corona discharge in the charging unit 21 needs to flow to the ground electrode 23. In this method, the semiconductive plate 28 can be affixed by automated equipment as compared with the fastening by screws, so that the manufacturing cost in mass production can be reduced. Thereby, the semiconductive plate 28 can be securely fixed to the ground electrode 23 while ensuring the current value of the corona discharge.

(実施の形態3)
図6は、本発明の実施の形態3における電気集じん機の帯電部の詳細図で、図6(a)は図2におけるA方向矢視平面図、図6(b)は図2におけるB方向矢視断面図である。図1〜図3、図5と同じ構成要素については同じ符号を用い、説明を省略する。
(Embodiment 3)
6 is a detailed view of the charging unit of the electrostatic precipitator according to Embodiment 3 of the present invention. FIG. 6 (a) is a plan view in the direction of the arrow A in FIG. 2, and FIG. 6 (b) is B in FIG. It is direction arrow sectional drawing. The same components as those in FIGS. 1 to 3 and FIG.

図6に示すように、半導電板28は、対向する針状電極27の先端本数と略同数に分割され、となり合う半導電板28どうしの隙間には絶縁物61が充填されている。半導電板28として用いる半導電性セラミックスは、一般に面積の広い薄板形状の成形が難しく、小さい面積に分割した方が生産歩留りも向上し、製造コストを安価にすることができる。ただし、半導電板28を分割すると、その隙間に導電性の接地電極23が露出するため、その部分で火花放電が起こる可能性がある。そこで、本実施の形態3では、となり合う半導電板28どうしの隙間に絶縁物61(一例としてシリコン)が充填されている。なお、半導電板28の分割数を、対向する針状電極27の先端本数と略同数にした理由は、針状電極27先端から遠くコロナ放電電流密度が低い箇所に、コロナ放電電流が流れない絶縁物61を配置することによって、コロナ放電量の減少を最小限にするためである。   As shown in FIG. 6, the semiconductive plate 28 is divided into approximately the same number as the tips of the opposing acicular electrodes 27, and a gap between adjacent semiconductive plates 28 is filled with an insulator 61. The semiconductive ceramic used as the semiconductive plate 28 is generally difficult to form a thin plate shape having a large area, and the production yield can be improved and the manufacturing cost can be reduced by dividing the semiconductive ceramic into a small area. However, if the semiconductive plate 28 is divided, the conductive ground electrode 23 is exposed in the gap, so that spark discharge may occur in that portion. Therefore, in the third embodiment, the insulator 61 (silicon as an example) is filled in the gap between the adjacent semiconductive plates 28. The reason why the number of divisions of the semiconductive plate 28 is substantially the same as the number of the tips of the opposing acicular electrodes 27 is that the corona discharge current does not flow to a location where the corona discharge current density is far from the tips of the acicular electrodes 27. This is because the reduction in the amount of corona discharge is minimized by disposing the insulator 61.

(実施の形態4)
図7は、本発明の実施の形態4における電気集じん機の帯電部の詳細図で、図7(a)は図2におけるA方向矢視平面図、図7(b)は図2におけるB方向矢視断面図である。図1〜図3、図5と同じ構成要素については同じ符号を用い、説明を省略する。
(Embodiment 4)
7 is a detailed view of the charging unit of the electrostatic precipitator according to Embodiment 4 of the present invention. FIG. 7 (a) is a plan view in the direction of arrow A in FIG. 2, and FIG. 7 (b) is B in FIG. It is direction arrow sectional drawing. The same components as those in FIGS. 1 to 3 and FIG.

図7に示すように、半導電板28は導電性の熱溶着フィルム51によって帯電部21の接地電極23に貼付けられている。あるいは、導電性の熱溶着フィルム51に代って、導電性の接着剤で貼付けてもよい。ここで、本実施の形態4では、接地電極23として導電性フィルム71(一例として導電性PVDF、100μm)を用いている。半導電板28として0.5〜5mmの半導電性セラミックスを用いた場合は、半導電板28が剛体となり強度を保持するため、接地電極23は電気を通す機能があればよく、ステンレス板を使わなくても薄い導電性フィルム71を用いることにより、接地電極23を軽量化することができるものである。   As shown in FIG. 7, the semiconductive plate 28 is affixed to the ground electrode 23 of the charging unit 21 by a conductive heat welding film 51. Or you may affix with a conductive adhesive instead of the electroconductive heat welding film 51. FIG. Here, in the fourth embodiment, a conductive film 71 (conductive PVDF, 100 μm as an example) is used as the ground electrode 23. When a semiconductive ceramic of 0.5 to 5 mm is used as the semiconductive plate 28, since the semiconductive plate 28 becomes a rigid body and maintains strength, the ground electrode 23 only needs to have a function of conducting electricity. By using the thin conductive film 71 even if it is not used, the ground electrode 23 can be reduced in weight.

本発明は、空気中の浮遊粒子状物質に可燃性物質が含まれている場合の空気清浄方式として有効であり、集じん効率を確保した上で、火花放電を発生させずに耐久性の高い電気集じん機を提供するものである。   The present invention is effective as an air cleaning method in the case where a flammable substance is contained in airborne particulate matter, and is highly durable without causing spark discharge while ensuring dust collection efficiency. An electric dust collector is provided.

本発明の実施の形態1の電気集じん機を示す断面構成図Sectional block diagram which shows the electric dust collector of Embodiment 1 of this invention 同帯電部と集じん部の斜視構成図Perspective configuration diagram of the charging unit and dust collection unit 同帯電部の詳細図((a)同図2のA方向矢視平面図、(b)同図2のB方向矢視断面図)Detailed view of the charging unit ((a) plan view in the direction of arrow A in FIG. 2, (b) cross-sectional view in the direction of arrow B in FIG. 2) 同集じん部荷電極板の断面図Cross-sectional view of the dust collector electrode plate 本発明の実施の形態2の電気集じん機を示す帯電部の詳細図((a)同図2のA方向矢視平面図、(b)同図2のB方向矢視断面図)2A and 2B are detailed views of the charging unit showing the electrostatic precipitator according to Embodiment 2 of the present invention ((a) a plan view in the direction of arrow A in FIG. 2, (b) a cross-sectional view in the direction of arrow B in FIG. 2). 本発明の実施の形態3の電気集じん機を示す帯電部の詳細図((a)同図2のA方向矢視平面図、(b)同図2のB方向矢視断面図)FIG. 4 is a detailed view of a charging unit showing an electric dust collector according to Embodiment 3 of the present invention ((a) a plan view in the direction of arrow A in FIG. 2 and (b) a cross-sectional view in the direction of arrow B in FIG. 2). 本発明の実施の形態4の電気集じん機を示す帯電部の詳細図((a)同図2のA方向矢視平面図、(b)同図2のB方向矢視断面図)FIG. 4 is a detailed view of a charging unit showing an electric dust collector according to Embodiment 4 of the present invention ((a) a plan view in the direction of arrow A in FIG. 2 and (b) a cross-sectional view in the direction of arrow B in FIG. 2). 従来の電気集じん機の断面構成図Cross-sectional configuration diagram of a conventional electrostatic precipitator 従来の電気集じん機の原理を示す図Diagram showing the principle of a conventional electrostatic precipitator

符号の説明Explanation of symbols

2 送風機
3 高圧電源
21 帯電部
22 放電電極
23 接地電極
26 支持部
27 針状電極
28 半導電板
31 集じん部
32 荷電極板
33 接地極板
34 絶縁板
41 絶縁性ネジ
51 熱溶着フィルム
61 絶縁物
71 導電性フィルム
DESCRIPTION OF SYMBOLS 2 Blower 3 High voltage power supply 21 Charging part 22 Discharge electrode 23 Ground electrode 26 Support part 27 Needle-like electrode 28 Semiconductive plate 31 Dust collection part 32 Load electrode plate 33 Grounding electrode plate 34 Insulation plate 41 Insulating screw 51 Thermal welding film 61 Insulation 71 Conductive film

Claims (16)

放電電極と接地電極とを空気の流れ方向に平行に積層配置し空気中の浮遊粒子状物質を帯電させる帯電部と、荷電極板と接地極板とを空気の流れ方向に平行に積層配置し前記帯電部で帯電された空気中の浮遊粒子状物質を捕集する集じん部と、前記帯電部と前記集じん部内に浮遊粒子状物質を含んだ空気を流入させる送風機と、浮遊粒子状物質を捕集するために前記帯電部と前記集じん部に高電圧を供給する高圧電源とを備え、厚さ方向に流れる電流に対する単位面積当りの電気抵抗が108〜1010Ω・cm2の半導電性セラミックスで構成された半導電板を前記帯電部の前記接地電極の表面に配置した電気集じん機。 The discharge electrode and the ground electrode are stacked in parallel with the air flow direction to charge the floating particulate matter in the air, and the load electrode plate and ground electrode plate are stacked in parallel with the air flow direction. A dust collection unit that collects suspended particulate matter in the air charged by the charging unit, a blower that allows air containing suspended particulate matter to flow into the charging unit and the dust collection unit, and a suspended particulate matter A high-voltage power supply that supplies a high voltage to the charging unit and the dust collection unit, and an electric resistance per unit area with respect to a current flowing in a thickness direction is 10 8 to 10 10 Ω · cm 2 . An electrostatic precipitator in which a semiconductive plate made of semiconductive ceramic is disposed on the surface of the ground electrode of the charging unit. 半導電板は、少なくとも酸化ジルコニウム、炭化珪素、酸化チタンのいずれかを主成分とする半導電性セラミックスで構成された請求項1記載の電気集じん機。 2. The electric dust collector according to claim 1, wherein the semiconductive plate is made of a semiconductive ceramic containing at least one of zirconium oxide, silicon carbide, and titanium oxide as a main component. 半導電板は、酸化ジルコニウム63%以上、酸化第二鉄30%以上、酸化イットリウム5%以下を含有する半導電性セラミックスで構成された請求項1記載の電気集じん機。 2. The electric dust collector according to claim 1, wherein the semiconductive plate is made of a semiconductive ceramic containing 63% or more of zirconium oxide, 30% or more of ferric oxide, and 5% or less of yttrium oxide. 半導電板は、厚さが0.5〜5mmである半導電性セラミックスで構成された請求項1〜3のいずれかに記載の電気集じん機。 The electrostatic precipitator according to claim 1, wherein the semiconductive plate is made of semiconductive ceramic having a thickness of 0.5 to 5 mm. 半導電板は、絶縁性ネジによって帯電部の接地電極に固定された請求項1〜4のいずれかに記載の電気集じん機。 The electric dust collector according to claim 1, wherein the semiconductive plate is fixed to the ground electrode of the charging unit by an insulating screw. 半導電板は、導電性の接着剤または導電性の熱溶着フィルムによって帯電部の接地電極に貼付けられた請求項1〜4のいずれかに記載の電気集じん機。 5. The electric dust collector according to claim 1, wherein the semiconductive plate is affixed to the ground electrode of the charging unit by a conductive adhesive or a conductive heat welding film. 帯電部の接地電極は導電性フィルムであって、半導電板は、導電性の接着剤または導電性の熱溶着フィルムによって前記導電性フィルムに貼付けられた請求項6記載の電気集じん機。 The electrostatic precipitator according to claim 6, wherein the ground electrode of the charging unit is a conductive film, and the semiconductive plate is attached to the conductive film with a conductive adhesive or a conductive heat welding film. 帯電部の放電電極は、接地電極に平行に配置された支持部と、この支持部から突出した複数の針状電極で構成された請求項1〜7のいずれかに記載の電気集じん機。 The electrostatic precipitator according to any one of claims 1 to 7, wherein the discharge electrode of the charging unit includes a support part disposed in parallel with the ground electrode and a plurality of needle-like electrodes protruding from the support part. 半導電板は、対向する針状電極の先端本数と略同数に分割され、となり合う前記半導電板どうしの隙間には絶縁物が充填された請求項8記載の電気集じん機。 9. The electric dust collector according to claim 8, wherein the semiconductive plate is divided into approximately the same number as the tip of the opposing needle electrodes, and a gap between the semiconductive plates is filled with an insulator. 針状電極は、先端の曲面半径が0.1mm以下である請求項8または9記載の電気集じん機。 The electric dust collector according to claim 8 or 9, wherein the needle-like electrode has a curved surface radius of 0.1 mm or less. 帯電部に平行配置された放電電極と接地電極との距離Dに対し、針状電極の支持部からの突出長さHが、H/D=0.5〜1.5の範囲に設定された請求項8〜10のいずれかに記載の電気集じん機。 The protrusion length H from the support portion of the needle electrode is set in the range of H / D = 0.5 to 1.5 with respect to the distance D between the discharge electrode and the ground electrode arranged in parallel with the charging portion. The electric dust collector according to claim 8. 帯電部に平行配置された放電電極と接地電極との距離Dに対し、1つの支持部に配置されたとなり合う針状電極の針ピッチPが、P/D=1.0〜1.5の範囲に設定された請求項8〜10のいずれかに記載の電気集じん機。 For the distance D between the discharge electrode and the ground electrode arranged in parallel to the charging unit, the needle pitch P of the adjacent needle electrodes arranged on one support unit is P / D = 1.0 to 1.5 The electric dust collector according to any one of claims 8 to 10, which is set to a range. 帯電部の放電電極と接地電極との間にコロナ放電として流れる電流が所定の値となるように、高圧電源から供給される前記帯電部への印加電圧が制御された請求項1〜12のいずれかに記載の電気集じん機。 The voltage applied to the charging unit supplied from the high-voltage power supply is controlled so that a current flowing as a corona discharge between the discharge electrode and the ground electrode of the charging unit has a predetermined value. The electric dust collector described in Crab. 半導電板の耐電圧Vmと高圧電源から供給される帯電部への印加電圧Vaとの差K=Vm−Vaが、常に所定値以上を確保するように印加電圧Vaが制限された請求項13記載の電気集じん機。 14. The applied voltage Va is limited so that the difference K = Vm−Va between the withstand voltage Vm of the semiconductive plate and the applied voltage Va applied to the charging unit supplied from the high-voltage power supply always maintains a predetermined value or more. The electric dust collector described. 厚さ方向に流れる電流に対する単位面積当りの電気抵抗が1010Ω・cm2以上の樹脂フィルムまたは絶縁性セラミックスで構成された絶縁板を集じん部の荷電極板の表面に配置した請求項1〜14のいずれかに記載の電気集じん機。 2. An insulating plate made of a resin film or insulating ceramic having an electric resistance per unit area of 10 10 Ω · cm 2 or more with respect to a current flowing in the thickness direction is arranged on the surface of the load electrode plate in the dust collecting portion. The electric dust collector in any one of -14. 絶縁板の耐電圧Vnと高圧電源から供給される集じん部への印加電圧Vbとの差K=Vn−Vbが、常に所定値以上を確保するように印加電圧Vbが制限された請求項15記載の電気集じん機。 16. The applied voltage Vb is limited so that the difference K = Vn−Vb between the withstand voltage Vn of the insulating plate and the applied voltage Vb applied to the dust collector supplied from the high-voltage power supply always maintains a predetermined value or more. The electric dust collector described.
JP2008056131A 2008-03-06 2008-03-06 Electric dust collector Expired - Fee Related JP5125626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008056131A JP5125626B2 (en) 2008-03-06 2008-03-06 Electric dust collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008056131A JP5125626B2 (en) 2008-03-06 2008-03-06 Electric dust collector

Publications (2)

Publication Number Publication Date
JP2009208041A true JP2009208041A (en) 2009-09-17
JP5125626B2 JP5125626B2 (en) 2013-01-23

Family

ID=41181714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008056131A Expired - Fee Related JP5125626B2 (en) 2008-03-06 2008-03-06 Electric dust collector

Country Status (1)

Country Link
JP (1) JP5125626B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013179381A1 (en) 2012-05-29 2013-12-05 トヨタ自動車株式会社 Particulate matter treating device
CN104858558A (en) * 2015-06-05 2015-08-26 珠海克林格林环保设备制造有限公司 Full automatic welding system and device for fishbone type cathode wire
CN106733195A (en) * 2016-12-23 2017-05-31 中国科学院过程工程研究所 A kind of non-homogeneous printed line electro dust removing method and component and electric cleaner
CN107413526A (en) * 2017-05-24 2017-12-01 镇江汉邦科技有限公司 Air purifier

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0568912A (en) * 1991-09-13 1993-03-23 Toshiba Corp Electric precipitator
JPH0880453A (en) * 1994-09-14 1996-03-26 Kyocera Corp Electrostatic chuck for dust collecting
JPH1190265A (en) * 1997-09-18 1999-04-06 Matsushita Seiko Co Ltd Film electric dust-collecting filter
JP2001308167A (en) * 2000-04-27 2001-11-02 Nhk Spring Co Ltd Electrostatic chuck
JP2002192014A (en) * 2000-12-26 2002-07-10 Mitsubishi Heavy Ind Ltd Electrostatic precipitator
JP2003511640A (en) * 1999-10-14 2003-03-25 クリクタフォビッチ、イゴール・エー Electrostatic fluid accelerator
JP2008012526A (en) * 2006-06-07 2008-01-24 Matsushita Electric Ind Co Ltd Dust collector and air conditioner
JP2008207168A (en) * 2007-01-29 2008-09-11 Matsushita Electric Ind Co Ltd Electric dust collector

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0568912A (en) * 1991-09-13 1993-03-23 Toshiba Corp Electric precipitator
JPH0880453A (en) * 1994-09-14 1996-03-26 Kyocera Corp Electrostatic chuck for dust collecting
JPH1190265A (en) * 1997-09-18 1999-04-06 Matsushita Seiko Co Ltd Film electric dust-collecting filter
JP2003511640A (en) * 1999-10-14 2003-03-25 クリクタフォビッチ、イゴール・エー Electrostatic fluid accelerator
JP2001308167A (en) * 2000-04-27 2001-11-02 Nhk Spring Co Ltd Electrostatic chuck
JP2002192014A (en) * 2000-12-26 2002-07-10 Mitsubishi Heavy Ind Ltd Electrostatic precipitator
JP2008012526A (en) * 2006-06-07 2008-01-24 Matsushita Electric Ind Co Ltd Dust collector and air conditioner
JP2008207168A (en) * 2007-01-29 2008-09-11 Matsushita Electric Ind Co Ltd Electric dust collector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013179381A1 (en) 2012-05-29 2013-12-05 トヨタ自動車株式会社 Particulate matter treating device
CN104858558A (en) * 2015-06-05 2015-08-26 珠海克林格林环保设备制造有限公司 Full automatic welding system and device for fishbone type cathode wire
CN106733195A (en) * 2016-12-23 2017-05-31 中国科学院过程工程研究所 A kind of non-homogeneous printed line electro dust removing method and component and electric cleaner
CN107413526A (en) * 2017-05-24 2017-12-01 镇江汉邦科技有限公司 Air purifier

Also Published As

Publication number Publication date
JP5125626B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
JP4960831B2 (en) Electric dust collector
JP5527208B2 (en) Electric dust collector
JP5125626B2 (en) Electric dust collector
JP5119868B2 (en) Electric dust collector
JP2010075864A (en) Electric dust precipitator
JP4334365B2 (en) Electrode assembly and ion generator
WO2010038872A1 (en) Electric dust collecting apparatus and electric dust collecting system
WO2017212688A1 (en) Charging device, electric dust collector, ventilation device, and air cleaner
JP2001121033A (en) Electric precipitator
JP2010029827A (en) Electric dust collector
JP5024104B2 (en) Electric dust collector
JP2012096127A (en) Electric dust collector
JP5125790B2 (en) Electric dust collector
JP3618591B2 (en) Electrostatic dust collector
JP5098500B2 (en) Electric dust collector
JP4002948B2 (en) Ion generator
JPH08240968A (en) Electrostatic discharging device
JP5049060B2 (en) Ion generation method, ion generation apparatus, and static elimination method and static elimination apparatus using the ion generation method
JP4811725B2 (en) Ion generator and static eliminator
JP2013158762A (en) Dust collector
JP5223424B2 (en) Dust collector
JP3031346U (en) Holding device for charging electrode plate in electric dust collector
JP2008207168A5 (en)
JPH0763650B2 (en) Corona blower and electric dust collector using the same
JP5816807B2 (en) Electric dust collector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110225

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20110314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

R151 Written notification of patent or utility model registration

Ref document number: 5125626

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees