JP2009207958A - Electromagnetic treatment apparatus - Google Patents

Electromagnetic treatment apparatus Download PDF

Info

Publication number
JP2009207958A
JP2009207958A JP2008051433A JP2008051433A JP2009207958A JP 2009207958 A JP2009207958 A JP 2009207958A JP 2008051433 A JP2008051433 A JP 2008051433A JP 2008051433 A JP2008051433 A JP 2008051433A JP 2009207958 A JP2009207958 A JP 2009207958A
Authority
JP
Japan
Prior art keywords
pipe
jig
coil
processing apparatus
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008051433A
Other languages
Japanese (ja)
Inventor
Ichiro Tomioka
一郎 富岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
B II DENSHI KOGYO KK
Original Assignee
B II DENSHI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by B II DENSHI KOGYO KK filed Critical B II DENSHI KOGYO KK
Priority to JP2008051433A priority Critical patent/JP2009207958A/en
Publication of JP2009207958A publication Critical patent/JP2009207958A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic treatment apparatus of a liquid fluid which attempts to improve and optimize the energy efficiency. <P>SOLUTION: The electromagnetic treatment apparatus is characterized by comprising an operation coil installed at the outside of piping constituting the passage of a liquid, an electric source part to supply an electric current to the operation coil, and an electric current control part to make the operation coil generate the beat waveform of higher order harmonics from the operation coil by applying the basic frequency of the electric current to supply the electric source part for the resonance frequency of the operation coil so that the period of the intermittent driving can be adjusted. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、エネルギー効率の改善と最適化を図った液流体の電磁処理装置に関する。   The present invention relates to a liquid-fluid electromagnetic processing apparatus that is improved and optimized in energy efficiency.

従来、流体流路を構成する管体内面へのスケールの付着防止や除去、管体内面の腐食防止を図るため電磁処理装置が知られている。
電磁処理装置は、液体の流路となる配管の外側に作動コイルを巻き付け、この作動コイルに電源部から電流を流す。この電流は電流制御部によって特定周波数帯域で周波数が時間的に変化する特定波形の電磁界誘起電流に変換されて前記作動コイルに供給される。
これにより、コイルは電磁界を誘起させて配管内に磁場と電場とを生じさせ、この磁場と電場の電子エネルギーによって配管内を流れる液体に対して、その分子やイオンを媒体とし電解エネルギーを与えて電磁処理を行い、スケールの結晶体や錆びなどの付着物表面と配管の内面を強く負に帯電しこれらを反発させたり結合を不安定にして離れさせ、またスケールを小さく再結晶化させて配管内面から剥離させると共に、配管内面を還元状態にして腐食を防止している。
この種の電磁処理装置の動作周波数と作動コイルを検証すると、駆動周波数はDC〜50KHzの範囲で、周波数変調等色々有り、また、基本波形は矩形波形状からなっている。
一例を挙げると、水処理用の配管の作動コイルは、直径20mm程度の配管に断面2mmのビニール電線等を10回〜150回(実用的には10数回)巻いて作動コイルにしている。この作動コイルを駆動するために、駆動回路では数〜150アンペアターンの電力を投入している。
しかし、コイルのインダクタンスは数10μHであり、共振点は100KHz以上でるため、磁気エネルギーへの変換は矩形波のDC成分を除いた微分波形(共振周波数)の数十分の1から数百分の1程度となり、非常に効率が悪く殆どの電力が熱損失となっていた。そのため装置の大型化が避けられず、電力も無駄となり効率が悪いという不具合があった(図9(a)〜(d)参照)。
特開2001−38362号公報 図1〜図2、図11参照
2. Description of the Related Art Conventionally, an electromagnetic processing apparatus is known for preventing or removing scale from and on the inner surface of a tubular body constituting a fluid flow path and preventing corrosion of the inner surface of the tubular body.
In the electromagnetic processing device, an operating coil is wound around a pipe serving as a liquid flow path, and a current is supplied to the operating coil from a power supply unit. This current is converted into an electromagnetic field induced current having a specific waveform whose frequency temporally changes in a specific frequency band by the current control unit, and is supplied to the operating coil.
As a result, the coil induces an electromagnetic field to generate a magnetic field and an electric field in the pipe, and gives electrolysis energy to the liquid flowing in the pipe by the magnetic energy of the magnetic field and the electric field using the molecules and ions as a medium. By applying electromagnetic treatment, the surface of deposits such as crystals and rust on the scale and the inner surface of the pipe are strongly negatively charged, repelling them and making the bonds unstable and separating them, and recrystallizing the scales small. While peeling from the inner surface of the pipe, the inner surface of the pipe is reduced to prevent corrosion.
When the operating frequency and the operating coil of this type of electromagnetic processing apparatus are verified, the driving frequency is in the range of DC to 50 KHz, and there are various types of frequency modulation and the basic waveform has a rectangular wave shape.
As an example, the working coil of a water treatment pipe is formed by winding a vinyl wire or the like having a cross section of 2 mm 2 around a pipe having a diameter of about 20 mm 10 to 150 times (practically 10 times). . In order to drive this operating coil, the drive circuit is powered by several to 150 ampere turns.
However, since the inductance of the coil is several tens of μH and the resonance point is 100 KHz or more, conversion to magnetic energy is several tens of minutes of the differential waveform (resonance frequency) excluding the DC component of the rectangular wave. It was about 1 and was very inefficient and most of the power was heat loss. For this reason, there is a problem that the apparatus is inevitably increased in size, the power is wasted and the efficiency is low (see FIGS. 9A to 9D).
JP, 2001-38362, A Refer to Drawing 1-Drawing 2 and Drawing 11.

この発明は上記実情に鑑みてなされたもので、その主たる課題は、作動コイルのインダクタンスに着目し、駆動基本周波数を作動コイルの共振周波数に合わせ、その断続駆動を行うことで効率化を図った電磁処理装置を提供することにある。   The present invention has been made in view of the above circumstances, and its main problem is to focus on the inductance of the working coil, match the drive fundamental frequency to the resonance frequency of the working coil, and perform the intermittent drive to improve efficiency. It is to provide an electromagnetic processing apparatus.

上記課題を解決するために、請求項1の発明では、
液体の流路を構成する配管の外側に設けた作動コイルと、該作動コイルに電流を供給する電源部と、該電源部の供給する電流の基本周波数を前記作動コイルの共振周波数とし、断続駆動の周期を調整可能として、前記作動コイルに高調波のビート波形を発生させる電流制御部とからなることを特徴とする。
また、請求項2の発明では、
前記電流制御部に形成された共振回路が直列共振回路からなることを特徴とする。
更に、請求項3の発明では、
前記作動コイルが、複数に分割された構成片からなる巻線用の冶具によって配管に形成されており、
前記冶具が、配管の外周より僅かに大径の内周を有する左右一対のサイドプレートと、該サイドプレート間に掛け渡されたクロスメンバとからなって断面略アングル状の巻線収納部が形成されており、前記サイドメンバの内周側に形成された電線の導入孔と、前記サイドメンバの外周寄りに形成されて冶具に巻き付けられて外へ抜け出る電線の他端側を係止する導出溝とを有しており、
前記分割された構成片を配管に添って外嵌して略ドーナツ状に組み合わせ固定して冶具を組立て、
該冶具を配管に添って回転することで前記電線を巻線収納部内に巻き付け、前記冶具を配管に固定して作動コイルを形成してなることを特徴とする。
In order to solve the above problem, the invention of claim 1
Actuating coil provided outside the piping constituting the liquid flow path, a power supply unit for supplying current to the working coil, and the fundamental frequency of the current supplied by the power supply unit as the resonance frequency of the working coil, and intermittent driving And a current control unit for generating a beat waveform of harmonics in the operating coil.
In the invention of claim 2,
The resonant circuit formed in the current control unit is a series resonant circuit.
Furthermore, in the invention of claim 3,
The operating coil is formed in a pipe by a winding jig composed of a plurality of divided pieces,
The jig comprises a pair of left and right side plates having an inner circumference slightly larger than the outer circumference of the pipe and a cross member spanned between the side plates to form a winding housing portion having a substantially angled cross section. A wire introduction hole formed on the inner peripheral side of the side member, and a lead-out groove for locking the other end side of the electric wire formed near the outer periphery of the side member and wound around a jig and coming out. And
Assemble the jig by fixing the divided component pieces along the pipe and fitting them together in a substantially donut shape,
By rotating the jig along the pipe, the electric wire is wound in a winding housing portion, and the jig is fixed to the pipe to form an operating coil.

この発明は、電源部の供給する電流の駆動基本周波数を作動コイルの共振周波数に合わせて断続駆動を行うことで、DC成分(熱損失)を極力低く抑えて電磁処理装置の効率化を達成することができる。
断続駆動の周期と、作動コイルの共振周波数からなる基本周波数の高周波バースト波形で駆動した作動コイルには、高調波のビート波形が発生する。
上記断続周期と周波数を調整することで、配管内の流体に最適な周期(周波数)でパワーピークを発生させることができるので、エネルギー効率の改善と最適化が図れて極めて有益である。
The present invention achieves the efficiency of the electromagnetic processing apparatus by suppressing the DC component (heat loss) as low as possible by performing intermittent driving by matching the drive fundamental frequency of the current supplied by the power supply unit with the resonance frequency of the working coil. be able to.
A harmonic beat waveform is generated in the working coil driven by the high frequency burst waveform of the fundamental frequency consisting of the period of intermittent driving and the resonance frequency of the working coil.
By adjusting the intermittent period and frequency, a power peak can be generated at an optimal period (frequency) for the fluid in the pipe, which is extremely beneficial in improving and optimizing energy efficiency.

以下に、この発明の電磁処理装置の実施の形態を図面を参照しながら説明する。   Embodiments of an electromagnetic processing apparatus according to the present invention will be described below with reference to the drawings.

図1に示す電磁処理装置1は、配管2内のパイプ空間を液体流路として液体を流し、前記配管2の外側には電線を巻き付けて作動コイル3を設けている。
この作動コイル3は電流制御部6を介して電源部7に接続されており、該電源部7の供給する電流の基本周波数を前記コイルの共振周波数とし、作動コイル3に高調波のビート波形を発生させる構成からなっている。
配管2に巻き付ける作動コイル3は1つであってもよいが、図1では一定間隔を隔てて複数(図示例では3つ)の作動コイルを直列につなげた構成からなっている。
The electromagnetic processing apparatus 1 shown in FIG. 1 allows a liquid to flow using a pipe space in a pipe 2 as a liquid flow path, and an operating coil 3 is provided by winding an electric wire around the pipe 2.
The operating coil 3 is connected to a power supply unit 7 via a current control unit 6. The fundamental frequency of the current supplied by the power supply unit 7 is the resonance frequency of the coil, and a harmonic beat waveform is applied to the operating coil 3. It consists of the structure to generate.
The number of the operating coils 3 wound around the pipe 2 may be one, but in FIG. 1, a plurality of (three in the illustrated example) operating coils are connected in series at a constant interval.

ここで電流制御部6は、共振回路10を有している。
この共振回路10は、直流共振回路であっても、並列共振回路であってもよい。
共振回路10の共振点は、以下の式で各定数を共振点に合わせることで、能率が最大になる。
Here, the current control unit 6 has a resonance circuit 10.
The resonance circuit 10 may be a DC resonance circuit or a parallel resonance circuit.
The resonance point of the resonance circuit 10 is maximized in efficiency by matching each constant to the resonance point in the following equation.

Figure 2009207958

例えば、発振回路(OSC):8KHzの時に、L:74μH C:4.5μFとなる。
図3は共振回路として直列共振回路10を用いた場合であって、該回路中のIC1(LM358)はOPAMPで三角波のランプ波形(図4(a)参照)を発生し、VR2でオフセット電位の調整をする。
また、回路中、IC2(MC14046BC)は、VCO高周波発信器であって三角波のランプ波形を変調波として、次段の高周波発生器を断続するためのスイープ波形(図4(b)参照)を発生させる。
Figure 2009207958

For example, when the oscillation circuit (OSC) is 8 KHz, L: 74 μH C: 4.5 μF.
FIG. 3 shows a case where a series resonant circuit 10 is used as a resonant circuit. IC1 (LM358) in the circuit generates a ramp waveform of a triangular wave (see FIG. 4A) by OPAMP, and an offset potential of VR2 Make adjustments.
Further, in the circuit, IC2 (MC14046BC) is a VCO high-frequency oscillator that generates a sweep waveform (see FIG. 4B) for intermittently connecting the next-stage high-frequency generator using a triangular ramp waveform as a modulation wave. Let

回路中、Q1は電力スイッチであって、IC3(IR2111)はインバータ駆動制御用ICであって、作動コイルを駆動する搬送波(20KHz〜200KHz)を発生させる(図4(c)参照)。
本実施例では、一例として発信周波数を133KHzに設定した。
CXは直列共振用コンデンサーであり、作動コイル3と直列共振回路を構成している。
これにより、電源部7の供給する電流の基本周波数を前記コイルの共振周波数とし、作動コイル3に高調波のビート波形を発生させることができる。
なお、図4(d)は、作動コイル重畳電圧波形である。
In the circuit, Q1 is a power switch, and IC3 (IR2111) is an inverter drive control IC, which generates a carrier wave (20 KHz to 200 KHz) that drives the operating coil (see FIG. 4C).
In this embodiment, the transmission frequency is set to 133 KHz as an example.
CX is a capacitor for series resonance, and constitutes a series resonance circuit with the working coil 3.
Thereby, the fundamental frequency of the current supplied from the power supply unit 7 can be set as the resonance frequency of the coil, and a harmonic beat waveform can be generated in the working coil 3.
In addition, FIG.4 (d) is a working coil superimposed voltage waveform.

次に、図5に示す並列共振回路10は、該回路中のIC1(LM358)がOPAMPで三角波のランプ波形(図4(a)参照)を発生し、VR2でオフセット電位の調整が行われる。
また、前記回路中、IC2(MC14046BC)は、電圧制御型発振器(VCO)であって、三角波のランプ波形を変調波として、次段の高周波発生器の発振周波数を断続するためのスイープ波形を発生させる(図4(b)参照)。
Next, in the parallel resonant circuit 10 shown in FIG. 5, IC1 (LM358) in the circuit generates a triangular ramp waveform (see FIG. 4A) with OPAMP, and the offset potential is adjusted with VR2.
In the circuit, IC2 (MC14046BC) is a voltage controlled oscillator (VCO) that generates a sweep waveform for intermittently oscillating the oscillation frequency of the next-stage high-frequency generator using a triangular ramp waveform as a modulation wave. (See FIG. 4B).

更に、前記回路中、IC3(μPC494C)は、スイッチング電源用のパルス幅変調(PWM)コントロールICであって、作動コイル3を駆動する搬送波(20Khz〜200KHz)を発生する。
本実施例でも発信周波数を133KHzに設定した。
VR3は133KHzの方形波のデューティ比を調整して出力電力を調整する。
Further, in the circuit, IC3 (μPC494C) is a pulse width modulation (PWM) control IC for a switching power supply, and generates a carrier wave (20 Khz to 200 KHz) for driving the operating coil 3.
Also in this embodiment, the transmission frequency was set to 133 KHz.
VR3 adjusts the output power by adjusting the duty ratio of a 133 KHz square wave.

また、前記回路中、Q2.Q3、Q4はQ5のパワーMOSのドライブ回路である。
前記Q5は図4(c)で図示する電力駆動波形でドライブする電力SWであり、R1は電流調整のためのブリーダ抵抗である。
C1は、作動コイル3と並列共振回路を構成しており、この作動コイル3の直近に配置してもよい。
なお、図4(d)は、作動コイル重畳電圧波形である。
In the circuit, Q2. Q3 and Q4 are Q5 power MOS drive circuits.
Q5 is power SW driven with the power drive waveform shown in FIG. 4C, and R1 is a bleeder resistor for current adjustment.
C1 constitutes a parallel resonance circuit with the working coil 3, and may be arranged in the immediate vicinity of the working coil 3.
In addition, FIG.4 (d) is a working coil superimposed voltage waveform.

また、図中、ピックアップコイル4は、FFT解析のセンサーとして使用する際に、適宜用いるものである。
なお、図6はFFT解析を示すグラフであり、(a)はパワー解析波形、同(b)は高周波ビート波形であり、上記実施例の効果を確認することができた。
In the drawing, the pickup coil 4 is appropriately used when used as a sensor for FFT analysis.
FIG. 6 is a graph showing the FFT analysis, where (a) is a power analysis waveform and (b) is a high-frequency beat waveform, and the effects of the above-described embodiment could be confirmed.

図2は、配管に作動コイルを巻き付けた別の実施例を示す。
配管2に巻き付ける作動コイル3は1つであってもよいが、図1では一定間隔を隔てて複数(図示例では3つ)の作動コイルを直列につなげた構成からなっている。
FIG. 2 shows another embodiment in which an operating coil is wound around a pipe.
The number of the operating coils 3 wound around the pipe 2 may be one, but in FIG. 1, a plurality of (three in the illustrated example) operating coils are connected in series at a constant interval.

図2では、フェライトコア5を作動コイル3に巻き込む構成からなっている。
配管2に巻き付ける作動コイル3は1つであってもよいが、図1では一定間隔を隔てて複数(図示例では3つ)の作動コイルを直列につなげた構成からなっている。
各作動コイル3には、フェライトコア5を120度の角度間隔で配置し、配管2に固定したうえで0.5mmφ程度の銅線を11回巻き付ける。
In FIG. 2, the ferrite core 5 is wound around the working coil 3.
The number of the operating coils 3 wound around the pipe 2 may be one, but in FIG. 1, a plurality of (three in the illustrated example) operating coils are connected in series at a constant interval.
A ferrite core 5 is arranged on each working coil 3 at an angular interval of 120 degrees, fixed to the pipe 2, and then a copper wire of about 0.5 mmφ is wound 11 times.

次に、フェライトコア5の幅かそれ以上にスペ−スを開けて、再度同様に配管上に固定した別のフェライトコア5に銅線を巻き付けて作動コイル3を形成する。
上記作動コイル3は、条件や状況に応じて1列から複数列配置する。
これは、フェライトコア5を作動コイル3中に巻き込むと、透磁率が向上して共振し易くなるためである。
Next, a space is opened to the width of the ferrite core 5 or more, and the operating coil 3 is formed by winding a copper wire around another ferrite core 5 fixed on the pipe in the same manner.
The actuating coil 3 is arranged from a single row to a plurality of rows depending on conditions and situations.
This is because when the ferrite core 5 is wound into the working coil 3, the magnetic permeability is improved and resonance easily occurs.

次に、図7および図8に示す作動コイル3は、ボビン状の巻線用の冶具20を用いて配管2に巻き付ける構成からなっている。
この場合、冶具20は、リングの2つ割り構造20A、20Bからなり、非導電性の素材が用いられている。
Next, the actuation coil 3 shown in FIGS. 7 and 8 is configured to be wound around the pipe 2 using a bobbin-shaped winding jig 20.
In this case, the jig 20 includes a ring split structure 20A, 20B, and a non-conductive material is used.

この冶具20は、本実施例の場合、アクリル樹脂からなっており、配管2の外周の半径より僅かに大きい半径の内周21を有する左右一対の略半円形状のサイドプレート22と、該一対のサイドプレート22の内周21側に架け渡されて両者を連結するクロスメンバ23とからなっている。   In this embodiment, the jig 20 is made of an acrylic resin, and includes a pair of left and right substantially semicircular side plates 22 having an inner circumference 21 having a radius slightly larger than the radius of the outer circumference of the pipe 2, and the pair. The cross member 23 is bridged to the inner periphery 21 side of the side plate 22 and connects the two.

前記サイドプレート22には、内周21寄りに形成されて作動コイル3成形用の銅線を通す導入孔24と、外周寄りに形成されて冶具に巻き付けられた銅線を外へ抜け出させるためのU字状に形成された導出溝25とを有している。   The side plate 22 has an introduction hole 24 formed near the inner periphery 21 through which the copper wire for forming the working coil 3 is passed, and a copper wire formed near the outer periphery and wound around a jig is pulled out. And a lead-out groove 25 formed in a U-shape.

前記2分割された冶具構成片20A、20Bは配管2に外嵌して配管2の上下から接近させて、一体的に整合する(図7(a)(b)参照)。
次いで、一対の冶具構成片20A、20Bを接着テープ26を巻くなどして、中央に貫通孔が形成された略ドーナツ状で断面がアングル状の巻線収納部20aを有する冶具20を組み立てる(図7(c)参照)。
The two divided jig component pieces 20A and 20B are fitted onto the pipe 2 so as to approach from above and below the pipe 2 and are integrally aligned (see FIGS. 7A and 7B).
Next, a pair of jig constituent pieces 20A and 20B is wound with an adhesive tape 26 to assemble a jig 20 having a winding housing portion 20a having a substantially donut shape with a through-hole formed in the center and an angle-shaped cross section (see FIG. 7 (c)).

このように組み立てられた冶具20の一方のサイドプレート22の導入孔24に銅線を通して斜め上向きに引出して他方のサイドプレート22の導出溝25に導線の先端側を掛け止めておく。
この冶具20を配管2に沿って図8(a)で示すa方向(図中反時計方向)に回転させることで、冶具20内に容易に銅線を引込み、導入孔側から導出溝側に向かうb方向(図8(b)参照)に導線を巻き付けて作動コイル3を成形することができる。
A copper wire is drawn obliquely upward through the introduction hole 24 of one side plate 22 of the jig 20 assembled in this manner, and the leading end side of the conducting wire is hooked in the lead-out groove 25 of the other side plate 22.
By rotating the jig 20 along the pipe 2 in the direction a (counterclockwise in the figure) shown in FIG. 8A, the copper wire is easily drawn into the jig 20, and from the introduction hole side to the lead-out groove side. The actuating coil 3 can be formed by winding a conducting wire in the direction b (see FIG. 8B).

このようにして銅線を巻き付けて作動コイル3とした冶具20をそのまま配管2に接着または固定することで、作動コイル3を極めて簡単に配管2に取り付けることができる(図8(b)参照)
ここで、それぞれの冶具20から延びる導入側および導出側の銅線は、それぞれ一体にまとめられて、導入側が電流制御部6の陽極と接続され、導出側が陰極に接続される。
この発明は上記構成に限定されるものではなく、その要旨を変更しない範囲で種々設計変更しうること勿論である。
In this way, the working coil 3 can be attached to the pipe 2 very easily by bonding or fixing the jig 20 as the working coil 3 by winding the copper wire to the pipe 2 as it is (see FIG. 8B).
Here, the copper wires on the introduction side and the lead-out side extending from the respective jigs 20 are integrated together, the lead-in side is connected to the anode of the current control unit 6, and the lead-out side is connected to the cathode.
The present invention is not limited to the above-described configuration, and it is needless to say that various design changes can be made without changing the gist thereof.

電磁処理装置の模式図である。(実施例1)It is a schematic diagram of an electromagnetic processing apparatus. Example 1 フェライトコアを設けた電磁処理装置の模式図である。(実施例2)It is a schematic diagram of the electromagnetic processing apparatus provided with the ferrite core. (Example 2) 直列共振回路からなる駆動回路の回路図である。It is a circuit diagram of the drive circuit which consists of a series resonance circuit. 駆動回路の波形を示す図であって、(a)はランプ波形、(b)はVCO出力波形(断続信号)、(c)は電力駆動波形、(d)コイル重畳電圧波形である。It is a figure which shows the waveform of a drive circuit, (a) is a ramp waveform, (b) is a VCO output waveform (intermittent signal), (c) is a power drive waveform, (d) is a coil superimposed voltage waveform. 並列共振回路からなる駆動回路の回路図である。It is a circuit diagram of the drive circuit which consists of a parallel resonant circuit. FFT解析であって(a)はパワー解析波形、(b)は高周波ビート波形である。FFT analysis, (a) is a power analysis waveform, and (b) is a high-frequency beat waveform. 巻線用の冶具であって、(a)は組立前の側面図、(b)は同正面図、(c)は組立状態の正面図である。It is a jig | tool for winding, Comprising: (a) is a side view before an assembly, (b) is the same front view, (c) is a front view of an assembly state. (a)巻線用冶具の使用例を示す側面図、(b)は正面図である。(A) The side view which shows the usage example of the jig for winding, (b) is a front view. (a)は従来の駆動電圧波形、(b)は従来の駆動電流波形、(c)は従来のコイル重畳電圧波形、(d)は従来の熱損失波形(模擬)、(e)は本実施例の高周波バースト波形である。(A) is a conventional drive voltage waveform, (b) is a conventional drive current waveform, (c) is a conventional coil superimposed voltage waveform, (d) is a conventional heat loss waveform (simulation), and (e) is the present implementation. It is an example high frequency burst waveform.

符号の説明Explanation of symbols

1 電磁処理装置
2 配管
3 作動コイル
4 ピックアップコイル
5 フェライトコア
6 電流制御部
7 電源部
10 共振回路
20 冶具
20A、20B 冶具構成片
20a 巻線収納部
21 内周
22 サイドプレート
23 クロスメンバ
24 導入孔
25 導出溝
26 接着テープ
DESCRIPTION OF SYMBOLS 1 Electromagnetic processing apparatus 2 Piping 3 Acting coil 4 Pick-up coil 5 Ferrite core 6 Current control part 7 Power supply part 10 Resonance circuit 20 Jig 20A, 20B Jig component piece 20a Winding accommodating part 21 Inner circumference 22 Side plate 23 Cross member 24 Introduction hole 25 Lead groove 26 Adhesive tape

Claims (3)

液体の流路を構成する配管の外側に設けた作動コイルと、該作動コイルに電流を供給する電源部と、該電源部の供給する電流の基本周波数を前記作動コイルの共振周波数とし、断続駆動の周期を調整可能として、前記作動コイルに高調波のビート波形を発生させる電流制御部とからなることを特徴とする電磁処理装置。   Actuating coil provided outside the piping constituting the liquid flow path, a power supply unit for supplying current to the working coil, and the fundamental frequency of the current supplied by the power supply unit as the resonance frequency of the working coil, and intermittent driving An electromagnetic processing apparatus comprising: a current control unit that makes the operating coil adjustable and generates a harmonic beat waveform. 電流制御部に形成された共振回路が直列共振回路からなることを特徴とする請求項1に記載の電磁処理装置。   The electromagnetic processing apparatus according to claim 1, wherein the resonance circuit formed in the current control unit is a series resonance circuit. 作動コイルが、複数に分割された構成片からなる巻線用の冶具によって配管に形成されており、
前記冶具が、配管の外周より僅かに大径の内周を有する左右一対のサイドプレートと、該サイドプレート間に掛け渡されたクロスメンバとからなって断面略アングル状の巻線収納部が形成されており、前記サイドメンバの内周側に形成された電線の導入孔と、前記サイドメンバの外周寄りに形成されて冶具に巻き付けられて外へ抜け出る電線の他端側を係止する導出溝とを有しており、
前記分割された構成片を配管に添って外嵌して略ドーナツ状に組み合わせ固定して冶具を組立て、
該冶具を配管に添って回転することで前記電線を巻線収納部内に巻き付け、前記冶具を配管に固定して作動コイルを形成してなることを特徴とする請求項1に記載の電磁処理装置。
The working coil is formed in the pipe by a winding jig consisting of a plurality of divided pieces,
The jig comprises a pair of left and right side plates having an inner circumference slightly larger than the outer circumference of the pipe and a cross member spanned between the side plates to form a winding housing portion having a substantially angled cross section. A wire introduction hole formed on the inner peripheral side of the side member, and a lead-out groove for locking the other end side of the electric wire formed near the outer periphery of the side member and wound around a jig and coming out. And
Assemble the jig by fixing the divided component pieces along the pipe and fitting them together in a substantially donut shape,
The electromagnetic processing apparatus according to claim 1, wherein the jig is rotated along a pipe so that the electric wire is wound in a winding housing portion, and the jig is fixed to the pipe to form an operating coil. .
JP2008051433A 2008-02-29 2008-02-29 Electromagnetic treatment apparatus Pending JP2009207958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008051433A JP2009207958A (en) 2008-02-29 2008-02-29 Electromagnetic treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008051433A JP2009207958A (en) 2008-02-29 2008-02-29 Electromagnetic treatment apparatus

Publications (1)

Publication Number Publication Date
JP2009207958A true JP2009207958A (en) 2009-09-17

Family

ID=41181637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008051433A Pending JP2009207958A (en) 2008-02-29 2008-02-29 Electromagnetic treatment apparatus

Country Status (1)

Country Link
JP (1) JP2009207958A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010110667A (en) * 2008-11-04 2010-05-20 Tohoku Tokushuko Kk Electromagnetic treatment apparatus and method
CN102627358A (en) * 2012-04-06 2012-08-08 轻工业西安机械设计研究院 Adjustable-frequency electromagnetic descaling instrument
JPWO2012020825A1 (en) * 2010-08-13 2013-10-28 株式会社志賀機能水研究所 Water electromagnetic field treatment method and electromagnetic field treatment apparatus
CN103848533A (en) * 2014-02-26 2014-06-11 郑州阿莱姆环保设备有限公司 Variable-frequency water treatment device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06294363A (en) * 1993-04-09 1994-10-21 Aisan Ind Co Ltd Electromagnetic fuel injection valve
JPH09215245A (en) * 1996-01-30 1997-08-15 Hitachi Ltd Ac power generator for motor vehicle
JP2002520146A (en) * 1998-07-16 2002-07-09 クリアウォータ・システムズ・リミテッド・ライアビリティ・カンパニー A device that processes the flow with an electromagnetic flux
JP2004267885A (en) * 2003-03-07 2004-09-30 Yanagawa Engineering Co Ltd Device for preventing adhesion of scale
JP2008006433A (en) * 2006-05-29 2008-01-17 Seiki Shiga Method and apparatus for treating water in electromagnetic field

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06294363A (en) * 1993-04-09 1994-10-21 Aisan Ind Co Ltd Electromagnetic fuel injection valve
JPH09215245A (en) * 1996-01-30 1997-08-15 Hitachi Ltd Ac power generator for motor vehicle
JP2002520146A (en) * 1998-07-16 2002-07-09 クリアウォータ・システムズ・リミテッド・ライアビリティ・カンパニー A device that processes the flow with an electromagnetic flux
JP2004267885A (en) * 2003-03-07 2004-09-30 Yanagawa Engineering Co Ltd Device for preventing adhesion of scale
JP2008006433A (en) * 2006-05-29 2008-01-17 Seiki Shiga Method and apparatus for treating water in electromagnetic field

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010110667A (en) * 2008-11-04 2010-05-20 Tohoku Tokushuko Kk Electromagnetic treatment apparatus and method
JPWO2012020825A1 (en) * 2010-08-13 2013-10-28 株式会社志賀機能水研究所 Water electromagnetic field treatment method and electromagnetic field treatment apparatus
JP5844259B2 (en) * 2010-08-13 2016-01-13 株式会社志賀機能水研究所 Electromagnetic field treatment method for water
CN102627358A (en) * 2012-04-06 2012-08-08 轻工业西安机械设计研究院 Adjustable-frequency electromagnetic descaling instrument
CN103848533A (en) * 2014-02-26 2014-06-11 郑州阿莱姆环保设备有限公司 Variable-frequency water treatment device
CN103848533B (en) * 2014-02-26 2015-07-08 任来瑞 Variable-frequency water treatment device

Similar Documents

Publication Publication Date Title
JP2009207958A (en) Electromagnetic treatment apparatus
JP2011050239A (en) Power supply with piezoelectric transformer, and method for power conversion
US11056265B2 (en) Magnetic field generation with thermovoltaic cooling
EP3676948A1 (en) Magnetic field generation with magneto-caloric cooling
JP2007273158A (en) Electron tube and travelling wave tube
JP2003285008A (en) Ultrasonic wave generation method and apparatus therefor
JPH05144594A (en) Discharge plasma generator
JP2006318895A (en) Electrodeless lamp system and its control method
EP3823112A1 (en) Electron generation apparatus capable of multi-stage boosting for variable capacity
JP5729514B1 (en) Plasma generator, liquid melting method and power supply device
TWI584881B (en) Circuit for atomizing liquid and device thereof
CN103187889A (en) Portable high-voltage direct current stabilized voltage power supply
JP2001016877A (en) Ultrasonic motor drive circuit
JP2021106140A (en) Power converter
CN105880821B (en) Suitable for the grid bias power supply device and pulsed electron beam welding machine of pulsed electron beam welding
US20200173962A1 (en) Waveform Generator, System and Method
JP6331480B2 (en) Inverter device and plasma generator
RU2774986C1 (en) Method for obtaining electric resonant vibrations
JPH08293265A (en) Magnetron
CN1053328A (en) Three-phase magnetic resistance motor
JP4408137B2 (en) Betatron accelerator
JP4391924B2 (en) Betatron accelerator
TWI543941B (en) Negative ion water generator
JP2010114037A (en) Lighting device of external electrode type discharge lamp
JP2001309651A (en) Piezoelectric element driving circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120530