JP2009203583A - Method for cooking lignocellulose material - Google Patents

Method for cooking lignocellulose material Download PDF

Info

Publication number
JP2009203583A
JP2009203583A JP2008048160A JP2008048160A JP2009203583A JP 2009203583 A JP2009203583 A JP 2009203583A JP 2008048160 A JP2008048160 A JP 2008048160A JP 2008048160 A JP2008048160 A JP 2008048160A JP 2009203583 A JP2009203583 A JP 2009203583A
Authority
JP
Japan
Prior art keywords
cooking
zone
added
pulp
chemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008048160A
Other languages
Japanese (ja)
Other versions
JP5119471B2 (en
Inventor
Yukinori Kizara
幸紀 木皿
Yosuke Uchida
洋介 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Original Assignee
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Paper Co Ltd filed Critical Oji Paper Co Ltd
Priority to JP2008048160A priority Critical patent/JP5119471B2/en
Publication of JP2009203583A publication Critical patent/JP2009203583A/en
Application granted granted Critical
Publication of JP5119471B2 publication Critical patent/JP5119471B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Paper (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for cooking a lignocellulose material which improves a kraft cooking effect and pulp yield without any large-scale remodeling of the facility. <P>SOLUTION: The method is such that in cooking a lignocellulose material using a continuous cooker having a permeation zone and a cooking zone in this order, cooking chemical liquids are added to the permeation zone and the cooking zone, respectively; wherein, the cooking chemical liquid to be added to the cooking zone is higher in sulfurization degree than that to be added to the permeation zone by 5% or greater. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、リグノセルロース物質の蒸解方法に関し、更に詳しくは、クラフト蒸解にける蒸解性とパルプ収率の両者を向上することが可能なリグノセルロース物質の蒸解方法に関する。 The present invention relates to a method for cooking a lignocellulosic material, and more particularly to a method for cooking a lignocellulosic material capable of improving both the digestibility and pulp yield in kraft cooking.

リグノセルロース物質を製紙原料として多くの用途に使用するためには、蒸解処理して化学パルプとするか、あるいはリファイナー等を用いて機械的に処理して機械パルプとする必要がある。これらのパルプは、必要に応じて漂白処理され、所望の白色度に調整された後、製紙原料として使用される。現在、所望の白色度、パルプ特性に調整しやすいことから化学パルプ化法が主として用いられ、特にクラフト法と呼ばれる蒸解法は、薬品の再生が可能であり、使用原料の制限も少ない等の理由から化学パルプ化法の主流となっている。また、クラフトパルプ法は、装置の面でも発展してきており、連続蒸解釜と呼ばれる大量生産型でかつ大型のものが主流となっている。 In order to use a lignocellulosic material as a papermaking raw material in many applications, it is necessary to digest it into chemical pulp or mechanically treat it with a refiner or the like to obtain mechanical pulp. These pulps are bleached as necessary, adjusted to a desired whiteness, and then used as a papermaking raw material. At present, the chemical pulping method is mainly used because it is easy to adjust to the desired whiteness and pulp characteristics. Especially, the cooking method called kraft method can regenerate chemicals and there are few restrictions on raw materials used. From the mainstream of chemical pulping. The kraft pulp method has also been developed in terms of equipment, and a mass production type called a continuous digester and a large one have become mainstream.

クラフトパルプ法の改良法としては、連続蒸解釜を用いたMCC法、EMCC法、ITC法、Lo−Solids法などが提案されている。MCC法は連続式蒸解釜への蒸解薬液の添加を3分割し、一部を釜の中段や下段からチップと向流添加することで、蒸解工程の各段のアルカリ濃度を均一に保ち、過剰なアルカリによる木材中のセルロースの崩壊を抑制することでパルプ強度を向上する方法である。また、Lo−Solids法は黒液を抽出する工程と、抽出した黒液よりも溶解有機物の少ない液で液補充する工程を組み合わせることにより、蒸解工程を通して蒸解液中の溶解有機物を少なく保ち、均一な蒸解反応をなすことでパルプ強度を向上する方法である(特許文献1、2)。これらの改良法は何れもパルプ品質を改良する方法であるが、黒液を浸透ゾーンに戻し、蒸解のアルカリプロファイルを均一にし、低温長時間蒸解をする方法いわゆるCOMPACT COOKINGTM法、KOBUDOMARI法(特許文献3、4、5、非特許文献1)では、従来の蒸解法と比較して蒸解収率を102〜103に向上できるとされている。しかしながら、これらの蒸解法を既設の連続蒸解釜へ適用する場合に大掛かりな設備の改造をともなうという問題がある。 As an improved method of the kraft pulp method, an MCC method, an EMCC method, an ITC method, a Lo-Solids method using a continuous digester has been proposed. The MCC method divides the addition of cooking chemicals into the continuous digester into three parts, and a part of it is added counter-currently to the chip from the middle or lower part of the kettle, keeping the alkali concentration in each stage of the cooking process uniform and excessive. It is a method of improving pulp strength by suppressing the disintegration of cellulose in wood due to an alkali. In addition, the Lo-Solids method combines a process of extracting black liquor and a process of replenishing with a liquid with less dissolved organic matter than the extracted black liquor to keep the dissolved organic matter in the cooking liquor small and uniform throughout the cooking process. It is a method of improving pulp strength by making a simple cooking reaction (Patent Documents 1 and 2). These improved methods are methods for improving the pulp quality, but the so-called COMPACT COOKING TM method, KOBUDOMARI method (patented) is a method in which the black liquor is returned to the permeation zone, the alkali profile of the cooking is made uniform, and the cooking is carried out at a low temperature for a long time. Documents 3, 4, 5 and Non-Patent Document 1) indicate that the cooking yield can be improved to 102 to 103 as compared with the conventional cooking method. However, when these cooking methods are applied to an existing continuous digester, there is a problem that it involves a major modification of equipment.

また、パルプ収率の向上を目指した、蒸解液の改善や脱リグニン助剤などの開発も進み、前者ではポリサルファイド蒸解法、後者ではキノン化合物の添加などが挙げられる。これらのうち、ポリサルファイド蒸解は、蒸解薬液を酸化して硫化ナトリウムをポリサルファイド硫黄に変換したり、蒸解薬液に直接硫黄を添加することにより、ヘミセルロースの末端基を酸化保護して高アルカリ性の蒸解薬液へのヘミセルロース溶出を抑えるためパルプ収率が向上するとしている(非特許文献2)。一方、キノン化合物を添加するキノン蒸解では、キノン化合物がセルロースの末端基を酸化保護してセルロースの溶出を抑制し、パルプ収率が向上するとしている(特許文献6、7)。これらポリサルファイド蒸解とキノン蒸解を組合せた蒸解法も検討されている(特許文献8)が、いずれも蒸解収率の向上効果と比較して薬品コストが大きく、さほど普及が進んでいないのが現状である。 In addition, progress has been made in improving cooking liquor and delignification aids aimed at improving pulp yield. The former includes polysulfide cooking, and the latter includes the addition of quinone compounds. Among these, polysulfide cooking is a highly alkaline cooking solution by oxidizing the cooking solution to convert sodium sulfide to polysulfide sulfur or by adding sulfur directly to the cooking solution to protect the end groups of hemicellulose by oxidation. In order to suppress the elution of hemicellulose, the pulp yield is improved (Non-patent Document 2). On the other hand, in quinone cooking in which a quinone compound is added, the quinone compound oxidizes and protects the terminal group of cellulose to suppress the elution of cellulose, and the pulp yield is improved (Patent Documents 6 and 7). Although a cooking method combining these polysulfide cooking and quinone cooking has been studied (Patent Document 8), all of them have a large chemical cost compared with the effect of improving the cooking yield, and the current situation is that the spread is not so much progressed. is there.

クラフト蒸解における蒸解薬液は苛性ソーダ(NaOH)と硫化ソーダ(NaS)からなり、クラフト蒸解の初期に硫化物が存在すれば得られるパルプの強度が向上することが古くから知られており(非特許文献3)、蒸解初期の硫化度(硫化ソーダ濃度/(苛性ソーダ濃度+硫化ソーダ濃度))に関する研究が精力的に行われてきた。その反面、蒸解中期以降の硫化度が蒸解性やパルプ収率に対して与える効果は知られていない。蒸解薬液よりも硫化度の高い溶液として、パルプ工場内では蒸解黒液および回収工程で生成する緑液が存在する。
前記COMPACT COOKINGTM法、KOBUDOMARI法では蒸解黒液を蒸解初期段階に硫化物源として添加する方法であり、緑液を蒸解初期段階で添加する方法も検討されている(非特許文献4)が、蒸解初期段階にあたる浸透ゾーンに硫化度の高い溶液を添加しても浸透ゾーンおよび蒸解最高温度に到達する前にアルカリと共に硫化ソーダの多くが消費されてしまい、実際の脱リグニンに利用される硫化ソーダが少ないという問題がある。
特表平8−511583号公報、 特表平10−504614号公報 米国特許第6086717号公報 米国特許第6123807号公報 米国特許第6159336号公報 特開昭52−37803号公報 特開昭53−45404号公報 特開2002−115190号公報 具延、「COMPACT COOKINGTM法及びKOBUDOMARI法の蒸解パルプの収率評価法」、平成15年度 紙パルプ技術協会 年次大会 講演予稿集、p49〜59 山口章、「工場チップのポリサルファイド蒸解」、紙パ技協誌、第33巻第8号、p1〜9 Sjoblom,Kら、「Extended delignification in kraft cooking through improved selectivity」、Paperi Puu 65:4、177、1983年 Svedman,Mら、「The use of green liquor and its derivatives in improving kraft pulping」、TAPPI J.、vol81 No.10、151、1998年
The cooking chemicals in kraft cooking consist of caustic soda (NaOH) and sodium sulfide (Na 2 S), and it has been known for a long time that the strength of the pulp obtained will improve if sulfide is present at the initial stage of kraft cooking (non- Patent Document 3), research on the degree of sulfidization (sodium sulfide concentration / (caustic soda concentration + sodium sulfide concentration)) at the initial stage of cooking has been vigorously conducted. On the other hand, the effect of the degree of sulfidation after the middle stage of cooking on cooking characteristics and pulp yield is not known. As a solution having a degree of sulfidation higher than that of the cooking chemical, there are cooking black liquor and green liquor produced in the recovery process in the pulp mill.
In the COMPACT COOKING TM method and the KOBUDOMARI method, a cooking black liquor is added as a sulfide source at the initial stage of cooking, and a method of adding green liquor at the initial stage of cooking has also been studied (Non-Patent Document 4). Even if a solution with a high degree of sulfidation is added to the infiltration zone, which is the initial stage of cooking, much of the sodium sulfide is consumed along with the alkali before reaching the maximum temperature of the infiltration zone and cooking, so that sodium sulfide is used for actual delignification. There is a problem that there are few.
Japanese translation of PCT publication No. 8-511583, Japanese National Patent Publication No. 10-504614 US Pat. No. 6,086,717 US Pat. No. 6,123,807 US Pat. No. 6,159,336 Japanese Patent Laid-Open No. 52-37803 JP-A-53-45404 JP 2002-115190 A Gunobu, “Yield Evaluation Method of Digested Pulp by COMPACT COOKINGTM Method and KOBUDOMARI Method”, 2003 Paper Pulp Technology Association Annual Conference Preliminary Proceedings, p49-59 Akira Yamaguchi, “Polysulfide Cooking of Factory Chips”, Paper-Paper Technology Association, Vol. 33, No. 8, p1-9 Sjoblom, K, et al., "Extended de- ligation in craft cooking through improved selectivity", Paper Puu 65: 4, 177, 1983. Svedman, M, et al., “The use of green liquors and its derivatives in improving craft pulling”, TAPPI J. et al. Vol81 No. 10, 151, 1998

本発明は、上記課題を解決するためになされたものであり、リグノセルロース物質の蒸解方法において、大掛かりな設備の改造無しで、クラフト蒸解における蒸解性、パルプ収率を向上させる蒸解方法を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and provides a cooking method for improving the digestibility and pulp yield in kraft cooking without major modification of the lignocellulosic material cooking method. For the purpose.

本発明者らは、クラフト蒸解における硫化度に着目して種々検討した結果、浸透ゾーン、蒸解ゾーンを順に有する連続蒸解装置において、蒸解ゾーンに硫化度の高い蒸解薬液を添加することで脱リグニンを大幅に促進でき、カッパー価あたりのパルプ収率も増加することを見出し、本発明を完成するに至った。   As a result of various studies paying attention to the degree of sulfidation in kraft cooking, the present inventors, in a continuous cooking apparatus having an infiltration zone and a cooking zone in this order, add delignification by adding a high degree of sulfidizing chemical to the cooking zone. It was found that the pulp yield per kappa number could be greatly increased and the pulp yield per kappa value increased, and the present invention was completed.

本願発明は以下の発明を包含する。
(1)リグノセルロース物質を浸透ゾーン、蒸解ゾーンを順に有する連続蒸解装置で蒸解する際に、蒸解薬液を浸透ゾーンおよび蒸解ゾーンに添加する蒸解方法であって、該浸透ゾーンの温度が90〜140℃であり、該浸透ゾーンに添加する蒸解薬液よりも5%以上硫化度の高い蒸解薬液を該蒸解ゾーンに用いるリグノセルロース物質の蒸解方法。
(2)前記蒸解ゾーンに添加する蒸解薬液として、緑液を用いる(1)記載のリグノセルロース物質の蒸解方法。
(3)前記該蒸解ゾーンに添加する蒸解薬液として、黒液を用いる(1)記載のリグノセルロース物質の蒸解方法。
(4)前記蒸解ゾーン温度が120℃〜170℃であり、かつ浸透ゾーンと蒸解ゾーンの温度差が20℃以上である(1)〜(3)いずれかに記載のリグノセルロース物質の蒸解方法。
(5)前記蒸解ゾーンに添加する蒸解薬液を蒸解ゾーンでの最高温度に達する前に添加する(1)〜(4)いずれかに記載のリグノセルロース物質の蒸解方法。
(6)前記浸透ゾーンが液比2.0〜2.8の低液比で行なわれる(1)〜(5)いずれかに記載のリグノセルロース物質の蒸解方法。
The present invention includes the following inventions.
(1) A cooking method of adding a cooking chemical to an infiltration zone and a cooking zone when the lignocellulosic material is cooked in a continuous cooking apparatus having an infiltration zone and a cooking zone in order, and the temperature of the infiltration zone is 90 to 140 A method for cooking a lignocellulosic material, wherein a cooking chemical liquid at 5 ° C. and having a degree of sulfidation of 5% or more higher than the cooking chemical liquid added to the permeation zone is used in the cooking zone.
(2) The method for cooking lignocellulosic material according to (1), wherein green liquor is used as the cooking chemical to be added to the cooking zone.
(3) The method for cooking lignocellulosic substances according to (1), wherein black liquor is used as the cooking chemical to be added to the cooking zone.
(4) The method for cooking lignocellulosic material according to any one of (1) to (3), wherein the cooking zone temperature is 120 ° C to 170 ° C, and the temperature difference between the infiltration zone and the cooking zone is 20 ° C or more.
(5) The method for cooking lignocellulosic material according to any one of (1) to (4), wherein the cooking chemical added to the cooking zone is added before reaching the maximum temperature in the cooking zone.
(6) The lignocellulosic material cooking method according to any one of (1) to (5), wherein the infiltration zone is performed at a low liquid ratio of 2.0 to 2.8.

本発明者によれば、浸透ゾーン、蒸解ゾーンを順に有する連続蒸解装置において、蒸解ゾーンに硫化度の高い蒸解薬液を添加することで脱リグニンを大幅に促進でき、同一カッパー価あたりのパルプ収率を大幅に向上するリグノセルロース物質の蒸解方法を提供することが可能となった。   According to the present inventor, in a continuous cooking apparatus having an infiltration zone and a cooking zone in order, delignification can be greatly promoted by adding a cooking chemical solution having a high degree of sulfidation to the cooking zone, and the pulp yield per the same kappa number It has become possible to provide a method for cooking lignocellulosic substances that greatly improves the process.

本発明で用いられるリグノセルロース物質は、好適には広葉樹材および針葉樹材であるが、非木材と呼ばれるものでも良く、特に限定するものではないが、針葉樹材のほうが未漂白パルプの元々のカッパー価が高いため、本発明の効果が大きく好ましい。 The lignocellulosic material used in the present invention is preferably hardwood and softwood, but may also be called non-wood and is not particularly limited, but softwood is the original kappa value of unbleached pulp. Therefore, the effect of the present invention is large and preferable.

本発明においては、例えば図1に示すように、上部から底部にかけて、浸透ゾーン(A)、蒸解ゾーン(B)、洗浄ゾーン(C)を順に有する連続蒸解釜、好ましくは、さらに蒸解ゾーン(B)が上部蒸解ゾーン(B1)と下部蒸解ゾーン(B2)に別れた連続蒸解釜が用いられる。各々のゾーンは、ストレーナーにより区切られる。本発明においては、浸透ゾーンを有する浸透ベッセルが連続蒸解釜の前に設置された2ベッセル蒸解装置においても好適に用いられる。例えば図1の場合には、リグノセルロース物質に蒸解液導入管2から蒸解薬液が添加された後、木釜頂部3からストレーナー5を出るまでの工程が浸透ゾーン(A)、ストレーナー5からストレーナー6までの工程が上部蒸解ゾーン(B1)、ストレーナー6からストレーナー7までの工程が下部蒸解ゾーン(B2)、ストレーナー7から木釜下部4までの工程が洗浄ゾーン(C)である。 In the present invention, for example, as shown in FIG. 1, a continuous digester having an infiltration zone (A), a cooking zone (B), and a washing zone (C) in this order from the top to the bottom, preferably a cooking zone (B ) Is used as a continuous digester with an upper cooking zone (B1) and a lower cooking zone (B2). Each zone is delimited by a strainer. In the present invention, the permeation vessel having a permeation zone is also suitably used in a two-vessel digester installed in front of a continuous digester. For example, in the case of FIG. 1, the process from the addition of the cooking chemical solution to the lignocellulosic material from the cooking solution introduction pipe 2 to the exit of the strainer 5 from the top 3 of the wood pot is the permeation zone (A), and the strainer 5 to the strainer 6. The process from the upper cooking zone (B1), the process from the strainer 6 to the strainer 7 is the lower cooking zone (B2), and the process from the strainer 7 to the lower kiln 4 is the washing zone (C).

本発明においては、必ず蒸解薬液が洗浄ゾーンを除く、前記各ゾーン毎に1ヶ所以上添加される。例えば、図1の場合、蒸解薬液(白液)は蒸解薬液導入管2によって浸透ゾーン、蒸解薬液導入管1によって蒸解ゾーンに分割添加される。蒸解薬液は浸透ゾーンへ添加比率として50%以上添加される。浸透ゾーンへの蒸解薬液の添加比率がこれより少ない場合、浸透ゾーンでのアルカリが不足し、脱リグニンが進まなくなる。有効アルカリ添加率は総計で絶乾木材重量当たり5〜30重量%、好ましくは10〜25重量%である。本発明において、蒸解補助剤として公知のポリサルファイドや環状ケト化合物、例えばベンゾキノン、ナフトキノン、アントラキノン、アントロン、フェナントロキノン及び前記キノン系化合物のアルキル、アミノ等の核置換体、或いは前記キノン系化合物の還元型であるアントラヒドロキノンのようなヒドロキノン系化合物、さらにはディールスアルダー法によるアントラキノン合成法の中間体として得られる安定な化合物である9,10−ジケトヒドロアントラセン化合物等から選ばれた1種或いは2種以上が添加されてもよく、その添加率は通常の添加率であり、例えば、木材チップの絶乾重量当たり0.001〜1.5重量%である。また、その他使用できる蒸解助剤としては、エチレンジアミンテトラ酢酸(EDTA)、ジエチレントリアミンペンタ酢酸(DTPA)等のキレート剤や、各種界面活性剤等が挙げられ、特に限定されるものではない。これらの蒸解助剤は、蒸解液同様に分割添加することが可能であり、添加場所も限定されるものではない。 In the present invention, one or more cooking chemicals are always added to each zone excluding the washing zone. For example, in the case of FIG. 1, the cooking chemical (white liquor) is dividedly added to the permeation zone by the cooking chemical introduction pipe 2 and to the cooking zone by the cooking chemical introduction pipe 1. The cooking chemical is added to the permeation zone in an addition ratio of 50% or more. When the ratio of the cooking chemical solution added to the osmosis zone is smaller than this, the alkali in the osmosis zone is insufficient and delignification does not proceed. The total effective alkali addition rate is 5 to 30% by weight, preferably 10 to 25% by weight, based on the weight of the absolutely dry wood. In the present invention, known polysulfides and cyclic keto compounds as cooking aids, for example, benzoquinone, naphthoquinone, anthraquinone, anthrone, phenanthroquinone, and nuclear substitutes such as alkyl and amino of the quinone compound, or reduction of the quinone compound 1 or 2 selected from hydroquinone compounds such as anthrahydroquinone which is a type, and 9,10-diketohydroanthracene compounds which are stable compounds obtained as intermediates in an anthraquinone synthesis method by Diels Alder method More than seeds may be added, and the addition rate is a normal addition rate, for example, 0.001 to 1.5% by weight per the dry weight of the wood chips. Other cooking aids that can be used include chelating agents such as ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA), various surfactants, and the like, and are not particularly limited. These cooking aids can be divided and added in the same manner as the cooking liquor, and the place of addition is not limited.

本発明において、浸漬ゾーンに添加される白液の硫化度は15〜30%であり、蒸解ゾーンに添加される蒸解薬液の硫化度は浸透ゾーンに添加される白液よりも硫化度が5%以上高いことを特徴としている。浸透ゾーンに添加される白液中の硫化ソーダ成分は水硫化物イオン(SH)として存在するが、浸透ゾーンにおいてその大半がチップ成分に消費あるいは吸着してしまい、脱リグニンが行なわれる蒸解ゾーンにおいて水硫化物イオンが不足してしまう。この不足分を補うために蒸解ゾーンにおいて硫化度の高い蒸解薬液を添加することで、蒸解ゾーンにおける脱リグニンが大幅に促進できる。硫化度が同等の蒸解薬液を該蒸解ゾーンに添加する場合はこの水硫化物イオンを補う効果が得られず、脱リグニンを促進できない。 In the present invention, the sulfidity of the white liquor added to the soaking zone is 15-30%, and the sulfidity of the cooking chemical added to the cooking zone is 5% higher than that of the white liquor added to the infiltration zone. It is characterized by being more expensive. The sodium sulfide component in the white liquor added to the permeation zone exists as hydrosulfide ions (SH ), but in the permeation zone, most of it is consumed or adsorbed to the chip component, and the cooking zone where delignification is performed. In this case, there is a shortage of hydrosulfide ions. In order to make up for this shortage, delignification in the cooking zone can be greatly promoted by adding a cooking chemical having a high degree of sulfidation in the cooking zone. When a cooking chemical having the same degree of sulfidization is added to the cooking zone, the effect of supplementing the hydrosulfide ions cannot be obtained, and delignification cannot be promoted.

該蒸解ゾーンに添加される薬液として白液を用いる場合、浸透ゾーンと蒸解ゾーンで硫化度の異なる白液を添加するためには、あらかじめ2種類の白液を製造しなければならず、新たに製造設備を増設する必要がある。一方、回収工程で生成する緑液は硫化度が50〜90%程度であり、かつ緑液の利用により緑液を苛性化して白液とするために必要な薬品やエネルギーを大幅に削減することができるために好適である。回収ボイラーからのスメルトを溶解した時点の緑液にはドレッグスと称する不溶性不純物が含まれており、これらの混入はパルプ品質を損なうため、清澄した緑液を用いることが好ましい。緑液の清澄法としては、公知のクラリファイヤーやろ過型清澄設備などを単独もしくは組合せて使用することができる。また、蒸解黒液も硫化度が50〜70%程度であり、特別な処理を必要とせずに該蒸解ゾーンに添加できるため好ましい。本発明における効果を緑液と黒液とで比較すると、通常は緑液の方がアルカリ濃度および硫化度が高いため、大きな効果が得られる。 When white liquor is used as a chemical solution to be added to the cooking zone, two types of white liquor must be produced in advance in order to add white liquor having different degrees of sulfidation in the permeation zone and the cooking zone. Manufacturing facilities need to be expanded. On the other hand, the green liquor produced in the recovery process has a sulfidity of about 50 to 90%, and the use of the green liquor greatly reduces the chemicals and energy required to causticize the green liquor into white liquor. This is preferable because The green liquor at the time when the smelt from the recovery boiler is dissolved contains insoluble impurities called dregs, and these contaminations impair the pulp quality, so it is preferable to use a clarified green liquor. As the clarification method of the green liquor, a known clarifier, a filtration type clarification facility or the like can be used alone or in combination. The cooking black liquor is also preferable because it has a sulfidity of about 50 to 70% and can be added to the cooking zone without requiring any special treatment. When the effects of the present invention are compared between the green liquor and the black liquor, the green liquor usually has a higher effect because the alkali concentration and sulfidity are higher.

本発明において、浸透ゾーンにおける温度は90〜140℃であり、蒸解ゾーンにおける最高温度との温度差が20℃以上あることが好ましく、浸透ゾーンにおけるリグノセルロース物質の滞留時間は20分〜2時間である。温度が90℃より低い場合や滞留時間が20分より少ない場合には浸透ゾーンにおける蒸解薬液の浸透および反応が不十分であり、その後の蒸解ゾーンで急激に加温され不均一な蒸解となるため適さない。一方、浸透ゾーン温度が140℃よりも高い場合や蒸解ゾーンにおける最高温度との温度差が20℃未満の場合には、蒸解薬液がチップに十分浸透する前に浸透ゾーンで蒸解反応がスタートしてしまい、やはり不均一な蒸解となってしまうために適さない。また、滞留時間2時間以上の浸透ゾーンに関しては設備費が膨大になってしまい、現実的でない。 In the present invention, the temperature in the infiltration zone is 90 to 140 ° C., and the temperature difference from the maximum temperature in the cooking zone is preferably 20 ° C. or more. The residence time of the lignocellulosic material in the infiltration zone is 20 minutes to 2 hours. is there. When the temperature is lower than 90 ° C. or when the residence time is less than 20 minutes, the infiltration and reaction of the cooking chemical in the infiltration zone is insufficient, and the subsequent cooking zone is heated rapidly, resulting in uneven cooking. Not suitable. On the other hand, if the permeation zone temperature is higher than 140 ° C or if the temperature difference from the maximum temperature in the digestion zone is less than 20 ° C, the digestion reaction starts in the permeation zone before the cooking chemical has sufficiently penetrated into the chip. After all, it is not suitable because it results in uneven cooking. In addition, regarding the infiltration zone having a residence time of 2 hours or more, the equipment cost becomes enormous, which is not realistic.

本発明において、浸透ゾーンにおける液比は2〜7であり、好ましくは2〜2.8である。液比を2未満にすると、原料に蒸解薬液が十分に浸透しないうえ、原料が釜内を沈降し難くなり、不均一蒸解となるため適さない。一方、液比が7より大きくなると黒液の回収負荷が大きくなり過ぎるため適さない。液比を2.8以下にすると浸透ゾーンでのアルカリ濃度が高くなり、続く蒸解ゾーンでの脱リグニンが進みやすくなるために好ましい。     In the present invention, the liquid ratio in the permeation zone is 2 to 7, preferably 2 to 2.8. If the liquid ratio is less than 2, the cooking chemical solution does not sufficiently penetrate into the raw material, and the raw material hardly settles in the kettle, resulting in uneven cooking, which is not suitable. On the other hand, if the liquid ratio is larger than 7, the recovery load of black liquor becomes too large, which is not suitable. A liquid ratio of 2.8 or less is preferable because the alkali concentration in the permeation zone increases and the delignification in the subsequent cooking zone tends to proceed.

本発明の浸透ゾーンおよび蒸解ゾーンにおいては、向流蒸解および並流蒸解に関して、特に限定するものではなく、状況に応じて向流蒸解および並流蒸解が適宜選択される。例えば、蒸解ゾーンを上部蒸解ゾーンと下部蒸解に分けた場合には、向流蒸解+向流蒸解、向流蒸解+並流蒸解、並流蒸解+並流蒸解、並流蒸解+向流蒸解の4つの組み合わせが可能である。これらの選択は、原料となるリグノセルロース物質の性状や、操業性、経済性、パルプ品質等を考慮して行なわれる。     In the infiltration zone and the cooking zone of the present invention, the countercurrent cooking and the cocurrent cooking are not particularly limited, and the countercurrent cooking and the cocurrent cooking are appropriately selected according to the situation. For example, if the cooking zone is divided into upper cooking zone and lower cooking, countercurrent cooking + countercurrent cooking, countercurrent cooking + cocurrent cooking, cocurrent cooking + cocurrent cooking, cocurrent cooking + countercurrent cooking Four combinations are possible. These selections are made in consideration of the properties of the lignocellulosic material used as a raw material, operability, economy, pulp quality, and the like.

本発明の蒸解ゾーンにおける液比は3〜10である。液比を3未満にすると、蒸解液の浸透不十分により未蒸解カスが発生し、一方液比10を越えると黒液の回収負荷が大きくなり過ぎるため適さない。蒸解ゾーンにおける最高温度は、例えば広葉樹を原料とした場合、120〜150℃であり、針葉樹を原料とした場合には、140〜170℃である。本発明において、蒸解ゾーンに添加される蒸解薬液は蒸解ゾーンでの脱リグニンを促進する効果が大きいため、蒸解ゾーンにおける最高温度に達する前に添加することが好ましい。蒸解ゾーンにおけるリグノセルロース物質の滞留時間は2〜10時間である。滞留時間が2時間より短ければ、蒸解不十分でチップがパルプ化されず、一方10時間より長ければ過蒸解によりパルプ繊維が傷んでしまうため望ましくない。蒸解ゾーン終了時に抽出される黒液中の残アルカリ量は、5〜20g/L、好ましくは8〜12g/Lである。残アルカリ濃度が5g/Lより低い場合には、蒸解ゾーンでの脱リグニン反応が十分に進まず、20g/Lよりも高くなると、セルロースの損傷が大きくなり、蒸解パルプ収率が低くなるため適さない。 The liquid ratio in the cooking zone of the present invention is 3-10. If the liquid ratio is less than 3, uncooked residue is generated due to insufficient penetration of the cooking liquid. On the other hand, if the liquid ratio exceeds 10, the recovery load of black liquor becomes too large, which is not suitable. The maximum temperature in the cooking zone is, for example, 120 to 150 ° C. when hardwood is used as a raw material, and 140 to 170 ° C. when softwood is used as a raw material. In the present invention, the cooking chemical solution added to the cooking zone has a great effect of promoting delignification in the cooking zone, so it is preferably added before reaching the maximum temperature in the cooking zone. The residence time of the lignocellulosic material in the cooking zone is 2 to 10 hours. If the residence time is shorter than 2 hours, the cooking is insufficient and the chips are not pulped. On the other hand, if the residence time is longer than 10 hours, the pulp fibers are damaged by excessive cooking, which is not desirable. The residual alkali amount in the black liquor extracted at the end of the cooking zone is 5 to 20 g / L, preferably 8 to 12 g / L. When the residual alkali concentration is lower than 5 g / L, the delignification reaction in the cooking zone does not proceed sufficiently. When the residual alkali concentration is higher than 20 g / L, the cellulose damage increases and the digested pulp yield decreases. Absent.

本発明の洗浄ゾーンにおける条件は、特に限定されるものではないが、釜内での洗浄の効率化を考慮すると、向流洗浄とするのが好ましい実施形態である。     The conditions in the cleaning zone of the present invention are not particularly limited, but in consideration of increasing the efficiency of cleaning in the pot, it is a preferred embodiment that countercurrent cleaning is performed.

本発明では、前記未漂白パルプは、洗浄、粗選及び精選工程を経て、公知のアルカリ酸素漂白法により脱リグニンすることもできる。本発明に使用されるアルカリ酸素漂白法は、公知の中濃度法或いは高濃度法がそのまま適用できるが、現在、汎用的に用いられているパルプ濃度が8〜15%で行われる中濃度法が好ましい。 In the present invention, the unbleached pulp can be delignified by a known alkaline oxygen bleaching method after washing, rough selection and selection steps. As the alkaline oxygen bleaching method used in the present invention, a known medium concentration method or a high concentration method can be applied as it is, but a medium concentration method which is currently used at a pulp concentration of 8 to 15% is widely used. preferable.

前記中濃度法によるアルカリ酸素漂白法において、アルカリとしては苛性ソーダあるいは酸化されたクラフト白液を使用することができ、酸素ガスとしては、深冷分離法からの酸素、PSA(Pressure Swing Adsorption)からの酸素、VSA(Vacuum Swing Adsorption)からの酸素等が使用できる。前記酸素ガスとアルカリは中濃度ミキサーにおいてパルプスラリーに添加され、混合が十分に行われた後、加圧下でパルプ、酸素及びアルカリの混合物を一定時間保持できる反応塔へ送られ、脱リグニンされる。 In the alkali oxygen bleaching method by the medium concentration method, caustic soda or oxidized kraft white liquor can be used as the alkali. As the oxygen gas, oxygen from a cryogenic separation method, PSA (Pressure Swing Adsorption) Oxygen, oxygen from VSA (Vacuum Swing Adsorption), etc. can be used. The oxygen gas and alkali are added to the pulp slurry in a medium-concentration mixer, and after sufficient mixing, they are sent to a reaction tower capable of holding a mixture of pulp, oxygen and alkali for a certain period of time under pressure and delignified. .

酸素ガスの添加率は、絶乾パルプ質量当たり0.5〜3質量%、アルカリ添加率は0.5〜4質量%、反応温度は80〜120℃、反応時間は15〜100分、パルプ濃度は8〜15%であり、この他の条件は公知のものが適用できる。本発明では、アルカリ酸素漂白工程において、上記アルカリ酸素漂白を連続して複数回行い、できる限り脱リグニンを進めるのが好ましい実施形態である。 The oxygen gas addition rate is 0.5 to 3% by mass per mass of dry pulp, the alkali addition rate is 0.5 to 4% by mass, the reaction temperature is 80 to 120 ° C., the reaction time is 15 to 100 minutes, and the pulp concentration Is 8 to 15%, and other known conditions can be applied. In the present invention, in the alkali oxygen bleaching step, it is a preferred embodiment that the alkali oxygen bleaching is continuously carried out a plurality of times and delignification proceeds as much as possible.

アルカリ酸素漂白が施されたパルプは次いで洗浄工程へ送られ、洗浄後、多段漂白工程へ送られ、多段漂白処理することもできる。 The pulp that has been subjected to alkaline oxygen bleaching is then sent to a washing step, and after washing, it is sent to a multistage bleaching step, where it can be subjected to a multistage bleaching treatment.

本発明の多段漂白処理は、特に限定されるものではないが、二酸化塩素(D)、アルカリ(E)、酸素(O)、過酸化水素(P)、オゾン(Z)、過酸等の公知の漂白剤と漂白助剤を組み合わせるのが好適である。例えば、多段漂白処理の初段は二酸化塩素漂白段(D)やオゾン漂白段(Z)を用い、二段目にはアルカリ抽出段(E)や過酸化水素段(P)、三段目以降には、二酸化塩素や過酸化水素を用いた漂白シーケンスが好適に用いられる。三段目以降の段数も特に限定されるわけではないが、エネルギー効率、生産性等を考慮すると、合計で三段あるいは四段で終了するのが好適である。また、多段漂白処理中にエチレンジアミンテトラ酢酸(EDTA)、ジエチレントリアミンペンタ酢酸(DTPA)等によるキレート剤処理段を挿入してもよい。 The multi-stage bleaching treatment of the present invention is not particularly limited, but is known such as chlorine dioxide (D), alkali (E), oxygen (O), hydrogen peroxide (P), ozone (Z), peracid, etc. It is preferable to combine a bleaching agent and a bleaching assistant. For example, the first stage of the multistage bleaching process uses a chlorine dioxide bleaching stage (D) or an ozone bleaching stage (Z), the second stage is an alkali extraction stage (E), the hydrogen peroxide stage (P), the third stage or later. A bleaching sequence using chlorine dioxide or hydrogen peroxide is preferably used. The number of stages after the third stage is not particularly limited, but considering energy efficiency, productivity, etc., it is preferable to finish in three or four stages in total. Further, a chelating agent treatment stage with ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA) or the like may be inserted during the multistage bleaching treatment.

以下に実施例及び比較例を挙げて本発明を具体的に説明するが、もちろん本発明はこれによって何等制限されるものではない。また、特に示さない限り、パルプカッパー価の評価および蒸解収率、未蒸解カス率の測定は以下の方法で行った。なお、実施例及び比較例における薬品の添加率は乾燥チップ質量当たりの質量%示す。 EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these examples. Moreover, unless otherwise indicated, the evaluation of the pulp kappa number and the measurement of the cooking yield and the uncooked residue rate were carried out by the following methods. In addition, the addition rate of the chemical | medical agent in an Example and a comparative example shows the mass% per dry chip mass.

1.カッパー価の測定
JIS P 8211に準じて行った。
1. Kappa number was measured according to JIS P 8211.

2.蒸解収率の測定
蒸解収率の測定は、下記の式より算出した。
蒸解収率(%)=蒸解後の絶乾パルプ(g) / 投入した絶乾チップ(g)×100
2. Measurement of cooking yield The cooking yield was calculated from the following equation.
Cooking yield (%) = completely dried pulp after cooking (g) / input completely dried chips (g) x 100

3.未蒸解カス率の測定
未蒸解カス率の測定は、下記の式より算出した。
未蒸解カス率(%)= 未蒸解カス(g) / 投入した絶乾チップ(g)×100
3. Measurement of undecomposed residue rate The undecomposed residue rate was calculated from the following equation.
Undigested waste rate (%) = Undigested waste (g) / Dried dry chips (g) x 100

実施例1
ラジアータパインチップ絶乾500gに対し、有効アルカリとして18%、硫化度28%、液比2.5に相当する蒸解薬液1.25リットルとして、実験用循環式オートクレーブを用いて、蒸解をスタートさせた。浸透ゾーンの条件として、温度は125℃、チップの滞留時間は40分であり、浸透ゾーン終了後、140℃で、有効アルカリとして2%、硫化度35%に相当する蒸解薬液0.25リットルを添加した。蒸解ゾーン条件として温度は165℃、液比3、滞留時間150分でクラフト蒸解を行ない、パルプを得た。得られたパルプのカッパー価、蒸解収率および未蒸解カス率を表1に示した。
Example 1
Digestion was started using an experimental circulating autoclave as 1.25 liters of cooking chemical solution corresponding to 18% effective alkali, 28% sulfidity, and a liquid ratio of 2.5 for 500 g of Radiata Pine chip absolutely dry. . As conditions for the infiltration zone, the temperature is 125 ° C., the residence time of the chip is 40 minutes, and after completion of the infiltration zone, 0.25 liter of cooking chemical corresponding to 2% effective alkali and 35% sulfidity is added at 140 ° C. Added. Kraft cooking was performed at a temperature of 165 ° C., a liquid ratio of 3 and a residence time of 150 minutes as cooking zone conditions, and a pulp was obtained. Table 1 shows the kappa number, cooking yield, and uncooked residue of the obtained pulp.

実施例2
実施例1において、浸透ゾーン終了後に添加する蒸解薬液として、有効アルカリとして2%、硫化度70%に相当する緑液0.25リットルを添加した以外は実施例1と同様の操作を行なった。得られたパルプのカッパー価、蒸解収率および未蒸解カス率を表1に示した。
Example 2
In Example 1, the same operation as in Example 1 was performed except that 0.25 liter of green liquor corresponding to 2% effective alkali and 70% sulfidity was added as the cooking chemical added after the infiltration zone. Table 1 shows the kappa number, cooking yield, and uncooked residue of the obtained pulp.

実施例3
実施例1において、有効アルカリとして19%、硫化度28%、液比2に相当する蒸解薬液1リットルを実験用循環式オートクレーブに添加し、蒸解をスタートさせ、浸透ゾーン終了後に添加する蒸解薬液として、有効アルカリとして1%、硫化度70%に相当する蒸解黒液を0.5リットル添加した以外は実施例1と同様の操作を行なった。得られたパルプのカッパー価、蒸解収率および未蒸解カス率を表1に示した。
Example 3
In Example 1, 19 liters as an effective alkali, 1 liter of cooking chemical corresponding to a sulfidity of 28%, and a liquid ratio of 2 was added to a circulating autoclave for experiments, and the cooking was started. The same operation as in Example 1 was performed except that 0.5 liter of cooking black liquor corresponding to 1% effective alkali and 70% sulfidity was added. Table 1 shows the kappa number, cooking yield, and uncooked residue of the obtained pulp.

実施例4
実施例1において、スタート時に添加する蒸解薬液の量を1.5リットル、液比3とした以外は実施例1と同様の操作を行なった。得られたパルプのカッパー価、蒸解収率および未蒸解カス率を表1に示した。
Example 4
In Example 1, the same operation as in Example 1 was performed except that the amount of cooking chemical added at the start was 1.5 liters and the liquid ratio was 3. Table 1 shows the kappa number, cooking yield, and uncooked residue of the obtained pulp.

実施例5
実施例1において、浸透ゾーンの温度を98℃とした以外は実施例1と同様の操作を行なった。得られたパルプのカッパー価、蒸解収率および未蒸解カス率を表1に示した。
Example 5
In Example 1, the same operation as in Example 1 was performed except that the temperature of the permeation zone was 98 ° C. Table 1 shows the kappa number, cooking yield, and uncooked residue of the obtained pulp.

実施例6
実施例1において、蒸解ゾーンで165℃での蒸解がスタートして5分後に蒸解薬液を添加した以外は実施例1と同様の操作を行なった。得られたパルプのカッパー価、蒸解収率および未蒸解カス率を表1に示した。
Example 6
In Example 1, the same operation as in Example 1 was performed except that the cooking chemical was added 5 minutes after the start of cooking at 165 ° C. in the cooking zone. Table 1 shows the kappa number, cooking yield, and uncooked residue of the obtained pulp.

比較例1
実施例1において、スタート時に添加する蒸解薬液として、有効アルカリ20%、硫化度28%、液比3に相当する蒸解薬液1.5リットルを添加し、蒸解薬液の途中添加をせずに蒸解をした以外は実施例1と同様の操作を行なった。得られたパルプのカッパー価、蒸解収率および未蒸解カス率を表1に示した。
Comparative Example 1
In Example 1, as a cooking chemical solution to be added at the start, 1.5 liters of a cooking chemical solution corresponding to an effective alkali of 20%, a sulfidity of 28% and a liquid ratio of 3 is added, and cooking is performed without adding the cooking chemical solution halfway. The same operation as in Example 1 was performed except that. Table 1 shows the kappa number, cooking yield, and uncooked residue of the obtained pulp.

比較例2
実施例1において、スタート時に添加する蒸解薬液として、有効アルカリ22%、硫化度28%、液比3に相当する蒸解薬液1.5リットルを添加し、蒸解薬液の途中添加をせずに蒸解をした以外は実施例1と同様の操作を行なった。得られたパルプのカッパー価、蒸解収率および未蒸解カス率を表1に示した。
Comparative Example 2
In Example 1, as a cooking chemical liquid to be added at the start, 1.5 liters of a cooking chemical liquid corresponding to 22% effective alkali, 28% sulfidity, and a liquid ratio of 3 was added, and cooking was performed without adding the cooking chemical liquid halfway. The same operation as in Example 1 was performed except that. Table 1 shows the kappa number, cooking yield, and uncooked residue of the obtained pulp.

比較例3
実施例1において、浸透ゾーン終了後に添加する蒸解薬液として、有効アルカリとして2%、硫化度28%に相当する蒸解薬液0.25リットルを添加した以外は実施例1と同様の操作を行なった。得られたパルプのカッパー価、蒸解収率および未蒸解カス率を表1に示した。
Comparative Example 3
In Example 1, the same operation as in Example 1 was carried out except that 0.25 liter of cooking chemical corresponding to 2% effective alkali and 28% sulfidization was added as cooking chemical added after the infiltration zone. Table 1 shows the kappa number, cooking yield, and uncooked residue of the obtained pulp.

比較例4
実施例1において、浸透ゾーン終了後に添加する蒸解薬液として、有効アルカリとして2%、硫化度30%に相当する蒸解薬液0.25リットルを添加した以外は実施例1と同様の操作を行なった。得られたパルプのカッパー価、蒸解収率および未蒸解カス率を表1に示した。
Comparative Example 4
In Example 1, the same operation as in Example 1 was performed except that 0.25 liter of cooking chemical corresponding to 2% of effective alkali and 30% sulfidity was added as cooking chemical added after the infiltration zone. Table 1 shows the kappa number, cooking yield, and uncooked residue of the obtained pulp.

比較例5
実施例2において、有効アルカリとして2%、硫化度70%に相当する緑液0.25リットルを蒸解スタート時に添加した以外は実施例2と同様の操作を行なった。得られたパルプのカッパー価、蒸解収率および未蒸解カス率を表1に示した。
Comparative Example 5
In Example 2, the same operation as in Example 2 was performed except that 0.25 liter of green liquor corresponding to 2% effective alkali and 70% sulfidity was added at the start of cooking. Table 1 shows the kappa number, cooking yield, and uncooked residue of the obtained pulp.

比較例6
実施例1において、浸透ゾーンの温度を150℃とした以外は実施例1と同様の操作を行なった。得られたパルプのカッパー価、蒸解収率および未蒸解カス率を表1に示した。
Comparative Example 6
In Example 1, the same operation as in Example 1 was performed except that the temperature of the permeation zone was 150 ° C. Table 1 shows the kappa number, cooking yield, and uncooked residue of the obtained pulp.

比較例7
実施例1において、浸透ゾーンの温度を80℃とした以外は実施例1と同様の操作を行なった。得られたパルプのカッパー価、蒸解収率および未蒸解カス率を表1に示した。
Comparative Example 7
In Example 1, the same operation as in Example 1 was performed except that the temperature of the permeation zone was 80 ° C. Table 1 shows the kappa number, cooking yield, and uncooked residue of the obtained pulp.

Figure 2009203583
Figure 2009203583

表1の実施例1と比較例1を比較することから明らかなように、浸透ゾーン終了後に硫化度の高い蒸解薬液を添加することで、同一有効アルカリ添加率条件において、蒸解収率を維持しながらパルプカッパー価を大幅に低下することができることがわかる。次に、実施例1と2を比較すると、浸透ゾーン終了後に添加する蒸解薬液としてより硫化度の高い緑液を用いることでより高い効果が得られることがわかり、実施例2と比較例2との比較により、緑液の途中添加により同一カッパー価のパルプを得るために必要な有効アルカリとして2%に相当するアルカリを削減でき、蒸解収率も1.7%向上していることがわかる。また、実施例3から黒液を用いることでも本発明の効果が得られることがわかる。さらに、実施例4からは、浸透ゾーンの液比が3でも本発明の効果が得られるが、液比が2.5と低い実施例1においてより大きな効果が得られていることがわかる。
一方、比較例3、4から、浸透ゾーン終了後に同等の硫化度の白液を添加するとむしろパルプカッパー価が増加すること、比較例5から、蒸解スタート時に緑液を添加すると緑液の効果が十分に得られないことがわかる。また、実施例1、5と比較例6、7を比較すると、浸透ゾーンの温度には最適な範囲が有り、温度が低すぎると蒸解が進行し難くなり、高すぎると蒸解薬液が浸透する前に蒸解反応がスタートし、未蒸解カスが多くなりすぎることがわかる。実施例1、6から、蒸解温度に到達する前から蒸解温度に到達する前に蒸解薬を添加するとより大きな効果が得られる。
このように本発明は、設備改造することなく低カッパー価のパルプを高収率で得ることができ、連続蒸解装置を用いたリグノセルロース物質の蒸解方法に好適である。
As is clear from comparing Example 1 and Comparative Example 1 in Table 1, the cooking yield is maintained under the same effective alkali addition rate condition by adding a cooking chemical having a high degree of sulfidation after the end of the infiltration zone. It can be seen that the pulp kappa number can be greatly reduced. Next, when Examples 1 and 2 are compared, it can be seen that a higher effect can be obtained by using a green liquor having a higher degree of sulfidation as a cooking chemical to be added after the end of the infiltration zone. From the above comparison, it can be seen that the alkali equivalent to 2% can be reduced as an effective alkali necessary for obtaining a pulp having the same kappa number by adding the green liquor in the middle, and the cooking yield is improved by 1.7%. It can also be seen from Example 3 that the effect of the present invention can be obtained by using black liquor. Further, from Example 4, it can be seen that the effect of the present invention can be obtained even when the liquid ratio of the permeation zone is 3, but a larger effect is obtained in Example 1 where the liquid ratio is as low as 2.5.
On the other hand, from Comparative Examples 3 and 4, when white liquor having the same degree of sulfidation is added after the end of the infiltration zone, the pulp kappa number is increased. From Comparative Example 5, when green liquor is added at the start of cooking, the effect of green liquor is increased. It turns out that it cannot obtain enough. Further, when Examples 1 and 5 are compared with Comparative Examples 6 and 7, there is an optimum range for the temperature of the infiltration zone. If the temperature is too low, cooking is difficult to proceed, and if it is too high, before the cooking chemical penetrates. It can be seen that the cooking reaction started, and there was too much uncooked residue. From Examples 1 and 6, a greater effect can be obtained by adding a cooking agent before reaching the cooking temperature before reaching the cooking temperature.
As described above, the present invention can obtain a low-kappa number pulp in a high yield without remodeling the equipment, and is suitable for a lignocellulosic material cooking method using a continuous cooking apparatus.

連続蒸解釜Continuous digester

符号の説明Explanation of symbols

A:浸透ゾーン
B1:上部蒸解ゾーン
B2:下部蒸解ゾーン
C:洗浄ゾーン
1,2:白液導入管
3:木釜頂部
4:木釜下部
5〜7:ストレーナー
8〜11:ポンプ
12〜14:ヒーター
A: Osmosis zone B1: Upper cooking zone B2: Lower cooking zone C: Washing zone 1, 2: White liquor introduction pipe 3: Top part of wooden kettle 4: Lower part of wooden kettle 5-7: Strainers 8-11: Pumps 12-14: heater

Claims (6)

リグノセルロース物質を浸透ゾーン、蒸解ゾーンを順に有する連続蒸解装置で蒸解する際に、蒸解薬液を浸透ゾーンおよび蒸解ゾーンに添加する蒸解方法であって、該浸透ゾーンの温度が90〜140℃であり、該浸透ゾーンに添加する蒸解薬液よりも5%以上硫化度の高い蒸解薬液を該蒸解ゾーンに用いることを特徴とするリグノセルロース物質の蒸解方法。 A cooking method in which a cooking chemical is added to an infiltration zone and a cooking zone when the lignocellulosic material is digested in a continuous cooking apparatus having an infiltration zone and a cooking zone in order, and the temperature of the infiltration zone is 90 to 140 ° C. A cooking method for lignocellulosic substances, wherein a cooking chemical liquid having a degree of sulfidation of 5% or more higher than that of the cooking chemical liquid added to the permeation zone is used in the cooking zone. 前記蒸解ゾーンに添加する蒸解薬液として、緑液を用いることを特徴とする請求項1記載のリグノセルロース物質の蒸解方法。 2. The method of cooking lignocellulosic material according to claim 1, wherein green liquor is used as the cooking chemical added to the cooking zone. 前記蒸解ゾーンに添加する蒸解薬液として、黒液を用いることを特徴とする請求項1記載のリグノセルロース物質の蒸解方法。 2. The method of cooking lignocellulosic material according to claim 1, wherein black liquor is used as the cooking chemical added to the cooking zone. 前記蒸解ゾーン温度が140℃〜170℃であり、かつ浸透ゾーンと蒸解ゾーンの温度差が20℃以上であることを特徴とする請求項1〜3いずれかに記載のリグノセルロース物質の蒸解方法。 The method for cooking lignocellulosic material according to any one of claims 1 to 3, wherein the cooking zone temperature is 140 ° C to 170 ° C, and the temperature difference between the permeation zone and the cooking zone is 20 ° C or more. 前記蒸解ゾーンに添加する蒸解薬液を蒸解ゾーンでの最高温度に達する前に添加することを特徴とする請求項1〜4いずれかに記載のリグノセルロース物質の蒸解方法。 5. The method for cooking lignocellulosic material according to any one of claims 1 to 4, wherein the cooking chemical added to the cooking zone is added before reaching the maximum temperature in the cooking zone. 前記浸透ゾーンが液比2.0〜2.8の低液比で行なわれることを特徴とする請求項1〜5いずれかに記載のリグノセルロース物質の蒸解方法。 6. The method of cooking lignocellulosic material according to any one of claims 1 to 5, wherein the permeation zone is performed at a low liquid ratio of 2.0 to 2.8.
JP2008048160A 2008-02-28 2008-02-28 Method of cooking lignocellulosic material Active JP5119471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008048160A JP5119471B2 (en) 2008-02-28 2008-02-28 Method of cooking lignocellulosic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008048160A JP5119471B2 (en) 2008-02-28 2008-02-28 Method of cooking lignocellulosic material

Publications (2)

Publication Number Publication Date
JP2009203583A true JP2009203583A (en) 2009-09-10
JP5119471B2 JP5119471B2 (en) 2013-01-16

Family

ID=41146126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008048160A Active JP5119471B2 (en) 2008-02-28 2008-02-28 Method of cooking lignocellulosic material

Country Status (1)

Country Link
JP (1) JP5119471B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179690A (en) * 2017-06-30 2017-10-05 日本製紙株式会社 Manufacturing method of dissolved kraft pulp

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003301392A (en) * 2002-04-05 2003-10-24 Oji Paper Co Ltd Method for digesting lignocellulose material
JP2006104631A (en) * 2004-10-08 2006-04-20 Kawasaki Kasei Chem Ltd Method for digesting lignocellulose material
JP2007284860A (en) * 2006-04-13 2007-11-01 Andritz Inc Hardwood alkaline pulping processes and system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003301392A (en) * 2002-04-05 2003-10-24 Oji Paper Co Ltd Method for digesting lignocellulose material
JP2006104631A (en) * 2004-10-08 2006-04-20 Kawasaki Kasei Chem Ltd Method for digesting lignocellulose material
JP2007284860A (en) * 2006-04-13 2007-11-01 Andritz Inc Hardwood alkaline pulping processes and system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179690A (en) * 2017-06-30 2017-10-05 日本製紙株式会社 Manufacturing method of dissolved kraft pulp

Also Published As

Publication number Publication date
JP5119471B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
JP5953909B2 (en) Method for producing dissolving pulp
JP4499280B2 (en) Bleaching chemical pulp with peracids.
JP2010144273A (en) Method for producing chemical pulp of lignocellulose material
JP2014508866A (en) Method and equipment for treating filtrate after oxygen delignification of chemical pulp digested to high kappa number
JP6197717B2 (en) Method for producing dissolving pulp
JP5232164B2 (en) Process for bleaching chemical paper pulp by final ozone treatment at high temperature
JP2019206785A (en) Manufacturing method of bleached pulp
AU2003216028B2 (en) Process for bleaching lignocellulose-containing non-wood pulp
JP2008088606A (en) Method for producing bleached pulp
JP5915263B2 (en) Pulp manufacturing method
JP5119471B2 (en) Method of cooking lignocellulosic material
JP2010285697A (en) Method for producing tcf bleached pulp
US20050051288A1 (en) Extended retention and medium consistency pulp treatment
JP6187619B2 (en) Method for producing dissolving pulp
JP2010265564A (en) Method for producing ecf-bleached pulp
JP2012153999A (en) Method for producing bleached pulp
JP6398388B2 (en) Dissolving pulp and method for producing the same
JP2010144289A (en) Method for steam-digesting lignocellulose material
JP2005336667A (en) Method for digesting lignocellulose material
JPS63264991A (en) Method for producing unbleached chemical pulp having high whiteness from unbleached bark at high yield
JP7165323B2 (en) Pulp cooking aid and method for producing chemical pulp using the same
JP4750068B2 (en) Method for measuring hexeneuronic acid content in bleached pulp, method for producing bleached pulp, and method for producing paper
JP2002302888A (en) Method of production for bleached pulp
JP2005336668A (en) Method for digesting lignocellulose material
JP2002173885A (en) Method for producing bleached hardwood pulp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5119471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250