JP2009206313A - Dry metal-evaporated film capacitor - Google Patents

Dry metal-evaporated film capacitor Download PDF

Info

Publication number
JP2009206313A
JP2009206313A JP2008047377A JP2008047377A JP2009206313A JP 2009206313 A JP2009206313 A JP 2009206313A JP 2008047377 A JP2008047377 A JP 2008047377A JP 2008047377 A JP2008047377 A JP 2008047377A JP 2009206313 A JP2009206313 A JP 2009206313A
Authority
JP
Japan
Prior art keywords
metal
film
polyvinylidene fluoride
capacitor
capacitor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008047377A
Other languages
Japanese (ja)
Inventor
Yoshitaka Sugawara
良孝 菅原
Shuji Ogata
修二 緒方
Katsunori Asano
勝則 浅野
Shosuke Yamanouchi
昭介 山之内
Noriaki Matsumura
紀明 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Nissin Electric Co Ltd
Original Assignee
Kansai Electric Power Co Inc
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Nissin Electric Co Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2008047377A priority Critical patent/JP2009206313A/en
Publication of JP2009206313A publication Critical patent/JP2009206313A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dry metal-evaporated film capacitor which contrives the practical use of a capacitor element having polyvinylidene fluoride as a dielectric and allows further miniaturization than the capacitor element having polyvinylidene fluoride as a dielectric. <P>SOLUTION: A polyvinylidene fluoride resin film 1 mixed with a high-dielectric-constant filler having a metal-evaporated layer 2, e.g., a barium titanate powder, is wound. On the end surface thereof, metal is thermal-sprayed to form electrodes 3a and 3b, and external terminals 4a and 4b are connected and fixed to the electrodes 3a and 3b to form the capacitor element. The external terminals 4a and 4b are led out and coated with a metal laminate film 5 formed of a surface resin layer 5a, a metal layer 5b and an internal resin layer 5c to form a dry metal-evaporated film capacitor. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電気機器などに使用するポリフッ化ビニリデン樹脂フィルムを誘電体とした乾式金属蒸着フィルムコンデンサに関するものである。   TECHNICAL FIELD The present invention relates to a dry metal vapor deposition film capacitor using a polyvinylidene fluoride resin film used as an electric device as a dielectric.

ポリプロピレン、ポリエチレンテレフタレートなどの高分子フィルムの表面にアルミニウム、亜鉛あるいはこれらの合金などの金属を蒸着した金属蒸着フィルムを巻回し、その両端面に亜鉛、鉛、錫あるいはこれらの合金を溶射して電極を形成し、その電極に端子を固着して構成した乾式コンデンサ素子は、電気機器などのたとえば時定数回路や発振回路に使用されている。   A metal vapor deposition film in which a metal such as aluminum, zinc, or an alloy thereof is vapor-deposited is wound around the surface of a polymer film such as polypropylene or polyethylene terephthalate, and zinc, lead, tin, or an alloy thereof is thermally sprayed on both end surfaces thereof. The dry capacitor element formed by fixing the terminal to the electrode is used in, for example, a time constant circuit or an oscillation circuit of an electric device or the like.

ところで、近年、電気機器などの小型化が進められているが、上記のようなポリプロピレンフィルム(以下、PPフィルムという。)やポリエチレンテレフタレートフィルム(以下、PETフィルムという。)を誘電体とするコンデンサそしでは、同一静電容量、電圧において小型化することができず電気機器の小型化に対応することができないという問題がある。 By the way, in recent years, electric appliances and the like have been reduced in size. However, a capacitor using a polypropylene film (hereinafter referred to as PP film) or a polyethylene terephthalate film (hereinafter referred to as PET film) as a dielectric as described above. Then, there exists a problem that it cannot respond to size reduction of an electric equipment, since it cannot reduce in size with the same electrostatic capacitance and voltage.

この問題を解消するためPPフィルム、PETフィルムに代えて、PPフィルム(比誘電率2.2)やPETフィルム(比誘電率3.2)よりも数倍比誘電率の大きいポリフッ化ビニリデンフィルム(比誘電率10)を用いることが考えられている。
特公昭47−49661号公報 特公昭46−37972号公報
In order to solve this problem, a polyvinylidene fluoride film having a relative dielectric constant several times larger than that of PP film (relative dielectric constant 2.2) or PET film (relative dielectric constant 3.2) is used instead of PP film or PET film ( It has been considered to use a dielectric constant of 10).
Japanese Examined Patent Publication No. 47-49661 Japanese Examined Patent Publication No. 46-37972

しかし、ポリフッ化ビニリデン樹脂を誘電体とするコンデンサ素子は、比誘電率が大きい分小型化することが可能であるが、そのコンデンサ素子を缶内に封入しても、またウレタンゴムでモールド外装しても、劣化が急速に進み実用に供することができないといった問題があった。 However, a capacitor element using a polyvinylidene fluoride resin as a dielectric can be reduced in size because of its large relative dielectric constant. However, even if the capacitor element is sealed in a can, it is molded with urethane rubber. However, there is a problem that the deterioration is so rapid that it cannot be put into practical use.

本発明が解決しようとする課題は、ポリフッ化ビニリデンを誘電体とするコンデンサ素子の実用化が図れるとともに、ポリフッ化ビニリデンを誘電体とするコンデンサ素子よりもさらに小型化することができる乾式金属蒸着フィルムコンデンサを提供することにある。   The problem to be solved by the present invention is that a capacitor element using polyvinylidene fluoride as a dielectric can be put into practical use, and can be further reduced in size as compared with a capacitor element using polyvinylidene fluoride as a dielectric. It is to provide a capacitor.

本発明は、金属蒸着ポリフッ化ビニリデン樹脂フィルムを巻回し、その端面に金属を溶射して電極を形成してなるコンデンサ素子を、表面樹脂層、金属層および内面樹脂層で形成された金属ラミネートフィルムで外装してなる乾式金属蒸着フィルムコンデンサであって、前記ポリフッ化ビニリデン樹脂に高誘電率フィラーを混入してなることを特徴とする。   The present invention relates to a capacitor laminate formed by winding a metal-deposited polyvinylidene fluoride resin film and spraying metal onto its end face to form an electrode, and a metal laminate film formed of a surface resin layer, a metal layer, and an inner surface resin layer A dry metal vapor-deposited film capacitor that is packaged with a high dielectric constant filler mixed with the polyvinylidene fluoride resin.

本発明では、コンデンサ素子の誘電体として高誘電率フィラーたとえばチタン酸バリウムを混入したポリフッ化ビニリデン樹脂フィルムを使用するので、小型のコンデンサ素子とすることができるとともに、そのコンデンサ素子を、表面樹脂層、金属層および内面樹脂層で形成された金属ラミネートフィルムで外装するので、コンデンサ素子が完全に密封され、これにより長期にわたって電気絶縁破壊強度が低下することがなくなり、信頼性の高い乾式金属蒸着フィルムコンデンサを得ることができる。   In the present invention, since a polyvinylidene fluoride resin film mixed with a high dielectric constant filler such as barium titanate is used as the dielectric of the capacitor element, the capacitor element can be made small, and the capacitor element can be formed with a surface resin layer. Since it is packaged with a metal laminate film formed of a metal layer and an inner surface resin layer, the capacitor element is completely sealed, thereby preventing a decrease in electrical breakdown strength over a long period of time, and a highly reliable dry metal vapor deposition film A capacitor can be obtained.

ポリフッ化ビニリデンを誘電体とするコンデンサ素子の実用化が図れるとともに、ポリフッ化ビニリデンを誘電体とするコンデンサ素子よりもさらに小型化することができる乾式金属蒸着フィルムコンデンサを提供する目的を、表面に金属層を蒸着した高誘電率フィラーを混入したポリフッ化ビニリデン樹脂フィルムを巻回してコンデンサ素子を形成し、そのコンデンサ素子を、表面樹脂層、金属層および内面樹脂層で形成された金属ラミネートフィルムで外装することにより実現した。   A capacitor element using polyvinylidene fluoride as a dielectric material can be put into practical use, and the purpose of providing a dry metal vapor deposition film capacitor that can be further reduced in size compared to a capacitor element using polyvinylidene fluoride as a dielectric material A capacitor element is formed by winding a polyvinylidene fluoride resin film mixed with a high-dielectric-constant filler on which a layer is deposited, and the capacitor element is packaged with a metal laminate film formed of a surface resin layer, a metal layer, and an inner surface resin layer. It was realized by doing.

図1は本発明の実施例に係る金属蒸着フィルムコンデンサの構成を示す断面図である。図1において、1はチタン酸バリウム粉を体積比で約20%混入したポリフッ化ビニリデン樹脂フィルム、2は蒸着金属層、3aおよび3bは電極、4aおよび4bは外部端子、5は金属ラミネートフィルムである。金属ラミネートフィルム5は、表面樹脂層5a、金属層5bおよび内面樹脂層5cで構成、具体的には表面樹脂層5aおよび内面樹脂層5cは厚み約30μmのプラスチック層をなし、金属層5bは厚み約40μmのアルミニウムで構成されている。   FIG. 1 is a cross-sectional view showing a configuration of a metal vapor deposition film capacitor according to an embodiment of the present invention. In FIG. 1, 1 is a polyvinylidene fluoride resin film mixed with about 20% by volume of barium titanate powder, 2 is a deposited metal layer, 3a and 3b are electrodes, 4a and 4b are external terminals, and 5 is a metal laminate film. is there. The metal laminate film 5 includes a surface resin layer 5a, a metal layer 5b, and an inner surface resin layer 5c. Specifically, the surface resin layer 5a and the inner surface resin layer 5c form a plastic layer having a thickness of about 30 μm, and the metal layer 5b has a thickness. It is made of about 40 μm aluminum.

チタン酸バリウム粉(比誘電率2000以上)を混入したポリフッ化ビニリデン樹脂フィルムは、ポリフッ化ビニリデン樹脂を加熱溶融したところに、平均粒径0.3μm以下のチタン酸バリウム粉を混合攪拌し、これを延伸してフィルムに形成する。なお、チタン酸バリウム粉の混合量と比誘電率εの関係は、体積比で20%の混入で約20、ポリフッ化ビニリデン樹脂の比誘電率10の2倍となり、体積比で30%の混入で約30、ポリフッ化ビニリデン樹脂の比誘電率10の3倍となる。 The polyvinylidene fluoride resin film mixed with barium titanate powder (relative dielectric constant 2000 or more) is obtained by mixing and stirring barium titanate powder having an average particle size of 0.3 μm or less when the polyvinylidene fluoride resin is heated and melted. Is formed into a film. The relationship between the mixing amount of the barium titanate powder and the relative dielectric constant ε is about 20 when the volume ratio is 20%, twice the relative dielectric constant 10 of the polyvinylidene fluoride resin, and 30% when the volume ratio is mixed. About 30, which is three times the relative dielectric constant 10 of the polyvinylidene fluoride resin.

そして、コンデンサ素子は、表面にアルミニウム、亜鉛あるいはこれらの合金などの金属を蒸着した、チタン酸バリウム粉を混入したポリフッ化ビニリデン樹脂フィルムの1対を重ねて巻回し、その後、電極引き出すため両端面に亜鉛などの金属を溶射して電極3aおよび3bを形成し、各電極に外部端子4aおよび4bを接続固定してコンデンサ素子を形成する。その後、このコンデンサ素子を、外部端子4aおよび4bを導出した状態で金属ラミネートフィルム5で覆い、周囲3辺を熱溶着して閉じ、所定の熱処理を行った後残りの1辺を熱溶着してコンデンサ素子を金属ラミネートフィルム5で密閉する。 The capacitor element is formed by stacking and winding a pair of polyvinylidene fluoride resin films mixed with barium titanate powder on which metal such as aluminum, zinc or an alloy thereof is deposited, and then pulling out the electrodes. The electrodes 3a and 3b are formed by thermal spraying a metal such as zinc, and the external terminals 4a and 4b are connected and fixed to the electrodes to form capacitor elements. Thereafter, the capacitor element is covered with the metal laminate film 5 with the external terminals 4a and 4b being led out, and the surrounding three sides are thermally welded and closed, and after the predetermined heat treatment, the remaining one side is thermally welded. The capacitor element is sealed with a metal laminate film 5.

実施例1として、12μm厚のチタン酸バリウム粉を混入した金属蒸着ポリフッ化ビニリデン樹脂フィルムを巻回し、定格2000V、40μFのコンデンサ素子を上記のように金属ラミネートフィルムで外装して形成した。このときの体積は0.13リットルである。 As Example 1, a metal-deposited polyvinylidene fluoride resin film mixed with 12 μm-thick barium titanate powder was wound, and a capacitor element with a rating of 2000 V and 40 μF was packaged with a metal laminate film as described above. The volume at this time is 0.13 liter.

比較例1として、実施例1と同様に12μm厚のチタン酸バリウム粉を混入した金属蒸着ポリフッ化ビニリデン樹脂フィルムを巻回し、定格2000V、40μFのコンデンサ素子を形成し、所定の熱処理後ウレタンゴムでモールドしたコンデンサを形成した。このときの体積は0.13リットルである。 As Comparative Example 1, similarly to Example 1, a metal-deposited polyvinylidene fluoride resin film mixed with 12 μm-thick barium titanate powder was wound to form a capacitor element with a rating of 2000 V and 40 μF. A molded capacitor was formed. The volume at this time is 0.13 liter.

比較例2として、12μm厚の金属蒸着ポリフッ化ビニリデン樹脂フィルムを巻回し、定格2000V、40μFのコンデンサ素子を形成し、コンデンサ素子を上記のように金属ラミネートフィルムで外装して形成した。このときの体積は0.2リットルである。 As Comparative Example 2, a 12 μm-thick metal-deposited polyvinylidene fluoride resin film was wound to form a capacitor element having a rating of 2000 V and 40 μF, and the capacitor element was formed by covering with a metal laminate film as described above. The volume at this time is 0.2 liter.

実施例1と比較例1は、比較例2と比べ体積が大幅に減少し、小型に構成することはできることが分かる。そこで、実施例1と比較例1について、定格電圧にて長期課電を行い、その途中で素子を取り出し絶縁強度を測定した。その結果を図2に示す。この図2において菱形記は実施例1、丸記は比較例1を示し、縦軸は定格電圧を100として表し、横軸は経過時間である。図2から明らかなように、実施例1は10000時間経過しても絶縁強度は最初の状態が維持されているが、比較例1は80時間辺りから急激に絶縁強度が低下している。 It can be seen that Example 1 and Comparative Example 1 are significantly smaller in volume than Comparative Example 2 and can be made compact. Therefore, for Example 1 and Comparative Example 1, long-term voltage application was performed at the rated voltage, and the element was taken out in the middle to measure the insulation strength. The result is shown in FIG. In FIG. 2, rhombuses indicate Example 1, circles indicate Comparative Example 1, the vertical axis indicates the rated voltage as 100, and the horizontal axis indicates the elapsed time. As is apparent from FIG. 2, in Example 1, the initial insulation strength was maintained even after 10000 hours, but in Comparative Example 1, the insulation strength suddenly decreased from around 80 hours.

また、実施例1と比較例1について、数種の電圧にて長期課電を行い、破壊時の電圧と時間を評価した。その結果を図3に示す。この図3において菱形記は実施例1、丸記は比較例1を示し、縦軸は定格電圧を100とし表し、横軸は時間である。図3から明らかなように、実施例1は125つまり2500Vの課電では10000時間経過してもコンデンサ素子は破壊しないが、比較例1では、2000Vの定格電圧の課電においてもコンデンサ素子は破壊する。 Moreover, about Example 1 and the comparative example 1, long-term voltage application was performed with several types of voltages, and the voltage and time at the time of destruction were evaluated. The result is shown in FIG. In FIG. 3, rhombuses indicate Example 1, circles indicate Comparative Example 1, the vertical axis indicates the rated voltage as 100, and the horizontal axis indicates time. As is clear from FIG. 3, in Example 1, the capacitor element does not break down even after 10,000 hours have elapsed with an electric power of 125, that is, 2500 V, but in Comparative Example 1, the capacitor element breaks down even when the rated voltage of 2000 V is applied. To do.

すなわち、以上の結果から本発明に係るコンデンサは、長期にわたり電気絶縁特性が安定で信頼性の高いコンデンサであることが分かる。 That is, it can be seen from the above results that the capacitor according to the present invention is a highly reliable capacitor with stable electrical insulation characteristics over a long period of time.

本発明の実施例に係る乾式金属蒸着フィルムコンデンサの構成を示す断面図である。It is sectional drawing which shows the structure of the dry-type metal vapor deposition film capacitor based on the Example of this invention. 乾式金属蒸着フィルムコンデンサ素子の絶縁破壊強度の測定結果を示す特性図である。It is a characteristic view which shows the measurement result of the dielectric breakdown strength of a dry-type metal vapor deposition film capacitor | condenser element. 乾式金属蒸着フィルムコンデンサ素子の破壊時の電圧と時間を示す評価図である。It is an evaluation figure which shows the voltage and time at the time of destruction of a dry-type metal vapor deposition film capacitor | condenser element.

符号の説明Explanation of symbols

1 高誘電率フィラーを混入したポリフッ化ビニリデン樹脂フィルム
2 蒸着金属層
3a、3bは電極
4a、4b 外部端子
5 金属ラミネートフィルム
1 Polyvinylidene fluoride resin film mixed with high dielectric constant filler 2 Deposition metal layers 3a and 3b are electrodes 4a and 4b External terminals 5 Metal laminate film

Claims (1)

金属蒸着ポリフッ化ビニリデン樹脂フィルムを巻回し、その端面に金属を溶射して電極を形成してなるコンデンサ素子を、表面樹脂層、金属層および内面樹脂層で形成された金属ラミネートフィルムで外装してなる乾式金属蒸着フィルムコンデンサであって、前記ポリフッ化ビニリデン樹脂に高誘電率フィラーを混入してなることを特徴とする乾式金属蒸着フィルムコンデンサ。 A capacitor element formed by winding a metal-deposited polyvinylidene fluoride resin film and spraying metal on its end face to form an electrode is covered with a metal laminate film formed of a surface resin layer, a metal layer, and an inner surface resin layer. A dry metal vapor deposition film capacitor comprising a polyvinylidene fluoride resin mixed with a high dielectric constant filler.
JP2008047377A 2008-02-28 2008-02-28 Dry metal-evaporated film capacitor Pending JP2009206313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008047377A JP2009206313A (en) 2008-02-28 2008-02-28 Dry metal-evaporated film capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008047377A JP2009206313A (en) 2008-02-28 2008-02-28 Dry metal-evaporated film capacitor

Publications (1)

Publication Number Publication Date
JP2009206313A true JP2009206313A (en) 2009-09-10

Family

ID=41148286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008047377A Pending JP2009206313A (en) 2008-02-28 2008-02-28 Dry metal-evaporated film capacitor

Country Status (1)

Country Link
JP (1) JP2009206313A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011089948A1 (en) * 2010-01-20 2011-07-28 ダイキン工業株式会社 High-dielectric film
JP2013197267A (en) * 2012-03-19 2013-09-30 Kojima Press Industry Co Ltd Capacitor
JP2017139505A (en) * 2013-10-04 2017-08-10 旭化成株式会社 Solar battery, and method for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54126948A (en) * 1978-03-24 1979-10-02 Marukon Denshi Kk Plastic film capacitor
JPS5869252A (en) * 1981-10-21 1983-04-25 Kureha Chem Ind Co Ltd Dielectric film and production thereof
JP2005277101A (en) * 2004-03-24 2005-10-06 Nippon Chemicon Corp Film capacitor
WO2007088924A1 (en) * 2006-02-01 2007-08-09 Daikin Industries, Ltd. Highly dielectric film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54126948A (en) * 1978-03-24 1979-10-02 Marukon Denshi Kk Plastic film capacitor
JPS5869252A (en) * 1981-10-21 1983-04-25 Kureha Chem Ind Co Ltd Dielectric film and production thereof
JP2005277101A (en) * 2004-03-24 2005-10-06 Nippon Chemicon Corp Film capacitor
WO2007088924A1 (en) * 2006-02-01 2007-08-09 Daikin Industries, Ltd. Highly dielectric film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011089948A1 (en) * 2010-01-20 2011-07-28 ダイキン工業株式会社 High-dielectric film
JPWO2011089948A1 (en) * 2010-01-20 2013-05-23 ダイキン工業株式会社 High dielectric film
JP5494676B2 (en) * 2010-01-20 2014-05-21 ダイキン工業株式会社 High dielectric film
JP2013197267A (en) * 2012-03-19 2013-09-30 Kojima Press Industry Co Ltd Capacitor
JP2017139505A (en) * 2013-10-04 2017-08-10 旭化成株式会社 Solar battery, and method for manufacturing the same
US10109429B2 (en) 2013-10-04 2018-10-23 Asahi Kasei Kabushiki Kaisha Solar cell, manufacturing method therefor, semiconductor device, and manufacturing method therefor
US10566144B2 (en) 2013-10-04 2020-02-18 Asahi Kasei Kabushiki Kaisha Solar cell, manufacturing method therefor, semiconductor device, and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP6511649B2 (en) Method of manufacturing electrolytic capacitor and electrolytic capacitor
US8675336B2 (en) Multiple concentric wound film capacitors
JP4931755B2 (en) Dry metal evaporated film capacitor
TW201407916A (en) Lightning energy storage system
JP2007019235A (en) Dry capacitor
JP2009206313A (en) Dry metal-evaporated film capacitor
TWI654266B (en) Soluble nanoparticle solution for capacitors and capacitor package structure
JP6820673B2 (en) Electrolytic capacitors and electrolytic solutions for electrolytic capacitors
US20210183586A1 (en) Electrolytic capacitor module, filter circuit and power converter
JP2015103700A (en) Film capacitor
TW200539207A (en) Solid electrolytic condenser
JP2013120834A (en) Film for film capacitor, and film capacitor
JP2009277866A (en) Film capacitor and method of manufacturing the same
JP2009277827A (en) Capacitor
JP6885275B2 (en) Film capacitor
JP2920240B2 (en) Metallized film capacitors
JP2009188206A (en) Film capacitor
JP2010098131A (en) Electrolytic capacitor and method for manufacturing the same
US20140008761A1 (en) High density capacitors utilizing thin film semiconductor layers
JP2013026586A (en) Metalized film capacitor
JP6441585B2 (en) Film capacitor
MacDonald et al. Development and performance of high temperature power conversion capacitors
JP7241304B2 (en) storage device
JP2900751B2 (en) Film capacitor and manufacturing method thereof
JP2012009654A (en) Film capacitor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20110121

Free format text: JAPANESE INTERMEDIATE CODE: A711

A521 Written amendment

Effective date: 20110121

Free format text: JAPANESE INTERMEDIATE CODE: A821

A621 Written request for application examination

Effective date: 20110216

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20120308

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A02 Decision of refusal

Effective date: 20120703

Free format text: JAPANESE INTERMEDIATE CODE: A02