JP2009204468A - Flare rigidity measuring method and device - Google Patents

Flare rigidity measuring method and device Download PDF

Info

Publication number
JP2009204468A
JP2009204468A JP2008047344A JP2008047344A JP2009204468A JP 2009204468 A JP2009204468 A JP 2009204468A JP 2008047344 A JP2008047344 A JP 2008047344A JP 2008047344 A JP2008047344 A JP 2008047344A JP 2009204468 A JP2009204468 A JP 2009204468A
Authority
JP
Japan
Prior art keywords
metal panel
indenter
panel
grid
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008047344A
Other languages
Japanese (ja)
Other versions
JP5029424B2 (en
Inventor
Kentaro Sato
健太郎 佐藤
Takashi Iwama
隆史 岩間
Takayuki Futatsuka
貴之 二塚
Toshiaki Urabe
俊明 占部
Kazunari Yoshitomi
一成 吉冨
Koyo Toida
公洋 問田
Eiichi Shiraishi
栄一 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008047344A priority Critical patent/JP5029424B2/en
Publication of JP2009204468A publication Critical patent/JP2009204468A/en
Application granted granted Critical
Publication of JP5029424B2 publication Critical patent/JP5029424B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flare rigidity measuring method for simultaneously measuring an indentor load, indentor displacement, and a panel deformation state, and a device therefor. <P>SOLUTION: The flare rigidity measuring method for simultaneously measuring a pressing load by the indentor, the indentor displacement, and the metal panel deformation state, while deforming the metal panel by pressing the indentor from the surface of the metal panel into the panel, includes the steps of transcribing grids arranged regular-grid-like to the back surface of the metal panel, setting a reference marker of which three-dimensionally positional relation is previously measured on the outer frame of the back surface of the metal panel, simultaneously photographing the back surface of the metal panel from a plurality of positions in response to the deformation of the metal panel, and calculating the three-dimensional position information of a grid from the photographed image data, to determine the deformation state of the metal panel from image the data photographed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、金属材料の張り剛性測定方法および装置に関し、詳しくは、ドア、フードなど自動車部品パネルの張り剛性評価に際し、荷重-変位カーブとパネル変形状態を光学的手法を用いて同時に測定および評価する、張り剛性測定方法および装置に関するものである。   The present invention relates to a method and apparatus for measuring the stiffness of a metal material. More specifically, when evaluating the stiffness of an automobile part panel such as a door or a hood, the load-displacement curve and the panel deformation state are simultaneously measured and evaluated using an optical method. The present invention relates to a tension stiffness measuring method and apparatus.

近年、特に自動車など車両の軽量化を実現するため、ドアやフードなど自動車アウター部品においても薄肉軽量化のニーズが高まっている。しかしながら、パネル部品の薄肉化は部品剛性の低下を招き、人が触れたときにパネルが容易に変形したり、パネルがベコベコと音を立てるなどの現象が発生しやすくなる。これにより、自動車の品質感が大きく損なわれることから、自動車メーカにとって張り剛性の確保と部品軽量化の両立が大きな課題となっている。   In recent years, in order to reduce the weight of vehicles such as automobiles, there has been a growing need for thinner and lighter automobile outer parts such as doors and hoods. However, the thinning of the panel parts leads to a reduction in the rigidity of the parts, and a phenomenon such as the panel being easily deformed when touched by a person or the panel making a noise is likely to occur. As a result, the sense of quality of the automobile is greatly impaired, and it is therefore a major challenge for automobile manufacturers to ensure both the rigidity and weight reduction of parts.

これらのことから、従来より、自動車パネルの製造、品質保証の現場で、簡便で精度の高い張り剛性の評価技術が必要となっていた。さらに、近年では、設計段階における張り剛性向上の方策検討のために、高度な測定・解析技術が望まれるようになってきた。   For these reasons, conventionally, there has been a need for a simple and highly accurate evaluation technique for tension rigidity in the field of automobile panel manufacturing and quality assurance. Furthermore, in recent years, advanced measurement / analysis techniques have been desired in order to examine measures for improving the stiffness at the design stage.

一方で、車体設計コンピュータシミュレーション技術を用いて、実験をせずに張り剛性を予測評価する技術も確立されつつある。しかしながら、予測結果と実験結果は必ずしも一致せず、依然として実験による測定評価は不可欠であり、コンピュータシミュレーションの予測精度向上のためにも精度の高い測定・解析技術が必要となっている。   On the other hand, using a vehicle body design computer simulation technique, a technique for predicting and evaluating the tension rigidity without an experiment is being established. However, the predicted results and the experimental results do not always match, and it is still indispensable to perform experimental measurement evaluation, and high-precision measurement / analysis techniques are required to improve the prediction accuracy of computer simulation.

これらに対し、これまで張り剛性の評価として以下の方法が用いられてきた。すなわち、製造現場においては、簡便的に手押しによる官能評価が行われている。これは、検査員がパネルを手で押してそのときの反力を定性的に判断して合否を判定するものである。   On the other hand, the following methods have been used so far for evaluating the stiffness. That is, at the manufacturing site, sensory evaluation is easily performed by hand. In this case, the inspector pushes the panel by hand, and the reaction force at that time is qualitatively determined to determine pass / fail.

また、特許文献1に開示されている技術は、被測定物に圧子をおして測定点を変形させながら、その荷重と変位との関係を電気信号に変換して荷重変位を記録するものである。このとき、荷重は圧子上部に設置されたロードセルで測定し、変位は、圧子に取り付けられた加速度計の信号を積分することで変位に変換して算出する。   The technique disclosed in Patent Document 1 records the load displacement by converting the relationship between the load and the displacement into an electric signal while deforming the measurement point through an indenter on the object to be measured. At this time, the load is measured with a load cell installed on the top of the indenter, and the displacement is calculated by converting the signal of an accelerometer attached to the indenter into a displacement.

また、特許文献2に開示されている技術は、荷重計と変位計とを一体に備えた張り剛性測定ヘッドを用いて、予め決められた荷重を被測定物に加え、その状態から荷重が除去するまでの圧子変位量を測定することにより、張り剛性の測定を正確に行おうとするものである。   In addition, the technique disclosed in Patent Document 2 applies a predetermined load to an object to be measured using a tension stiffness measurement head that is integrally provided with a load meter and a displacement meter, and removes the load from the state. By measuring the amount of displacement of the indenter until it is done, it is intended to accurately measure the tension stiffness.

また、特許文献3に開示されている技術は、手動油圧ポンプで駆動される押圧試験ユニットをロボットに持たせて自動車車体の外板の張り剛性を測定するものである。押圧試験ユニットには、荷重測定用のロードセルを介してアルミ材よりなる略円柱状の圧子が取り付けられており、ダイアルゲージによりその変位を測定して張り剛性を評価する。   In addition, the technique disclosed in Patent Document 3 is to measure the tension rigidity of the outer plate of an automobile body by providing a robot with a pressing test unit driven by a manual hydraulic pump. A substantially cylindrical indenter made of an aluminum material is attached to the pressure test unit through a load cell for load measurement, and the displacement is measured by a dial gauge to evaluate the tension rigidity.

さらに、特許文献4に開示されている技術は、自動車ルーフパネルの張り剛性測定を目的に、圧子に荷重を加えるためのシャフトとシャフトの移動量を検出する変位計、シャフトの端部に対向する荷重計が設けられた装置を遠隔操作することにより張り剛性を評価するものである。
特開昭59-9542号公報 特開昭62-70730号公報 実開平6-18947号公報 実開平3-125241号公報
Furthermore, the technique disclosed in Patent Document 4 is opposed to a shaft for applying a load to the indenter and a displacement meter for detecting the amount of movement of the shaft, and an end of the shaft for the purpose of measuring the tension rigidity of the automobile roof panel. Tension rigidity is evaluated by remotely operating a device provided with a load meter.
JP 59-9542 JP 62-70730 A Japanese Utility Model Publication No. 6-18947 Japanese Utility Model Publication No. 3-125241

上述した特許文献1〜4に開示の技術は、圧子の位置の変位量と圧子に加わる荷重の関係を精度よく記録し、その荷重変位曲線から張り剛性の良否を評価することに主眼を置いたものである。一般に荷重変位曲線は、初期に急激に立ち上がり、パネルの変形とともに荷重増加が緩やかになり、ベコツキが発生する場合には、荷重の急激な低下を伴う変化を示す。このような荷重の変化は、圧子負荷に伴うパネルの変形状態と密接な関係があることが知られている。特に、ベコツキ挙動は、パネル飛び移り座屈現象による、不連続なパネル変形が原因と考えられている。   The techniques disclosed in Patent Documents 1 to 4 described above mainly record the relationship between the displacement amount of the indenter and the load applied to the indenter with high accuracy, and focus on evaluating the rigidity of the tension from the load displacement curve. Is. In general, the load displacement curve rises rapidly in the initial stage, and when the panel is deformed, the load increases gradually. When the stickiness occurs, the load displacement curve shows a change accompanied by a rapid decrease in the load. It is known that such a change in load is closely related to the deformation state of the panel accompanying the indenter load. In particular, the beveling behavior is considered to be caused by discontinuous panel deformation due to the panel jumping buckling phenomenon.

製造現場、品質保証の現場では、単純な荷重変位曲線による合否判定で十分であるが、設計段階における張り剛性向上方策検討のためには、荷重変位曲線のみならず、パネル全体の変形状態を把握して、張り剛性特性を左右している部位の特定が重要となる。また、コンピュータシミュレーションの予測精度を検証する上でも、荷重変位曲線と同時にパネルの変形状態が実験と一致しているかどうかの確認が必要である。   In manufacturing sites and quality assurance sites, pass / fail judgment using a simple load displacement curve is sufficient, but in order to study measures for improving tension rigidity at the design stage, not only the load displacement curve but also the deformation state of the entire panel is grasped. Thus, it is important to identify the part that affects the stiffness characteristics. Also, in order to verify the prediction accuracy of computer simulation, it is necessary to confirm whether the deformation state of the panel coincides with the experiment simultaneously with the load displacement curve.

しかしながら、上述した特許文献1〜4に開示の技術では、圧子部の変形状態を測定するのみで、パネル全体の変形状態の測定・解析することは不可能である。   However, with the techniques disclosed in Patent Documents 1 to 4 described above, it is impossible to measure and analyze the deformation state of the entire panel only by measuring the deformation state of the indenter.

本発明では、これら従来技術の問題点に鑑み、張り剛性試験時の圧子荷重、圧子変位およびパネル変形状態を同時に測定する、張り剛性測定方法および装置を提供することを課題とする。   An object of the present invention is to provide a tension stiffness measuring method and apparatus for simultaneously measuring an indenter load, an indenter displacement, and a panel deformation state during a tension stiffness test in view of these problems of the prior art.

本発明の請求項1に係る発明は、金属パネルの表面から圧子を押し込んで該金属パネルを変形させながら、前記圧子による押し付け荷重、前記圧子の変位および前記金属パネル変形状態を同時に測定する張り剛性測定方法であって、前記金属パネルの裏面に、規則的な格子状に配置されたグリッドを転写するとともに、前記金属パネルの裏面の外枠に、予め3次元の位置関係が測定されている基準マーカを設定し、前記金属パネルの変形にあわせて、前記金属パネルの裏面を複数の位置から同時に撮影装置で撮影し、撮影された画像データに基づき、グリッドの3次元位置情報を演算して、前記金属パネル変形状態を測定することを特徴とする張り剛性測定方法である。   The invention according to claim 1 of the present invention is a tension stiffness that simultaneously measures the pressing load by the indenter, the displacement of the indenter, and the deformation state of the metal panel while the metal panel is deformed by pushing the indenter from the surface of the metal panel. A measurement method, wherein a grid arranged in a regular grid pattern is transferred to the back surface of the metal panel, and a three-dimensional positional relationship is measured in advance on an outer frame on the back surface of the metal panel Set a marker, and in accordance with the deformation of the metal panel, the back surface of the metal panel is simultaneously photographed with a photographing device from a plurality of positions, and based on the photographed image data, the three-dimensional position information of the grid is calculated, It is a tension rigidity measuring method characterized by measuring the deformation state of the metal panel.

また、本発明の請求項2に係る発明は、請求項1に記載の張り剛性測定方法において、前記グリッドの3次元位置情報演算にあたっては、前記画像データから基準マーカを認識し、3次元座標と画像データの対応づけ処理を行い、撮影装置の位置パラメータを同定し、撮影装置行列を計算し、前記グリッドのパターンを認識することを特徴とする張り剛性測定方法である。   According to a second aspect of the present invention, in the tension stiffness measurement method according to the first aspect, in calculating the three-dimensional position information of the grid, a reference marker is recognized from the image data, and a three-dimensional coordinate is obtained. The tension stiffness measurement method is characterized in that image data association processing is performed to identify a position parameter of a photographing device, a photographing device matrix is calculated, and the grid pattern is recognized.

また、本発明の請求項3に係る発明は、金属パネルの表面から圧子を押し込んで該金属パネルを変形させながら、前記圧子による押し付け荷重、前記圧子の変位および前記金属パネル変形状態を同時に測定する張り剛性測定装置であって、前記圧子による押し付け荷重と変位量を測定する荷重変位測定装置と、前記金属パネルの裏面に、規則的な格子状に配置されたグリッドを転写するとともに、前記金属パネルの裏面の外枠に、予め3次元の位置関係が測定されている基準マーカを設定し、前記金属パネルの変形にあわせて、前記金属パネルの裏面を複数の位置から同時に撮影する撮影装置と、撮影された画像データに基づき、グリッドの3次元位置情報を演算して、前記金属パネル変形状態を測定する演算装置とを備えることを特徴とする張り剛性測定装置である。   The invention according to claim 3 of the present invention simultaneously measures the pressing load by the indenter, the displacement of the indenter, and the deformation state of the metal panel while pushing the indenter from the surface of the metal panel to deform the metal panel. A tension stiffness measuring device, a load displacement measuring device for measuring a pressing load and a displacement amount by the indenter, a grid arranged in a regular grid pattern on the back surface of the metal panel, and the metal panel A reference marker on which the three-dimensional positional relationship has been measured in advance on the outer frame of the back surface of the image capturing apparatus for simultaneously photographing the back surface of the metal panel from a plurality of positions according to the deformation of the metal panel; And a calculation device that calculates the three-dimensional position information of the grid based on the photographed image data and measures the deformation state of the metal panel. It is the tension stiffness measurement device.

さらに、本発明の請求項4に係る発明は、請求項3に記載の張り剛性測定装置において、前記演算装置は、前記画像データから基準マーカを認識する基準マーカ認識手段と、3次元座標と画像データの対応づけ処理を行う対応づけ処理手段と、撮影装置の位置パラメータを同定する位置パラメータ同定手段と、撮影装置行列を計算する撮影装置行列計算手段と、前記グリッドのパターンを認識するグリッドパターン認識手段とを備えることを特徴とする張り剛性測定装置である。   Furthermore, the invention according to claim 4 of the present invention is the tension stiffness measuring device according to claim 3, wherein the arithmetic unit is a reference marker recognizing means for recognizing a reference marker from the image data, a three-dimensional coordinate and an image. Correlation processing means for performing data correlation processing, position parameter identification means for identifying position parameters of the photographing apparatus, photographing apparatus matrix calculation means for calculating the photographing apparatus matrix, and grid pattern recognition for recognizing the grid pattern A tension stiffness measuring device.

本発明によれば、張り剛性評価時の荷重変位特性と同時に、光学的手法を用いてパネル全体の変形状態および三次元形状を高精度に測定し、コンピュータにより演算解析することにより、圧子への荷重増加とともに変化するパネル形状、変形量、ひずみ量を定量的に測定するようにしたので、張り剛性特性を左右している部位の特定、張り剛性のメカニズムを把握することが可能となる。これにより、設計者は張り剛性向上のための方策、たとえば、変形量の大きい部位に対し、キャラクターラインなどの形状を付与したり、部分的に曲率を変化させたりするような設計変更を合理的に行うことが可能となる。   According to the present invention, simultaneously with the load displacement characteristics at the time of evaluating the stiffness, the deformation state and the three-dimensional shape of the entire panel are measured with high accuracy using an optical method, and calculation and analysis by a computer is performed. Since the panel shape, the amount of deformation, and the amount of strain that change as the load increases are quantitatively measured, it is possible to identify the part that affects the tension stiffness characteristics and to understand the tension stiffness mechanism. This allows designers to rationalize design changes such as adding character line shapes or changing the curvature of parts with a large amount of deformation, such as measures to improve tension stiffness. Can be performed.

また、コンピュータシミュレーションの予測精度検証に対しては、本発明により張り剛性試験時のパネル形状の3次元データを取得することができるため、このデータをコンピュータソフトで読み込み、解析で得られた変形形状と、実際に試験で得られた変形形状をコンピュータ上で比較検討することが可能となり、解析上の問題点を容易に把握することが可能となる。   In addition, for verification of computer simulation prediction accuracy, the present invention can acquire three-dimensional panel shape data at the time of the stiffness test, so this data is read by computer software and the deformed shape obtained by analysis is obtained. Then, it becomes possible to compare and examine the deformed shape actually obtained in the test on the computer, and it becomes possible to easily grasp the problems in the analysis.

本発明を実施するための最良の形態について、図および数式を参照して以下に説明を行う。まず、光学的手法を用いた形状測定方法の原理について説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings and mathematical expressions. First, the principle of a shape measuring method using an optical method will be described.

3次元空間上の点X(X,Y,Z)をある空間上の位置にあるデジタルカメラで撮影したとき、デジタルカメラの2次元画素M(x,y)には、以下の(1)式で示すように投影される。   When a point X (X, Y, Z) in a three-dimensional space is photographed with a digital camera located in a certain space, the following equation (1) is applied to the two-dimensional pixel M (x, y) of the digital camera. Projected as shown in.

ここで、λは任意の実数である。また、Aは物理的座標を画像座標へ変換する行列であり、カメラ校正行列と呼ばれる。さらに、RとTはカメラの空間上で方向と位置を定義する行列である。そして、A、R、およびTで定義されるPは、カメラ行列と呼ばれる。A、R、およびTは、以下の(2)式で示すように構成される。 Here, λ is an arbitrary real number. A is a matrix for converting physical coordinates into image coordinates, and is called a camera calibration matrix. Furthermore, R and T are matrices that define the direction and position in the camera space. P defined by A, R, and T is called a camera matrix. A, R, and T are configured as shown by the following equation (2).

カメラ校正行列Aの5つのパラメータ(au, a, u, v,s)は、カメラレンズの焦点距離、画像中心の座標、x,y方向のスケールファクターおよびせん断係数から算出されるカメラ固有の値である。 The five parameters (a u , a v , u 0 , v 0 , s) of the camera calibration matrix A are calculated from the focal length of the camera lens, the coordinates of the image center, the scale factor in the x and y directions, and the shear coefficient. This is a camera-specific value.

カメラの位置と方向は測定毎に変化するため、その都度R、T行列を同定する必要がある。本発明では、RおよびT行列を構成する、合計12パラメータを同定するため、後述する方法を用いた。   Since the position and direction of the camera change with each measurement, it is necessary to identify the R and T matrices each time. In the present invention, a method described later was used to identify a total of 12 parameters constituting the R and T matrices.

図1は、本発明に係る張り剛性測定装置の構成例を示す図である。図中、1aはカメラ1、1bはカメラ2、1cはカメラ3、1dはカメラ4、2は被測定物(グリッドパターン転写)、3は外枠(基準マーカパターン付)、4は圧子、5はロードセル、6は変位計、および7は演算装置をそれぞれ表す。   FIG. 1 is a diagram showing a configuration example of a tension stiffness measuring apparatus according to the present invention. In the figure, 1a is a camera 1, 1b is a camera 2, 1c is a camera 3, 1d is a camera 4, 2 is an object to be measured (grid pattern transfer), 3 is an outer frame (with a reference marker pattern), 4 is an indenter, 5 Represents a load cell, 6 represents a displacement meter, and 7 represents an arithmetic unit.

測定の準備段階として、いわゆる張り剛性試験機の外枠3に、四角などの基準マーカパターンを設定し、張り剛性を測定する被測定物2裏面には、グリッドパターンを転写する。被測定物2のパネル形状が比較的単純であれば、グリッドパターンを印刷した紙をパネル裏面に接着する方法を用いてもよい。   As a preparatory stage for measurement, a reference marker pattern such as a square is set on the outer frame 3 of a so-called tension stiffness tester, and a grid pattern is transferred to the back surface of the object 2 to be measured for stiffness. If the panel shape of the DUT 2 is relatively simple, a method of adhering paper on which a grid pattern is printed to the back surface of the panel may be used.

以上の準備したのち、圧子4を押し付け、その荷重および変位をロードセル5、変位計6で測定し、測定値を演算装置7に送るとともに、1a〜1dの4台のカメラで撮像して画像データを演算装置7に送る。演算装置7での主な機能としては、荷重・変位データ受信、画像記憶、画像認識、3次元形状演算などがある。   After the above preparation, the indenter 4 is pressed, the load and displacement are measured by the load cell 5 and the displacement meter 6, the measured values are sent to the arithmetic unit 7, and the images are imaged by the four cameras 1 a to 1 d. Is sent to the arithmetic unit 7. The main functions of the calculation device 7 include load / displacement data reception, image storage, image recognition, and three-dimensional shape calculation.

図2〜4は、本発明に係る張り剛性測定方法における処理手順例の詳細を示す図である。図を参照して処理内容を順次説明していく。   2-4 is a figure which shows the detail of the process sequence example in the tension-rigidity measuring method based on this invention. The processing contents will be described sequentially with reference to the drawings.

処理をスタート(Step100)すると、まず予め判っているカメラの内部パラメータAの設定(Step101)を行い、カメラ1のデジタル画像を取得(Step102)する。そして画像処理により、デジタル画像中の基準マーカを認識し、各パターンの頂点の二次元座標を取得する(Step103)。なお、このパターンの3次元座標は予め判っているものとする。   When the process is started (Step 100), first, the camera internal parameter A is set (Step 101), and a digital image of the camera 1 is acquired (Step 102). Then, the reference marker in the digital image is recognized by image processing, and the two-dimensional coordinates of the vertices of each pattern are acquired (Step 103). Note that the three-dimensional coordinates of this pattern are known in advance.

取得された基準マーカの二次元座標と3次元座標は、前述した(1)式の関係があるため、この式に対応づけされた二次元座標と3次元座標を入力(Step104)することで、未知のR, T の合計12パラメータを算出(Step105)することができる。このとき、認識する点は多ければ多いほどR, Tの同定精度が向上する。   Since the two-dimensional coordinates and the three-dimensional coordinates of the acquired reference marker have the relationship of the above-described expression (1), by inputting the two-dimensional coordinates and the three-dimensional coordinates associated with this expression (Step 104), A total of 12 parameters of unknown R and T can be calculated (Step 105). At this time, the more points to be recognized, the better the identification accuracy of R and T.

この段階で、R,T行列を求めることができ、これと内部パラメータAから(3)式のようにカメラ行列Pを算出する(Step106)。   At this stage, the R and T matrices can be obtained, and the camera matrix P is calculated from this and the internal parameter A as shown in equation (3) (Step 106).

つぎに、カメラ1のデジタル画像から、画像処理により、デジタル画像中のグリッドパターンを認識し、各パターンの中心の二次元座標を取得する(Step107)。この処理を位置の異なる4台のカメラについて繰り返す(Step108,109)(以上、図2参照)。   Next, the grid pattern in the digital image is recognized from the digital image of the camera 1 by image processing, and the two-dimensional coordinates of the center of each pattern are acquired (Step 107). This process is repeated for four cameras at different positions (Steps 108 and 109) (see FIG. 2 above).

つぎは、上記の処理によりカメラ行列Pが既知となった、4台のカメラで認識されたグリッドパターンから3次元形状に復元する処理を行う(以降、図3参照)。   Next, a process of restoring the three-dimensional shape from the grid patterns recognized by the four cameras, in which the camera matrix P is known by the above process, is performed (hereinafter, see FIG. 3).

まず、カメラ1の画像から任意のグリッドP1[k]の二次元座標を取得する(Step110)。つぎに、(1)式をカメラパラメータPで書き換えると、以下の(4)式のようになる。   First, the two-dimensional coordinates of an arbitrary grid P1 [k] are acquired from the image of the camera 1 (Step 110). Next, when the equation (1) is rewritten with the camera parameter P, the following equation (4) is obtained.

カメラ1,2のそれぞれのカメラパラメータ、二次元座標(x,y), (x’, y’)から以下の(5)式が導きだされる。この式は未知数X,Y,Zの3つで式が4つあるため、一般化逆行列を用いることでX,Y,Zの3次元座標を推定することができる。   The following equation (5) is derived from the camera parameters and two-dimensional coordinates (x, y), (x ′, y ′) of the cameras 1 and 2. There are three unknowns, X, Y, and Z, and there are four. Therefore, the three-dimensional coordinates of X, Y, and Z can be estimated by using a generalized inverse matrix.

この式を用いて、P1[k], P2[j]から3次元座標X12の推定(Step112)を行う。ここで得られた3次元座標(X,Y,Z)の妥当性について、測定領域の内部に入っているか検証(Step113)を行い、非現実的な座標であれば、つぎのP2の処理に移る。この処理を繰り返し、妥当な3次元座標(X,Y,Z)が得られた場合、引き続きカメラ3のグリッド座標P3[l]の取得を行う(Step114)。   Using this equation, the three-dimensional coordinate X12 is estimated (Step 112) from P1 [k] and P2 [j]. The validity of the three-dimensional coordinates (X, Y, Z) obtained here is verified (Step 113) if it is inside the measurement area. Move. This process is repeated, and when an appropriate three-dimensional coordinate (X, Y, Z) is obtained, the grid coordinate P3 [l] of the camera 3 is continuously acquired (Step 114).

同様の処理により、今度はP1[k], P2[j], P3[l]の3点から3次元座標の推定を行う(Step115)。再び、算出された3次元座標の妥当性を検証する処理を繰り返す。   By the same processing, three-dimensional coordinates are estimated from three points P1 [k], P2 [j], and P3 [l] (Step 115). The process for verifying the validity of the calculated three-dimensional coordinates is repeated again.

さらに、図4の処理に移ってカメラ4のグリッド座標P4[m]を取得し(Step122)、今度は、P1[k], P2[j], P3[l],P4[m]の4点から3次元座標の推定を行う(Step123)。求められた3次元座標の妥当性を検証する(Step124)。   Further, the process proceeds to the process of FIG. 4 to acquire the grid coordinates P4 [m] of the camera 4 (Step 122), and this time, four points of P1 [k], P2 [j], P3 [l], and P4 [m]. 3D coordinates are estimated from (Step 123). The validity of the obtained three-dimensional coordinates is verified (Step 124).

4点の二次元座標から推定される3次元座標が求められた段階で、その3次元座標を(1)式の関係を用いて、二次元座標に4つのカメラごとに再投影する処理を行う(Step125)。再投影されたそれぞれの二次元座標と元二次元座標P1[k], P2[j], P3[l], P4[m]との誤差を評価する(Step126)。この処理を繰り返し、再投影後の誤差が最小になるような、4つの二次元座標の組み合わせを求める(Step127)。誤差が最小になる3次元座標が求められたら、この値をデータベースに登録する(Step128)。   When the three-dimensional coordinates estimated from the four-point two-dimensional coordinates are obtained, the three-dimensional coordinates are re-projected to the two-dimensional coordinates for each of the four cameras using the relationship of the expression (1). (Step125). The error between each re-projected two-dimensional coordinate and the original two-dimensional coordinates P1 [k], P2 [j], P3 [l], P4 [m] is evaluated (Step 126). This process is repeated to obtain a combination of four two-dimensional coordinates that minimizes the error after reprojection (Step 127). When the three-dimensional coordinates that minimize the error are obtained, this value is registered in the database (Step 128).

この処理をすべてのP1[k]について繰り返して(Step129)、処理を完了(Step132)する。以上の処理により、4つのデジタルカメラ画像から、パネルに転写されたグリッドの三次元データを求めることができる。   This process is repeated for all P1 [k] (Step 129), and the process is completed (Step 132). Through the above processing, the three-dimensional data of the grid transferred to the panel can be obtained from the four digital camera images.

これまで説明した光学的手法を用いた形状測定を、張り剛性試験中に何回か繰り返す。張り剛性試験機に設置された荷重測定機と変位計により、荷重・変位データが計測される。これらのデータは演算装置で処理され、圧子への荷重増加とともに変化するパネル形状、変形量、およびひずみ量を、定量的にディスプレイ上に適宜可視化することができる。   The shape measurement using the optical method described so far is repeated several times during the tension stiffness test. Load / displacement data is measured by a load measuring machine and displacement meter installed in the tension stiffness tester. These data are processed by an arithmetic unit, and the panel shape, deformation amount, and strain amount that change with an increase in the load on the indenter can be appropriately visualized on the display as appropriate.

次に、本発明の実施例の一つを示す。本実施例は、図1に示した装置を用いて、自動車のドアアウターを模擬した、大きさ350mm×350mm、曲率半径1200mmのドアモデルパネルに適用したものである。該ドアモデルパネルの材料は、板厚0.7mm、引張強度340MPaの合金化溶融亜鉛めっき鋼板(塗装焼付硬化型鋼板)である。測定装置は、荷重測定用のロードセル、圧子の変位測定装置、光学的形状測定のためのデジタルカメラおよび上述した形状測定手順をプログラム化した演算装置などで主に構成される。   Next, one embodiment of the present invention will be described. The present embodiment is applied to a door model panel having a size of 350 mm × 350 mm and a radius of curvature of 1200 mm, which simulates an automobile door outer using the apparatus shown in FIG. The material of the door model panel is an alloyed hot-dip galvanized steel sheet (paint bake hardening type steel sheet) having a thickness of 0.7 mm and a tensile strength of 340 MPa. The measuring device mainly includes a load cell for load measurement, a displacement measuring device for an indenter, a digital camera for optical shape measurement, and an arithmetic device in which the shape measurement procedure described above is programmed.

図7は、測定パネルを撮影したデジタル画像の例である。パネルとともに、基準マーカ、およびグリッドパターンが撮影されている。図5は、本実施例における基準マーカのパターンを示す図である。大きさ20mmのものをインクジェットプリンターで印刷し、プラスティック製の板に接着して組み立てた。   FIG. 7 is an example of a digital image obtained by photographing the measurement panel. A reference marker and a grid pattern are photographed together with the panel. FIG. 5 is a diagram illustrating a pattern of the reference marker in the present embodiment. A 20 mm size was printed with an ink jet printer and adhered to a plastic plate for assembly.

図6は、本実施例におけるグリッドパターンを示す図である。図6に示すように、ピッチ7.5mm、大きさ2mmのものを白いコピー用紙に印字し、パネル変形中に用紙がずれないように注意して、パネル裏面に接着した。   FIG. 6 is a diagram showing a grid pattern in the present embodiment. As shown in FIG. 6, a paper with a pitch of 7.5 mm and a size of 2 mm was printed on a white copy paper, and was adhered to the back of the panel, taking care not to slip the paper during panel deformation.

撮影されたデジタル画像データは、図1に示す演算装置7の中の画像バッファに記憶される。図8は、基準マーカの自動認識と3次元座標とカメラ画像の対応づけ処理の結果を示す図である。図8(a)は、画像認識により、基準マーカの二次元座標を認識した結果である。そして、図8(b)は、各基準マーカの3次元座標は予め測定してあり、3次元座標と認識された二次元座標の対応付けを行った結果である。演算装置は、この結果からカメラ位置および方向を同定し、カメラ行列Pを算出する。   The photographed digital image data is stored in an image buffer in the arithmetic unit 7 shown in FIG. FIG. 8 is a diagram illustrating a result of automatic recognition of a reference marker and a process of associating a three-dimensional coordinate with a camera image. FIG. 8A shows the result of recognizing the two-dimensional coordinates of the reference marker by image recognition. FIG. 8B shows the result of measuring the three-dimensional coordinates of each reference marker in advance and associating the recognized two-dimensional coordinates with the three-dimensional coordinates. The arithmetic unit identifies the camera position and direction from this result, and calculates the camera matrix P.

つぎに、図9は、グリッドパターンを画像認識装置により、グリッドの中心を解析してグリッドパターンの認識結果を表示した図である。ここでは、グリッドの外周を楕円で近似してから、中心を決定する作業を行っている。これにより、グリッド中心を精度よく決定することが可能となった。   Next, FIG. 9 is a diagram showing the grid pattern recognition result by analyzing the center of the grid with the image recognition device. Here, after the outer periphery of the grid is approximated by an ellipse, the center is determined. As a result, the grid center can be determined with high accuracy.

図10は、基準マーカの認識、カメラ行列Pの算出、グリッド中心の認識を4つのカメラ画像で行った結果を示す図である。   FIG. 10 is a diagram illustrating a result of recognition of a reference marker, calculation of a camera matrix P, and recognition of a grid center using four camera images.

そして、図11は、図3および4に示した処理手順に従って各グリッドの3次元形状を決定した結果を示す図である。この図は、変形前のパネル形状を示している。   FIG. 11 is a diagram showing a result of determining the three-dimensional shape of each grid according to the processing procedure shown in FIGS. This figure shows the panel shape before deformation.

そして、張り剛性試験機の圧子をパネルに押し付け、そのときの圧子変位と押し付け荷重を記録しながら、圧子変位1mm毎に上記の方法に従ってパネル形状を測定した。図12は、測定された各グリッドの3次元変位量を解析し、コンピュータディスプレイ上に表示した結果を示す図である。圧子変位量を0〜7.5mmまで変化させたものであり、色が濃い場所ほど変形量が大きいことを示している。図12の右下には、このときの変位荷重曲線も示している。これから、パネル変形荷重とパネル変形領域の関係が詳細に解析できるようになっていることが分る。   Then, the indenter of the tension stiffness tester was pressed against the panel, and the panel shape was measured according to the above method for each indenter displacement of 1 mm while recording the indenter displacement and the pressing load at that time. FIG. 12 is a diagram showing the result of analyzing the measured three-dimensional displacement amount of each grid and displaying it on a computer display. The indenter displacement is varied from 0 to 7.5 mm, and the darker the color, the greater the deformation. The displacement load curve at this time is also shown in the lower right of FIG. From this, it can be seen that the relationship between the panel deformation load and the panel deformation area can be analyzed in detail.

本発明に係る張り剛性測定装置の構成例を示す図である。It is a figure which shows the structural example of the tension rigidity measuring apparatus which concerns on this invention. 本発明に係る張り剛性測定方法における処理手順例の詳細(その1)を示す図である。It is a figure which shows the detail (the 1) of the example of a process sequence in the tension rigidity measuring method which concerns on this invention. 本発明に係る張り剛性測定方法における処理手順例の詳細(その2)を示す図である。It is a figure which shows the detail (the 2) of the example of a process sequence in the tension rigidity measuring method which concerns on this invention. 本発明に係る張り剛性測定方法における処理手順例の詳細(その3)を示す図である。It is a figure which shows the detail (the 3) of the example of a process sequence in the tension rigidity measuring method which concerns on this invention. 本実施例における基準マーカのパターンを示す図である。It is a figure which shows the pattern of the reference | standard marker in a present Example. 本実施例におけるグリッドパターンを示す図である。It is a figure which shows the grid pattern in a present Example. 測定パネルを撮影したデジタル画像の例である。It is an example of the digital image which image | photographed the measurement panel. 基準マーカの自動認識と3次元座標とカメラ画像の対応づけ処理の結果を示す図である。It is a figure which shows the result of the automatic recognition of a reference marker, and the matching process of a three-dimensional coordinate and a camera image. グリッドパターンの認識結果を表示した図である。It is the figure which displayed the recognition result of the grid pattern. 基準マーカの認識、カメラ行列Pの算出、グリッド中心の認識を4つのカメラ画像で行った結果を示す図である。It is a figure which shows the result of having performed recognition of a reference marker, calculation of camera matrix P, and recognition of a grid center with four camera images. グリッドの3次元形状を決定した結果を示す図である。It is a figure which shows the result of having determined the three-dimensional shape of a grid. 測定された各グリッドの3次元変位量を解析し、コンピュータディスプレイ上に表示した結果を示す図である。It is a figure which shows the result of having analyzed the three-dimensional displacement amount of each measured grid, and having displayed on the computer display.

符号の説明Explanation of symbols

1a カメラ1
1b カメラ2
1c カメラ3
1d カメラ4
2 被測定物(グリッドパターン転写)
3 外枠(基準マーカパターン付)
4 圧子
5 ロードセル
6 変位計
7 演算装置
1a Camera 1
1b Camera 2
1c Camera 3
1d camera 4
2 Object to be measured (grid pattern transfer)
3 Outer frame (with reference marker pattern)
4 Indenter 5 Load cell 6 Displacement meter 7 Arithmetic unit

Claims (4)

金属パネルの表面から圧子を押し込んで該金属パネルを変形させながら、前記圧子による押し付け荷重、前記圧子の変位および前記金属パネル変形状態を同時に測定する張り剛性測定方法であって、
前記金属パネルの裏面に、規則的な格子状に配置されたグリッドを転写するとともに、
前記金属パネルの裏面の外枠に、予め3次元の位置関係が測定されている基準マーカを設定し、
前記金属パネルの変形にあわせて、前記金属パネルの裏面を複数の位置から同時に撮影装置で撮影し、
撮影された画像データに基づき、グリッドの3次元位置情報を演算して、前記金属パネル変形状態を測定することを特徴とする張り剛性測定方法。
A tension stiffness measurement method for simultaneously measuring the pressing load by the indenter, the displacement of the indenter and the deformed state of the metal panel while pushing the indenter from the surface of the metal panel and deforming the metal panel,
While transferring the grid arranged in a regular grid pattern on the back surface of the metal panel,
Set a reference marker in which the three-dimensional positional relationship is measured in advance on the outer frame of the back surface of the metal panel,
In accordance with the deformation of the metal panel, the back surface of the metal panel is simultaneously photographed from a plurality of positions with a photographing device
A tension stiffness measurement method, comprising: calculating three-dimensional position information of a grid based on photographed image data and measuring the deformation state of the metal panel.
請求項1に記載の張り剛性測定方法において、
前記グリッドの3次元位置情報演算にあたっては、
前記画像データから基準マーカを認識し、
3次元座標と画像データの対応づけ処理を行い、
撮影装置の位置パラメータを同定し、撮影装置行列を計算し、
前記グリッドのパターンを認識することを特徴とする張り剛性測定方法。
In the tension rigidity measuring method according to claim 1,
In calculating the three-dimensional position information of the grid,
Recognizing a reference marker from the image data;
Perform the process of associating 3D coordinates and image data,
Identify the location parameters of the photographic device, calculate the photographic device matrix,
A tension stiffness measurement method, wherein the grid pattern is recognized.
金属パネルの表面から圧子を押し込んで該金属パネルを変形させながら、前記圧子による押し付け荷重、前記圧子の変位および前記金属パネル変形状態を同時に測定する張り剛性測定装置であって、
前記圧子による押し付け荷重と変位量を測定する荷重変位測定装置と、
前記金属パネルの裏面に、規則的な格子状に配置されたグリッドを転写するとともに、前記金属パネルの裏面の外枠に、予め3次元の位置関係が測定されている基準マーカを設定し、前記金属パネルの変形にあわせて、前記金属パネルの裏面を複数の位置から同時に撮影する撮影装置と、
撮影された画像データに基づき、グリッドの3次元位置情報を演算して、前記金属パネル変形状態を測定する演算装置とを備えることを特徴とする張り剛性測定装置。
A tension stiffness measuring device that simultaneously measures the pressing load by the indenter, the displacement of the indenter, and the deformation state of the metal panel while pushing the indenter from the surface of the metal panel and deforming the metal panel,
A load displacement measuring device for measuring a pressing load and a displacement amount by the indenter;
A grid arranged in a regular grid pattern is transferred to the back surface of the metal panel, and a reference marker whose three-dimensional positional relationship is measured in advance is set on the outer frame of the back surface of the metal panel, In accordance with the deformation of the metal panel, a photographing device for simultaneously photographing the back surface of the metal panel from a plurality of positions,
A tension stiffness measuring device comprising: a computing device that computes three-dimensional position information of a grid based on photographed image data and measures the deformation state of the metal panel.
請求項3に記載の張り剛性測定装置において、
前記演算装置は、
前記画像データから基準マーカを認識する基準マーカ認識手段と、
3次元座標と画像データの対応づけ処理を行う対応づけ処理手段と、
撮影装置の位置パラメータを同定する位置パラメータ同定手段と、
撮影装置行列を計算する撮影装置行列計算手段と、
前記グリッドのパターンを認識するグリッドパターン認識手段とを備えることを特徴とする張り剛性測定装置。
In the tension rigidity measuring device according to claim 3,
The arithmetic unit is
Reference marker recognition means for recognizing a reference marker from the image data;
An association processing means for performing an association process between three-dimensional coordinates and image data;
Position parameter identifying means for identifying a position parameter of the imaging device;
An imaging device matrix calculating means for calculating an imaging device matrix;
A tension stiffness measuring apparatus comprising grid pattern recognition means for recognizing the grid pattern.
JP2008047344A 2008-02-28 2008-02-28 Tension stiffness measurement method and apparatus Active JP5029424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008047344A JP5029424B2 (en) 2008-02-28 2008-02-28 Tension stiffness measurement method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008047344A JP5029424B2 (en) 2008-02-28 2008-02-28 Tension stiffness measurement method and apparatus

Publications (2)

Publication Number Publication Date
JP2009204468A true JP2009204468A (en) 2009-09-10
JP5029424B2 JP5029424B2 (en) 2012-09-19

Family

ID=41146897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008047344A Active JP5029424B2 (en) 2008-02-28 2008-02-28 Tension stiffness measurement method and apparatus

Country Status (1)

Country Link
JP (1) JP5029424B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050083A1 (en) * 2012-09-26 2014-04-03 Jfeスチール株式会社 Panel part evaluation method, panel part evaluation apparatus, and automotive panel part manufacturing method
JP2014065410A (en) * 2012-09-26 2014-04-17 Jfe Steel Corp Panel component evaluation method, panel component evaluation device, and method of manufacturing automobile panel component
JP2014065411A (en) * 2012-09-26 2014-04-17 Jfe Steel Corp Panel component evaluation method, panel component evaluation device, and method of manufacturing automobile panel component
WO2014069518A1 (en) 2012-11-05 2014-05-08 Jfeスチール株式会社 Method and apparatus for measuring dynamic stretch rigidity of outer panel of automobile component
EP2741071A1 (en) * 2012-12-06 2014-06-11 The Boeing Company Multiple-scale digital image correlation pattern and measurement
JP2014224761A (en) * 2013-05-16 2014-12-04 Jfeスチール株式会社 Method for measuring deformation behavior of steel material during impact fracture testing
CN104596889A (en) * 2015-01-27 2015-05-06 大连交通大学 Compression method for detecting metal deforming flows over two phases
JP6322817B1 (en) * 2017-01-25 2018-05-16 パナソニックIpマネジメント株式会社 Rigidity measuring apparatus and rigidity measuring method
WO2018123407A1 (en) * 2016-12-27 2018-07-05 日本電気硝子株式会社 Glass substrate inspection method and manufacturing method
CN110686965A (en) * 2019-10-11 2020-01-14 合肥工大共达工程检测试验有限公司 Seal device for detecting area by concrete detection resilience method
CN111157200A (en) * 2017-01-25 2020-05-15 松下知识产权经营株式会社 Rigidity measuring device and rigidity measuring method
KR20200095598A (en) * 2019-01-31 2020-08-11 홍익대학교 산학협력단 System and method for measuring mechanical properties by optical methods
CN112752963A (en) * 2019-08-29 2021-05-04 汤浅系统机器株式会社 Deformation testing machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105043789B (en) * 2015-06-01 2018-02-16 奇瑞汽车股份有限公司 The method of testing and device of the rigidity of automobile control arm

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4815088U (en) * 1971-07-01 1973-02-20
JPH05126652A (en) * 1991-10-31 1993-05-21 Kowa Co Noncontact tension measuring device
JPH1137721A (en) * 1997-07-22 1999-02-12 Atr Ningen Joho Tsushin Kenkyusho:Kk Method for linearly estimating three-dimensional position by affine camera correction
JP2000028453A (en) * 1998-07-07 2000-01-28 Hoya Corp Method and apparatus for measurement of tension
JP2007263611A (en) * 2006-03-27 2007-10-11 Yokohama Rubber Co Ltd:The Distortion measuring instrument and method
JP2008096377A (en) * 2006-10-16 2008-04-24 Yamaguchi Univ Method of measuring deformation characteristic, and instrument therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4815088U (en) * 1971-07-01 1973-02-20
JPH05126652A (en) * 1991-10-31 1993-05-21 Kowa Co Noncontact tension measuring device
JPH1137721A (en) * 1997-07-22 1999-02-12 Atr Ningen Joho Tsushin Kenkyusho:Kk Method for linearly estimating three-dimensional position by affine camera correction
JP2000028453A (en) * 1998-07-07 2000-01-28 Hoya Corp Method and apparatus for measurement of tension
JP2007263611A (en) * 2006-03-27 2007-10-11 Yokohama Rubber Co Ltd:The Distortion measuring instrument and method
JP2008096377A (en) * 2006-10-16 2008-04-24 Yamaguchi Univ Method of measuring deformation characteristic, and instrument therefor

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014065410A (en) * 2012-09-26 2014-04-17 Jfe Steel Corp Panel component evaluation method, panel component evaluation device, and method of manufacturing automobile panel component
JP2014065411A (en) * 2012-09-26 2014-04-17 Jfe Steel Corp Panel component evaluation method, panel component evaluation device, and method of manufacturing automobile panel component
WO2014050083A1 (en) * 2012-09-26 2014-04-03 Jfeスチール株式会社 Panel part evaluation method, panel part evaluation apparatus, and automotive panel part manufacturing method
CN104685338B (en) * 2012-09-26 2017-03-08 杰富意钢铁株式会社 The manufacture method of board member evaluation method, board member evaluating apparatus and automobile sheetsteel part
CN104685338A (en) * 2012-09-26 2015-06-03 杰富意钢铁株式会社 Panel part evaluation method, panel part evaluation apparatus, and automotive panel part manufacturing method
JP5858170B2 (en) * 2012-11-05 2016-02-10 Jfeスチール株式会社 Method and apparatus for measuring dynamic tension stiffness of outer panel of automotive parts
WO2014069518A1 (en) 2012-11-05 2014-05-08 Jfeスチール株式会社 Method and apparatus for measuring dynamic stretch rigidity of outer panel of automobile component
US9709473B2 (en) 2012-11-05 2017-07-18 JFS Steel Corporation Method and apparatus for measuring dynamic panel stiffness of outer panel for automobile parts
KR101731893B1 (en) * 2012-11-05 2017-05-02 제이에프이 스틸 가부시키가이샤 Method and apparatus for measuring dynamic panel stiffness of outer panel for automobile parts
JPWO2014069518A1 (en) * 2012-11-05 2016-09-08 Jfeスチール株式会社 Method and apparatus for measuring dynamic tension stiffness of outer panel of automotive parts
CN104769411A (en) * 2012-11-05 2015-07-08 杰富意钢铁株式会社 Method and apparatus for measuring dynamic stretch rigidity of outer panel of automobile component
JP2014115281A (en) * 2012-12-06 2014-06-26 Boeing Co Multiple-scale digital image correlation pattern and measurement
CN103854280A (en) * 2012-12-06 2014-06-11 波音公司 Multiple-scale digital image correlation pattern and measurement
EP2741071A1 (en) * 2012-12-06 2014-06-11 The Boeing Company Multiple-scale digital image correlation pattern and measurement
US11455737B2 (en) 2012-12-06 2022-09-27 The Boeing Company Multiple-scale digital image correlation pattern and measurement
US11100657B2 (en) 2012-12-06 2021-08-24 The Boeing Company Multiple-scale digital image correlation pattern and measurement
JP2014224761A (en) * 2013-05-16 2014-12-04 Jfeスチール株式会社 Method for measuring deformation behavior of steel material during impact fracture testing
CN104596889A (en) * 2015-01-27 2015-05-06 大连交通大学 Compression method for detecting metal deforming flows over two phases
WO2018123407A1 (en) * 2016-12-27 2018-07-05 日本電気硝子株式会社 Glass substrate inspection method and manufacturing method
JP6322817B1 (en) * 2017-01-25 2018-05-16 パナソニックIpマネジメント株式会社 Rigidity measuring apparatus and rigidity measuring method
CN111157200A (en) * 2017-01-25 2020-05-15 松下知识产权经营株式会社 Rigidity measuring device and rigidity measuring method
KR102180326B1 (en) * 2019-01-31 2020-11-19 홍익대학교 산학협력단 System and method for measuring mechanical properties by optical methods
KR20200095598A (en) * 2019-01-31 2020-08-11 홍익대학교 산학협력단 System and method for measuring mechanical properties by optical methods
CN112752963A (en) * 2019-08-29 2021-05-04 汤浅系统机器株式会社 Deformation testing machine
CN110686965B (en) * 2019-10-11 2022-05-31 合肥工大共达工程检测试验有限公司 Seal device for detecting area by concrete detection resilience method
CN110686965A (en) * 2019-10-11 2020-01-14 合肥工大共达工程检测试验有限公司 Seal device for detecting area by concrete detection resilience method

Also Published As

Publication number Publication date
JP5029424B2 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
JP5029424B2 (en) Tension stiffness measurement method and apparatus
EP2916122B1 (en) Method and apparatus for measuring dynamic panel stiffness of outer panel for automobile parts
JP6240206B2 (en) Displacement field and strain field measurement method and material testing machine
JP6451843B2 (en) Crankshaft inspection method and apparatus
JP4811567B2 (en) Stress measurement method for structures using photographed images
KR101720845B1 (en) Method of obtaining reliable true stress-strain curves in a large range of strains in tensile testing using digital image correlation
JP5671232B2 (en) Automatic imaging method of part deviation
US20110106459A1 (en) In-situ optical crack measurement using a dot pattern
KR102218594B1 (en) Device and Method for measuring material properties and stress state by digital image correlation(DIC) near micro-indentation mark
KR20070049046A (en) Apparatus for shape recognition and dent inspection
CN101680752A (en) Shape evaluation method, shape evaluation device, and 3d inspection device
JP2020042030A (en) Test method of recess and dent on vehicle body surface
JP2007078659A (en) Method and device for determining analysis condition of digital image correlation method
JP2017090071A (en) Hardness tester and hardness testing method
JP2019114146A (en) Rebar inspection support device
Ilg et al. Application of a full-field calibration concept for parameter identification of HS-steel with LS-OPT®
JP4993505B2 (en) Validity verification device for body parts design
JPH0695016B2 (en) Corrosion diagnosis method for inner surface of pipe
WO2024070064A1 (en) Residual stress distribution calculation method, device and program
CN116680961B (en) Measurement compensation method, device, equipment and storage medium considering clamping force deformation
Martikainen A contactless inverse method for fatigue crack size measurements
JP2017161265A (en) Apparatus and method for deriving material parameter of single crystal material
JP3043918B2 (en) Diagnosis method for corrosion of pipe inner surface
Miskdjian et al. Investigation and optimization of factors affecting the accuracy of strain measurement via digital image processing
Schmidt et al. Total area strain mapping improves total quality of stampings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120305

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120611

R150 Certificate of patent or registration of utility model

Ref document number: 5029424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250