JP2009203880A - Anomaly diagnostic system for internal combustion engine - Google Patents

Anomaly diagnostic system for internal combustion engine Download PDF

Info

Publication number
JP2009203880A
JP2009203880A JP2008046884A JP2008046884A JP2009203880A JP 2009203880 A JP2009203880 A JP 2009203880A JP 2008046884 A JP2008046884 A JP 2008046884A JP 2008046884 A JP2008046884 A JP 2008046884A JP 2009203880 A JP2009203880 A JP 2009203880A
Authority
JP
Japan
Prior art keywords
air
cylinder
abnormality
fuel ratio
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008046884A
Other languages
Japanese (ja)
Other versions
JP4936140B2 (en
Inventor
衛 ▲吉▼岡
Mamoru Yoshioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008046884A priority Critical patent/JP4936140B2/en
Publication of JP2009203880A publication Critical patent/JP2009203880A/en
Application granted granted Critical
Publication of JP4936140B2 publication Critical patent/JP4936140B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anomaly diagnostic system for an internal combustion engine for diagnosing a fuel system on the basis of an estimated value of an air-fuel ratio of each cylinder. <P>SOLUTION: The anomaly diagnostic system for an internal combustion engine variably controls the working angle α of an intake valve in response to the load of the internal combustion engine. An air-fuel ratio of each cylinder is estimated, and when the load of the internal combustion engine is larger than a specified vale, the presence or absence of anomaly in a fuel system of each cylinder is diagnosed on the basis of the deviation from a specified reference value of the estimated value of the air-fuel ratio for each cylinder. When a load of the internal combustion engine is larger than the specified value, an absolute amount of the intake air flow is increased, as a result, influence of anomaly in the air system exerted upon the intake air flow becomes little. Hence, at the time when the load of the internal combustion engine is larger than the specified value, the diagnosis of presence or absence of anomaly in the air system of each cylinder is carried out. In this way, an influence of anomaly in the air system is eliminated, and an anomaly in the fuel system distinguished from an anomaly in the air system can be correctly diagnosed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、内燃機関の異常診断装置に関する。   The present invention relates to an abnormality diagnosis device for an internal combustion engine.

近年、車両等に搭載される内燃機関においては、各気筒の吸気弁の作用角(開弁から閉弁までのクランク角)を内燃機関の負荷等に応じて連続的に可変制御する吸気弁可変制御装置を備えたものがある。こうした内燃機関では、吸気弁の作用角を変化させることで、燃焼室内に吸入される空気量を全運転領域に亘って変化させることができる。よってスロットル開度を通常より開いたり、或いは省略することもでき、これによってポンピングロスを減少し、同一の出力をより少ない空気量及び燃料量で得られ、燃費等を向上することができる。   2. Description of the Related Art In recent years, in an internal combustion engine mounted on a vehicle or the like, an intake valve variable that continuously variably controls the operation angle (crank angle from opening to closing) of each cylinder according to the load of the internal combustion engine, etc. Some are equipped with a control device. In such an internal combustion engine, the amount of air taken into the combustion chamber can be changed over the entire operating range by changing the operating angle of the intake valve. Therefore, the throttle opening can be opened or omitted more than usual, thereby reducing the pumping loss, the same output can be obtained with a smaller amount of air and fuel, and fuel efficiency can be improved.

一方、車両等に搭載される内燃機関においては、各気筒の排気ガスが集合する排気集合部に設置した空燃比センサの出力に基づいて各気筒の空燃比(気筒別空燃比)を推定するものがある。これら吸気弁作用角制御と気筒別空燃比推定とを同時に実行可能な内燃機関においては、ある気筒の空燃比が異常であることを検出できたとしても、その原因ないし異常箇所の特定が一般的に困難である。その理由は、空燃比異常が主に燃料系の異常(インジェクタの異常等)と空気系の異常(吸気弁可変制御装置の異常等)との両方に起因し得るからである。   On the other hand, in an internal combustion engine mounted on a vehicle or the like, the air-fuel ratio (cylinder-by-cylinder) of each cylinder is estimated based on the output of an air-fuel ratio sensor installed in an exhaust collection portion where the exhaust gas of each cylinder collects. There is. In an internal combustion engine that can execute the intake valve operating angle control and the cylinder-by-cylinder air-fuel ratio estimation at the same time, even if it can detect that the air-fuel ratio of a certain cylinder is abnormal, it is common to identify the cause or the abnormal part. It is difficult to. The reason is that the air-fuel ratio abnormality can be mainly caused by both the fuel system abnormality (injector abnormality, etc.) and the air system abnormality (intake valve variable control apparatus abnormality, etc.).

特許文献1に記載の装置では、各気筒の空燃比を推定し、各気筒の空燃比推定値と可変バルブリフト装置の制御状態とに基づいて可変バルブリフト装置の異常の有無を診断するようにしている。各気筒の空燃比推定値と可変バルブリフト装置の制御状態とを組み合わせて評価することで、可変バルブリフト装置の異常を他の燃料系等の異常と区別して診断できる、としている。   In the apparatus described in Patent Document 1, the air-fuel ratio of each cylinder is estimated, and whether there is an abnormality in the variable valve lift device is diagnosed based on the estimated air-fuel ratio value of each cylinder and the control state of the variable valve lift device. ing. By evaluating the air-fuel ratio estimated value of each cylinder and the control state of the variable valve lift device, the abnormality of the variable valve lift device can be diagnosed separately from other fuel system abnormalities.

特開2005−214073号公報Japanese Patent Laid-Open No. 2005-214073

しかしながら、特許文献1に記載の装置では、各気筒の空燃比推定値に基づいて可変バルブリフト装置の異常を診断することはできるものの、燃料系の異常を診断することはできない。また、燃料系の異常と空気系の異常との両者を区別して診断することはできない。   However, the apparatus described in Patent Document 1 can diagnose the abnormality of the variable valve lift device based on the estimated air-fuel ratio value of each cylinder, but cannot diagnose the abnormality of the fuel system. Further, it is impossible to make a distinction between a fuel system abnormality and an air system abnormality.

そこで本発明の目的は、各気筒の空燃比推定値に基づいて燃料系の異常を診断できるようにすることであり、また、本発明の他の目的は、各気筒の空燃比推定値に基づいて燃料系の異常と空気系の異常との両者を区別して診断することができるようにすることである。   Accordingly, an object of the present invention is to enable diagnosis of an abnormality in the fuel system based on the estimated air-fuel ratio value of each cylinder, and another object of the present invention is based on the estimated air-fuel ratio value of each cylinder. Thus, it is possible to make a diagnosis by distinguishing between a fuel system abnormality and an air system abnormality.

本発明の一形態によれば、内燃機関の負荷に応じて少なくとも各気筒の吸気弁の作用角を可変制御する吸気弁可変制御装置を備えた内燃機関の異常診断装置において、
各気筒の空燃比を推定する気筒別空燃比推定手段と、
前記内燃機関の負荷が所定値より大きいとき、前記気筒別空燃比推定手段により求められた各気筒の空燃比推定値の所定の基準値からのズレ量に基づいて、各気筒の燃料系の異常の有無を診断する異常診断手段と
を備えたことを特徴とする内燃機関の異常診断装置が提供される。
According to one aspect of the present invention, in the internal combustion engine abnormality diagnosis device including the intake valve variable control device that variably controls the operating angle of the intake valve of each cylinder according to the load of the internal combustion engine,
Cylinder-specific air-fuel ratio estimating means for estimating the air-fuel ratio of each cylinder;
When the load of the internal combustion engine is larger than a predetermined value, the abnormality of the fuel system of each cylinder is determined based on the amount of deviation from the predetermined reference value of the air-fuel ratio estimated value of each cylinder obtained by the cylinder-by-cylinder air-fuel ratio estimating means. An abnormality diagnosing device for an internal combustion engine is provided.

これによれば、各気筒の空燃比推定値、特に各気筒の空燃比推定値の所定の基準値からのズレ量に基づいて、各気筒の燃料系の異常を診断できる。内燃機関の負荷が所定値より大きいとき、好ましくは高負荷であるときには、吸入空気量の絶対量が多くなるため、空気系の異常が吸入空気量に及ぼす影響が小さくなる。そこでこの点に着目して、内燃機関の負荷が所定値より大きいときに各気筒の燃料系の異常の有無を診断する。これにより空気系異常の影響を排除し、燃料系異常を空気系異常と区別して確実に診断することができる。   According to this, abnormality of the fuel system of each cylinder can be diagnosed based on the deviation amount from the predetermined reference value of the air-fuel ratio estimated value of each cylinder, particularly the air-fuel ratio estimated value of each cylinder. When the load of the internal combustion engine is greater than a predetermined value, preferably when the load is high, the absolute amount of the intake air amount increases, so that the influence of an abnormality in the air system on the intake air amount is reduced. Therefore, paying attention to this point, when the load of the internal combustion engine is larger than a predetermined value, the presence or absence of abnormality in the fuel system of each cylinder is diagnosed. As a result, the influence of the air system abnormality can be eliminated, and the fuel system abnormality can be distinguished from the air system abnormality and reliably diagnosed.

好ましくは、前記異常診断手段は、前記空燃比推定値と前記基準値との差又は比に基づいて、各気筒の燃料系の異常の有無を診断する。当該差又は比は、各気筒の空燃比推定値の基準値からのズレ量を表す指標値として好適である。   Preferably, the abnormality diagnosing means diagnoses the presence or absence of an abnormality in the fuel system of each cylinder based on a difference or ratio between the air-fuel ratio estimated value and the reference value. The difference or ratio is suitable as an index value representing the amount of deviation from the reference value of the estimated air-fuel ratio value of each cylinder.

好ましくは、前記異常診断手段は、前記内燃機関の負荷が所定値より大きいときであって且つ前記作用角が所定値より大きいとき、各気筒の燃料系の異常の有無を診断する。作用角が所定値より大きいという条件を付加することにより、空気系異常の影響が小さくなる条件をより一層担保できる。   Preferably, the abnormality diagnosis means diagnoses whether there is an abnormality in the fuel system of each cylinder when the load of the internal combustion engine is greater than a predetermined value and the operating angle is greater than a predetermined value. By adding the condition that the operating angle is larger than the predetermined value, it is possible to further ensure the condition that the influence of the air system abnormality is reduced.

好ましくは、前記異常診断装置は、前記異常診断手段により燃料系が正常と診断されなかった気筒について、前記空燃比推定値を前記基準値に近づけるよう燃料噴射量の補正を行う補正手段を備え、前記異常診断手段は、全気筒の燃料系を正常と診断した後又は前記補正手段による補正が行われた後、前記内燃機関の負荷が所定値より小さいときに、前記空燃比推定値の前記基準値からのズレ量に基づいて、各気筒の空気系の異常の有無を診断する。   Preferably, the abnormality diagnosis device includes a correction unit that corrects the fuel injection amount so that the air-fuel ratio estimated value approaches the reference value for a cylinder whose fuel system is not diagnosed as normal by the abnormality diagnosis unit, The abnormality diagnosing means, after diagnosing that the fuel system of all cylinders is normal or after being corrected by the correcting means, when the load of the internal combustion engine is smaller than a predetermined value, the reference of the air-fuel ratio estimated value The presence or absence of an abnormality in the air system of each cylinder is diagnosed based on the amount of deviation from the value.

これによれば、燃料系異常の影響を排除した上で、空気系異常の影響が大きい条件下で空気系異常を診断し、空気系の異常を燃料系異常と区別して確実に診断することができる。こうして各気筒の空燃比推定値に基づいて燃料系の異常と空気系の異常との両者を区別して診断することができるようになる。   According to this, after eliminating the influence of the fuel system abnormality, the air system abnormality is diagnosed under a condition where the influence of the air system abnormality is large, and the air system abnormality is distinguished from the fuel system abnormality and reliably diagnosed. it can. In this way, it is possible to make a diagnosis by distinguishing between a fuel system abnormality and an air system abnormality based on the estimated air-fuel ratio of each cylinder.

好ましくは、前記異常診断手段は、前記空燃比推定値と前記基準値との差又は比に基づいて、各気筒の空気系の異常の有無を診断する。   Preferably, the abnormality diagnosing means diagnoses the presence or absence of an abnormality in the air system of each cylinder based on a difference or ratio between the air-fuel ratio estimated value and the reference value.

好ましくは、前記異常診断手段は、前記内燃機関の負荷が所定値より小さいときであって且つ前記作用角が所定値より小さいとき、各気筒の空気系の異常の有無を診断する。作用角が所定値より小さいという条件を付加することにより、空気系異常の影響が大きくなる条件をより一層担保できる。   Preferably, the abnormality diagnosis means diagnoses whether there is an abnormality in the air system of each cylinder when the load of the internal combustion engine is smaller than a predetermined value and the working angle is smaller than the predetermined value. By adding a condition that the operating angle is smaller than a predetermined value, it is possible to further ensure the condition that the influence of the air system abnormality becomes large.

好ましくは、前記吸気弁可変制御装置は、前記異常診断手段により空気系が正常と診断されなかった気筒について、前記空燃比推定値を前記基準値に近づけるよう作用角を所定時間補正制御し、前記異常診断手段は、当該気筒について、前記補正制御後に前記空燃比推定値が前記基準値に対し所定値以内となるよう近づかなかったとき、前記吸気弁可変制御装置の異常と診断する。   Preferably, the intake valve variable control device corrects and controls a working angle for a predetermined time so that the air-fuel ratio estimated value approaches the reference value for a cylinder whose air system is not diagnosed as normal by the abnormality diagnosis unit, The abnormality diagnosing means diagnoses that the intake valve variable control apparatus is abnormal when the estimated air-fuel ratio does not approach the reference value within a predetermined value after the correction control.

好ましくは、当該気筒について、前記補正制御後に前記空燃比推定値が前記基準値に対し所定値以内となるよう近づいたとき、前記吸気弁可変制御装置は当該作用角の補正状態を維持する。   Preferably, for the cylinder, when the estimated air-fuel ratio approaches the reference value within a predetermined value after the correction control, the intake valve variable control device maintains the correction state of the working angle.

本発明によれば、各気筒の空燃比推定値に基づいて燃料系の異常を診断することができ、また、各気筒の空燃比推定値に基づいて燃料系の異常と空気系の異常との両者を区別して診断することができるという、優れた効果が発揮される。   According to the present invention, a fuel system abnormality can be diagnosed based on the estimated air-fuel ratio value of each cylinder, and a fuel system abnormality and an air system abnormality can be determined based on the estimated air-fuel ratio value of each cylinder. An excellent effect that both can be diagnosed can be demonstrated.

以下、本発明を実施するための最良の形態を添付図面を参照しつつ説明する。   The best mode for carrying out the present invention will be described below with reference to the accompanying drawings.

図1に示すように、車両には、内燃機関として筒内噴射式の火花点火式内燃機関(ガソリンエンジン)11が搭載されている。エンジン11は、ピストン13が往復動可能に収容された複数の気筒(シリンダ)12を有している。各ピストン13は、コネクティングロッド15を介し、エンジン11の出力軸であるクランクシャフト16に連結されている。各ピストン13の往復運動は、コネクティングロッド15によって回転運動に変換された後、クランクシャフト16に伝達される。   As shown in FIG. 1, an in-cylinder spark ignition internal combustion engine (gasoline engine) 11 is mounted on the vehicle as an internal combustion engine. The engine 11 has a plurality of cylinders 12 in which pistons 13 are accommodated so as to be able to reciprocate. Each piston 13 is connected to a crankshaft 16 that is an output shaft of the engine 11 via a connecting rod 15. The reciprocating motion of each piston 13 is converted into a rotational motion by the connecting rod 15 and then transmitted to the crankshaft 16.

気筒12毎の燃焼室17には、スロットルバルブ18、サージタンク19、吸気マニホルド21等を有する吸気通路22が接続されている。エンジン11の外部の空気は、吸気通路22の各部を順に通過して燃焼室17に吸入される。スロットルバルブ18は吸気通路22に回動可能に設けられており、電動モータ等からなるアクチュエータ23に駆動連結されている。アクチュエータ23は、運転者によるアクセルペダル24の踏込み操作等に応じて作動し、スロットルバルブ18を回動させる。吸気通路22を流れる空気の量(吸入空気量)は、スロットルバルブ18の回動角度(スロットル開度)に応じて変化する。   An intake passage 22 having a throttle valve 18, a surge tank 19, an intake manifold 21, etc. is connected to the combustion chamber 17 for each cylinder 12. Air outside the engine 11 passes through each part of the intake passage 22 and is taken into the combustion chamber 17. The throttle valve 18 is rotatably provided in the intake passage 22 and is drivingly connected to an actuator 23 made of an electric motor or the like. The actuator 23 operates in response to a depression operation of the accelerator pedal 24 by the driver, and rotates the throttle valve 18. The amount of air flowing through the intake passage 22 (intake air amount) varies according to the rotation angle (throttle opening) of the throttle valve 18.

また、燃焼室17には、排気マニホルド25、触媒60等を有する排気通路26が接続されている。燃焼室17で生じた排気ガスは、排気通路26の各部を順に通ってエンジン11の外部へ排出される。なお図示される触媒60の下流側に別の触媒も設けられている。   Further, an exhaust passage 26 having an exhaust manifold 25, a catalyst 60, and the like is connected to the combustion chamber 17. Exhaust gas generated in the combustion chamber 17 passes through each part of the exhaust passage 26 and is discharged to the outside of the engine 11. Note that another catalyst is also provided on the downstream side of the illustrated catalyst 60.

エンジン11には、吸気通路22の燃焼室17との接続部分を開閉する吸気弁27と、排気通路26の燃焼室17との接続部分を開閉する排気弁28とが気筒12毎に設けられている。これらの吸・排気弁27,28は、バルブスプリング(図示略)によって、吸・排気通路22,26と燃焼室17との連通を遮断する方向(閉弁方向、図1の略上方)へ常に付勢されている。吸気弁27の略上方には、吸気カム31Aを有する吸気カムシャフト31が設けられ、また排気弁28の略上方には、排気カム32Aを有する排気カムシャフト32が設けられている。これらの吸・排気カムシャフト31,32は、クランクシャフト16の回転が伝達されて回転する。この回転に伴い吸・排気カムシャフト31,32は、上記バルブスプリングに抗して吸・排気弁27,28を押下げる。この押下げにより、吸・排気通路22,26が燃焼室17に連通された状態(開弁状態)になる。このようにして、吸・排気カムシャフト31,32の回転に伴い吸・排気弁27,28が周期的に開弁及び閉弁する。   The engine 11 is provided with an intake valve 27 for opening and closing a connection portion of the intake passage 22 with the combustion chamber 17 and an exhaust valve 28 for opening and closing a connection portion of the exhaust passage 26 with the combustion chamber 17 for each cylinder 12. Yes. These intake / exhaust valves 27, 28 are always in a direction (valve closing direction, substantially upward in FIG. 1) in which communication between the intake / exhaust passages 22, 26 and the combustion chamber 17 is blocked by a valve spring (not shown). It is energized. An intake camshaft 31 having an intake cam 31A is provided substantially above the intake valve 27, and an exhaust camshaft 32 having an exhaust cam 32A is provided substantially above the exhaust valve 28. These intake / exhaust camshafts 31 and 32 rotate when the rotation of the crankshaft 16 is transmitted. With this rotation, the intake / exhaust camshafts 31, 32 push down the intake / exhaust valves 27, 28 against the valve spring. By this depression, the intake / exhaust passages 22 and 26 are in communication with the combustion chamber 17 (opened state). In this manner, the intake / exhaust valves 27, 28 are periodically opened and closed as the intake / exhaust camshafts 31, 32 rotate.

エンジン11には、電磁式のインジェクタ(燃料噴射弁)33が気筒12毎に取付けられている。各インジェクタ33は開閉制御されることにより、対応する燃焼室17に高圧燃料を直接噴射供給する。インジェクタ33から噴射された燃料は、燃焼室17内の空気と混ざり合って混合気となる。   An electromagnetic injector (fuel injection valve) 33 is attached to the engine 11 for each cylinder 12. Each injector 33 is controlled to open and close, thereby directly injecting and supplying high-pressure fuel to the corresponding combustion chamber 17. The fuel injected from the injector 33 is mixed with the air in the combustion chamber 17 and becomes an air-fuel mixture.

エンジン11には、点火プラグ34が気筒12毎に取付けられている。各点火プラグ34は、イグナイタ35からの点火信号に基づいて作動する。点火プラグ34には、点火コイル36から出力される高電圧が印加される。そして、前記混合気は点火プラグ34の火花放電によって着火され、燃焼する。このときに生じた高温高圧の燃焼ガスによりピストン13が往復動され、クランクシャフト16が回転されてエンジン11の駆動力(出力トルク)が得られる。   A spark plug 34 is attached to the engine 11 for each cylinder 12. Each spark plug 34 operates based on an ignition signal from the igniter 35. A high voltage output from the ignition coil 36 is applied to the spark plug 34. The air-fuel mixture is ignited by the spark discharge of the spark plug 34 and burned. The piston 13 is reciprocated by the high-temperature and high-pressure combustion gas generated at this time, the crankshaft 16 is rotated, and the driving force (output torque) of the engine 11 is obtained.

この駆動力は、運転者によるアクセルペダル24の踏込み操作に応じて調整される。すなわち、アクセルペダル24の踏込み操作に応じ、スロットルバルブ18がアクチュエータ23によって駆動されてスロットル開度が調節され、燃焼室17への吸入空気量が変化する。この変化に対応してインジェクタ33からの燃料噴射量が制御され、燃焼室17に充填される混合気の量が変化してエンジン11の出力が調整される。   This driving force is adjusted according to the depression operation of the accelerator pedal 24 by the driver. That is, according to the depression operation of the accelerator pedal 24, the throttle valve 18 is driven by the actuator 23 to adjust the throttle opening, and the intake air amount into the combustion chamber 17 changes. In response to this change, the amount of fuel injected from the injector 33 is controlled, and the amount of air-fuel mixture charged in the combustion chamber 17 changes to adjust the output of the engine 11.

ところで、上記エンジン11は、クランクシャフト16が2回転(720°CA回転)して、ピストン13が2往復する間に、吸気行程、圧縮行程、膨張行程及び排気行程という一連の4行程(サイクル)を行うようにした、いわゆる4サイクルエンジンである。吸気行程及び膨張行程はピストン13の下降時に行われ、圧縮行程及び排気行程はピストン13の上昇時に行われる。これらの行程により、各気筒12内の状態は大まかには次のように変化する。   By the way, the engine 11 has a series of four strokes (cycles) of an intake stroke, a compression stroke, an expansion stroke, and an exhaust stroke while the crankshaft 16 rotates twice (720 ° CA rotation) and the piston 13 reciprocates twice. This is a so-called four-cycle engine. The intake stroke and the expansion stroke are performed when the piston 13 is lowered, and the compression stroke and the exhaust stroke are performed when the piston 13 is raised. By these strokes, the state in each cylinder 12 changes roughly as follows.

吸気行程では、排気弁28が閉弁されるとともに吸気弁27が開弁され、ピストン13の下降に伴う燃焼室17内の圧力の低下によって燃焼室17内に空気が吸入される。圧縮行程では、排気弁28に加えて吸気弁27が閉弁される。このため、ピストン13の上昇に伴って燃焼室17内の圧力が上昇する。膨張行程では、吸・排気弁27,28がともに閉弁された状態で点火プラグ34による点火が行われ、上記吸入空気とインジェクタ33から噴射された燃料との混合気が着火、燃焼される。この燃焼に伴う下向きの力によりピストン13が押下げられ、コネクティングロッド15を介してクランクシャフト16に回転力が付与される。排気行程では排気弁28が開弁される。このため、燃焼室17内で発生した排気がピストン13の上昇に伴い排気通路26へ排出される。   In the intake stroke, the exhaust valve 28 is closed and the intake valve 27 is opened, and air is sucked into the combustion chamber 17 due to a decrease in pressure in the combustion chamber 17 as the piston 13 descends. In the compression stroke, the intake valve 27 is closed in addition to the exhaust valve 28. For this reason, the pressure in the combustion chamber 17 increases as the piston 13 rises. In the expansion stroke, ignition is performed by the spark plug 34 in a state where both the intake and exhaust valves 27 and 28 are closed, and the air-fuel mixture of the intake air and the fuel injected from the injector 33 is ignited and burned. The downward force accompanying the combustion pushes down the piston 13, and a rotational force is applied to the crankshaft 16 through the connecting rod 15. In the exhaust stroke, the exhaust valve 28 is opened. For this reason, the exhaust gas generated in the combustion chamber 17 is discharged to the exhaust passage 26 as the piston 13 rises.

エンジン11には、吸気弁27のバルブ特性を可変とする可変動弁機構として、バルブタイミング可変機構41及び作用角可変機構42が設けられている。バルブタイミング可変機構41は、クランクシャフト16に対する吸気カムシャフト31の相対回転位相を変更することにより、図2において実線及び二点鎖線で示すように、吸気弁27の作用角(開弁から閉弁までのクランク角)或いは開弁期間を一定に保持した状態で、同吸気弁27の開弁時期及び閉弁時期をともに進角又は遅角させる機構である。   The engine 11 is provided with a variable valve timing mechanism 41 and a variable operating angle mechanism 42 as variable valve mechanisms that change the valve characteristics of the intake valve 27. The variable valve timing mechanism 41 changes the relative rotation phase of the intake camshaft 31 with respect to the crankshaft 16 to thereby change the operating angle of the intake valve 27 (from opening to closing as indicated by a solid line and a two-dot chain line in FIG. 2). This is a mechanism for advancing or retarding both the valve opening timing and the valve closing timing of the intake valve 27 in a state where the valve opening period is kept constant.

また、作用角可変機構42は、図3に示すように、吸気弁27の作用角を連続的に可変とする機構である。本実施形態では作用角可変機構42により吸気弁27の最大リフト量も連続的に変更される。作用角及び最大リフト量は、作用角可変機構42によって互いに同期して変化させられ、作用角が小さくなるほど最大リフト量も小さくなり、作用角が大きくなるほど最大リフト量も大きくなる。   Further, the working angle varying mechanism 42 is a mechanism that continuously varies the working angle of the intake valve 27 as shown in FIG. In the present embodiment, the maximum lift amount of the intake valve 27 is also continuously changed by the operating angle variable mechanism 42. The operating angle and the maximum lift amount are changed in synchronization with each other by the operating angle variable mechanism 42, and the maximum lift amount decreases as the operating angle decreases, and the maximum lift amount increases as the operating angle increases.

作用角可変機構42としては、例えば図1に示すように、気筒12毎に設けられた仲介駆動機構43と、全気筒の仲介駆動機構43に共通のコントロールシャフト44及びアクチュエータ46とを備えたもの(特開2001−263015号公報参照)を用いることができる。アクチュエータ46は、例えば電動モータと、その電動モータの回転を直線運動に変換してコントロールシャフト44に伝達する動力伝達機構とを備える。そして、通電により電動モータが回転すると、それに伴い動力伝達機構が作動してコントロールシャフト44が軸方向へ変位させられる。   As the working angle variable mechanism 42, for example, as shown in FIG. 1, an intermediate drive mechanism 43 provided for each cylinder 12 and a control shaft 44 and an actuator 46 common to the intermediate drive mechanisms 43 of all cylinders are provided. (See JP 2001-263015 A). The actuator 46 includes, for example, an electric motor and a power transmission mechanism that converts the rotation of the electric motor into a linear motion and transmits the linear motion to the control shaft 44. And if an electric motor rotates by electricity supply, a power transmission mechanism will act | operate in connection with it and the control shaft 44 will be displaced to an axial direction.

各仲介駆動機構43は、吸気カムシャフト31と吸気弁27との間に設けられており、入力アーム47及び出力アーム48を備える。コントロールシャフト44と入・出力アーム47,48との間には、動力伝達用のスライダ49が回動可能かつ軸方向移動可能に介在されている。スライダ49及び入・出力アーム47,48は、ヘリカルスプラインによって相互に噛合わされている。   Each intermediate drive mechanism 43 is provided between the intake camshaft 31 and the intake valve 27 and includes an input arm 47 and an output arm 48. A power transmission slider 49 is interposed between the control shaft 44 and the input / output arms 47 and 48 so as to be rotatable and movable in the axial direction. The slider 49 and the input / output arms 47 and 48 are meshed with each other by a helical spline.

そして、吸気カムシャフト31が回転すると、吸気カム31Aによって入力アーム47がコントロールシャフト44を支点として上下に揺動する。この揺動はスライダ49を介して出力アーム48に伝達され、同出力アーム48が上下に揺動する。この揺動する出力アーム48によって吸気弁27が駆動されて開閉する。   When the intake camshaft 31 rotates, the input cam 47 swings up and down around the control shaft 44 by the intake cam 31A. This swing is transmitted to the output arm 48 via the slider 49, and the output arm 48 swings up and down. The swinging output arm 48 drives the intake valve 27 to open and close.

また、アクチュエータ46によってコントロールシャフト44が軸方向へ移動されることで、スライダ49が同方向へ変位しながら回転し、入・出力アーム47,48の揺動方向について、入力アーム47と出力アーム48との相対位相差が変更される。この変更に伴い各吸気弁27のバルブ特性(作用角及び最大リフト量)が連続的且つ一律に変化する。相対位相差が小さいときには作用角及び最大リフト量がともに小さく、気筒12当りの吸入空気量が少なくなる。相対位相差が増大すると、作用角及び最大リフト量がともに大きくなって同吸入空気量が多くなる。   Further, when the control shaft 44 is moved in the axial direction by the actuator 46, the slider 49 rotates while being displaced in the same direction, and the input arm 47 and the output arm 48 in the swinging direction of the input / output arms 47, 48. And the relative phase difference is changed. With this change, the valve characteristics (working angle and maximum lift amount) of each intake valve 27 change continuously and uniformly. When the relative phase difference is small, both the operating angle and the maximum lift amount are small, and the intake air amount per cylinder 12 is small. As the relative phase difference increases, both the operating angle and the maximum lift amount increase and the intake air amount increases.

さらに、車両には、各部の状態を検出するセンサが種々取付けられている。これらのセンサとしては、例えばクランク角センサ51、回転角センサ52、エアフロ−メータ53、スロットル開度センサ54、アクセル開度センサ55等が用いられている。   Further, various sensors for detecting the state of each part are attached to the vehicle. As these sensors, for example, a crank angle sensor 51, a rotation angle sensor 52, an air flow meter 53, a throttle opening sensor 54, an accelerator opening sensor 55, and the like are used.

クランク角センサ51はクランクシャフト16が一定角度回転する毎にパルス状の信号を発生する。この信号は、クランクシャフト16の回転角度であるクランク角や、単位時間当りのクランクシャフト16の回転数であるエンジン回転速度の算出等に用いられる。回転角センサ52は、吸気弁27のバルブ特性(作用角及び最大リフト量)を検出すべく、アクチュエータ46における電動モータの回転角度を検出する。エアフロ−メータ53は、吸気通路22を流れる空気の量(吸入空気量)を検出し、スロットル開度センサ54はスロットル開度を検出し、アクセル開度センサ55は運転者によるアクセルペダル24の踏込み量即ちアクセル開度を検出する。   The crank angle sensor 51 generates a pulse signal every time the crankshaft 16 rotates by a certain angle. This signal is used for calculation of a crank angle that is a rotation angle of the crankshaft 16 and an engine rotation speed that is a rotation speed of the crankshaft 16 per unit time. The rotation angle sensor 52 detects the rotation angle of the electric motor in the actuator 46 in order to detect the valve characteristics (working angle and maximum lift amount) of the intake valve 27. The air flow meter 53 detects the amount of air flowing through the intake passage 22 (intake air amount), the throttle opening sensor 54 detects the throttle opening, and the accelerator opening sensor 55 depresses the accelerator pedal 24 by the driver. The amount, that is, the accelerator opening is detected.

触媒60の上流側と下流側とにそれぞれ、排気中の酸素濃度に基づいて排気空燃比を検出する空燃比センサ、即ち触媒前空燃比センサ61及び触媒後空燃比センサ62が取り付けられている。触媒前空燃比センサ61は、エンジン11の各気筒の排気マニホルド25が集合した後の排気集合部に取り付けられている。触媒前空燃比センサ61は所謂広域空燃比センサからなり、比較的広範囲に亘る空燃比を連続的に検出可能で、排気空燃比に比例した値の信号を出力する。他方、触媒後空燃比センサ62は所謂O2センサからなり、理論空燃比(ストイキ、例えばA/F=14.6)を境に出力値が急変する特性を持つ。 An air-fuel ratio sensor for detecting the exhaust air-fuel ratio based on the oxygen concentration in the exhaust, that is, a pre-catalyst air-fuel ratio sensor 61 and a post-catalyst air-fuel ratio sensor 62 are attached to the upstream side and downstream side of the catalyst 60, respectively. The pre-catalyst air-fuel ratio sensor 61 is attached to an exhaust collecting portion after the exhaust manifolds 25 of the cylinders of the engine 11 are gathered. The pre-catalyst air-fuel ratio sensor 61 is a so-called wide-area air-fuel ratio sensor, can continuously detect an air-fuel ratio over a relatively wide range, and outputs a signal having a value proportional to the exhaust air-fuel ratio. On the other hand, the post-catalyst air-fuel ratio sensor 62 is a so-called O 2 sensor, and has a characteristic that the output value changes abruptly at the stoichiometric air-fuel ratio (stoichiometric, for example, A / F = 14.6).

車両には、前記各種信号に基づいて、エンジン11等の各部を制御する電子制御装置(以下、ECUという)100が設けられている。ECU100はマイクロコンピュータを中心として構成されており、中央処理装置(CPU)が、読出し専用メモリ(ROM)に記憶されている制御プログラム、初期データ、制御マップ等に従って演算処理を行い、その演算結果に基づいて各種制御を実行する。CPUによる演算結果は、ランダムアクセスメモリ(RAM)において一時的に記憶される。ECU100が行う制御としては、例えばエンジン11の燃料噴射制御、点火時期制御、スロットル開度制御、吸気弁27の作用角制御等が挙げられる。   The vehicle is provided with an electronic control unit (hereinafter referred to as ECU) 100 that controls each part such as the engine 11 based on the various signals. The ECU 100 is configured around a microcomputer, and a central processing unit (CPU) performs arithmetic processing according to a control program, initial data, a control map, and the like stored in a read-only memory (ROM). Various controls are executed based on this. The calculation result by the CPU is temporarily stored in a random access memory (RAM). Examples of the control performed by the ECU 100 include fuel injection control of the engine 11, ignition timing control, throttle opening control, working angle control of the intake valve 27, and the like.

触媒60は、これに流入する排気ガスの空燃比A/Fが理論空燃比近傍のときにNOx ,HCおよびCOを高効率で同時に浄化するようになっている。よってこれに対応して、ECU100は、触媒60に流入する排気ガスの空燃比を理論空燃比に一致させるように混合気の空燃比ないし燃料噴射量を制御する。具体的にはECU100は、エンジンの回転速度及び負荷といったエンジン11の運転状態に基づき、混合気の空燃比を所定の空燃比目標値(具体的には理論空燃比)とするような基本噴射量をマップ(関数でもよい。以下同様。)から算出する。そして触媒前空燃比センサ61により検出された実際の空燃比と空燃比目標値との偏差に基づいて空燃比フィードバック補正量を算出し、基本噴射量と空燃比フィードバック補正量とに基づき、偏差をゼロとするよう、混合気の空燃比ないし燃料噴射量をフィードバック制御する。なおこのような空燃比制御をメイン空燃比制御という。   The catalyst 60 purifies NOx, HC and CO simultaneously with high efficiency when the air-fuel ratio A / F of the exhaust gas flowing into the catalyst 60 is close to the stoichiometric air-fuel ratio. Accordingly, in response to this, the ECU 100 controls the air-fuel ratio or the fuel injection amount of the air-fuel mixture so that the air-fuel ratio of the exhaust gas flowing into the catalyst 60 matches the stoichiometric air-fuel ratio. Specifically, the ECU 100 determines the basic injection amount so that the air-fuel ratio of the air-fuel mixture becomes a predetermined air-fuel ratio target value (specifically, the stoichiometric air-fuel ratio) based on the operating state of the engine 11 such as the engine speed and load. Is calculated from a map (which may be a function, and so on). Then, the air-fuel ratio feedback correction amount is calculated based on the deviation between the actual air-fuel ratio detected by the pre-catalyst air-fuel ratio sensor 61 and the air-fuel ratio target value, and the deviation is calculated based on the basic injection amount and the air-fuel ratio feedback correction amount. The air-fuel ratio of the air-fuel mixture or the fuel injection amount is feedback controlled so as to be zero. Such air-fuel ratio control is called main air-fuel ratio control.

またECU100は、触媒11から流出した排気ガスの空燃比、即ち触媒後空燃比センサ62により検出された空燃比が空燃比目標値に一致するように空燃比を制御する。このような空燃比制御をサブ空燃比制御という。メイン空燃比制御を実行していても、触媒前空燃比センサ61の製品バラツキや劣化等により実際の中心空燃比が理論空燃比からずれる場合があるので、このずれを補正する目的でサブ空燃比制御が同時に行われる。メイン空燃比制御が極めて短い時間周期で実行されるのに対し、サブ空燃比制御は比較的長い時間周期で実行される。   Further, the ECU 100 controls the air-fuel ratio so that the air-fuel ratio of the exhaust gas flowing out from the catalyst 11, that is, the air-fuel ratio detected by the post-catalyst air-fuel ratio sensor 62 matches the air-fuel ratio target value. Such air-fuel ratio control is called sub air-fuel ratio control. Even if the main air-fuel ratio control is being executed, the actual center air-fuel ratio may deviate from the stoichiometric air-fuel ratio due to product variations or deterioration of the pre-catalyst air-fuel ratio sensor 61. Control is performed simultaneously. The main air-fuel ratio control is executed with a very short time period, whereas the sub air-fuel ratio control is executed with a relatively long time period.

なお、空燃比目標値を理論空燃比以外の値に設定して空燃比制御することもできる。例えば、燃費向上のため、空燃比目標値を理論空燃比よりリーン側の値に設定して空燃比制御(所謂リーンバーン制御)することもできる。いずれにせよ、空燃比目標値が、空燃比を制御する際の空燃比の基準値となる。   The air-fuel ratio control can also be performed by setting the air-fuel ratio target value to a value other than the stoichiometric air-fuel ratio. For example, to improve fuel efficiency, air-fuel ratio control (so-called lean burn control) can be performed by setting the air-fuel ratio target value to a value leaner than the theoretical air-fuel ratio. In any case, the air-fuel ratio target value becomes the reference value of the air-fuel ratio when controlling the air-fuel ratio.

スロットル開度制御では、エンジン11の負荷(運転者からの要求負荷)を表すアクセル開度、即ちアクセル開度センサ55で検出されたアクセル開度が大となるほど、スロットルバルブ18が開き側となるように、アクチュエータ23がECU100により駆動制御される。   In throttle opening control, the throttle valve 18 is opened more as the accelerator opening representing the load of the engine 11 (requested load from the driver), that is, the accelerator opening detected by the accelerator opening sensor 55 is larger. As described above, the actuator 23 is driven and controlled by the ECU 100.

一方、吸気弁27の作用角制御では、エンジン11の運転状態に関するパラメータ、特にエンジンの回転速度及び負荷に基づいて、目標作用角が算出される。そして回転角センサ52によって検出された回転角に基づき、その回転角に対応する吸気弁27の実作用角が算出される。この実作用角が上記目標作用角となるようにアクチュエータ46に対する通電がECU100により制御される。特に、エンジン負荷が大となるほどエンジン11の吸入空気量を増大すべく吸気弁27の作用角が大きくされ、エンジン負荷が小さくなるほどエンジン11の吸入空気量を減少すべく吸気弁27の作用角が小さくされる。スロットル開度と吸気弁作用角とは協調制御されるが、吸気弁作用角の増減により吸入空気量を増減できるため、特に低負荷時において、吸気弁作用角制御しない場合に比べ、スロットルバルブ18が開き側に制御される。このためポンピングロスを減少し燃費増大等を図れる。   On the other hand, in the operating angle control of the intake valve 27, the target operating angle is calculated based on parameters relating to the operating state of the engine 11, particularly the engine speed and load. Based on the rotation angle detected by the rotation angle sensor 52, the actual operating angle of the intake valve 27 corresponding to the rotation angle is calculated. Energization of the actuator 46 is controlled by the ECU 100 so that the actual operating angle becomes the target operating angle. In particular, the working angle of the intake valve 27 is increased to increase the intake air amount of the engine 11 as the engine load increases, and the operating angle of the intake valve 27 is decreased to decrease the intake air amount of the engine 11 as the engine load decreases. It is made smaller. Although the throttle opening and the intake valve operating angle are coordinately controlled, the intake air amount can be increased or decreased by increasing or decreasing the intake valve operating angle. Is controlled to open. For this reason, pumping loss can be reduced and fuel consumption can be increased.

なお、この説明で理解されるように、作用角可変機構42、回転角センサ52及びECU100が、エンジン11の負荷に応じて各気筒の吸気弁27の作用角を可変制御する吸気弁可変制御装置を構成する。かかる吸気弁可変制御装置を設けると、吸気弁作用角の制御のみで吸入空気量を全域制御可能とすることができるため、スロットルバルブ18を省略することも可能である。本実施形態の吸気弁可変制御装置はバルブタイミング可変機構41も含む。吸気弁可変制御装置は本実施形態のものの他、例えば電磁駆動弁を用いて各気筒の吸気弁を個別に駆動制御するものや、最大リフトを一定としたまま作用角を可変とするものなど、任意のものを採用することができる。   As can be understood from this description, the variable operating angle mechanism 42, the rotation angle sensor 52, and the ECU 100 variably control the operating angle of the intake valve 27 of each cylinder in accordance with the load of the engine 11. Configure. If such an intake valve variable control device is provided, it is possible to control the entire intake air amount only by controlling the intake valve working angle, so that the throttle valve 18 can be omitted. The intake valve variable control device of the present embodiment also includes a valve timing variable mechanism 41. In addition to the one in this embodiment, the intake valve variable control device, for example, one that individually controls the intake valve of each cylinder using an electromagnetically driven valve, the one that makes the operating angle variable while keeping the maximum lift constant, etc. Any thing can be adopted.

さて、本実施形態では、前述の空燃比制御(メイン空燃比制御及びサブ空燃比制御)を全気筒に対し一律に行う。つまり1エンジンサイクル(720°CA)毎に、全気筒に共通の基本噴射量と空燃比フィードバック補正量を算出し、これらに基づいて算出した燃料噴射量を各気筒から噴射するようにしている。   In the present embodiment, the above-described air-fuel ratio control (main air-fuel ratio control and sub air-fuel ratio control) is uniformly performed for all cylinders. That is, for each engine cycle (720 ° CA), the basic injection amount and the air-fuel ratio feedback correction amount common to all the cylinders are calculated, and the fuel injection amount calculated based on these is injected from each cylinder.

こうすると基準値としての空燃比目標値に対し、各気筒の空燃比が多少なりともバラつくが、本実施形態ではECU100により、各気筒の空燃比(気筒別空燃比)を個別に推定するようにしている。この気筒別空燃比の推定は、触媒前空燃比センサ61の検出値に基づいて行われ、特許文献1に開示されているような気筒別空燃比推定モデルを用いて行われる。   In this way, the air-fuel ratio of each cylinder varies somewhat with respect to the air-fuel ratio target value as the reference value, but in this embodiment, the ECU 100 individually estimates the air-fuel ratio of each cylinder (air-fuel ratio for each cylinder). I have to. The cylinder-by-cylinder air-fuel ratio is estimated based on the detection value of the pre-catalyst air-fuel ratio sensor 61, and is performed using a cylinder-by-cylinder air-fuel ratio estimation model as disclosed in Patent Document 1.

触媒前空燃比センサ61が設置される排気集合部のガス交換に着目し、触媒前空燃比センサ61の検出値を、排気集合部における各気筒の空燃比の履歴と空燃比センサ61の検出値の履歴とにそれぞれ所定の重みを乗じて加算したものとしてモデル化し、該モデルを用いて各気筒の空燃比を推定する。尚、オブザーバとしてはカルマンフィルタを用いる。   Paying attention to the gas exchange in the exhaust gas collection portion where the pre-catalyst air-fuel ratio sensor 61 is installed, the detection value of the pre-catalyst air-fuel ratio sensor 61 is used as the history of the air-fuel ratio of each cylinder in the exhaust gas collection portion and the detection value of the air-fuel ratio sensor 61 And the history is multiplied and multiplied by a predetermined weight, and the air-fuel ratio of each cylinder is estimated using the model. A Kalman filter is used as the observer.

排気集合部におけるガス交換のモデルを次の(1)式にて近似する。   A model of gas exchange in the exhaust collecting part is approximated by the following equation (1).

Figure 2009203880
Figure 2009203880

ここで、yは触媒前空燃比センサ61の検出値、uは排気集合部に流入するガスの空燃比、k1〜k4は所定の定数である。排気系では、排気集合部におけるガス流入及び混合の一次遅れ要素と、空燃比センサ61の応答遅れによる一次遅れ要素とが存在する。そこで、上記(1)式では、これらの一次遅れ要素を考慮して過去2回分の履歴を参照することとしている。 Here, y is a detected value of the pre-catalyst air-fuel ratio sensor 61, u is an air-fuel ratio of the gas flowing into the exhaust gas collecting portion, and k1 to k4 are predetermined constants. In the exhaust system, there are a first-order lag element for gas inflow and mixing in the exhaust collecting portion and a first-order lag element due to a response delay of the air-fuel ratio sensor 61. Therefore, in the above equation (1), the history for the past two times is referred to in consideration of these first order lag elements.

上記(1)式を状態空間モデルに変換すると、次の(2a)、(2b)式が導き出される。   When the above equation (1) is converted into a state space model, the following equations (2a) and (2b) are derived.

Figure 2009203880
Figure 2009203880

ここで、A,B,C,Dはモデルのパラメータ、Yは空燃比センサ61の検出値、Xは状態変数としての気筒別空燃比、Wはノイズである。 Here, A, B, C, and D are model parameters, Y is a detected value of the air-fuel ratio sensor 61, X is a cylinder-by-cylinder air-fuel ratio as a state variable, and W is noise.

更に、上記(2a)、(2b)式によりカルマンフィルタを設計すると、次の(3)式が得られる。   Further, when the Kalman filter is designed by the above equations (2a) and (2b), the following equation (3) is obtained.

Figure 2009203880
Figure 2009203880

ここで左辺の項(便宜上「Xハット(k+1|k)」などと称す)は各気筒の空燃比の推定値、Kはカルマンゲインである。左辺の項の意味は、時間(k)の推定値により時間(k+1)の推定値を求めることを表す。 Here, the term on the left side (referred to as “X hat (k + 1 | k)” for convenience) is the estimated value of the air-fuel ratio of each cylinder, and K is the Kalman gain. The meaning of the term on the left side indicates that the estimated value of time (k + 1) is obtained from the estimated value of time (k).

以上のようにして、気筒別空燃比推定モデルをカルマンフィルタ型オブザーバにて構成することにより、各気筒の燃焼サイクル毎の空燃比を順次推定できる。   As described above, by configuring the cylinder-by-cylinder air-fuel ratio estimation model with the Kalman filter type observer, it is possible to sequentially estimate the air-fuel ratio for each combustion cycle of each cylinder.

さて、本実施形態の如く気筒別空燃比を推定可能な場合、各気筒の空燃比を所定の空燃比目標値(例えば理論空燃比)に一律に制御しているにも拘わらず、その空燃比目標値とはかけ離れた異常な空燃比推定値を示す気筒があると、当該気筒に燃料系の異常と空気系の異常との少なくともいずれか一方が発生している可能性があることが分かる。製造上の理由等による各気筒のバラツキ、例えば各気筒のインジェクタ33や作用角可変機構42の仲介駆動機構43のバラツキにより、各気筒の空燃比が多少バラつくことは避けられないが、空燃比目標値からあまりにかけ離れた気筒別空燃比を示す気筒があると、当該気筒には燃料系か空気系の異常が発生しているとみなせる。ここで燃料系の異常とは、対象気筒に対する燃料供給量が予定量よりも過剰又は過少となる異常をいい、詰まりや開弁若しくは閉弁不良といったインジェクタ33の異常の他、燃料供給装置の異常、ブローバイガスや燃料蒸気の分配不良等を含む。また、空気系の異常とは、対象気筒に対する吸入空気量が予定量よりも過剰又は過少となる異常をいい、吸気弁27の開閉タイミング及び作用角のズレといった吸気弁可変制御装置の異常の他、タペットクリアランスの異常、デポジット付着による異常等を含む。   When the cylinder-by-cylinder air-fuel ratio can be estimated as in this embodiment, the air-fuel ratio is uniformly controlled even though the air-fuel ratio of each cylinder is uniformly controlled to a predetermined air-fuel ratio target value (for example, the theoretical air-fuel ratio). If there is a cylinder that shows an abnormal air-fuel ratio estimated value far from the target value, it can be seen that there is a possibility that at least one of a fuel system abnormality and an air system abnormality has occurred in the cylinder. It is inevitable that the air-fuel ratio of each cylinder varies somewhat due to variations in each cylinder due to manufacturing reasons, for example, variations in the injector 33 of each cylinder and the mediation drive mechanism 43 of the variable operating angle mechanism 42. If there is a cylinder-by-cylinder air-fuel ratio that is too far from the target value, it can be considered that a fuel system or air system abnormality has occurred in the cylinder. Here, the abnormality in the fuel system refers to an abnormality in which the amount of fuel supplied to the target cylinder is excessive or insufficient from the predetermined amount. In addition to the abnormality of the injector 33 such as clogging, valve opening or valve closing failure, the abnormality of the fuel supply device , Including poor distribution of blow-by gas and fuel vapor. The abnormality in the air system refers to an abnormality in which the amount of intake air with respect to the target cylinder is more or less than the predetermined amount. In addition to the abnormality in the intake valve variable control device such as the opening / closing timing of the intake valve 27 and the deviation of the operating angle. Including abnormalities in tappet clearance, abnormalities due to deposits, etc.

しかしながら、当該気筒において、燃料系の異常と空気系の異常とのいずれが発生しているかを特定するのは一般的には困難である。そこで本実施形態では、以下の手法により、まず各気筒の燃料系の異常の有無を診断し、その後、全気筒について燃料系の異常が無い状態(即ち燃料系が正常である状態)を保証した上で、空気系の異常の有無を診断し、燃料系の異常と空気系の異常とを区別して診断するようにしている。   However, it is generally difficult to identify whether a fuel system abnormality or an air system abnormality has occurred in the cylinder. Therefore, in the present embodiment, first, the presence or absence of abnormality in the fuel system of each cylinder is diagnosed by the following method, and then a state in which there is no abnormality in the fuel system for all cylinders (that is, a state where the fuel system is normal) is guaranteed. In the above, the presence or absence of an abnormality in the air system is diagnosed, and a diagnosis is made by distinguishing between an abnormality in the fuel system and an abnormality in the air system.

本実施形態のような吸気弁作用角可変のエンジンの場合、空気系の異常は、主に実際の作用角が目標値からズレる作用角ズレ、ひいては作用角可変機構42の異常によるところが大きい。仲介駆動機構43が気筒毎に設けられているので、空気系異常は気筒毎に起こり得る。しかし、この作用角ズレが実際の吸入空気量に与える影響は、作用角が大きいほど、つまりエンジンの負荷が高いほど、小さくなる。   In the case of an engine having a variable intake valve operating angle as in the present embodiment, an abnormality in the air system is largely due to an operating angle shift in which the actual operating angle deviates from the target value, and in turn, an abnormality in the operating angle variable mechanism 42. Since the mediation drive mechanism 43 is provided for each cylinder, an air system abnormality may occur for each cylinder. However, the effect of this operating angle deviation on the actual intake air amount decreases as the operating angle increases, that is, as the engine load increases.

図4は、一定量の作用角ズレがある場合に、エンジン負荷の変化に伴って実際の吸入空気量がどれだけ目標値からズレるかを示すグラフである。プラス側の線図aは、ある1気筒の実際の作用角が、エンジン負荷に対応した目標値に対し一定量(例えば5°CA)多い場合を示し、マイナス側の線図bは逆に一定量だけ少ない場合を示す。例えば線図aについて言えば、エンジン負荷が低いとき即ち作用角が小さいときには、そのエンジン負荷に対応した目標値に対し実際の吸入空気量が大きくプラス側にズレているが、エンジン負荷即ち作用角が大きくなるにつれズレ量は小さくなり、エンジン負荷が高いとき即ち作用角が大きいときにはズレ量は極めて小さくなる。線図bについても正負の逆はあるが同じことが言え、エンジン負荷が低いとき即ち作用角が小さいときには実際の吸入空気量が目標値に対し大きくマイナス側にズレているが、エンジン負荷が高いとき即ち作用角が大きいときにはズレ量は極めて小さくなる。   FIG. 4 is a graph showing how much the actual intake air amount deviates from the target value as the engine load changes when there is a certain amount of operating angle deviation. The positive diagram a shows a case where the actual operating angle of a certain cylinder is larger by a certain amount (for example, 5 ° CA) than the target value corresponding to the engine load, and the minus diagram b is constant on the contrary. Indicates the case where the amount is small. For example, with respect to the diagram a, when the engine load is low, that is, when the operating angle is small, the actual intake air amount is greatly deviated to the positive side with respect to the target value corresponding to the engine load. As the value increases, the amount of deviation decreases, and when the engine load is high, that is, when the operating angle is large, the amount of deviation becomes extremely small. The same can be said for diagram b, although the opposite is true, and when the engine load is low, that is, when the operating angle is small, the actual intake air amount is greatly deviated from the target value, but the engine load is high. When the operating angle is large, the amount of deviation is extremely small.

図5はかかる傾向がある理由を説明するための図である。図示するバルブリフト線図の内側の面積は実際の吸入空気量に相関する値である。例えば高負荷・大作用角の場合、作用角が目標値(実線)αtに対し一定量Δαだけズレても、このズレが面積、即ち実際の吸入空気量に及ぼす影響は小さい。元々の面積即ち吸入空気量が大だからである。これに対し、低負荷・小作用角の場合だと、作用角が目標値(実線)αtに対し一定量Δαズレると、このズレが面積即ち実際の吸入空気量に及ぼす影響は大きい。元々の面積即ち吸入空気量が小だからである。なお、タペットクリアランスのズレやデポジット付着による空気量のズレも、高負荷・大作用角の方が低負荷・小作用角の場合に比べ小さいことが理解されよう。   FIG. 5 is a diagram for explaining the reason for this tendency. The area inside the illustrated valve lift diagram is a value that correlates with the actual intake air amount. For example, in the case of a high load and a large working angle, even if the working angle is deviated by a certain amount Δα with respect to the target value (solid line) αt, the effect of this deviation on the area, that is, the actual intake air amount is small. This is because the original area, that is, the intake air amount is large. On the other hand, in the case of a low load and small working angle, if the working angle deviates by a certain amount Δα with respect to the target value (solid line) αt, this deviation has a large effect on the area, that is, the actual intake air amount. This is because the original area, that is, the intake air amount is small. It will be understood that the deviation of the tappet clearance and the deviation of the air amount due to deposit adhesion are also smaller for the high load and large working angle than for the low load and small working angle.

そこで本実施形態では、高負荷・大作用角のときに作用角ズレが実際の吸入空気量に及ぼす影響が小さいという特性に着目し、高負荷・大作用角のときに各気筒の燃料系の異常の有無を診断する。つまり高負荷・大作用角のときには主に作用角ズレといった空気系異常があったとしても、その影響が小さい。そこでこのときに空燃比推定値が空燃比目標値から大きくズレた気筒があれば、当該気筒の燃料系異常であると特定できるのである。なお、こうした燃料系異常の診断を終えた後、燃料系の正常状態を保証した上で、低負荷・小作用角のときに空気系異常の有無を診断する。燃料系の正常状態が保証されれば、低負荷・小作用角のときに現れた空燃比推定値のズレは、空気系異常に起因するものとみなせるからである。   Therefore, in the present embodiment, focusing on the characteristic that the working angle deviation has a small effect on the actual intake air amount at high load and large working angle, the fuel system of each cylinder at high load and large working angle. Diagnose the presence or absence of abnormalities. In other words, even when there is an air system abnormality such as an operating angle shift at a high load and a large operating angle, the effect is small. Therefore, if there is a cylinder in which the estimated air-fuel ratio deviates greatly from the air-fuel ratio target value at this time, it can be specified that the fuel system of the cylinder is abnormal. After the diagnosis of the fuel system abnormality is completed, the normal state of the fuel system is guaranteed and the presence or absence of the air system abnormality is diagnosed at a low load and a small operating angle. This is because if the normal state of the fuel system is guaranteed, the deviation of the air-fuel ratio estimated value that appears at a low load and a small operating angle can be considered to be caused by an air system abnormality.

以下、具体的な異常診断処理の例を図6〜図8を参照しつつ説明する。   Hereinafter, specific examples of abnormality diagnosis processing will be described with reference to FIGS.

まず図6に示す第1の例について説明する。かかる診断処理はECU100によって所定周期(例えば16msec)毎に繰り返し実行される。この第1の例では、最終的に燃料系の異常の有無を気筒別に診断することになる。   First, the first example shown in FIG. 6 will be described. Such diagnosis processing is repeatedly executed by the ECU 100 at predetermined intervals (for example, 16 msec). In this first example, the presence or absence of abnormality in the fuel system is finally diagnosed for each cylinder.

まずステップS101では、実際に検出されたエンジンの回転速度NEと負荷KLの値がECU100に取得される。次にステップS102において、取得されたエンジン負荷KLが所定値Xより大きいか否かが判断される。所定値Xは、中負荷或いは高負荷(好ましくは高負荷)とそれより低い負荷との境界をなすような大きさの値が設定されている。   First, in step S101, the actually detected values of the engine speed NE and the load KL are acquired by the ECU 100. Next, in step S102, it is determined whether or not the acquired engine load KL is greater than a predetermined value X. The predetermined value X is set to a value that forms a boundary between a medium load or a high load (preferably a high load) and a lower load.

エンジン負荷KLが所定値X以下の場合、ルーチンが終了される。他方、エンジン負荷KLが所定値Xより大きい場合、即ちエンジン負荷KLが中負荷或いは高負荷の場合、ステップS103にて、触媒前空燃比センサ61の検出値に基づいて各気筒の空燃比推定値が算出される。#i気筒(iは気筒番号を表し、例えば4気筒エンジンの場合だとi=1,2,3,4)の空燃比推定値をA/Fe(i)で表す。   If the engine load KL is less than or equal to the predetermined value X, the routine is terminated. On the other hand, if the engine load KL is greater than the predetermined value X, that is, if the engine load KL is a medium load or a high load, the estimated air-fuel ratio value of each cylinder based on the detected value of the pre-catalyst air-fuel ratio sensor 61 in step S103. Is calculated. The air / fuel ratio estimated value of #i cylinder (i represents a cylinder number, for example, i = 1, 2, 3, 4 in the case of a 4-cylinder engine) is represented by A / Fe (i).

次いでステップS104では、エンジンの回転速度NE及び負荷KLの値に基づき、ECU100に予め記憶されたマップから空燃比目標値A/Ftの値が取得される。本実施形態では全気筒の空燃比目標値A/Ft(即ち空燃比の基準値)が等しく、例えば理論空燃比とされるが、各気筒毎に空燃比目標値A/Ftを異ならせてもよい。   Next, in step S104, the value of the air-fuel ratio target value A / Ft is acquired from a map stored in advance in the ECU 100 based on the values of the engine speed NE and the load KL. In this embodiment, the air-fuel ratio target value A / Ft (that is, the air-fuel ratio reference value) of all cylinders is equal, for example, the theoretical air-fuel ratio, but even if the air-fuel ratio target value A / Ft is different for each cylinder. Good.

この後ステップS105において、各気筒につき、空燃比推定値A/Fe(i)と空燃比目標値A/Ftの差である気筒別空燃比差ΔA/F(i)=A/Fe(i)−A/Ftが算出される。この気筒別空燃比差ΔA/F(i)は、空燃比推定値A/Fe(i)の空燃比目標値A/Ftからのズレ量を表す指標値であるが、かかる指標値としては、両者の差の代わりに比を用いてもよい。   Thereafter, in step S105, for each cylinder, the cylinder-specific air-fuel ratio difference ΔA / F (i) = A / Fe (i), which is the difference between the air-fuel ratio estimated value A / Fe (i) and the air-fuel ratio target value A / Ft. -A / Ft is calculated. This cylinder-by-cylinder air-fuel ratio difference ΔA / F (i) is an index value representing the amount of deviation of the air-fuel ratio estimated value A / Fe (i) from the air-fuel ratio target value A / Ft. A ratio may be used instead of the difference between the two.

次に、ステップS106において、各気筒の気筒別空燃比差ΔA/F(i)が所定の異常判定値Aと比較される。異常判定値Aは、プラスの値であり、空燃比推定値A/Fe(i)のズレ量を異常とみなすのに十分な比較的大きな値とされる。   Next, in step S106, the air-fuel ratio difference ΔA / F (i) for each cylinder is compared with a predetermined abnormality determination value A. The abnormality determination value A is a positive value, and is a relatively large value sufficient to regard the deviation amount of the air-fuel ratio estimated value A / Fe (i) as abnormal.

気筒別空燃比差ΔA/F(i)が異常判定値A以上となっている気筒がある場合、ステップS107において当該気筒につき燃料系の異常、特に気筒別空燃比がリーン側に大きくずれる燃料過少異常が発生していると判定され、ルーチンが終了される。   If there is a cylinder in which the cylinder-by-cylinder air-fuel ratio difference ΔA / F (i) is greater than or equal to the abnormality determination value A, in step S107, there is an abnormality in the fuel system for that cylinder, and in particular, the fuel is insufficient. It is determined that an abnormality has occurred and the routine is terminated.

他方、ステップS106において気筒別空燃比差ΔA/F(i)が異常判定値A以上となっている気筒がないと判断された場合、ステップS108に進んで、各気筒の気筒別空燃比差ΔA/F(i)がマイナス側の異常判定値−Aと比較される。なおここではプラス側の異常判定値Aとマイナス側の異常判定値−Aとをゼロに対し対称の、同じ絶対値を有する値としたが、非対称、異なる絶対値を有する値としてもよい。   On the other hand, if it is determined in step S106 that there is no cylinder in which the cylinder-by-cylinder air-fuel ratio difference ΔA / F (i) is equal to or greater than the abnormality determination value A, the process proceeds to step S108, and the cylinder-by-cylinder air-fuel ratio difference ΔA. / F (i) is compared with the minus abnormality determination value -A. Here, the positive abnormality determination value A and the negative abnormality determination value −A are symmetrical with respect to zero and have the same absolute value, but may be asymmetric and different absolute values.

気筒別空燃比差ΔA/F(i)が異常判定値−A以下となっている気筒がある場合、ステップS109において当該気筒につき燃料系の異常、特に気筒別空燃比がリッチ側に大きくずれる燃料過剰異常が発生していると判定され、ルーチンが終了される。   In the case where there is a cylinder in which the cylinder-by-cylinder air-fuel ratio difference ΔA / F (i) is equal to or less than the abnormality determination value −A, in step S109, the fuel system abnormality, particularly the fuel in which the cylinder-by-cylinder air-fuel ratio greatly shifts to the rich side. It is determined that an excessive abnormality has occurred, and the routine is terminated.

他方、ステップS108において気筒別空燃比差ΔA/F(i)が異常判定値−A以下となっている気筒がないと判断された場合、ステップS110に進んで、全気筒の燃料系が正常と判定され、ルーチンが終了される。   On the other hand, if it is determined in step S108 that there is no cylinder in which the cylinder-by-cylinder air-fuel ratio difference ΔA / F (i) is equal to or less than the abnormality determination value −A, the process proceeds to step S110, and the fuel systems of all cylinders are normal. The routine is terminated.

このように、エンジン負荷KLが所定値Xより大きい中負荷或いは高負荷(好ましくは高負荷)という条件下で燃料系の異常の有無を診断するので、空気系異常の影響が小さいという条件下で燃料系異常を診断し、空気系異常と区別して燃料系の異常を確実に診断することができる。   As described above, since the presence or absence of abnormality in the fuel system is diagnosed under the condition that the engine load KL is medium load or high load (preferably high load) greater than the predetermined value X, the influence of the air system abnormality is small. Abnormalities in the fuel system can be diagnosed, and abnormalities in the fuel system can be reliably diagnosed separately from the air system abnormality.

次に、異常診断処理の第2の例を図7に基づき説明する。この第2の例は図6に示した第1の例と大略同様であり、燃料系異常を診断するものであるが、主に以下の点で相違している。   Next, a second example of the abnormality diagnosis process will be described with reference to FIG. This second example is substantially the same as the first example shown in FIG. 6 and diagnoses a fuel system abnormality, but differs mainly in the following points.

まず最初のステップS201Aで、吸気弁作用角αが所定値Cより大きいか否かが判断される。所定値Cは、空気系異常の影響を小さくし得るような比較的大きな値のうちの最小値として設定される。作用角制御の特性上、高負荷であれば大作用角となり、高負荷であることを担保すれば自ずと大作用角という条件も担保できるが、この第2の例では安全のため、作用角αが大きいか否かも別途単独で判定するようにしている。ここで用いる作用角の値は、エンジンの回転速度及び負荷に基づいて定まる目標作用角の値でもよいし、回転角センサ52の検出値に基づく実作用角の値であってもよい。   First, in first step S201A, it is determined whether or not the intake valve operating angle α is larger than a predetermined value C. The predetermined value C is set as a minimum value among relatively large values that can reduce the influence of the air system abnormality. Due to the characteristics of the working angle control, a large working angle is obtained if the load is high, and if the high load is ensured, the condition of a large working angle can be secured naturally. However, in this second example, the working angle α Whether it is large or not is determined separately. The value of the working angle used here may be a target working angle value determined based on the rotational speed and load of the engine, or an actual working angle value based on a detection value of the rotational angle sensor 52.

作用角αが所定値C以下の場合、ルーチンが終了される。他方、作用角αが所定値Cより大きい場合、ステップS201において前記ステップS101と同様にエンジンの回転速度NEと負荷KLの値が取得される。   When the operating angle α is equal to or smaller than the predetermined value C, the routine is terminated. On the other hand, when the operating angle α is larger than the predetermined value C, the values of the engine speed NE and the load KL are acquired in step S201 as in step S101.

以降、ステップS202〜S209は前記ステップS102〜S109と同様である。ステップS202により、エンジン負荷KLが所定値Xより大きいという条件、即ち中負荷或いは高負荷であるという条件が担保される。   Thereafter, steps S202 to S209 are the same as steps S102 to S109. By step S202, the condition that the engine load KL is larger than the predetermined value X, that is, the condition that the load is medium load or high load is secured.

ステップS208で、気筒別空燃比差ΔA/F(i)が異常判定値−A以下となっている気筒がないと判断された場合、ステップS210において、各気筒の気筒別空燃比差ΔA/F(i)が所定の正常判定値Bと比較される。この正常判定値Bは、プラスの値で且つ異常判定値Aより小さい値であり、気筒別空燃比のズレ量の最大許容値に相当する値として設定されている。   When it is determined in step S208 that there is no cylinder in which the cylinder-by-cylinder air-fuel ratio difference ΔA / F (i) is equal to or less than the abnormality determination value −A, in step S210, the cylinder-by-cylinder air-fuel ratio difference ΔA / F. (I) is compared with a predetermined normal judgment value B. The normal determination value B is a positive value and smaller than the abnormality determination value A, and is set as a value corresponding to the maximum allowable value of the deviation amount of the cylinder-by-cylinder air-fuel ratio.

気筒別空燃比差ΔA/F(i)が正常判定値Bより大きい気筒がある場合、ステップS211において全気筒の燃料系の正常判定が保留される。即ちこの場合、当該気筒について異常とみなせる程大きくはないが、正常とみなすには大きすぎる気筒別空燃比のリーンずれが生じているので、全気筒の燃料系の正常判定が保留される。この結果、燃料系は正常とも異常とも判定されないことになる。   If there is a cylinder having a cylinder-by-cylinder air-fuel ratio difference ΔA / F (i) larger than the normal determination value B, the normal determination of the fuel system of all cylinders is suspended in step S211. That is, in this case, although the cylinder is not so large as to be regarded as abnormal, a lean deviation of the cylinder-by-cylinder air-fuel ratio that is too large to be regarded as normal has occurred. As a result, the fuel system is not determined to be normal or abnormal.

他方、気筒別空燃比差ΔA/F(i)が正常判定値Bより大きい気筒がない場合、ステップS212に進んで、各気筒の気筒別空燃比差ΔA/F(i)がマイナス側の正常判定値−Bと比較される。前記同様、ここではプラス側の正常判定値Bとマイナス側の正常判定値−Bとをゼロに対し対称の、同じ絶対値を有する値としたが、非対称、異なる絶対値を有する値としてもよい。   On the other hand, if there is no cylinder in which the cylinder-by-cylinder air-fuel ratio difference ΔA / F (i) is larger than the normal determination value B, the process proceeds to step S212, and the cylinder-by-cylinder air-fuel ratio difference ΔA / F (i) is normal on the negative side. It is compared with the judgment value -B. Similar to the above, the positive normal determination value B and the negative normal determination value -B are symmetric with respect to zero and have the same absolute value, but may be asymmetric and different absolute values. .

気筒別空燃比差ΔA/F(i)がマイナス側の正常判定値−B未満となっている気筒がある場合、ステップS211に進んで全気筒についての燃料系の正常判定が保留される。他方、気筒別空燃比差ΔA/F(i)がマイナス側の正常判定値−B未満となっている気筒がない場合、ステップS213に進んで、全気筒の燃料系が正常と判定され、ルーチンが終了される。   If there is a cylinder having a cylinder-by-cylinder air-fuel ratio difference ΔA / F (i) that is less than the negative-side normal determination value −B, the routine proceeds to step S211, and fuel system normal determination for all cylinders is suspended. On the other hand, if there is no cylinder in which the cylinder-by-cylinder air-fuel ratio difference ΔA / F (i) is less than the negative normal determination value −B, the routine proceeds to step S213, where it is determined that the fuel system of all cylinders is normal, and the routine Is terminated.

次に、異常診断処理の第3の例を図8に基づき説明する。この第3の例は、実質的に、図6に示した第1の例又は図7に示した第2の例により燃料系異常診断を終えた後に行われる処理である。この処理もECU100によって所定周期(例えば16msec)毎に繰り返し実行される。この第3の例では、最終的に空気系の異常の有無を気筒別に診断することになる。   Next, a third example of the abnormality diagnosis process will be described with reference to FIG. This third example is processing that is substantially performed after the fuel system abnormality diagnosis is completed according to the first example shown in FIG. 6 or the second example shown in FIG. This process is also repeatedly executed by the ECU 100 at predetermined intervals (for example, 16 msec). In this third example, the presence or absence of an abnormality in the air system is finally diagnosed for each cylinder.

まず最初のステップS301では、前記第1又は第2の例により、全気筒の燃料系につき正常判定がなされたか否かが判断される。正常判定がなされた場合にはステップS303に進む。   First, in step S301, it is determined whether or not normal determination has been made for the fuel systems of all cylinders according to the first or second example. If normality is determined, the process proceeds to step S303.

他方、正常判定がなされなかった場合、即ち、ある気筒につき燃料過少異常判定及び燃料過剰異常判定のいずれかがなされた場合、又は全気筒の燃料系正常判定が保留された場合には、ステップS302に進み、前者の場合には異常判定がなされた気筒(異常気筒)につき、後者の場合には異常とも正常とも判定されなかった気筒(半異常気筒)につき、燃料噴射量の補正を実行し、且つこの補正が完了したか否かが判断される。   On the other hand, when the normality determination is not made, that is, when either the fuel shortage abnormality determination or the fuel excessive abnormality determination is made for a certain cylinder, or when the fuel system normality determination for all cylinders is suspended, step S302. In the former case, correction of the fuel injection amount is performed for the cylinder in which the abnormality is determined (abnormal cylinder), and in the latter case, the cylinder in which the abnormality is not determined to be normal (semi-abnormal cylinder). It is then determined whether or not this correction has been completed.

この補正は、エンジン負荷KLが所定値Xより大きい中負荷或いは高負荷のときに行われる。そしてこの補正では、異常気筒又は半異常気筒においてのみ、空燃比推定値A/Fe(i)を空燃比目標値A/Ftに近づけるよう或いは等しくするよう、燃料噴射量が補正される。これにより異常気筒又は半異常気筒における燃料系の異常状態又は半異常状態が解消され、燃料系は全気筒正常状態となる。   This correction is performed when the engine load KL is a medium load or a high load greater than the predetermined value X. In this correction, the fuel injection amount is corrected so that the air-fuel ratio estimated value A / Fe (i) approaches or equals the air-fuel ratio target value A / Ft only in the abnormal cylinder or the semi-abnormal cylinder. As a result, the abnormal state or semi-abnormal state of the fuel system in the abnormal cylinder or semi-abnormal cylinder is eliminated, and the fuel system is in a normal state of all cylinders.

もっとも、インジェクタが完全に故障している等の理由で補正不可能な場合には、補正が完了しないので、ルーチンが終了される。他方、補正が可能で補正が完了した場合には、ステップS303に進む。   However, if the correction cannot be performed because the injector is completely broken or the like, the correction is not completed and the routine is terminated. On the other hand, if the correction is possible and the correction is completed, the process proceeds to step S303.

ステップS303では、吸気弁作用角αが所定値Dより小さいか否かが判断される。所定値Dは、空気系異常の影響を十分大きくし得るような比較的小さな値のうちの最大値として設定される。これは空気系異常の影響が出やすい低負荷・小作用角の条件下で空気系異常の診断を行うためである。後のステップでエンジン負荷が低負荷という条件も判断されるが、ここでは安全のため、作用角αが小さいか否かも別途単独で判定するようにしている。作用角の値は目標作用角の値でもよいし、実作用角の値であってもよい。なお、このステップS303における所定値Dと、前記ステップS201Aにおける所定値Cとは、同じ値であってもよいし、異なる値であってもよい。異ならせる場合は前者を後者より小さな値とするのが好ましい。   In step S303, it is determined whether or not the intake valve operating angle α is smaller than a predetermined value D. The predetermined value D is set as the maximum value among relatively small values that can sufficiently increase the influence of the air system abnormality. This is because the abnormality of the air system is diagnosed under the condition of a low load and a small working angle where the influence of the air system abnormality is likely to occur. Although the condition that the engine load is low is also determined in a later step, here, for safety, whether or not the operating angle α is small is separately determined. The value of the operating angle may be a target operating angle value or an actual operating angle value. Note that the predetermined value D in step S303 and the predetermined value C in step S201A may be the same value or different values. When making it different, it is preferable to make the former smaller than the latter.

作用角αが所定値D以上の場合、ルーチンが終了される。他方、作用角αが所定値Dより小さい場合、ステップS304において前記ステップS101と同様にエンジンの回転速度NEと負荷KLの値が取得される。   When the operating angle α is equal to or greater than the predetermined value D, the routine is terminated. On the other hand, if the operating angle α is smaller than the predetermined value D, the values of the engine speed NE and the load KL are acquired in step S304 as in step S101.

次のステップS305では、取得されたエンジン負荷KLが所定値Yより小さいか否かが判断される。所定値Yは、低負荷とそれより高い負荷との境界をなすような大きさの値が設定されている。このステップS305における所定値Yと、前記ステップS102における所定値Xとは、同じ大きさの値であってもよいし、異なる大きさの値であってもよい。異ならせる場合は前者を後者より小さな値とするのが好ましい。   In the next step S305, it is determined whether or not the acquired engine load KL is smaller than a predetermined value Y. The predetermined value Y is set to a value that forms a boundary between a low load and a higher load. The predetermined value Y in step S305 and the predetermined value X in step S102 may be the same value or different values. When making it different, it is preferable to make the former smaller than the latter.

エンジン負荷KLが所定値Y以上の場合、ルーチンが終了される。他方、エンジン負荷KLが所定値Yより小さい場合、即ちエンジン負荷KLが低負荷の場合、ステップS306にて、前記ステップS103と同様、触媒前空燃比センサ61の検出値に基づいて各気筒の空燃比推定値A/Fe(i)が算出される。   If the engine load KL is greater than or equal to the predetermined value Y, the routine is terminated. On the other hand, when the engine load KL is smaller than the predetermined value Y, that is, when the engine load KL is low, in step S306, the air-fuel ratio of each cylinder is determined based on the detected value of the pre-catalyst air-fuel ratio sensor 61 in step S103. The estimated fuel ratio A / Fe (i) is calculated.

次いでステップS307では前記ステップS104と同様に空燃比目標値A/Ftの値が取得され、ステップS308では前記ステップS105と同様に各気筒の気筒別空燃比差ΔA/F(i)が算出される。   Next, in step S307, the value of the air-fuel ratio target value A / Ft is acquired as in step S104. In step S308, the air-fuel ratio difference ΔA / F (i) for each cylinder of each cylinder is calculated as in step S105. .

次に、ステップS309において、各気筒の気筒別空燃比差ΔA/F(i)が所定の異常判定値A’と比較される。異常判定値A’はプラスの値であり、空燃比推定値A/Fe(i)のズレ量を異常とみなすのに十分な比較的大きな値とされる。   Next, in step S309, the air-fuel ratio difference ΔA / F (i) for each cylinder is compared with a predetermined abnormality determination value A ′. The abnormality determination value A ′ is a positive value, and is a relatively large value sufficient to regard the deviation amount of the air-fuel ratio estimated value A / Fe (i) as abnormal.

ここで、空気系に関する異常判定値A’と後述する正常判定値B’、並びにマイナス側の異常判定値−A’及び正常判定値−B’は、図9に示すような、図4の特性に対応づけたマップを用い、エンジン負荷KLに応じて定められる。   Here, the abnormality determination value A ′ related to the air system, the normal determination value B ′, which will be described later, and the negative abnormality determination value −A ′ and the normal determination value −B ′ are the characteristics shown in FIG. Is determined in accordance with the engine load KL.

気筒別空燃比差ΔA/F(i)が異常判定値A’以上となっている気筒がある場合、ステップS310において当該気筒につき空気系の異常、特に気筒別空燃比がリーン側に大きくずれる空気過剰異常が発生していると判定され、ルーチンが終了される。   If there is a cylinder in which the cylinder-by-cylinder air-fuel ratio difference ΔA / F (i) is greater than or equal to the abnormality determination value A ′, in step S310 the air system abnormality of the cylinder, in particular, the air in which the cylinder-by-cylinder air-fuel ratio greatly deviates to the lean side It is determined that an excessive abnormality has occurred, and the routine is terminated.

他方、ステップS309において気筒別空燃比差ΔA/F(i)が異常判定値A’以上となっている気筒がないと判断された場合、ステップS311に進んで、各気筒の気筒別空燃比差ΔA/F(i)がマイナス側の異常判定値−A’と比較される。なおここではプラス側の異常判定値A’とマイナス側の異常判定値−A’とをゼロに対し対称の、同じ絶対値を有する値としたが、非対称、異なる絶対値を有する値としてもよい。   On the other hand, if it is determined in step S309 that there is no cylinder in which the cylinder-by-cylinder air-fuel ratio difference ΔA / F (i) is equal to or greater than the abnormality determination value A ′, the process proceeds to step S311 to determine the cylinder-by-cylinder air-fuel ratio difference. ΔA / F (i) is compared with the abnormality determination value −A ′ on the negative side. Here, the positive abnormality determination value A ′ and the negative abnormality determination value −A ′ are symmetrical with respect to zero and have the same absolute value, but may be asymmetric and different absolute values. .

気筒別空燃比差ΔA/F(i)がマイナス側の異常判定値−A’以下となっている気筒がある場合、ステップS312において当該気筒につき空気系の異常、特に気筒別空燃比がリッチ側に大きくずれる空気過少異常が発生していると判定され、ルーチンが終了される。   If there is a cylinder in which the cylinder-by-cylinder air-fuel ratio difference ΔA / F (i) is equal to or less than the negative abnormality determination value −A ′, in step S312, an abnormality in the air system, particularly the cylinder-by-cylinder air-fuel ratio is rich. It is determined that there is an air shortage abnormality that greatly deviates, and the routine is terminated.

他方、ステップS311において気筒別空燃比差ΔA/F(i)が異常判定値−A’以下となっている気筒がないと判断された場合、ステップS313に進んで、各気筒の気筒別空燃比差ΔA/F(i)が所定の正常判定値B’と比較される。この正常判定値B’は、プラスの値で且つ異常判定値A’より小さい値であり、空燃比推定値A/Fe(i)のズレ量の最大許容値に設定されている。   On the other hand, if it is determined in step S311 that there is no cylinder in which the cylinder-by-cylinder air-fuel ratio difference ΔA / F (i) is equal to or less than the abnormality determination value −A ′, the process proceeds to step S313 to determine the cylinder-by-cylinder air-fuel ratio. The difference ΔA / F (i) is compared with a predetermined normal judgment value B ′. The normality determination value B ′ is a positive value and smaller than the abnormality determination value A ′, and is set to the maximum allowable value of the deviation amount of the air-fuel ratio estimation value A / Fe (i).

気筒別空燃比差ΔA/F(i)が正常判定値B’より大きい気筒がある場合、ステップS314において全気筒の空気系の正常判定が保留される。即ちこの場合、当該気筒(半異常気筒)について異常とみなせる程大きくはないが、正常とみなすには大きすぎる気筒別空燃比A/F(i)のリーンずれが生じているので、全気筒の空気系の正常判定が保留される。この結果、空気系は正常とも異常とも判定されないことになる。   If there is a cylinder having a cylinder-by-cylinder air-fuel ratio difference ΔA / F (i) larger than the normal determination value B ′, the normal determination of the air system of all cylinders is suspended in step S314. That is, in this case, the cylinder (semi-abnormal cylinder) is not so large that it can be regarded as abnormal, but there is a lean deviation of the cylinder-by-cylinder air-fuel ratio A / F (i) that is too large to be regarded as normal. Air system normality judgment is suspended. As a result, the air system is not determined to be normal or abnormal.

他方、気筒別空燃比差ΔA/F(i)が正常判定値B’より大きい気筒がない場合、ステップS315に進んで、各気筒の気筒別空燃比差ΔA/F(i)がマイナス側の正常判定値−B’と比較される。前記同様、ここではプラス側の正常判定値B’とマイナス側の正常判定値−B’とをゼロに対し対称の、同じ絶対値を有する値としたが、非対称、異なる絶対値を有する値としてもよい。   On the other hand, if there is no cylinder in which the cylinder-by-cylinder air-fuel ratio difference ΔA / F (i) is greater than the normal determination value B ′, the process proceeds to step S315, and the cylinder-by-cylinder air-fuel ratio difference ΔA / F (i) is negative. It is compared with the normal judgment value −B ′. As described above, the positive normal determination value B ′ and the negative normal determination value −B ′ are values having the same absolute value that are symmetric with respect to zero, but are asymmetric and values having different absolute values. Also good.

気筒別空燃比差ΔA/F(i)がマイナス側の正常判定値−B’未満となっている気筒がある場合、ステップS314に進んで全気筒についての空気系の正常判定が保留される。他方、気筒別空燃比差ΔA/F(i)がマイナス側の正常判定値−B’未満となっている気筒がない場合、ステップS316に進んで、全気筒の空気系が正常と判定され、ルーチンが終了される。   If there is a cylinder in which the cylinder-by-cylinder air-fuel ratio difference ΔA / F (i) is less than the normal determination value −B ′ on the negative side, the process proceeds to step S314, and the normal determination of the air system for all the cylinders is suspended. On the other hand, if there is no cylinder in which the cylinder-by-cylinder air-fuel ratio difference ΔA / F (i) is less than the negative normal determination value −B ′, the process proceeds to step S316, where it is determined that the air system of all cylinders is normal, The routine is terminated.

このように、燃料系が正常状態であり、且つエンジン負荷KLが所定値Yより小さい低負荷という条件下で空気系の異常の有無を診断するので、燃料系の異常の可能性を排除した上で、空気系異常の影響が大きい条件下で空気系異常を診断し、燃料系異常と区別して空気系の異常を確実に診断することができる。   As described above, since the presence or absence of an abnormality in the air system is diagnosed under the condition that the fuel system is in a normal state and the engine load KL is a low load smaller than the predetermined value Y, the possibility of the abnormality in the fuel system is eliminated. Thus, the air system abnormality can be diagnosed under a condition where the influence of the air system abnormality is great, and the air system abnormality can be reliably diagnosed separately from the fuel system abnormality.

次に、異常診断処理の第3の例の変形例を図10に基づき説明する。   Next, a modification of the third example of the abnormality diagnosis process will be described with reference to FIG.

この変形例は、各気筒の吸気弁の作用角を気筒別に制御可能な吸気弁可変制御装置を前提とする。例えば、前記作用角可変機構42において各気筒の仲介駆動機構43を気筒別に制御できるものや、各気筒の吸気弁を電磁駆動弁により気筒別に制御できるものなどに適用される。ここでは前記同様に作用角と同期して最大リフト量も変化させられる。   This modification is premised on an intake valve variable control device capable of controlling the operating angle of the intake valve of each cylinder for each cylinder. For example, the present invention can be applied to the variable working angle mechanism 42 that can control the intermediary drive mechanism 43 of each cylinder for each cylinder, or that can control the intake valve of each cylinder for each cylinder by an electromagnetic drive valve. Here, similarly to the above, the maximum lift amount is also changed in synchronization with the operating angle.

ステップS401〜S416はそれぞれ第3の例のステップS301〜S316と同様である。ステップS410,S412,S414,S414で空気系の異常、半異常(正常判定保留)又は正常が判定されるまで、前記第1又は第2の例も含めて、吸気弁作用角は全気筒一律に制御される。   Steps S401 to S416 are the same as steps S301 to S316 of the third example, respectively. The intake valve operating angle is uniform for all cylinders, including the first or second example, until the air system abnormality, semi-abnormality (normal determination pending) or normal is determined in steps S410, S412, S414, and S414. Be controlled.

ステップS410又はS412で空気系異常が判定されるか又はステップS414で空気系半異常が判定されたとき(即ち、空気系正常判定がされなかったとき)、ステップS417に進む。このステップS417では、空気系が異常又は半異常と判断された気筒ixにつき、空燃比推定値A/Fe(ix)が空燃比目標値A/Ftに等しくなるように(即ち気筒別空燃比差ΔA/F(ix)がゼロになるように)、作用角が所定時間補正制御される。これによって当該気筒ixにおいて空気量を補正し、空燃比推定値A/Fe(ix)を空燃比目標値A/Ftに一致させるよう試みがなされる。なお当該気筒ix以外の気筒ではこのような作用角補正制御は行われない。   When the air system abnormality is determined in step S410 or S412, or when the air system semi-abnormality is determined in step S414 (that is, when the air system normality determination is not made), the process proceeds to step S417. In this step S417, the air-fuel ratio estimated value A / Fe (ix) is made equal to the air-fuel ratio target value A / Ft for the cylinder ix in which the air system is determined to be abnormal or semi-abnormal (that is, the cylinder-specific air-fuel ratio difference). The working angle is corrected and controlled for a predetermined time so that ΔA / F (ix) becomes zero. As a result, an attempt is made to correct the air amount in the cylinder ix so that the air-fuel ratio estimated value A / Fe (ix) matches the air-fuel ratio target value A / Ft. Note that such working angle correction control is not performed in cylinders other than the cylinder ix.

所定時間の補正制御が終了したならば次にステップS418に進み、実際の空燃比推定値A/Fe(ix)が空燃比目標値A/Ftに対し所定値以内となるよう十分近づいたか否か、具体的には気筒別空燃比差ΔA/F(ix)の絶対値が所定値E(>0)以下となったか否かが判断される。   If the correction control for the predetermined time is completed, the process proceeds to step S418, and whether the actual air-fuel ratio estimated value A / Fe (ix) is sufficiently close to the air-fuel ratio target value A / Ft within the predetermined value. Specifically, it is determined whether or not the absolute value of the cylinder specific air-fuel ratio difference ΔA / F (ix) is equal to or less than a predetermined value E (> 0).

気筒別空燃比差ΔA/F(ix)の絶対値が所定値E以下となった場合、空気量ズレは作用角の補正によって解消可能なので、ステップS419において、当該気筒ixの最終的な作用角補正状態が維持される。これにより以降の空燃比制御等において当該気筒ixの空気量ズレを起こすことがなくなり、正常な制御を行うことができる。   When the absolute value of the cylinder-by-cylinder air-fuel ratio difference ΔA / F (ix) is equal to or smaller than the predetermined value E, the air amount deviation can be eliminated by correcting the operating angle. In step S419, the final operating angle of the cylinder ix The correction state is maintained. Thereby, in the subsequent air-fuel ratio control or the like, the air amount deviation of the cylinder ix does not occur, and normal control can be performed.

他方、気筒別空燃比差ΔA/F(ix)の絶対値が所定値E以下とならなかった場合、空気量ズレは作用角を補正しても解消不能であるので、ステップS420において吸気弁可変制御装置の異常と判定される。この吸気弁可変制御装置の異常は、典型的には吸気弁可変制御装置(特に作用角可変機構42)の当該気筒ixに関する部分の異常を含む。吸気弁可変制御装置以外の異常、即ちタペットクリアランス異常やデポジット付着異常等の場合だと、空気量のズレはそれほど大きくなく作用角の補正で解消可能となる可能性が高い。しかし、作用角を補正しても空気量ズレが解消できない場合だと、より重大な異常即ち吸気弁可変制御装置の異常である可能性が高い。そこでここでは、当該気筒ixについて作用角を補正してもなお空燃比ズレが解消できない場合、吸気弁可変制御装置の異常(特に当該気筒ixに関連する部分の異常)と判定し、異常箇所をより詳細に特定することとしている。これにより一層正確で且つ緻密な異常診断が可能となる。   On the other hand, if the absolute value of the cylinder-by-cylinder air-fuel ratio difference ΔA / F (ix) does not become equal to or smaller than the predetermined value E, the air amount deviation cannot be eliminated even if the operating angle is corrected. It is determined that the control device is abnormal. This abnormality of the intake valve variable control device typically includes an abnormality of a portion related to the cylinder ix of the intake valve variable control device (particularly, the operating angle variable mechanism 42). In the case of an abnormality other than the intake valve variable control device, that is, a tappet clearance abnormality or a deposit adhesion abnormality, the deviation of the air amount is not so large and is likely to be eliminated by correcting the operating angle. However, if the deviation of the air amount cannot be resolved even if the operating angle is corrected, there is a high possibility that it is a more serious abnormality, that is, an abnormality in the intake valve variable control device. Therefore, here, if the air-fuel ratio deviation cannot be resolved even if the operating angle is corrected for the cylinder ix, it is determined that the intake valve variable control device is abnormal (particularly, the abnormality related to the cylinder ix), and the abnormal portion is determined. It is going to be specified in more detail. Thereby, a more accurate and precise abnormality diagnosis becomes possible.

以上、本発明の実施形態について詳細に述べたが、本発明の実施形態は他にも様々なものが考えられる。例えば内燃機関の用途や形式は任意であり、例えば車両用以外であってもよいし、圧縮着火式内燃機関(ディーゼルエンジン)であってもよいし、ポート直噴式等であってもよい。気筒数も多気筒なら任意である。前記実施形態では、気筒別空燃比のズレ量の基準値を全気筒一律の空燃比目標値、例えば理論空燃比に定めたが、これに限らず、例えば各気筒の気筒別空燃比の平均値を当該基準値に定めてもよい。また、図7の第2の例において燃料系の正常判定を保留する場合(ステップS211)、並びに図8の第3の例において空気系の正常判定を保留する場合(ステップS314)、異常とも正常ともみなせない気筒についてのみ正常判定を保留し、その他の気筒については正常判定してもよい。   Although the embodiment of the present invention has been described in detail above, various other embodiments of the present invention are conceivable. For example, the use and type of the internal combustion engine are arbitrary, and may be other than for vehicles, for example, a compression ignition internal combustion engine (diesel engine), a port direct injection type, or the like. The number of cylinders is arbitrary as long as it is multi-cylinder. In the above embodiment, the reference value of the deviation amount of the cylinder-by-cylinder air-fuel ratio is set to a uniform air-fuel ratio target value for all cylinders, for example, the stoichiometric air-fuel ratio, but is not limited to this, for example, the average value of the cylinder-by-cylinder air-fuel ratio May be set as the reference value. Also, when the normal determination of the fuel system is suspended in the second example of FIG. 7 (step S211) and when the normal determination of the air system is suspended in the third example of FIG. 8 (step S314), both abnormalities are normal. Normal determination may be suspended only for cylinders that cannot be considered, and normal determination may be performed for other cylinders.

本発明には、特許請求の範囲によって規定される本発明の思想に包含されるあらゆる変形例や応用例、均等物が含まれる。従って本発明は、限定的に解釈されるべきではなく、本発明の思想の範囲内に帰属する他の任意の技術にも適用することが可能である。   The present invention includes all modifications, applications, and equivalents included in the spirit of the present invention defined by the claims. Therefore, the present invention should not be construed as being limited, and can be applied to any other technique belonging to the scope of the idea of the present invention.

本発明の一実施形態に係るエンジンの概略図である。It is the schematic of the engine which concerns on one Embodiment of this invention. 吸気弁の可変タイミング特性を示す線図である。It is a diagram which shows the variable timing characteristic of an intake valve. 吸気弁の可変作用角特性を示す線図である。It is a diagram which shows the variable working angle characteristic of an intake valve. 作用角ズレがある場合のエンジン負荷と吸入空気量ズレ量との関係を示すグラフである。It is a graph which shows the relationship between an engine load in case there exists working angle deviation, and the amount of intake air deviation. エンジン負荷に応じて吸入空気量ズレ量が異なる理由を説明するための図である。It is a figure for demonstrating the reason that the amount of intake air deviations changes according to engine load. 異常診断処理の第1の例に係るフローチャートである。It is a flowchart which concerns on the 1st example of abnormality diagnosis processing. 異常診断処理の第2の例に係るフローチャートである。It is a flowchart which concerns on the 2nd example of abnormality diagnosis processing. 異常診断処理の第3の例に係るフローチャートである。It is a flowchart which concerns on the 3rd example of abnormality diagnosis processing. 空気系の異常判定値及び正常判定値を算出するためのマップである。It is a map for calculating the air system abnormality determination value and the normality determination value. 異常診断処理の第3の例の変形例に係るフローチャートである。It is a flowchart which concerns on the modification of the 3rd example of abnormality diagnosis processing.

符号の説明Explanation of symbols

11 内燃機関
27 吸気弁
42 作用角可変機構
43 仲介駆動機構
52 回転角センサ
55 アクセル開度センサ
61 触媒前空燃比センサ
100 電子制御装置(ECU)
KL 負荷
α 作用角
A/Fe(i) 各気筒の空燃比推定値
A/Ft 目標空燃比
ΔA/F(i) 気筒別空燃比差
DESCRIPTION OF SYMBOLS 11 Internal combustion engine 27 Intake valve 42 Operating angle variable mechanism 43 Intermediary drive mechanism 52 Rotation angle sensor 55 Accelerator opening sensor 61 Pre-catalyst air-fuel ratio sensor 100 Electronic control unit (ECU)
KL Load α Working angle A / Fe (i) Air-fuel ratio estimated value A / Ft for each cylinder Target air-fuel ratio ΔA / F (i) Air-fuel ratio difference for each cylinder

Claims (8)

内燃機関の負荷に応じて少なくとも各気筒の吸気弁の作用角を可変制御する吸気弁可変制御装置を備えた内燃機関の異常診断装置において、
各気筒の空燃比を推定する気筒別空燃比推定手段と、
前記内燃機関の負荷が所定値より大きいとき、前記気筒別空燃比推定手段により求められた各気筒の空燃比推定値の所定の基準値からのズレ量に基づいて、各気筒の燃料系の異常の有無を診断する異常診断手段と
を備えたことを特徴とする内燃機関の異常診断装置。
In the internal combustion engine abnormality diagnosis device comprising an intake valve variable control device that variably controls the operating angle of the intake valve of at least each cylinder according to the load of the internal combustion engine,
Cylinder-specific air-fuel ratio estimating means for estimating the air-fuel ratio of each cylinder;
When the load of the internal combustion engine is larger than a predetermined value, the abnormality of the fuel system of each cylinder is determined based on the amount of deviation from the predetermined reference value of the air-fuel ratio estimated value of each cylinder obtained by the cylinder-by-cylinder air-fuel ratio estimating means. An abnormality diagnosing device for an internal combustion engine, comprising: an abnormality diagnosing means for diagnosing the presence or absence of fuel.
前記異常診断手段は、前記空燃比推定値と前記基準値との差又は比に基づいて、各気筒の燃料系の異常の有無を診断する
ことを特徴とする請求項1記載の内燃機関の異常診断装置。
2. The abnormality of the internal combustion engine according to claim 1, wherein the abnormality diagnosis unit diagnoses whether there is an abnormality in a fuel system of each cylinder based on a difference or ratio between the estimated value of the air-fuel ratio and the reference value. Diagnostic device.
前記異常診断手段は、前記内燃機関の負荷が所定値より大きいときであって且つ前記作用角が所定値より大きいとき、各気筒の燃料系の異常の有無を診断する
ことを特徴とする請求項1又は2に記載の内燃機関の異常診断装置。
The abnormality diagnosis means diagnoses whether or not there is an abnormality in the fuel system of each cylinder when the load of the internal combustion engine is larger than a predetermined value and the working angle is larger than a predetermined value. The abnormality diagnosis apparatus for an internal combustion engine according to 1 or 2.
前記異常診断手段により燃料系が正常と診断されなかった気筒について、前記空燃比推定値を前記基準値に近づけるよう燃料噴射量の補正を行う補正手段を備え、
前記異常診断手段は、全気筒の燃料系を正常と診断した後又は前記補正手段による補正が行われた後、前記内燃機関の負荷が所定値より小さいときに、前記空燃比推定値の前記基準値からのズレ量に基づいて、各気筒の空気系の異常の有無を診断する
ことを特徴とする請求項1乃至3のいずれかに記載の内燃機関の異常診断装置。
Correction means for correcting the fuel injection amount so that the estimated air-fuel ratio approaches the reference value for a cylinder whose fuel system has not been diagnosed as normal by the abnormality diagnosis means;
The abnormality diagnosing means, after diagnosing that the fuel system of all cylinders is normal or after being corrected by the correcting means, when the load of the internal combustion engine is smaller than a predetermined value, the reference of the air-fuel ratio estimated value The abnormality diagnosis device for an internal combustion engine according to any one of claims 1 to 3, wherein the presence or absence of an abnormality in an air system of each cylinder is diagnosed based on a deviation amount from the value.
前記異常診断手段は、前記空燃比推定値と前記基準値との差又は比に基づいて、各気筒の空気系の異常の有無を診断する
ことを特徴とする請求項4記載の内燃機関の異常診断装置。
The abnormality of the internal combustion engine according to claim 4, wherein the abnormality diagnosis means diagnoses the presence or absence of an abnormality in the air system of each cylinder based on a difference or ratio between the estimated value of the air-fuel ratio and the reference value. Diagnostic device.
前記異常診断手段は、前記内燃機関の負荷が所定値より小さいときであって且つ前記作用角が所定値より小さいとき、各気筒の空気系の異常の有無を診断する
ことを特徴とする請求項4又は5に記載の内燃機関の異常診断装置。
The abnormality diagnosis unit diagnoses whether there is an abnormality in an air system of each cylinder when the load of the internal combustion engine is smaller than a predetermined value and the working angle is smaller than a predetermined value. The abnormality diagnosis device for an internal combustion engine according to 4 or 5.
前記吸気弁可変制御装置は、前記異常診断手段により空気系が正常と診断されなかった気筒について、前記空燃比推定値を前記基準値に近づけるよう作用角を所定時間補正制御し、
前記異常診断手段は、当該気筒について、前記補正制御後に前記空燃比推定値が前記基準値に対し所定値以内となるよう近づかなかったとき、前記吸気弁可変制御装置の異常と診断する
ことを特徴とする請求項4乃至6のいずれかに記載の内燃機関の異常診断装置。
The intake valve variable control device corrects and controls a working angle for a predetermined time so that the air-fuel ratio estimated value approaches the reference value for a cylinder whose air system has not been diagnosed as normal by the abnormality diagnosing means,
The abnormality diagnosing means diagnoses an abnormality in the intake valve variable control device when the estimated air-fuel ratio does not approach the reference value within a predetermined value after the correction control for the cylinder. An abnormality diagnosis apparatus for an internal combustion engine according to any one of claims 4 to 6.
当該気筒について、前記補正制御後に前記空燃比推定値が前記基準値に対し所定値以内となるよう近づいたとき、前記吸気弁可変制御装置は当該作用角の補正状態を維持する
ことを特徴とする請求項7記載の内燃機関の異常診断装置。
For the cylinder, when the estimated air-fuel ratio approaches the reference value within a predetermined value after the correction control, the intake valve variable control device maintains the correction state of the working angle. The abnormality diagnosis device for an internal combustion engine according to claim 7.
JP2008046884A 2008-02-27 2008-02-27 Abnormality diagnosis device for internal combustion engine Expired - Fee Related JP4936140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008046884A JP4936140B2 (en) 2008-02-27 2008-02-27 Abnormality diagnosis device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008046884A JP4936140B2 (en) 2008-02-27 2008-02-27 Abnormality diagnosis device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2009203880A true JP2009203880A (en) 2009-09-10
JP4936140B2 JP4936140B2 (en) 2012-05-23

Family

ID=41146398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008046884A Expired - Fee Related JP4936140B2 (en) 2008-02-27 2008-02-27 Abnormality diagnosis device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4936140B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8718865B2 (en) 2010-03-12 2014-05-06 Toyota Jidosha Kabushiki Kaisha Abnormality diagnosis apparatus and abnormality diagnosis method for internal combustion engine
JP2014190269A (en) * 2013-03-27 2014-10-06 Toyota Motor Corp Control device of internal combustion engine
US9140183B2 (en) 2013-08-09 2015-09-22 Denso Corporation Fuel injection controller
US20230011920A1 (en) * 2019-12-20 2023-01-12 Volvo Truck Corporation Method for diagnosing a part of a powertrain system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05263694A (en) * 1992-03-23 1993-10-12 Mazda Motor Corp Failure sensing device for fuel supply system
JP2005163696A (en) * 2003-12-04 2005-06-23 Denso Corp Misfire detection device of internal combustion engine
JP2005214073A (en) * 2004-01-29 2005-08-11 Denso Corp Abnormality diagnostic device of variable valve lift control system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05263694A (en) * 1992-03-23 1993-10-12 Mazda Motor Corp Failure sensing device for fuel supply system
JP2005163696A (en) * 2003-12-04 2005-06-23 Denso Corp Misfire detection device of internal combustion engine
JP2005214073A (en) * 2004-01-29 2005-08-11 Denso Corp Abnormality diagnostic device of variable valve lift control system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8718865B2 (en) 2010-03-12 2014-05-06 Toyota Jidosha Kabushiki Kaisha Abnormality diagnosis apparatus and abnormality diagnosis method for internal combustion engine
JP2014190269A (en) * 2013-03-27 2014-10-06 Toyota Motor Corp Control device of internal combustion engine
US9206754B2 (en) 2013-03-27 2015-12-08 Toyota Jidosha Kabushiki Kaisha Control device of internal combustion engine
US9140183B2 (en) 2013-08-09 2015-09-22 Denso Corporation Fuel injection controller
US20230011920A1 (en) * 2019-12-20 2023-01-12 Volvo Truck Corporation Method for diagnosing a part of a powertrain system

Also Published As

Publication number Publication date
JP4936140B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
US7146851B2 (en) Diagnostic apparatus for variable valve control system
US8286471B2 (en) Variable displacement engine diagnostics
JP4092917B2 (en) Electromagnetically driven valve control device for internal combustion engine
US20070225892A1 (en) Control System for Internal Combustion Engine
US7520255B2 (en) Control for an engine having a variable valve-driving unit
JP4697201B2 (en) Abnormality detection device for internal combustion engine
CN102192018A (en) Method for controlling an internal combustion engine
JP2008309011A (en) Fuel-injection control device and engine control system
JP2008175101A (en) Fuel injection control device and combustion equipment of engine
US10344681B2 (en) Method and apparatus for diagnosing engine system
JP4900049B2 (en) In-cylinder pressure sensor output characteristic detection device and output correction device
US6830027B1 (en) Control system for internal combustion engine
JP4936140B2 (en) Abnormality diagnosis device for internal combustion engine
US20070012096A1 (en) Method and device for determining a phase position between a crankshaft and a camshaft of an internal combustion engine
JP5733413B2 (en) Control device for internal combustion engine
JP2007231798A (en) Control device for internal combustion engine
CN111065805B (en) Method and device for controlling internal combustion engine
JP2008309077A (en) Diagnostic system and information-acquiring system for fuel-injection valve
EP3333382B1 (en) Method and apparatus for diagnosing engine system
US9002618B2 (en) Variable valve timing control apparatus for engine
CN101311511B (en) System and method for adaptive control of variable valve lift tappet transformation
JP4841382B2 (en) Internal combustion engine
JP2013130092A (en) Method for discriminating cylinder in start for internal combustion engine
CN105814297A (en) Diagnostic system for internal combustion engine
JP5267728B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees