JP2009204944A - Diffraction optical element, lighting system, and sensor device - Google Patents

Diffraction optical element, lighting system, and sensor device Download PDF

Info

Publication number
JP2009204944A
JP2009204944A JP2008047853A JP2008047853A JP2009204944A JP 2009204944 A JP2009204944 A JP 2009204944A JP 2008047853 A JP2008047853 A JP 2008047853A JP 2008047853 A JP2008047853 A JP 2008047853A JP 2009204944 A JP2009204944 A JP 2009204944A
Authority
JP
Japan
Prior art keywords
optical element
diffractive optical
light
diffraction
condensing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008047853A
Other languages
Japanese (ja)
Inventor
Takeshi Ueda
健 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2008047853A priority Critical patent/JP2009204944A/en
Publication of JP2009204944A publication Critical patent/JP2009204944A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a diffraction optical element that is easily processed and hardly undergoes variation in characteristic dependently on the arrangement accuracy, and to provide a compact and inexpensive lighting system and sensor device. <P>SOLUTION: In a multi-stage diffraction optical element having condensing power and a plurality of diffraction zones, the number of condensing positions of primary light of each diffraction zone is at least two or more, and the diffraction efficiency of the primary light is the highest. The plurality of diffraction zones may have a concentric orbicular zone, or may have a linear lattice. The diffraction optical element 1 includes the same focal position, and the number of groups of one or more adjacent orbicular zones or zones is required to be at least larger than the number of condensing positions. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、回折光学素子、照明装置およびセンサー装置に関するもので、例えば、デジタル複写機などにおいて、測定対象の位置ずれ検出などに利用可能なものである。   The present invention relates to a diffractive optical element, an illuminating device, and a sensor device. For example, the present invention can be used for detecting a displacement of a measurement object in a digital copying machine or the like.

光束を測定対象位置に照射し、測定対象からの反射光の強度や波長分布を検知することにより、測定対象位置の変化を検出するセンサーは多数ある。例えば、デジタル複写機やレーザプリンタにおいて、出力画像の色ずれや倍率を補正するために中間転写ベルト上で測定対象であるトナーパッチの位置を検知するために上記センサーが使われる。このようなセンサーによる位置検出確度を上げるために、あるいは充分な光量をセンサーに届かせるために、レンズなどの光学素子を使用して、照明光を測定位置すなわち測定対象位置近傍に集光することはよく行われることである。   There are many sensors that detect changes in the measurement target position by irradiating the measurement target position with a light beam and detecting the intensity and wavelength distribution of reflected light from the measurement target. For example, in a digital copying machine or a laser printer, the sensor is used to detect the position of a toner patch to be measured on an intermediate transfer belt in order to correct a color shift or magnification of an output image. In order to improve the position detection accuracy by such a sensor, or to allow a sufficient amount of light to reach the sensor, the illumination light is condensed near the measurement position, that is, the measurement target position, using an optical element such as a lens. Is often done.

通常のレンズを用いて集光すると、焦点位置では鋭い光スポットが得られるが、レンズと測定対象位置との位置関係が僅かでも崩れて焦点位置が測定対象位置から外れると、急に光スポットが広がってしまい、所望の性能を得ることができない。すなわち測定対象に対して充分な量の照明光を照射することができない。   When condensing using a normal lens, a sharp light spot is obtained at the focal position. It spreads and the desired performance cannot be obtained. That is, a sufficient amount of illumination light cannot be irradiated to the measurement object.

このような問題を解決するために、例えば、特許公報1に記載されている多焦点非球面レンズを用いることが考えられる。この多焦点非球面レンズを用いれば、照明光を測定対象に集光して照射する光学素子であるレンズの曲率を、照射する領域によって変えることができ、焦点深度を広くすることができる。   In order to solve such a problem, for example, it is conceivable to use a multifocal aspherical lens described in Patent Document 1. If this multifocal aspherical lens is used, the curvature of the lens, which is an optical element that collects and irradiates the illumination light on the measurement object, can be changed depending on the irradiation region, and the depth of focus can be increased.

しかしながら、複写機やレーザプリンタなどの機器内にセンサーを組み込む場合、センサーが機器内の他の機構に干渉しないように小型化が求められている現状に照らすと、特許文献1に記載されている技術を採用することは困難である。特に、レンズ自体が例えば直径1mm以下というように小さくなってくると、所望の非球面形状を作ることが困難になってくる。   However, when a sensor is incorporated in a device such as a copying machine or a laser printer, it is described in Patent Document 1 in light of the current situation in which a reduction in size is required so that the sensor does not interfere with other mechanisms in the device. It is difficult to adopt technology. In particular, when the lens itself becomes small, for example, with a diameter of 1 mm or less, it becomes difficult to produce a desired aspherical shape.

さらに、特許文献1記載の発明のように、照射する領域によってレンズの曲率を変える場合、加工の困難さから、せいぜいレンズの中心部と周辺部で曲率を変える程度までが実現可能な範囲である。これでは光源の配光分布、すなわち最大光量の方向、光量の射出角度特性が変わると、レンズ透過後の特性が変化してしまう。   Further, as in the invention described in Patent Document 1, when the curvature of the lens is changed depending on the region to be irradiated, the range from the difficulty of processing to the extent of changing the curvature at the center and the periphery of the lens is at most realizable. . In this case, when the light distribution of the light source, that is, the direction of the maximum light amount and the emission angle characteristic of the light amount change, the characteristic after passing through the lens changes.

これら問題を解決するために、通常のレンズまたは特許文献1に記載されて非球面レンズの代わりに特許文献2に記載されている多焦点回折レンズを用いることが考えられる。特許文献2に記載されている多焦点回折レンズは、回折表面に多数の光学的高所と低所とが設けられていることを特徴とする。特許文献2記載の多焦点回折レンズを用いれば、回折次数の違いによる焦点距離の違いを利用して焦点深度を深くし、測定対象の照明光照射領域全範囲にわたって充分な量の照明光を照射することができる可能性がある。
しかしながら、回折次数の違いによる焦点距離の違いは、低次の回折光の場合にはあまりにも大きすぎ、回折次数ごとに全く別の位置に焦点を結んでしまい、焦点深度を広くすることができない。
In order to solve these problems, it is conceivable to use a multifocal diffractive lens described in Patent Document 2 instead of an ordinary lens or an aspherical lens described in Patent Document 1. The multifocal diffractive lens described in Patent Document 2 is characterized in that a diffractive surface is provided with a number of optical heights and lows. If the multifocal diffractive lens described in Patent Document 2 is used, the focal depth is increased by utilizing the difference in focal length due to the difference in diffraction order, and a sufficient amount of illumination light is irradiated over the entire illumination light irradiation area of the measurement target. There is a possibility that you can.
However, the difference in focal length due to the difference in diffraction order is too large in the case of low-order diffracted light, and the focal point is formed at a completely different position for each diffraction order, so that the depth of focus cannot be increased. .

この問題への対処法として、高次の回折次数光を使うことが考えられるが、この場合には、かなり多段の回折格子にしないと効率を稼ぐことができず、レンズ加工の難しさと光量の確保とのトレードオフになる。
加工の難しさは、回折格子のパワーを減らすことにより緩和することができるが、パワーが小さくなると焦点距離が長くなり、装置の大きさが増大する。
回折光学素子と反対側の面にレンズを設けることにより回折格子のパワーを補うことも可能であるが、レンズの両面を高精度に加工しなければならないという加工上の課題が発生する。
A possible solution to this problem is to use higher-order diffraction orders, but in this case, it is not possible to achieve efficiency unless a multi-stage diffraction grating is used. This is a trade-off with securing.
The difficulty of processing can be alleviated by reducing the power of the diffraction grating, but as the power decreases, the focal length increases and the size of the apparatus increases.
Although it is possible to supplement the power of the diffraction grating by providing a lens on the surface opposite to the diffractive optical element, there arises a processing problem that both surfaces of the lens must be processed with high accuracy.

特表2002−522803号公報Japanese translation of PCT publication No. 2002-522803 特開平7−198909号公報Japanese Laid-Open Patent Publication No. 7-198909

本発明は、これら従来技術の問題点に鑑み、コンパクトで、加工が容易であり、配置精度によって特性が変化し難い回折光学素子、コンパクトで低コストの照明装置およびセンサー装置を実現することを目的とする。   The present invention has been made in view of these problems of the prior art, and aims to realize a diffractive optical element that is compact, easy to process, and whose characteristics do not easily change depending on placement accuracy, a compact, low-cost illumination device, and sensor device. And

本発明は、集光パワーを持ち、複数の回折帯を持つ多段回折光学素子であって、各回折帯の1次光の集光位置は少なくとも2つ以上の位置であり、かつ、1次光の回折効率が最も大きいことを最も主要な特徴とする。
上記多段回折光学素子は、複数の回折帯として、同心円状の輪帯を持つものであってもよい。
また、上記多段回折光学素子は、複数の回折帯として、直線状の格子を持つものであってもよい。
The present invention is a multi-stage diffractive optical element having a condensing power and having a plurality of diffraction bands, wherein the primary light condensing positions of each diffraction band are at least two or more positions, and the primary light The most important feature is that the diffraction efficiency of each is the highest.
The multistage diffractive optical element may have a concentric annular zone as a plurality of diffraction zones.
The multistage diffractive optical element may have a linear grating as a plurality of diffraction bands.

上記回折光学素子は、同じ焦点位置を持ち、隣接する1つ以上の輪帯または帯のグループが少なくとも集光位置の数より多くあるものであってもよい。   The diffractive optical element may have the same focal position, and one or more adjacent annular bands or groups of bands may be at least more than the number of condensing positions.

本発明にかかる照明装置は、半導体レーザまたは発光ダイオードからなる光源と上記回折光学素子を有することを特徴とする。   An illuminating device according to the present invention includes a light source including a semiconductor laser or a light emitting diode and the diffractive optical element.

本発明にかかるセンサー装置は、前記照明装置の複数の集光位置の範囲内に位置している被検知部材と、この被検知部材からの反射光を検知する検知素子を有することを特徴とする。   The sensor device according to the present invention includes a detection member positioned within a range of a plurality of light collection positions of the illumination device, and a detection element that detects reflected light from the detection member. .

本発明によれば、多段回折光学素子において、各回折帯の1次光の集光位置は少なくとも2つ以上の位置であり、かつ、1次光の回折効率を最も大きくしたので、加工が容易で、素子配置によって特性が変化しにくい回折光学素子を得ることができる。
複数の回折帯として、同心円状の輪帯を持つ多段回折光学素子によれば、点状集光光学素子を得ることができる。
複数の回折帯として、直線状の格子を持つ多段回折光学素子によれば、線状集光回折光学素子得ることができる。
According to the present invention, in the multistage diffractive optical element, the primary light in each diffraction band is condensed at least at two or more positions, and the diffraction efficiency of the primary light is maximized, so that processing is easy. Thus, it is possible to obtain a diffractive optical element whose characteristics hardly change depending on the element arrangement.
According to the multistage diffractive optical element having concentric ring zones as a plurality of diffraction bands, a point-like condensing optical element can be obtained.
According to a multistage diffractive optical element having a linear grating as a plurality of diffraction bands, a linear converging diffractive optical element can be obtained.

同じ焦点位置を持ち、隣接する1つ以上の輪帯または帯のグループが少なくとも集光位置の数より多くある回折光学素子によれば、光線の入射位置によって与えられる焦点位置が分散され、入射光束の配光分布(最大光量の方向、光量の射出角度特性)の変化によって射出光束の特性が変化しにくい光学素子を得ることができる。この構成の最も甚だしい例は、隣接する輪帯または帯の焦点距離をすべて異なったものとする構成である。   According to the diffractive optical element having the same focal position and having one or more adjacent annular bands or groups of bands at least more than the number of converging positions, the focal position given by the incident position of the light beam is dispersed, and the incident light flux Thus, it is possible to obtain an optical element in which the characteristic of the emitted light beam is not easily changed by the change in the light distribution (the direction of the maximum light quantity, the emission angle characteristic of the light quantity). The most prominent example of this configuration is a configuration in which the focal lengths of adjacent annular zones or bands are all different.

半導体レーザまたは発光ダイオードからなる光源と本発明にかかる回折光学素子を備えた照明装置によれば、各素子の配置によって特性が変化しにくい、小型で低コストの光源装置を得ることができる。
本発明にかかるセンサー装置によれば、上記照明装置と、この照明装置の複数の集光位置の範囲内にある被検知部材と、この被検知部材からの反射光を検知する検知素子を有するので、素子配置によって特性が変化しにくい、小型で低コストのセンサーを得ることができる。
According to the illuminating device including the light source composed of the semiconductor laser or the light emitting diode and the diffractive optical element according to the present invention, a small and low-cost light source device whose characteristics are hardly changed by the arrangement of each element can be obtained.
According to the sensor device of the present invention, since the illumination device, the detected member within the range of the plurality of condensing positions of the illumination device, and the detection element that detects the reflected light from the detected member are included. Thus, it is possible to obtain a small and low-cost sensor whose characteristics hardly change depending on the element arrangement.

以下、本発明にかかる回折光学素子、照明装置およびセンサー装置の実施例を、図面を参照しながら説明する。
図1は、本発明にかかる回折光学素子の実施例の断面図であって、対称軸O付近の拡大図である。この実施例にかかる回折光学素子1は、透明基板に凹凸を形成して光線に位相変調を加えるように構成されている。より具体的には、回折光学素子1は集光パワーを持ち、回折格子面が複数の回折帯を持つ多段回折光学素子である。
Embodiments of a diffractive optical element, an illumination device, and a sensor device according to the present invention will be described below with reference to the drawings.
FIG. 1 is a cross-sectional view of an embodiment of a diffractive optical element according to the present invention, and is an enlarged view in the vicinity of an axis of symmetry O. FIG. The diffractive optical element 1 according to this embodiment is configured so as to form phase irregularities on a transparent substrate and apply phase modulation to the light beam. More specifically, the diffractive optical element 1 is a multistage diffractive optical element having a condensing power and a diffraction grating surface having a plurality of diffraction bands.

一つの実施例として、図1に示す断面形状を、対称軸Oを中心にその周りに回転させることにより、複数の回折帯として同心円状の輪帯を持つ多段回折光学素子を構成することができる。この多段回折光学素子によれば、入射光を点に集光することができる。   As an example, a multi-stage diffractive optical element having concentric ring zones as a plurality of diffraction bands can be configured by rotating the cross-sectional shape shown in FIG. 1 around the symmetry axis O. . According to this multistage diffractive optical element, incident light can be collected at a point.

別の実施例として、図1に示す断面形状を、このまま紙面に対し垂直方法に延長すすることにより、複数の回折帯として直線状の格子を持つ多段回折光学素子を得ることができる。この多段回折光学素子によれば、入射光を線状に集光することができる。   As another example, a multistage diffractive optical element having a linear grating as a plurality of diffraction bands can be obtained by extending the cross-sectional shape shown in FIG. According to this multistage diffractive optical element, incident light can be condensed linearly.

図1に示す回折光学素子1の回折格子面は、各回折帯を構成する凹凸が4段階に形成され、4段レリーフ型回折光学素子を構成している。レリーフの厚みdは、素子の屈折率をn、光線の波長をλとすると、
λ/(n−1)
である。
The diffractive grating surface of the diffractive optical element 1 shown in FIG. 1 has a four-step relief diffractive optical element in which the unevenness constituting each diffraction band is formed in four stages. The thickness d of the relief is given by assuming that the refractive index of the element is n and the wavelength of the light beam is λ.
λ / (n-1)
It is.

図示の実施例では、透明基板に凹凸を形成して光線に位相変調を加えているが、基板自体に屈折率分布を与えるなどの手段によって位相変調を加えても構わない。
位相変調の段数は増やすほど集光効率が高くなるが、段数が増えると加工も難しくなるので、必要な光量とコストから任意の段数を選択して差し支えない。
In the illustrated embodiment, the light is phase-modulated by forming irregularities on the transparent substrate, but phase modulation may be applied by means such as giving a refractive index distribution to the substrate itself.
As the number of stages of phase modulation increases, the light collection efficiency increases. However, since the processing becomes difficult as the number of stages increases, an arbitrary number of stages can be selected from the required light quantity and cost.

図1に示す回折光学素子の例では、符号R1,R2,R3が各回折帯の一周期を表している。また、
R1,R3,・・・,R2j+1が焦点距離f1(=f3,・・・,f2j+1)、
R2,R4,・・・,R2jが焦点距離f2(=f4,・・・,f2j)
となるように、すなわち、2つの焦点距離を持ち、集光位置が2つになるように構成している。ただし、狙いとする焦点距離を3つ以上にしてもよいし、狙いとする焦点距離の順番を変えても構わない。また、図1においてハッチングの掛かっている部分は各回折帯の狙いの集光状態を示している。
In the example of the diffractive optical element shown in FIG. 1, symbols R1, R2, and R3 represent one cycle of each diffraction band. Also,
R1, R3,..., R2j + 1 are focal lengths f1 (= f3,..., F2j + 1),
R2, R4,..., R2j are focal lengths f2 (= f4,..., F2j)
That is, it is configured to have two focal lengths and two condensing positions. However, the target focal length may be three or more, and the order of the target focal lengths may be changed. Further, in FIG. 1, the hatched portion indicates the target light collection state of each diffraction band.

上記の構造にかかる回折光学素の設計方法は以下の通りである。
−1次の回折光が集光するとして、格子方程式より式(1)が得られる。
式1

Figure 2009204944
また、幾何学的関係から式(2)が得られる。
式2

Figure 2009204944
The design method of the diffractive optical element according to the above structure is as follows.
Assuming that the −1st order diffracted light is collected, Expression (1) is obtained from the lattice equation.
Formula 1

Figure 2009204944
Moreover, Formula (2) is obtained from geometric relationship.
Formula 2

Figure 2009204944

式(1)と式(2)より、式(3)が得られる。
式3

Figure 2009204944
式(3)をi=1から順次解くことにより、hiを求めることができる。
また、同心円状の輪帯または直線状の格子からなる上記回折帯の一周期内の構造は−1次光の回折効率が最大となるように適宜設計すればよい。 Equation (3) is obtained from Equation (1) and Equation (2).
Formula 3

Figure 2009204944
By solving Equation (3) sequentially from i = 1, hi can be obtained.
Further, the structure within one period of the diffraction band composed of concentric circular zones or linear gratings may be appropriately designed so that the diffraction efficiency of the −1st order light is maximized.

図4は、上記実施例にかかる多段回折光学素子の、デフォーカス0mm(素子からの距離5mmにあたる)での光量で規格化した、デフォーカスに対する光量変化のシミュレーション結果を示す。光量は焦点位置を中心として一辺2.5mmの正方形領域内に集まる光量としている。ここでのシミュレーション条件は以下の通りである。
光源波長:733nm
基板の屈折率:1.457
回折光学素子の径:1mm
通常の回折光学素子の焦点距離:5mm
本発明にかかる回折光学素子の焦点距離:4.7mm,5.3mm
FIG. 4 shows a simulation result of a change in light quantity with respect to defocus, normalized by the light quantity at 0 mm defocus (corresponding to a distance of 5 mm from the element) of the multistage diffractive optical element according to the above example. The amount of light is the amount of light collected in a square area of 2.5 mm on a side with the focal point as the center. The simulation conditions here are as follows.
Light source wavelength: 733 nm
Refractive index of substrate: 1.457
Diameter of diffractive optical element: 1 mm
Focal length of normal diffractive optical element: 5mm
Focal length of the diffractive optical element according to the present invention: 4.7 mm, 5.3 mm

図4から明らかなように、通常の回折光学素子に比べると、本発明にかかる回折光学素子によれば、デフォーカスをさせても光量の変化が少ないことが分る。   As is apparent from FIG. 4, it can be seen that the change in the amount of light is small even when defocusing is performed, according to the diffractive optical element of the present invention, compared to a normal diffractive optical element.

図2は、本発明にかかる回折光学素子を用いた光源装置の実施例を示す。図2において、回折光学素子1を挟んで、発光素子2と、受光素子の受光面である測定面3が配置されている。回折光学素子1の回折格子面側に測定面3が配置されている。発光素子2としては、小型で光線の波長幅が狭いLEDや半導体レーザを用いることが望ましい。前述のとおりに構成された回折光学素子1は焦点深度が広いので、回折光学素子1と測定面3の位置関係がずれても、照明光照射領域全範囲にわたって光量変化の少ない照明装置を得ることができる。   FIG. 2 shows an embodiment of a light source device using a diffractive optical element according to the present invention. In FIG. 2, a light emitting element 2 and a measurement surface 3 that is a light receiving surface of the light receiving element are arranged with the diffractive optical element 1 interposed therebetween. A measurement surface 3 is disposed on the diffraction grating surface side of the diffractive optical element 1. As the light emitting element 2, it is desirable to use a small-sized LED or a semiconductor laser having a narrow wavelength range of light rays. Since the diffractive optical element 1 configured as described above has a wide depth of focus, an illuminating device having a small change in light amount over the entire illumination light irradiation region even when the positional relationship between the diffractive optical element 1 and the measurement surface 3 is shifted is obtained. Can do.

図3は、本発明にかかる上記照明装置を用いた光検知センサーの実施例を示す。この実施例にかかる光検知センサーは、デジタル複写機やレーザプリンタにおいて、出力画像の色ずれや倍率を補正するために中間転写ベルト上で測定対象であるトナーパッチの位置を検知するトナー検知センサー9を構成している。図3において、発光素子2として、小型で光線の波長幅が狭いLEDや半導体レーザを用いることが望ましい。ガラス、樹脂等の透明基板4には、光源2からの光を測定位置に集光させるために、径が数mm程度の、前記回折光学素子1が刻まれている。この回折光学素子1は、この光検知センサーの実施例では光源側回折光学素子となっている。また、上記透明基板4上に、測定位置からの反射光を光センサー5に集光させるセンサー側回折光学素子8が刻まれている。このセンサー側回折光学素子8は、光源側の回折光学素子1と同じ形状でもよいし、通常の1焦点の回折光学素子でも、球面や非球面のレンズ形状であっても差し支えない。   FIG. 3 shows an embodiment of a light detection sensor using the illumination device according to the present invention. The light detection sensor according to this embodiment is a toner detection sensor 9 that detects the position of a toner patch to be measured on an intermediate transfer belt in order to correct color shift and magnification of an output image in a digital copying machine or a laser printer. Is configured. In FIG. 3, it is desirable to use an LED or a semiconductor laser that is small and has a narrow wavelength range of light rays as the light emitting element 2. The diffractive optical element 1 having a diameter of about several millimeters is engraved on a transparent substrate 4 such as glass or resin in order to collect light from the light source 2 at a measurement position. The diffractive optical element 1 is a light source side diffractive optical element in the embodiment of the light detection sensor. A sensor-side diffractive optical element 8 that condenses the reflected light from the measurement position on the optical sensor 5 is engraved on the transparent substrate 4. The sensor-side diffractive optical element 8 may have the same shape as the light-source-side diffractive optical element 1, or may be a normal single-focus diffractive optical element or a spherical or aspherical lens shape.

図3において符号6は、トナー画像7が形成されたシート状の画像形成体を示しており、この画像形成体6は、複写機やプリンタなどにおける感光体などの像担持体から転写紙へトナーを運ぶ中間転写体であってもよいし、転写紙自体であっても差し支えない。画像形成体6は、前記光検知センサーによる測定面を通過するように配置されている。画像形成体6の移動に伴い、画像形成体6の上に載ったトナー画像7が測定位置に移動して来ると、トナー画像7で反射された光がセンサー側回折光学素子8を透過して光センサー5に入射する。上記光は回折光学素子8を透過することにより光センサー5の受光面に集光される。トナー画像7が測定位置に移動して来ると光センサー5で感じる光量が変化し、この変化によってトナー画像7の位置が分る。   In FIG. 3, reference numeral 6 denotes a sheet-like image forming body on which a toner image 7 is formed. This image forming body 6 is a toner from an image carrier such as a photoconductor in a copying machine or a printer to a transfer paper. It may be an intermediate transfer member that conveys the toner or the transfer paper itself. The image forming body 6 is disposed so as to pass through the measurement surface by the light detection sensor. When the toner image 7 placed on the image forming body 6 moves to the measurement position along with the movement of the image forming body 6, the light reflected by the toner image 7 is transmitted through the sensor side diffractive optical element 8. The light enters the optical sensor 5. The light is condensed on the light receiving surface of the optical sensor 5 by passing through the diffractive optical element 8. When the toner image 7 moves to the measurement position, the amount of light felt by the optical sensor 5 changes, and the position of the toner image 7 is known by this change.

上記光検知センサーの実施例によれば、光源側回折光学素子として前記回折光学素子1を用いているので、画像形成体6が上下方向にばたつき、あるいは、トナー検知センサー9の取り付けが理想の位置からずれていたとしても、光センサー5は検出に必要な光を充分に得ることができる。   According to the embodiment of the light detection sensor, since the diffractive optical element 1 is used as the light source side diffractive optical element, the image forming body 6 fluctuates in the vertical direction or the toner detection sensor 9 is ideally attached. Even if it is deviated from, the optical sensor 5 can sufficiently obtain light necessary for detection.

本発明にかかる回折光学素子の実施例を示す拡大断面図である。It is an expanded sectional view which shows the Example of the diffractive optical element concerning this invention. 本発明にかかる回折光学素子を用いた光源装置の実施例を示す光学配置図である。It is an optical arrangement | positioning figure which shows the Example of the light source device using the diffractive optical element concerning this invention. 本発明にかかる光源装置を用いた光検知センサーの実施例を示す光学配置図である。It is an optical arrangement | positioning figure which shows the Example of the photon detection sensor using the light source device concerning this invention. 実施例にかかる多段回折光学素子のデフォーカスに対する光量変化のシミュレーション結果を示すグラフである。It is a graph which shows the simulation result of the light quantity change with respect to the defocus of the multistage diffractive optical element concerning an Example.

符号の説明Explanation of symbols

1 回折光学素子
2 発光素子
3 測定面
4 透明基板
5 光センサー
6 画像形成体
7 トナー画像
8 センサー側回折光学素子
DESCRIPTION OF SYMBOLS 1 Diffractive optical element 2 Light emitting element 3 Measurement surface 4 Transparent substrate 5 Optical sensor 6 Image forming body 7 Toner image 8 Sensor side diffractive optical element

Claims (6)

集光パワーを持ち、複数の回折帯を持つ多段回折光学素子であって、
各回折帯の1次光の集光位置は少なくとも2つ以上の位置であり、かつ、1次光の回折効率が最も大きいことを特徴とする回折光学素子。
A multistage diffractive optical element having a condensing power and having a plurality of diffraction bands,
A diffractive optical element, wherein the primary light in each diffraction band has at least two condensing positions, and the primary light has the highest diffraction efficiency.
集光パワーを持ち、複数の回折帯として同心円状の輪帯を持つ多段回折光学素子であって、
各輪帯の1次光の集光位置は少なくとも2つ以上の位置であり、かつ、1次光の回折効率が最も大きいことを特徴とする回折光学素子。
A multistage diffractive optical element having condensing power and having concentric annular zones as a plurality of diffraction bands,
1. A diffractive optical element characterized in that at least two or more positions of primary light condensing positions in each annular zone are the highest and diffraction efficiency of primary light is the highest.
集光パワーを持ち、複数の回折帯として直線状の格子を持つ多段回折光学素子であって、
各回折帯の1次光の集光位置は少なくとも2つ以上の位置であり、かつ、1次光の回折効率が最も大きいことを特徴とする回折光学素子。
A multistage diffractive optical element having a focusing power and having a linear grating as a plurality of diffraction bands,
A diffractive optical element, wherein the primary light in each diffraction band has at least two condensing positions, and the primary light has the highest diffraction efficiency.
同じ焦点位置を持ち、隣接する1つ以上の輪帯または帯のグループが少なくとも集光位置の数より多くあることを特徴とする請求項2または3記載の回折光学素子。   4. The diffractive optical element according to claim 2, wherein the number of adjacent one or more annular zones or groups of bands having the same focal position is at least greater than the number of light collecting positions. 半導体レーザまたは発光ダイオードからなる光源と請求項1乃至4のいずれかに記載の回折光学素子を有することを特徴とする照明装置。   An illumination apparatus comprising: a light source comprising a semiconductor laser or a light emitting diode; and the diffractive optical element according to claim 1. 請求項5記載の照明装置と、この照明装置による複数の集光位置の範囲内に位置している被検知部材と、
上記被検知部材からの反射光を検知する検知素子を有することを特徴とするセンサー装置。
The illuminating device according to claim 5, and a member to be detected that is positioned within a range of a plurality of condensing positions by the illuminating device,
A sensor device comprising a detection element for detecting reflected light from the detected member.
JP2008047853A 2008-02-28 2008-02-28 Diffraction optical element, lighting system, and sensor device Pending JP2009204944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008047853A JP2009204944A (en) 2008-02-28 2008-02-28 Diffraction optical element, lighting system, and sensor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008047853A JP2009204944A (en) 2008-02-28 2008-02-28 Diffraction optical element, lighting system, and sensor device

Publications (1)

Publication Number Publication Date
JP2009204944A true JP2009204944A (en) 2009-09-10

Family

ID=41147275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008047853A Pending JP2009204944A (en) 2008-02-28 2008-02-28 Diffraction optical element, lighting system, and sensor device

Country Status (1)

Country Link
JP (1) JP2009204944A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013537004A (en) * 2010-12-21 2013-09-26 財團法人工業技術研究院 Multi-band concentrator / energy conversion module
WO2022009428A1 (en) * 2020-07-10 2022-01-13 住友電工ハードメタル株式会社 Diffractive optical device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013537004A (en) * 2010-12-21 2013-09-26 財團法人工業技術研究院 Multi-band concentrator / energy conversion module
WO2022009428A1 (en) * 2020-07-10 2022-01-13 住友電工ハードメタル株式会社 Diffractive optical device
JP7024160B1 (en) * 2020-07-10 2022-02-24 住友電工ハードメタル株式会社 Diffractive optical device and laser irradiation device
CN115210611A (en) * 2020-07-10 2022-10-18 住友电工硬质合金株式会社 Diffractive optical device
EP4099065A4 (en) * 2020-07-10 2023-06-07 Sumitomo Electric Hardmetal Corp. Diffractive optical device

Similar Documents

Publication Publication Date Title
JP6044315B2 (en) Displacement measuring method and displacement measuring apparatus
CN102052928B (en) The Linear displacement transducer of use location induction light detecting device
JP5562202B2 (en) Photoelectric encoder
JP2013102139A5 (en)
JP6473508B2 (en) Apparatus and method for detecting overlay error
JP2008275612A (en) Device equipped with high resolution measurement structure on substrate for manufacturing semiconductor, and use of aperture in measuring device
JP2011504613A (en) Multimodal spot generator and multimodal multispot scanning microscope
US7470892B2 (en) Optical encoder
WO2006006342A1 (en) Optical encoder
JP2003515738A (en) Apparatus for measuring the size of substantially spherical particles, such as opaque droplets, by diffraction
JP2011113755A (en) Light emitting device
JP2009204944A (en) Diffraction optical element, lighting system, and sensor device
JP2004340934A (en) Encoder
JP2004340934A5 (en)
JP2019109302A (en) Illumination optical system, optical inspection device, and optical microscope
KR101434925B1 (en) Fixed-point detector and displacement-measuring apparatus
JP2014010428A (en) Line illumination apparatus
US7195387B2 (en) Device and method for emitting light with increased brightness using diffractive grating pattern
JP2011043438A (en) Reflective photoelectric encoder
WO2007004367A1 (en) Optical encoder
WO2006043567A1 (en) Condensing lens and optical scanning device
JP2003114382A5 (en)
WO2008074998A1 (en) Phase constrast encoding
WO2014035892A1 (en) Holographic imaging element operable to generate multiple different images of an object
DE502006005488D1 (en) Microscope objective system