JP2009202224A - Evaluation method of partial penetration welding in fatigue resistance steel - Google Patents

Evaluation method of partial penetration welding in fatigue resistance steel Download PDF

Info

Publication number
JP2009202224A
JP2009202224A JP2008049662A JP2008049662A JP2009202224A JP 2009202224 A JP2009202224 A JP 2009202224A JP 2008049662 A JP2008049662 A JP 2008049662A JP 2008049662 A JP2008049662 A JP 2008049662A JP 2009202224 A JP2009202224 A JP 2009202224A
Authority
JP
Japan
Prior art keywords
fatigue
height
steel
notch
resistant steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008049662A
Other languages
Japanese (ja)
Other versions
JP2009202224A5 (en
Inventor
Shinji Takahane
鷹羽新二
Tatsuya Yamano
山野達也
Osamu Yasuda
修 安田
Noboru Yoda
登 誉田
Kazushi Onishi
一志 大西
Kazushige Arimochi
和茂 有持
Masaru Nishio
大 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAKADA KIKO KK
Nippon Steel Corp
Original Assignee
TAKADA KIKO KK
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAKADA KIKO KK, Sumitomo Metal Industries Ltd filed Critical TAKADA KIKO KK
Priority to JP2008049662A priority Critical patent/JP2009202224A/en
Publication of JP2009202224A publication Critical patent/JP2009202224A/en
Publication of JP2009202224A5 publication Critical patent/JP2009202224A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique of quantitatively evaluating improved quantity of fatigue strength in the case of applying fatigue resistance steel to a steel deck plate structure. <P>SOLUTION: In a method of evaluating partial penetration welding in fatigue resistance steel; near a weld zone A in a steel deck plate structure to which fatigue resistance steel is applied, there is arranged in abutment a focusing type oblique angle probe 7 that can emit an ultrasonic flaw inspection beam at a prescribed oblique angle from the abutting face. By measuring an echo height on the incident angle line of the inspection beam of the probe, and thereby referring to a calculation curve prepared in advance using a notch specimen, the penetration prediction amount of the weld zone is determined. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、耐疲労鋼を用いた溶接構造物の部分溶け込み溶接の溶接品質を超音波探傷によって評価する技術に関するものである。   The present invention relates to a technique for evaluating the welding quality of partial penetration welding of a welded structure using fatigue resistant steel by ultrasonic flaw detection.

溶接構造物では、長期間の供用により溶接部を起点として疲労亀裂の発生する場合がある。溶接構造物としての橋梁においても、交通量の著しい増加や過積載車の影響と考えられる疲労損傷が散見されている。
鋼床版構造においては、デッキプレートとUリブとの接合部等の疲労損傷例が報告されており、特に、溶接ルート部を起点としてデッキプレートの板厚を貫通する疲労亀裂は、亀裂の検知が困難であり、道路の維持管理上、重要な課題となっている。
特に、前記接合部のルート部から発生する疲労亀裂は、デッキプレート上の舗装に妨げられて亀裂の発見が困難であるにもかかわらず、道路陥没など道路交通への影響が懸念される亀裂であるため、重要度は非常に大きい。
In a welded structure, fatigue cracks may occur starting from the welded part due to long-term service. Even in bridges as welded structures, fatigue damage, which is thought to be due to a significant increase in traffic volume and the effect of overloaded vehicles, has been observed.
In the steel slab structure, examples of fatigue damage such as joints between the deck plate and U-ribs have been reported. In particular, fatigue cracks that penetrate the plate thickness of the deck plate starting from the weld root are detected as cracks. This is an important issue for road maintenance.
In particular, fatigue cracks that occur at the root of the joint are cracks that may be affected by road traffic such as road depression, despite the difficulty of finding cracks due to pavement on the deck plate. Because there are, the importance is very large.

なお、特開平7−242992号公報(特許文献1参照)では、耐疲労鋼が開示されている。耐疲労鋼とは、フェライト(軟相)とベイナイト(硬相)を最適に配置した二相鋼で、強度、靱性、溶接性、加工性は従来鋼と同等あるいはそれ以上に維持しつつ、溶接部の疲労亀裂の発生特性と母材部の疲労亀裂進展抵抗性を向上させた鋼材である。
耐疲労鋼の好適な構成例としては、質量%で、C:0.01〜0.3 %、Si: 0.1〜0.5 %、Mn:0.3〜2.0 %およびsol.Al:0.005 〜0.1 %、さらに、Cr:1.5 %以下(無添加でもよい)、Mo:0.6 %以下(無添加でもよい)、Ni:0.5 %以下(無添加でもよい)、Cu:1.0 %以下(無添加でもよい)、Nb:0.1 %以下(無添加でもよい)、Ti:0.1 %以下(無添加でもよい)およびV:0.1 %以下(無添加でもよい)を含み、残部はFeと不可避不純物からなる鋼板であって、その組織は硬質部と軟質部とからなり、この2部分の硬度差がビッカース 硬度で150 以上であることを特徴とする疲労亀裂進展抑制効果を有する鋼板があげられる。
または、質量%で、C:0.01〜0.3 %、Si: 0.1〜0.5 %、Mn:0.3〜2.0 %およびsol.Al:0.005 〜0.1 %、さらに、Cr:1.5 %以下(無添加でもよい)、Mo:0.6 %以下(無添加でもよい)、Ni:0.5 %以下(無添加でもよい)、Cu:1.0 %以下(無添加でもよい)、Nb:0.1 %以下(無添加でもよい)、Ti:0.1 %以下(無添加でもよい)およびV:0.1 %以下(無添加でもよい)を含み、残部はFeと不可避不純物からなる鋼板であって、その組織は硬質部の素地とこの素地に分散した軟質部からなり、硬質部の 素地と軟質部との硬度差がビッカース硬度で150 以上、軟質部の平均粒径が50μm 以下であることを特徴とする疲労亀裂進展抑制効果を有する鋼板があげられる。
または、質量%で、C:0.01〜0.3 %、Si: 0.1〜0.5 %、Mn:0.3〜2.0 %およびsol.Al:0.005 〜0.1 %、さらに、Cr:1.5 %以下(無添加でもよい)、Mo:0.6 %以下(無添加でもよい)、Ni:0.5 %以下(無添加でもよい)、Cu:1.0 %以下(無添加でもよい)、Nb:0.1 %以下(無添加でもよい)、Ti:0.1 %以下(無添加でもよい)およびV:0.1 %以下(無添加でもよい)を含み、残部はFeと不可避不純物からなる鋼板であって、その組織は硬質部と軟質部とからなり、この2部分の硬度差がビッカース 硬度で150 以上、硬質部の平均間隔が50μm 以下であることを特徴とする疲労亀裂進展抑制効果を有する鋼板があげられる。
JP-A-7-242992 (see Patent Document 1) discloses fatigue resistant steel. Fatigue-resistant steel is a dual-phase steel in which ferrite (soft phase) and bainite (hard phase) are optimally arranged. While maintaining strength, toughness, weldability, and workability at or above those of conventional steel, welding is performed. This is a steel material with improved fatigue crack initiation characteristics and fatigue crack growth resistance of the base metal.
Preferred examples of the structure of the fatigue resistant steel are, in mass%, C: 0.01 to 0.3%, Si: 0.1 to 0.5%, Mn: 0.3 to 2.0% and sol. Al: 0.005 to 0.1%, and Cr: 1.5 % Or less (optional) Mo: 0.6% or less (optional) Ni: 0.5% or less (optional) Cu: 1.0% or less (optional) Nb: 0.1% or less (It may be additive-free), Ti: 0.1% or less (may be additive-free) and V: 0.1% or less (may be additive-free), the balance is a steel plate made of Fe and inevitable impurities, and its structure is hard There is a steel plate having a fatigue crack growth inhibiting effect characterized in that the hardness difference between the two parts is 150 or more in terms of Vickers hardness.
Or, in mass%, C: 0.01 to 0.3%, Si: 0.1 to 0.5%, Mn: 0.3 to 2.0% and sol.Al: 0.005 to 0.1%, and Cr: 1.5% or less (may be added) Mo: 0.6% or less (may be additive-free), Ni: 0.5% or less (may be additive-free), Cu: 1.0% or less (may be additive-free), Nb: 0.1% or less (may be additive-free), Ti: 0.1% or less (may be additive-free) and V: 0.1% or less (may be additive-free), the balance being a steel plate made of Fe and inevitable impurities, the structure of which was dispersed in the base of the hard part and this base A steel sheet having a fatigue crack growth-inhibiting effect, comprising a soft part, wherein the hardness difference between the base of the hard part and the soft part is 150 Vickers hardness or more and the average particle size of the soft part is 50 μm or less. .
Or, in mass%, C: 0.01 to 0.3%, Si: 0.1 to 0.5%, Mn: 0.3 to 2.0% and sol.Al: 0.005 to 0.1%, and Cr: 1.5% or less (may be added) Mo: 0.6% or less (may be additive-free), Ni: 0.5% or less (may be additive-free), Cu: 1.0% or less (may be additive-free), Nb: 0.1% or less (may be additive-free), Ti: 0.1% or less (may be additive-free) and V: 0.1% or less (may be additive-free), the balance being a steel plate made of Fe and inevitable impurities, the structure of which consists of a hard part and a soft part. A steel sheet having a fatigue crack growth-inhibiting effect is characterized in that the hardness difference between the two parts is 150 or more in terms of Vickers hardness and the average interval between the hard parts is 50 μm or less.

特開平7−242992号公報Japanese Patent Laid-Open No. 7-242992

本発明においては、耐疲労鋼を鋼床版構造に適用した場合の疲労強度改善向上量を定量的に評価することを目的とし、その手段として超音波探傷技術を採用したものである。
The object of the present invention is to quantitatively evaluate the improvement in fatigue strength when fatigue resistant steel is applied to a steel slab structure, and employs an ultrasonic flaw detection technique as its means.

本発明にかかる耐疲労鋼における部分溶け込み溶接の評価方法においては、
耐疲労鋼を適用した鋼床版構造における溶接部の近傍に、当接面から所定の斜角で超音波探傷ビームを照射し得る集束型斜角探触子を当接させて配置し、
探触子の探傷ビームの入射角線上のエコー高さを計測することによって、
切欠き試験片を用いて予め作成した算定カーブを参照して、
溶接部の溶け込み予想量を算出する。
なお.前記算定カーブは以下の手順で作成することができる。
1)耐疲労鋼による素材に、異なる深さの横穴を設けて階段式横穴試験片を作成する。
2)各横穴からの反射エコー高さを測定し、各横穴の深さと、前記反射エコー高さとの関係をプロットして距離振幅特性曲線を得る。
3)特定の深さの横穴からの反射エコー高さを基準感度と設定し、この基準感度に対する前記距離振幅特性曲線の相対的な反射エコー高さを相対エコー高さとする。
4)耐疲労鋼による切欠き試験片を異なる切欠き量ごとに複数作成し、各切欠き量と、その切欠き試験片における相対エコー高さとの関係をプロットして得られたカーブを算定カーブとして作成する。
In the evaluation method of partial penetration welding in fatigue-resistant steel according to the present invention,
In the vicinity of the welded part in the steel slab structure to which fatigue resistant steel is applied, a converging oblique probe that can irradiate an ultrasonic flaw detection beam at a predetermined oblique angle from the contact surface is placed in contact with it,
By measuring the echo height on the incident angle of the probe's flaw detection beam,
Referring to the calculation curve created in advance using the notched specimen,
Calculate the expected penetration of the weld.
Note that. The calculation curve can be created by the following procedure.
1) Create a stepped horizontal hole test piece by providing horizontal holes with different depths in the material made of fatigue resistant steel.
2) The height of the reflected echo from each side hole is measured, and the relationship between the depth of each side hole and the height of the reflected echo is plotted to obtain a distance amplitude characteristic curve.
3) The height of the reflected echo from the side hole of a specific depth is set as the reference sensitivity, and the relative reflected echo height of the distance amplitude characteristic curve with respect to this reference sensitivity is set as the relative echo height.
4) Create multiple notch specimens made of fatigue-resistant steel for each notch amount, and plot the curve obtained by plotting the relationship between each notch amount and the relative echo height of the notch specimen. Create as.

本発明にかかる耐疲労鋼における部分溶け込み溶接の評価方法によれば、
溶接部の近傍に配置した探触子の探傷ビームの入射角線上のエコー高さを計測し、
切欠き試験片を用いて予め作成した算定カーブを参照することによって、
高い信頼性で溶接部の溶け込み予想量を算出して、部分溶け込み溶接を評価することが可能となった。
また、前記算定カーブを作成するときには、
評価対象材料と同質の素材で作成した階段式横穴試験片を用いて、距離振幅特性曲線を得て、基準感度に対する相対エコー高さを得て、
切欠き試験片を異なる切欠き量ごとに複数作成し、各切欠き量と、その切欠き試験片における相対エコー高さとの関係をプロットして得られたカーブを算定カーブとして作成するので、
高い信頼性で溶接部の溶け込み予想量を算出して、部分溶け込み溶接を評価することが可能となった。
According to the evaluation method of partial penetration welding in fatigue-resistant steel according to the present invention,
Measure the echo height on the incident angle line of the flaw detection beam of the probe placed near the weld,
By referring to the calculation curve created in advance using the notched specimen,
It was possible to evaluate the partial penetration welding by calculating the expected penetration of the weld with high reliability.
When creating the calculation curve,
Using a stepped horizontal hole test piece made of the same material as the evaluation target material, obtain a distance amplitude characteristic curve, obtain a relative echo height relative to the reference sensitivity,
Since multiple notch test pieces are created for different notch amounts, and the curve obtained by plotting the relationship between each notch amount and the relative echo height in the notch test piece is created as a calculation curve,
It was possible to evaluate the partial penetration welding by calculating the expected penetration of the weld with high reliability.

以下に、本発明にかかる耐疲労鋼における部分溶け込み溶接の評価方法を、その実施の形態を示した図面に基づいて詳細に説明する。
本発明にかかる評価方法では、まず初めに以下の手順で、評価するための算定カーブを作成する。
1)評価対象材料と同質の耐疲労鋼の素材に、異なる深さ(3mm〜12mm)の横穴を設けて階段式横穴試験片を作成する。図1参照。
図1において、
評価対象材料と同質の耐疲労鋼で作成した厚さ19mm、幅25mmの板状の試験片用の素材1に、表面からの深さ3mmの位置で幅方向に貫通したφ2.0mmの横孔2を設けた。同様に深さ4.5mm、6.0mm、7.5mm、9.0mm、10.5mm、12mmの横穴2を20mm間隔で設けて、試験片3とした。
そして、前記試験片3の表面に集束型二振動子斜角探触子を設置して、超音波振動を与えたときの反射振動(エコー高さ)の強度変化を実験して、図2に示したような、距離振幅特性曲線を得た。中間の反射振動の強度の特性をM線とし、このM線より6dB強い強度の特性をH線、6dB弱い強度の特性をL線とした。
なお、前記集束型二振動子斜角探触子の探傷角度としては、70°探触子のものと、75°探触子のものを使用した。
Below, the evaluation method of the partial penetration welding in the fatigue-resistant steel concerning this invention is demonstrated in detail based on drawing which showed the embodiment.
In the evaluation method according to the present invention, first, a calculation curve for evaluation is created by the following procedure.
1) Create a stepped horizontal hole test piece by providing a horizontal hole with a different depth (3 mm to 12 mm) in a material of fatigue resistant steel of the same quality as the material to be evaluated. See FIG.
In FIG.
A φ2.0mm horizontal hole penetrating in the width direction at a position 3mm deep from the surface of the material 1 for a plate-shaped test piece 19mm thick and 25mm wide made of fatigue resistant steel of the same quality as the material to be evaluated 2 was provided. Similarly, horizontal holes 2 having a depth of 4.5 mm, 6.0 mm, 7.5 mm, 9.0 mm, 10.5 mm, and 12 mm were provided at intervals of 20 mm to obtain a test piece 3.
Then, a focusing type two transducer oblique angle probe is installed on the surface of the test piece 3 to experiment with the intensity change of the reflected vibration (echo height) when ultrasonic vibration is applied. A distance amplitude characteristic curve as shown was obtained. The characteristic of the intensity of the intermediate reflected vibration is M line, the characteristic of 6 dB stronger than this M line is H line, and the characteristic of 6 dB weak intensity is L line.
As the flaw detection angle of the converging type two transducer oblique angle probe, a 70 ° probe and a 75 ° probe were used.

(1)図2において、横軸にはビーム路程(mm)を示し、縦軸にはエコー高さ(%)を示している。
(2)基準値としては、RB-41-NO.1φ3mmの横穴(深さ5mm)からの反射エコーを基準感度とし、この基準感度を、前記距離振幅特性曲線のH線に合わせた。
(1) In FIG. 2, the horizontal axis indicates the beam path length (mm), and the vertical axis indicates the echo height (%).
(2) As a reference value, a reflected echo from a lateral hole (depth 5 mm) of RB-41-NO.1φ3 mm was used as a reference sensitivity, and this reference sensitivity was adjusted to the H line of the distance amplitude characteristic curve.

(3)図4に示したようなUリブ溶接の部分溶け込みを模した切欠き試験片4を、耐疲労鋼で作成した。
図4に示した切欠き試験片4は、80mm×80mm×6.8mm(厚さ)の板状であり、1辺に沿って、幅20mmで切欠き量Srの切欠き部41が形成されている。この切欠き部41と非切欠き部42との境界部分の傾斜角は12.5°とした。
図3に示した溶接時の模式図において、
厚さ12mmの耐疲労鋼を鋼床板5とし、そこに図4に示した切欠き試験片相当の形状のUリブ6を溶接する場合を示している。
溶接後の模式図を示した図3の(b)において、
切欠き試験片相当形状のUリブ6は、溶接部Aにおいて、Uリブ溶接時の溶接収縮により、Uリブコバ面と鋼床板のデッキ面とが密着した状態とした。
図3の(b)に示したように、Uリブ6の表面に前記集束型二振動子斜角探触子7を設置して、超音波のビーム方向が溶接部Aに向くようにして、切欠き量Srを種々変えて、切欠き量Srと相対エコー高さHdsとの関係をプロットすることによって、後述する図5、6を得た。
(3) A notch test piece 4 simulating partial penetration of U-rib welding as shown in FIG. 4 was made of fatigue-resistant steel.
The notch test piece 4 shown in FIG. 4 has a plate shape of 80 mm × 80 mm × 6.8 mm (thickness), and a notch 41 having a notch amount Sr and a width of 20 mm is formed along one side. Yes. The inclination angle of the boundary between the notch 41 and the non-notch 42 was 12.5 °.
In the schematic diagram at the time of welding shown in FIG.
A case is shown in which a fatigue-resistant steel having a thickness of 12 mm is used as a steel floor plate 5 and a U-rib 6 having a shape corresponding to the notch test piece shown in FIG. 4 is welded thereto.
In (b) of FIG. 3 which showed the schematic diagram after welding,
In the welded portion A, the U-rib 6 having a notch test piece-equivalent shape is in a state where the U-rib edge surface and the deck surface of the steel floor plate are in close contact with each other due to welding shrinkage during U-rib welding.
As shown in FIG. 3 (b), the focusing type dual transducer oblique probe 7 is installed on the surface of the U-rib 6 so that the ultrasonic beam direction faces the welded portion A, By varying the notch amount Sr in various ways and plotting the relationship between the notch amount Sr and the relative echo height Hds, the following FIGS. 5 and 6 were obtained.

(4)Uリブ溶接試験体6の超音波探傷およびマクロ試験片の溶け込み残し量Wrを測定して、溶け込み残し量Wrと相対エコー高さHdwの関係をプロットすることによって、後述する図7、8を得た。 (4) By measuring the ultrasonic flaw detection of the U-rib welded specimen 6 and the residual penetration amount Wr of the macro test piece and plotting the relationship between the residual penetration amount Wr and the relative echo height Hdw, FIG. 8 was obtained.

<超音波探傷結果>
(1)切欠き試験片の測定結果
70°探触子および75°探触子の2種類の探触子を用いて、切欠き試験片を超音波探傷し、図5、6のような、切欠き量Srと相対エコー高さHdsの関係を示すカーブ(以下、単に「算定カーブ」という。)を得た。図5は板厚6mm、図6は板厚8mmの場合の算定カーブを示している。算定カーブaは70°探触子を用いた場合、算定カーブbは75°探触子を用いた場合、カーブcは理論値を当てはめたものである。
これらの算定カーブa,bによれば、切欠き量が板厚の約1/3までは、切欠き量Srと相対エコー高さHdsの関係が傾斜しており、約1/3を超えると、切欠き量Srに関わらず相対エコー高さHdsがほぼ一定値となっている。このような傾向は、超音波ビームに直交する平面きずに関する理論式(JSNDI教本「超音波探傷試験II P82〜P84、(社)非破壊検査協会監修」)に基づいたカーブcとほぼ一致した。
<Ultrasonic flaw detection results>
(1) Measurement result of notched specimen
Using two types of probes, 70 ° probe and 75 ° probe, ultrasonic testing was conducted on the notched specimen, and the notch amount Sr and relative echo height Hds as shown in Figs. A curve showing the relationship (hereinafter simply referred to as “calculation curve”) was obtained. FIG. 5 shows the calculation curve when the plate thickness is 6 mm, and FIG. 6 shows the calculation curve when the plate thickness is 8 mm. When the calculation curve a is a 70 ° probe, the calculation curve b is a 75 ° probe, and the curve c is a theoretical value.
According to these calculation curves a and b, the relationship between the notch amount Sr and the relative echo height Hds is inclined until the notch amount is about 1/3 of the plate thickness. Regardless of the notch amount Sr, the relative echo height Hds is a substantially constant value. Such a tendency almost coincided with the curve c based on the theoretical formula (JSNDI textbook “Ultrasonic Flaw Test II P82 to P84, supervised by the Nondestructive Inspection Association”) regarding the plane flaw orthogonal to the ultrasonic beam.

(2)Uリブ溶接試験体の測定結果
次に、75°探触子を用いて、Uリブ試験体を超音波探傷し、マクロ試験片の溶け込み残し量Wrと相対エコー高さHdwを測定し、溶け込み残し量Wrと相対エコー高さHdwの関係をプロットして、図7、8に示したカーブd,eを得た。図7はUリブの板厚6mm、図7はUリブの板厚8mmの場合である。縦線fは75%溶け込み量を示す線である。
前記カーブdによれば、Uリブの板厚6mmの場合の相対エコー高さHdwが、−4.0〜+6.0dBの範囲で、溶け込み残し量Wrは、前記算定カーブより溶け込み量が深い側、即ち、安全側となっている。相対エコー高さHdwが、+6.0dBを超える場合は、算定カーブより相対エコー高さHdsが一定値となり、溶け込み残し量Wrの推定が難しくなる。
前記カーブeによれば、Uリブの板厚8mmの場合も同じ傾向が認められる。
(2) Measurement results of U-rib welded specimen Next, using a 75 ° probe, the U-rib specimen was subjected to ultrasonic flaw detection, and the amount of residual melt Wr and the relative echo height Hdw of the macro specimen were measured. The relationship between the amount of residual melt Wr and the relative echo height Hdw was plotted to obtain curves d and e shown in FIGS. FIG. 7 shows the case where the thickness of the U rib is 6 mm, and FIG. 7 shows the case where the thickness of the U rib is 8 mm. The vertical line f is a line indicating 75% penetration.
According to the curve d, when the relative echo height Hdw in the case of the U-rib plate thickness of 6 mm is in the range of −4.0 to +6.0 dB, the residual penetration amount Wr is deeper than the calculated curve. Is on the safe side. When the relative echo height Hdw exceeds +6.0 dB, the relative echo height Hds becomes a constant value from the calculation curve, and it is difficult to estimate the amount of residual melting Wr.
According to the curve e, the same tendency is observed when the thickness of the U rib is 8 mm.

以上の結果から、前記算定カーブを用いることによって、Uリブ溶接試験体における溶け込み残し量Wrを、相対エコー高さHdwの値に基づいて想定することが、充分高い信頼性で可能であることが明らかになった。   From the above results, it is possible to assume with sufficient reliability that the amount of residual penetration Wr in the U-rib welded specimen can be assumed based on the value of the relative echo height Hdw by using the calculated curve. It was revealed.

以上のように、前記算定カーブを用いることによって、Uリブ溶接試験体における溶け込み残し量Wrを、相対エコー高さHdwの値に基づいて想定することが可能であることが明らかになったので、以下においては、実際の評価対象である耐疲労鋼の鋼床版構造における部分溶け込み溶接の評価方法を説明する。   As described above, by using the calculation curve, it became clear that the amount of residual penetration Wr in the U-rib welded specimen can be assumed based on the value of the relative echo height Hdw. Below, the evaluation method of the partial penetration welding in the steel deck structure of the fatigue-resistant steel which is an actual evaluation object is demonstrated.

1)実際の評価対象の鋼床版構造においてUリブの溶接を行う。
2)前記溶接部のUリブに、前記集束型斜角探触子を当接させて、相対エコー高さを計測する。
3)得られた相対エコー高さに基づいて、前記算定カーブを参照して、溶接部の溶け込み予想量を算出する。
4)算出された溶け込み予想量が、所定の判断基準(板厚の75%以上)を満たした場合に、当該溶接部を合格と評価する。
1) Welding of U-ribs is performed in the actual steel deck structure to be evaluated.
2) The focusing oblique probe is brought into contact with the U-rib of the weld, and the relative echo height is measured.
3) Based on the obtained relative echo height, the expected amount of penetration of the weld is calculated with reference to the calculation curve.
4) When the calculated expected penetration amount satisfies a predetermined criterion (75% or more of the plate thickness), the weld is evaluated as acceptable.

以上のように、前記算定カーブを用いることで、超音波探傷技術を用いることで、Uリブ板厚6mmの75%以上の溶け込み量を確認し、評価することができた。   As described above, by using the calculation curve, it was possible to confirm and evaluate a penetration amount of 75% or more of the U-rib plate thickness of 6 mm by using the ultrasonic flaw detection technique.

なお、本発明の評価方法に用いる集束型斜角探触子としては、70度から75度の集束型ニ振動子斜角探触子が適している。
As the focusing type oblique angle probe used in the evaluation method of the present invention, a focusing type dual vibrator oblique angle probe of 70 to 75 degrees is suitable.

本発明にかかる耐疲労鋼における部分溶け込み溶接の評価方法に用いる階段式横穴試験片を示す図である。It is a figure which shows the step type horizontal hole test piece used for the evaluation method of the partial penetration welding in the fatigue-resistant steel concerning this invention. 図1の試験辺を用いて得られた距離振幅特性曲線である。It is a distance amplitude characteristic curve obtained using the test side of FIG. 溶接時の模式図である。It is a schematic diagram at the time of welding. 切欠き試験片の形状を示す図である。It is a figure which shows the shape of a notch test piece. 切欠き試験片(板厚6mm)による算定カーブである。This is a calculated curve based on a notched specimen (plate thickness 6 mm). 切欠き試験片(板厚8mm)による算定カーブである。It is a calculation curve based on a notched specimen (plate thickness 8 mm). Uリブ溶接試験体(板厚6mm)の測定結果である。It is a measurement result of a U-rib weld specimen (plate thickness 6 mm). Uリブ溶接試験体(板厚8mm)の測定結果である。It is a measurement result of a U-rib weld specimen (plate thickness: 8 mm).

Claims (2)

耐疲労鋼を適用した鋼床版構造における溶接部の近傍に、当接面から所定の斜角で超音波探傷ビームを照射し得る集束型斜角探触子を当接させて配置し、
探触子の探傷ビームの入射角線上のエコー高さを計測することによって、
切欠き試験片を用いて予め作成した算定カーブを参照して、
溶接部の溶け込み予想量を算出することを特徴とする耐疲労鋼における部分溶け込み溶接の評価方法。
In the vicinity of the welded part in the steel slab structure to which fatigue resistant steel is applied, a converging oblique probe that can irradiate an ultrasonic flaw detection beam at a predetermined oblique angle from the contact surface is placed in contact with it,
By measuring the echo height on the incident angle of the probe's flaw detection beam,
Referring to the calculation curve created in advance using the notched specimen,
A method for evaluating partial penetration welding in fatigue-resistant steel, characterized by calculating an expected amount of penetration of a weld.
以下の作成手順で作成されている算定カーブを用いることを特徴とする請求項1の評価方法。
1)耐疲労鋼による素材に、異なる深さの横穴を設けて階段式横穴試験片を作成する。
2)各横穴からの反射エコー高さを測定し、各横穴の深さと、前記反射エコー高さとの関係をプロットして距離振幅特性曲線を得る。
3)特定の深さの横穴からの反射エコー高さを基準感度と設定し、この基準感度に対する前記距離振幅特性曲線の相対的な反射エコー高さを相対エコー高さとする。
4)耐疲労鋼による切欠き試験片を異なる切欠き量ごとに複数作成し、各切欠き量と、その切欠き試験片における相対エコー高さとの関係をプロットして得られたカーブを算定カーブとして作成する。
The evaluation method according to claim 1, wherein a calculation curve created by the following creation procedure is used.
1) Create a stepped horizontal hole test piece by providing horizontal holes with different depths in the material made of fatigue resistant steel.
2) The height of the reflected echo from each side hole is measured, and the relationship between the depth of each side hole and the height of the reflected echo is plotted to obtain a distance amplitude characteristic curve.
3) The height of the reflected echo from the side hole of a specific depth is set as the reference sensitivity, and the relative reflected echo height of the distance amplitude characteristic curve with respect to this reference sensitivity is set as the relative echo height.
4) Create multiple notch specimens made of fatigue-resistant steel for each notch amount, and plot the curve obtained by plotting the relationship between each notch amount and the relative echo height of the notch specimen. Create as.
JP2008049662A 2008-02-29 2008-02-29 Evaluation method of partial penetration welding in fatigue resistance steel Pending JP2009202224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008049662A JP2009202224A (en) 2008-02-29 2008-02-29 Evaluation method of partial penetration welding in fatigue resistance steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008049662A JP2009202224A (en) 2008-02-29 2008-02-29 Evaluation method of partial penetration welding in fatigue resistance steel

Publications (2)

Publication Number Publication Date
JP2009202224A true JP2009202224A (en) 2009-09-10
JP2009202224A5 JP2009202224A5 (en) 2011-04-14

Family

ID=41145016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008049662A Pending JP2009202224A (en) 2008-02-29 2008-02-29 Evaluation method of partial penetration welding in fatigue resistance steel

Country Status (1)

Country Link
JP (1) JP2009202224A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114184672A (en) * 2021-11-11 2022-03-15 无锡金诚工程技术服务有限公司 Ultrasonic phased array detection method for improving measurement accuracy of U-rib angle weld

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120439A (en) * 1993-10-27 1995-05-12 Osaka Gas Co Ltd Ultrasonic flaw detector
JP2001305111A (en) * 2000-04-20 2001-10-31 Tokimec Inc Ultrasonic rail flaw detector
JP2002048773A (en) * 2000-07-31 2002-02-15 Railway Technical Res Inst Calibration test piece for ultrasonic inspection of rail welded part
JP2004333387A (en) * 2003-05-09 2004-11-25 Kawada Industries Inc Ultrasonic inspection method for welded part

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120439A (en) * 1993-10-27 1995-05-12 Osaka Gas Co Ltd Ultrasonic flaw detector
JP2001305111A (en) * 2000-04-20 2001-10-31 Tokimec Inc Ultrasonic rail flaw detector
JP2002048773A (en) * 2000-07-31 2002-02-15 Railway Technical Res Inst Calibration test piece for ultrasonic inspection of rail welded part
JP2004333387A (en) * 2003-05-09 2004-11-25 Kawada Industries Inc Ultrasonic inspection method for welded part

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114184672A (en) * 2021-11-11 2022-03-15 无锡金诚工程技术服务有限公司 Ultrasonic phased array detection method for improving measurement accuracy of U-rib angle weld

Similar Documents

Publication Publication Date Title
CN102721742A (en) Ultrasonic flaw detection method of weld joint at U-shaped angle of rib of steel bridge plate unit
JP3723555B2 (en) Ultrasonic inspection method for welds
JP2009180646A (en) Evaluating method of partial penetration welding in fatigue-resistant steel
JP2006017602A (en) Prediction method for fatigue strength of structure
JP6197391B2 (en) Fatigue life evaluation method for structures
US10705054B2 (en) Method for ultrasonically inspecting an aluminothermically welded rail joint
JP6776981B2 (en) Welded lightweight H-section steel manufacturing method
JP2009202224A (en) Evaluation method of partial penetration welding in fatigue resistance steel
JPWO2014020910A1 (en) Method for measuring unwelded amount and ultrasonic flaw detector
JP2009202224A5 (en)
JP7119805B2 (en) Thick steel plate quality evaluation method
Mozurkewich et al. Spatially resolved ultrasonic attenuation in resistance spot welds: Implications for nondestructive testing
Hattori et al. Crack sizing accuracy of a phased array ultrasonic scanner developed for inspection of rib-to-deck welded joints in orthotropic steel bridge decks
JP2014202730A (en) Test piece for evaluating brittle crack propagation stop characteristics and method for evaluating brittle crack propagation stop characteristics of thick steel plate
JP5504360B2 (en) Welding failure detection method and welding failure detection device
JP3761883B2 (en) Ultrasonic flaw detection method
JP3168946U (en) Ultrasonic flaw detector and penetration width acceptance / rejection determination system
Adriano et al. Influence of internal volumetric imperfections on the tearing resistance curve of welded Single Edge notched Tension (SENT) specimens
JP2002098674A (en) Estimation method for defect diameter in metallic material
JP4761147B2 (en) Ultrasonic flaw detection method and apparatus
Haldipur et al. Development of phased array ultrasonic testing in lieu of radiography for testing complete joint penetration (CJP) welds
KR101257193B1 (en) Crack testing method for thick plate welding zone
Namboodiri et al. Rail weld inspection using phased array ultrasonics
Makri Experimental Investigations to Evaluate the Validity and Performance of NDT Procedures for In-Service Inspections
Searfass et al. Ultrasonic Evaluation of Inclusions and Surface-Breaking Defects in High Density Polyethylene (HDPE) Butt Fusion and Mitered Joints

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110228

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Effective date: 20110301

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131029