JP2009202054A - High-activity catalyst for cleaning car exhaust gas in reducing atmosphere - Google Patents

High-activity catalyst for cleaning car exhaust gas in reducing atmosphere Download PDF

Info

Publication number
JP2009202054A
JP2009202054A JP2008044494A JP2008044494A JP2009202054A JP 2009202054 A JP2009202054 A JP 2009202054A JP 2008044494 A JP2008044494 A JP 2008044494A JP 2008044494 A JP2008044494 A JP 2008044494A JP 2009202054 A JP2009202054 A JP 2009202054A
Authority
JP
Japan
Prior art keywords
catalyst
osc
atmosphere
temperature
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008044494A
Other languages
Japanese (ja)
Inventor
Masahide Miura
真秀 三浦
Nobuyuki Takagi
信之 高木
Masato Machida
正人 町田
Keita Ikegami
啓太 池上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumamoto University NUC
Toyota Motor Corp
Original Assignee
Kumamoto University NUC
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumamoto University NUC, Toyota Motor Corp filed Critical Kumamoto University NUC
Priority to JP2008044494A priority Critical patent/JP2009202054A/en
Publication of JP2009202054A publication Critical patent/JP2009202054A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst having catalytic cleaning activity prevented from being lowered when the combustion state of an engine is changed to an A/F of a rich atmosphere. <P>SOLUTION: The catalyst contains, in a catalyst coated layer, an OSC material capable of emitting 0.4%-or-higher O<SB>2</SB>, detected as CO<SB>2</SB>, continuously for 30 s or longer in the OSC capability evaluation test. The OCS capability evaluation test comprises laying 3.0 g of an OSC material in an evaluation instrument through which a model gas flows, raising the temperature to 600°C at a programming rate of 20°C/min, pretreating the material by exposing to the atmosphere of 1%-O<SB>2</SB>/N<SB>2</SB>, 10 L/min, for 30 min, measuring the concentration of CO<SB>2</SB>in the outlet gas at 600°C 30 min after switching to the atmosphere of 2%-CO/N<SB>2</SB>, 10 L/min, in order to evaluate the OSC capability of the catalyst. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、内燃機関から排出される排ガス中の成分を浄化するための排ガス浄化触媒に関する。   The present invention relates to an exhaust gas purification catalyst for purifying components in exhaust gas discharged from an internal combustion engine.

自動車エンジン等の内燃機関からの排ガス中には、窒素酸化物(NOx)、一酸化炭素(CO)、炭化水素(HC)等が含まれており、これらの物質は排ガス浄化触媒によって浄化されてから、大気中に放出されている。ここで使用される排ガス浄化触媒の代表的なものとしては、白金(Pt)、ロジウム(Rh)、パラジウム(Pd)等の貴金属をγ−アルミナ等の多孔質金属酸化物担体に担持した三元触媒が知られている。   The exhaust gas from an internal combustion engine such as an automobile engine contains nitrogen oxide (NOx), carbon monoxide (CO), hydrocarbon (HC), etc., and these substances are purified by an exhaust gas purification catalyst. From the atmosphere. A typical exhaust gas purification catalyst used here is a ternary catalyst in which a noble metal such as platinum (Pt), rhodium (Rh), palladium (Pd) is supported on a porous metal oxide carrier such as γ-alumina. Catalysts are known.

こうした三元触媒においてCOとHCの酸化、及びNOXの還元が効率的に進行するためには、内燃機関の空燃比(A/F)が適切に制御されて、排気ガス組成が特定の狭い範囲にあることが必要である。すなわち、内燃機関の空燃比が理論空燃比(ストイキ)近傍であることが必要である。しかし、実際には、制御系の時間遅れ等によって排気ガス組成がある程度変動し、特定の狭い範囲から外れることが起こり得る。燃料に対して空気が多い条件(リーン)又は空気に対して燃料が多い条件(リッチ)で内燃機関が運転された場合は、三元触媒はその浄化能力を充分発揮できない。 In order for the oxidation of CO and HC and the reduction of NO x to proceed efficiently in such a three-way catalyst, the air-fuel ratio (A / F) of the internal combustion engine is appropriately controlled, and the exhaust gas composition is a specific narrow Must be in range. That is, the air-fuel ratio of the internal combustion engine needs to be in the vicinity of the stoichiometric air-fuel ratio (stoichiometric). However, in practice, the exhaust gas composition may fluctuate to some extent due to a control system time delay or the like, and may deviate from a specific narrow range. When the internal combustion engine is operated under a condition where there is a lot of air relative to the fuel (lean) or a condition where there is a lot of fuel relative to the air (rich), the three-way catalyst cannot sufficiently exhibit its purification ability.

そこで、排ガス中の酸素濃度の変動を吸収して三元触媒の排ガス浄化能力を高めるために、排ガス中の酸素濃度が高いときには酸素を吸蔵し、排ガス中の酸素濃度が低いときには酸素を放出する、いわゆる酸素吸放出能(OSC能)を有する材料が排ガス浄化用触媒において用いられている。   Therefore, in order to absorb the fluctuation of the oxygen concentration in the exhaust gas and enhance the exhaust gas purification ability of the three-way catalyst, oxygen is stored when the oxygen concentration in the exhaust gas is high, and oxygen is released when the oxygen concentration in the exhaust gas is low. A material having a so-called oxygen absorption / release capability (OSC capability) is used in an exhaust gas purifying catalyst.

このようなOSC材料としては、例えば、セリア(CeO2)やセリア−ジルコニア(CeO2−ZrO2)複合酸化物など、セリア(CeO2)をベースとした材料が知られ、広く実用化されている。そしてなお、安定した排ガスの浄化を達成するために、さらに高い酸素吸放出能を有するOSC材が求められ、研究されている。かかるセリウム-ジルコニウム複合酸化物の先行技術としては、特開平10−194742号公報、特開平6−279027号公報等がある。 Such OSC materials, for example, ceria (CeO 2) and ceria - such as zirconia (CeO 2 -ZrO 2) composite oxide, ceria material based on (CeO 2) is known, is widely put into practical use Yes. In addition, in order to achieve stable purification of exhaust gas, an OSC material having a higher oxygen absorption / release capability is required and studied. As prior art of such a cerium-zirconium composite oxide, there are JP-A-10-194742, JP-A-6-279027, and the like.

特開平10−194742号公報Japanese Patent Laid-Open No. 10-194742 特開平6−279027号公報JP-A-6-279027

しかるに、上述したようなOSC材料は、ストイキ付近での僅かなA/F変動を吸収し、最も浄化効率のよい状態にA/Fを保つことを指向している。しかしながら、A/Fはストイキから大きくリッチ雰囲気に制御されることがあり、上述したようなOSC材料では酸素供給が追いつかず、このときの無酸素状態が触媒の浄化活性を著しく低下させることがある。   However, the OSC material as described above is intended to absorb a slight A / F fluctuation in the vicinity of stoichiometry and keep the A / F in a state with the highest purification efficiency. However, the A / F may be controlled to a rich atmosphere from stoichiometry, and the oxygen supply cannot catch up with the OSC material as described above, and the oxygen-free state at this time may significantly reduce the purification activity of the catalyst. .

この問題に対して、本発明は、エンジンの燃焼状態をリッチ雰囲気にA/Fを大きく変動させた時の、触媒浄化活性の低下を防止する触媒の提供を目的とする。   With respect to this problem, an object of the present invention is to provide a catalyst that prevents a decrease in catalyst purification activity when the A / F is greatly changed in a rich atmosphere in the combustion state of the engine.

本発明により、下記(1)〜(4)が提供される。
(1)OSC能評価試験において、0.4%以上のO(COとして検出)が30秒以上持続的に放出可能なOSC材料を触媒コート層に含む触媒であって、
ここでOSC能評価試験とは、該OSC材料(3.0g)を、下記のモデルガスが流通する評価装置内に配置し、20℃/分の昇温速度で600℃の温度にし、1%−O2/N2(10L/分)の雰囲気に30分間曝して前処理した後、2%−CO/N2(10L/分)の雰囲気に切り替えてから30分間600℃の温度における出口ガス中のCO2濃度を測定し、該触媒のOSC能を評価する試験である、触媒。
(2)OSC材料がプラセオジムオキシ硫酸塩に貴金属を担持させたものである、(1)に記載の触媒。
(3)貴金属がプラセオジムオキシ硫酸塩に対して0.5質量%のPtである、(2)に記載の触媒。
(4)触媒コート層には多孔質金属酸化物担体に貴金属を担持させたものをさらに含む、(1)〜(3)のいずれかに記載の触媒。
The present invention provides the following (1) to (4).
(1) In the OSC ability evaluation test, the catalyst coat layer includes an OSC material in which 0.4% or more of O 2 (detected as CO 2 ) can be continuously released for 30 seconds or more,
Here, the OSC ability evaluation test means that the OSC material (3.0 g) is placed in an evaluation apparatus in which the following model gas flows, and the temperature is raised to 600 ° C. at a temperature rising rate of 20 ° C./min. After pre-treatment by exposure to an atmosphere of -O 2 / N 2 (10 L / min) for 30 minutes, after switching to an atmosphere of 2% -CO / N 2 (10 L / min), the outlet gas at a temperature of 600 ° C. for 30 minutes A catalyst which is a test for measuring the concentration of CO 2 in the catalyst and evaluating the OSC ability of the catalyst.
(2) The catalyst according to (1), wherein the OSC material is obtained by supporting a noble metal on praseodymium oxysulfate.
(3) The catalyst as described in (2) whose precious metal is 0.5 mass% Pt with respect to praseodymium oxysulfate.
(4) The catalyst according to any one of (1) to (3), wherein the catalyst coat layer further comprises a porous metal oxide support on which a noble metal is supported.

従来のOSC材料は、ストイキ付近での僅かなA/F変動を吸収し、最も浄化効率のよい状態にA/Fを保つことを指向している。すなわち、比較的小さなA/F変動に対応可能なように、迅速に酸素吸放出することを指向している。このため比較的短期間のリッチ条件には対応できるが、長期間のリッチ条件には対応できないことがある。   Conventional OSC materials are intended to absorb slight A / F fluctuations in the vicinity of stoichiometry and keep the A / F in a state with the highest purification efficiency. That is, it is aimed to quickly absorb and release oxygen so as to be able to cope with relatively small A / F fluctuations. For this reason, although it can respond to the rich condition for a relatively short period, it may not be able to cope with the rich condition for a long period.

本発明では、より多くの酸素を吸蔵する材料を選択し、かつA/Fがリッチ雰囲気にされた際に、比較的ゆっくりと酸素を供給する材料を触媒コート層に配置することにより、浄化活性低下の原因となるHC被毒を抑制し、浄化活性の低下を防ぐことを可能とする。ここで比較的ゆっくりとは、具体的には、OSC能評価試験において、0.4%以上のO(COとして検出)が30秒以上持続的に放出可能であることをいう。 In the present invention, a purification activity is selected by selecting a material that stores more oxygen and disposing a material that supplies oxygen relatively slowly in the catalyst coat layer when the A / F is rich. It is possible to suppress HC poisoning that causes a decrease and prevent a decrease in purification activity. Here, “relatively slowly” specifically means that 0.4% or more of O 2 (detected as CO 2 ) can be continuously released for 30 seconds or more in the OSC ability evaluation test.

本発明の触媒は、OSC能評価試験において、0.4%以上のO(COとして検出)が30秒以上持続的に放出可能なOSC材料を触媒コート層に含む触媒である。 The catalyst of the present invention is a catalyst containing an OSC material capable of continuously releasing 0.4% or more of O 2 (detected as CO 2 ) for 30 seconds or longer in the OSC ability evaluation test in the catalyst coating layer.

ここでOSC能評価試験とは、リーン条件からリッチ条件に切り替えた際に、OSC材料に吸蔵されていたO2がどの程度の濃度で、どの程度持続的に放出可能であるかを評価するものである。具体的には、OSC材料(3.0g)を、下記のモデルガスが流通する評価装置内に配置し、20℃/分の昇温速度で600℃の温度にし、1%−O2/N2(10L/分)の雰囲気に30分間曝して前処理した後、2%−CO/N2(10L/分)の雰囲気に切り替えてから30分間600℃の温度における出口ガス中のCO2濃度を測定し、該触媒のOSC能を評価する試験である。 Here, the OSC ability evaluation test evaluates the concentration and the level of sustained release of O 2 stored in the OSC material when the lean condition is switched to the rich condition. It is. Specifically, the OSC material (3.0 g) is placed in an evaluation apparatus in which the following model gas is circulated, and the temperature is set to 600 ° C. at a temperature rising rate of 20 ° C./min. 1% −O 2 / N 2 was pretreated by exposure for 30 minutes to an atmosphere of (10L / min), CO 2 concentration in the outlet gas at the temperature by switching to an atmosphere from the 30 minutes 600 ° C. for 2% -CO / N 2 (10L / min) Is a test for evaluating the OSC ability of the catalyst.

このようなOSC材料としては、例えばプラセオジムオキシ硫酸塩に貴金属を担持させたものであってもよい。   As such an OSC material, for example, a material in which a noble metal is supported on praseodymium oxysulfate may be used.

プラセオジムのオキシ硫酸塩であるPr22SO4は、当業者に公知の任意の方法によって調製することができる。Pr22SO4は、例えば、硫酸基部分の供給源として界面活性剤を用いた方法により調製することができる。具体的には、Pr22SO4は、プラセオジムを陽イオンとして含む化合物、例えば、硝酸プラセオジムと、それを水酸化物化するための塩基性溶媒、例えば、アンモニア水と、硫酸基部分の供給源としての界面活性剤、例えば、ドデシル硫酸ナトリウム(SDS)とを所定の濃度において混合し、混合して得られた沈殿物を洗浄、乾燥、粉砕及び焼成等することによって調製することができる。 Pr 2 O 2 SO 4 , which is praseodymium oxysulfate, can be prepared by any method known to those skilled in the art. Pr 2 O 2 SO 4 can be prepared, for example, by a method using a surfactant as a supply source of the sulfate group moiety. Specifically, Pr 2 O 2 SO 4 is a compound containing praseodymium as a cation, for example, praseodymium nitrate, and a basic solvent for hydrating it, for example, ammonia water, and supply of a sulfate group. A surfactant as a source, for example, sodium dodecyl sulfate (SDS), is mixed at a predetermined concentration, and a precipitate obtained by mixing is washed, dried, pulverized, and calcined.

Pr22SO4における硫酸基部分の供給源として用いられるドデシル硫酸ナトリウム等の界面活性剤は、原料の硝酸プラセオジムに対してPr22SO4を生成するのに十分な濃度において導入することができる。また、このような界面活性剤を用いたPr22SO4の調製方法においては、当該界面活性剤が硫酸基の供給源としてだけではなく、その炭素鎖の部分が有機鋳型としても作用すると考えられる。したがって、原料を混合して得られた沈殿物が規則的な層を有することができ、それを焼成してこの有機鋳型部分を分解除去することにより高表面積のPr22SO4を得ることができる。 Surfactant sodium dodecyl sulfate or the like used as a source of sulfate moiety in the Pr 2 O 2 SO 4 is introduced at a concentration sufficient to produce a Pr 2 O 2 SO 4 with respect to the raw material of praseodymium nitrate be able to. In addition, in the method for preparing Pr 2 O 2 SO 4 using such a surfactant, the surfactant acts not only as a sulfate group supply source but also as a carbon chain part as an organic template. Conceivable. Therefore, the precipitate obtained by mixing the raw materials can have a regular layer, and it can be fired to decompose and remove the organic template portion to obtain a high surface area Pr 2 O 2 SO 4. Can do.

上記沈殿物の乾燥及び焼成は、界面活性剤の有機鋳型部分を分解除去しかつ高表面積のPr22SO4を得るのに十分な温度及び時間において実施することができる。例えば、乾燥は減圧下室温で実施することができるか又は80〜250℃の温度で12〜24時間実施することができ、焼成は500〜700℃の温度で1〜20時間実施することができる。 The precipitate can be dried and calcined at a temperature and for a time sufficient to decompose and remove the organic template portion of the surfactant and to obtain a high surface area Pr 2 O 2 SO 4 . For example, drying can be carried out at room temperature under reduced pressure or can be carried out at a temperature of 80 to 250 ° C. for 12 to 24 hours, and baking can be carried out at a temperature of 500 to 700 ° C. for 1 to 20 hours. .

Pr22SO4を調製する別の方法としては、Prの硫酸塩、すなわち、硫酸プラセオジム八水和物(Pr2(SO43・8H2O)を空気中800℃以上の温度で加熱し、硫酸基の一部を分解することによって調製することもできる。この場合、Prの硫酸塩を加熱する際の温度は、800℃以上であればよく、上記のように硫酸基の一部が分解される範囲で適宜設定すればよい。 As another method for preparing Pr 2 O 2 SO 4 , Pr sulfate, that is, praseodymium sulfate octahydrate (Pr 2 (SO 4 ) 3 .8H 2 O) is used at a temperature of 800 ° C. or higher in air. It can also be prepared by heating and decomposing some of the sulfate groups. In this case, the temperature at which the Pr sulfate is heated may be 800 ° C. or higher, and may be set as appropriate within a range in which a part of the sulfate group is decomposed as described above.

OSC材料に担持させる貴金属としては、Pt、Rh、Pd、Ir及びRuを挙げることができるが、Ptを担持することが特に好ましい。OSC材料への貴金属の担持量は一般的に、OSC材料に対して0.01〜5質量%であり、特に0.1〜2質量%である。   Examples of the noble metal supported on the OSC material include Pt, Rh, Pd, Ir, and Ru, but it is particularly preferable to support Pt. The amount of noble metal supported on the OSC material is generally 0.01 to 5% by mass, particularly 0.1 to 2% by mass, based on the OSC material.

これら貴金属のPr22SO4への担持は、当業者に公知の任意の方法により行うことができる。 Supporting these precious metals on Pr 2 O 2 SO 4 can be performed by any method known to those skilled in the art.

例えば、これら貴金属の担持は、金属源として上記貴金属を陽イオンとして含む化合物を用い、この化合物の所定濃度の溶液にPr22SO4を浸漬させ、その後、乾燥及び焼成等するか、又は貴金属源として上記貴金属の錯体を用い、この錯体の所定濃度の溶液にPr22SO4を浸漬させ、その後、乾燥及び焼成等することによって行うことができる。 For example, these noble metals are supported by using a compound containing the noble metal as a cation as a metal source and immersing Pr 2 O 2 SO 4 in a solution having a predetermined concentration of the compound, followed by drying and firing, or the like. The above-mentioned noble metal complex is used as a noble metal source, Pr 2 O 2 SO 4 is immersed in a solution of a predetermined concentration of this complex, and then dried, fired, and the like.

これら貴金属の化合物又は錯体を含む溶液に浸漬されたPr22SO4の乾燥及び焼成は、上記貴金属をPr22SO4に担持するのに十分な温度及び時間において実施することができる。例えば、乾燥は80〜250℃の温度で12〜24時間実施することができ、焼成は400〜500℃の温度で2〜10時間実施することができる。 Drying and firing of Pr 2 O 2 SO 4 immersed in a solution containing a compound or complex of these noble metals can be performed at a temperature and time sufficient to support the noble metal on Pr 2 O 2 SO 4. . For example, drying can be performed at a temperature of 80 to 250 ° C. for 12 to 24 hours, and baking can be performed at a temperature of 400 to 500 ° C. for 2 to 10 hours.

触媒コート層には多孔質金属酸化物担体に貴金属を担持させたものをさらに含んでもよい。これにより、三元触媒としての性能を向上させることが可能である。   The catalyst coat layer may further include a porous metal oxide support on which a noble metal is supported. Thereby, it is possible to improve the performance as a three-way catalyst.

この多孔質金属酸化物担体は、OSC能がなくてもよく、例えばコージェライト、ムライト、アルミナのような耐熱性無機酸化物であってもよい。   The porous metal oxide support may not have OSC ability, and may be a heat-resistant inorganic oxide such as cordierite, mullite, and alumina.

多孔質金属酸化物担体に担持させる貴金属としては、前述のOSC材料に担持させる貴金属を用いてもよいが、Ptを担持することが特に好ましい。多孔質金属酸化物担体への貴金属の担持量は一般的に、多孔質金属酸化物担体に対して0.01〜5質量%であり、特に0.1〜2質量%である。また多孔質金属酸化物担体に貴金属を担持は、当業者に公知の任意の方法により行うことができる。例えば、前述の貴金属のPr22SO4への担持する方法を、Pr22SO4から多孔質金属酸化物に変えて適用してもよい。 As the noble metal supported on the porous metal oxide support, the above-mentioned noble metal supported on the OSC material may be used, but it is particularly preferable to support Pt. The amount of the noble metal supported on the porous metal oxide carrier is generally 0.01 to 5% by mass, particularly 0.1 to 2% by mass, based on the porous metal oxide carrier. The noble metal can be supported on the porous metal oxide support by any method known to those skilled in the art. For example, the method of supporting the precious metal on Pr 2 O 2 SO 4 as described above may be applied by changing from Pr 2 O 2 SO 4 to a porous metal oxide.

本発明の触媒は、排ガス浄化用触媒としてモノリス担体、例えばセラミック製ハニカムにコートして用いることもできる。   The catalyst of the present invention can also be used as a catalyst for purifying exhaust gas by coating a monolithic carrier such as a ceramic honeycomb.

以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited to these Examples.

本実施例では、本発明によるOSC材料を含む触媒と、既存のOSC材料(セリウム−ジルコニウム複合酸化物)を含む触媒とを調整し、それらのOSC能およびNOx浄化活性について調べた。   In this example, a catalyst containing an OSC material according to the present invention and a catalyst containing an existing OSC material (cerium-zirconium composite oxide) were prepared, and their OSC ability and NOx purification activity were examined.

[実施例の試料調整]
実施例において使用したプラセオジムのオキシ硫酸塩Pr22SO4は以下のようにして調製した。まず、硝酸プラセオジム六水和物(Pr(NO33・6H2O)と、硫酸基部分の供給源としてのドデシル硫酸ナトリウム(SDS)と、アンモニアと、水とをそれぞれ1:2:30:60のモル比でフラスコに導入した。次いで、このフラスコを大気開放系において40℃の油浴中で撹拌器により回転速度350rpmで1時間撹拌した。その後、温度を60℃まで昇温して9時間撹拌した後、室温まで冷却した(pH=約11)。得られた沈殿物を遠心分離によって分離し、これを蒸留水で数回洗浄後、室温で減圧乾燥した。乾燥した試料を粉砕して粉末状にし、ドラフト中500℃以上の温度で5時間焼成してプラセオジムのオキシ硫酸塩Pr22SO4を得た。
[Sample preparation of Example]
The praseodymium oxysulfate Pr 2 O 2 SO 4 used in the examples was prepared as follows. First, praseodymium nitrate hexahydrate (Pr (NO 3 ) 3 .6H 2 O), sodium dodecyl sulfate (SDS) as a supply source of the sulfate group, ammonia, and water are respectively 1: 2: 30. Was introduced into the flask at a molar ratio of 60. Next, the flask was stirred for 1 hour at a rotational speed of 350 rpm with a stirrer in an oil bath at 40 ° C. in an open air system. Thereafter, the temperature was raised to 60 ° C. and stirred for 9 hours, and then cooled to room temperature (pH = about 11). The resulting precipitate was separated by centrifugation, washed several times with distilled water, and dried under reduced pressure at room temperature. The dried sample was pulverized into powder and calcined in a draft at a temperature of 500 ° C. or higher for 5 hours to obtain praseodymium oxysulfate Pr 2 O 2 SO 4 .

本例では、上で調製したプラセオジムのオキシ硫酸塩Pr22SO4からなる化合物に白金(Pt)を担持してPt/Pr22SO4を調製した。まず、白金(Pt)の硝酸塩溶液1mLを、Pr22SO43.0gに対してPtの担持量が0.5wt%となる濃度において調製した。次いで、上で調製したPr22SO4の粉末約3.0gを坩堝に入れ、坩堝をホッティングスターラー上に置き、白金(Pt)の硝酸塩溶液が乾燥する程度の温度にセットした。坩堝が温まってきた後、白金(Pt)の硝酸塩溶液を少しずつ滴下しながら乾燥させ、滴下が完了した後、室温で約1時間放置し、乾燥器において120℃の温度で一晩乾燥した。乾燥後の試料を軽くほぐした後、空気中400℃で2時間焼成し、0.5wt%−Pt/Pr22SO4のOSC材料を得た。 In this example, platinum (Pt) was supported on the compound consisting of praseodymium oxysulfate Pr 2 O 2 SO 4 prepared above to prepare Pt / Pr 2 O 2 SO 4 . First, 1 mL of a platinum (Pt) nitrate solution was prepared at a concentration at which the supported amount of Pt was 0.5 wt% with respect to 3.0 g of Pr 2 O 2 SO 4 . Next, about 3.0 g of the Pr 2 O 2 SO 4 powder prepared above was placed in a crucible, and the crucible was placed on a hotting stirrer and set to a temperature at which the platinum (Pt) nitrate solution was dried. After the crucible was warmed, it was dried while adding a nitrate solution of platinum (Pt) little by little, and after the dropping was completed, it was left at room temperature for about 1 hour and dried overnight at 120 ° C. in a dryer. The dried sample was lightly loosened and then calcined in air at 400 ° C. for 2 hours to obtain a 0.5 wt% -Pt / Pr 2 O 2 SO 4 OSC material.

別途、Al粉末の所定量に所定濃度の硝酸ロジウム水溶液の所定量を含浸させ、250℃で1時間焼成し、0.5wt%−Rh/Alを得た。 Separately, a predetermined amount of Al 2 O 3 powder was impregnated with a predetermined amount of a rhodium nitrate aqueous solution having a predetermined concentration and baked at 250 ° C. for 1 hour to obtain 0.5 wt% -Rh / Al 2 O 3 .

上で調製した0.5wt%−Pt/Pr22SO4と0.5wt%−Rh/Alを150:80の質量比で混合したスラリーを調製し、これらのスラリーを日本ガイシ社(NGK)のコージェライト製ハニカム基材(φ30mm、L50mm、壁厚4ミル、400セル)にウォッシュコート法により乾燥質量で10gコートしたものをテストピースとして用いた。 The slurry prepared by mixing 0.5 wt% -Pt / Pr 2 O 2 SO 4 prepared above and 0.5 wt% -Rh / Al 2 O 3 at a mass ratio of 150: 80 was prepared. A cordierite-made honeycomb substrate (φ30 mm, L50 mm, wall thickness 4 mil, 400 cells) manufactured by NGK (NGK) was used as a test piece by coating 10 g with a dry mass by a wash coat method.

[比較例の試料調整]
比較例において使用したセリウム−ジルコニウム複合酸化物は以下のようにして調製した。まず1193.33gのセリアゾル(CeO2として15質量%、多木化学製、ニードラルU−15)に、100gのイオン交換水に41.16gのオキシ硝酸ジルコニウムを溶解させた溶液を添加して攪拌し、均一な懸濁液を作成した。この懸濁液を120℃×24時間の加熱に供して水を蒸発させた後、700℃×5時間の焼成に供し、下記の組成(質量比):CeO2/ZrO2=58/38のセリウム-ジルコニウム複合金属酸化物を得た。
[Sample preparation for comparative example]
The cerium-zirconium composite oxide used in the comparative example was prepared as follows. First, a solution prepared by dissolving 41.16 g of zirconium oxynitrate in 100 g of ion-exchanged water was added to 1193.33 g of ceria sol (15 mass% as CeO 2 , manufactured by Taki Chemical Co., Ltd., Needle U-15) and stirred. A uniform suspension was created. This suspension was subjected to heating at 120 ° C. for 24 hours to evaporate water and then subjected to calcination at 700 ° C. for 5 hours, and the following composition (mass ratio): CeO 2 / ZrO 2 = 58/38 A cerium-zirconium composite metal oxide was obtained.

次いで、この複合酸化物の50gを300gのイオン交換水に分散させてスラリーを作成し、このスラリーにジニトロジアンミン白金錯体の水溶液(Pt濃度2.2質量%)を11.36g加えて2時間攪拌した。次いで、このスラリーを120℃×24時間の加熱に供して水を蒸発させた後、500℃×2時間の焼成に供し、0.5wt%−Pt/(Ce0.5、Zr0.5)O2のOSC材料を得た。 Next, 50 g of this composite oxide was dispersed in 300 g of ion-exchanged water to prepare a slurry. To this slurry, 11.36 g of an aqueous solution of dinitrodiammine platinum complex (Pt concentration 2.2 mass%) was added and stirred for 2 hours. did. Next, the slurry was subjected to heating at 120 ° C. for 24 hours to evaporate water, and then subjected to calcination at 500 ° C. for 2 hours to obtain an OSC of 0.5 wt% -Pt / (Ce 0.5 , Zr 0.5 ) O 2 . Obtained material.

実施例と同様に別途、Al粉末の所定量に所定濃度の硝酸ロジウム水溶液の所定量を含浸させ、250℃で1時間焼成し、0.5wt%−Rh/Alを得た。 Similarly to the example, a predetermined amount of Al 2 O 3 powder was impregnated with a predetermined amount of a rhodium nitrate aqueous solution having a predetermined concentration and baked at 250 ° C. for 1 hour to obtain 0.5 wt% -Rh / Al 2 O 3 . It was.

上で調製した0.5wt%−Pt/(Ce0.5、Zr0.5)O2と0.5wt%−Rh/Alを100:80の質量比で混合したスラリーを調製し、これらのスラリーを日本ガイシ社(NGK)のコージェライト製ハニカム基材(φ30mm、L50mm、壁厚4ミル、400セル)にウォッシュコート法により乾燥質量で10gコートしたものをテストピースとして用いた。 The slurry prepared by mixing 0.5 wt% -Pt / (Ce 0.5 , Zr 0.5 ) O 2 prepared above and 0.5 wt% -Rh / Al 2 O 3 at a mass ratio of 100: 80 was prepared. A cordierite honeycomb substrate (φ30 mm, L50 mm, wall thickness 4 mil, 400 cells) manufactured by NGK, Inc. (NGK) was used as a test piece.

[OSC能評価試験]
実施例のOSC材料(0.5wt%−Pt/Pr22SO4)と比較例のOSC材料0.5wt%−Pt/(Ce0.5、Zr0.5)O2)各3.0gを圧縮・解砕して、ペレットにしたものを用いて、OSC能について評価した。
[OSC ability evaluation test]
The OSC material of the example (0.5 wt% -Pt / Pr 2 O 2 SO 4 ) and the OSC material of the comparative example 0.5 wt% -Pt / (Ce 0.5 , Zr 0.5 ) O 2 ) of 3.0 g each were compressed. The OSC ability was evaluated using what was crushed and pelletized.

これらのOSC材料を、下記のモデルガスが流通する評価装置内に配置し、20℃/分の昇温速度で600℃の温度にし、1%−O2/N2(10L/分)の雰囲気に30分間曝して前処理した後、2%−CO/N2(10L/分)の雰囲気に切り替えてから30分間600℃の温度における出口ガス中のCO2濃度を測定し、該触媒のOSC能を評価した。 These OSC materials are placed in an evaluation apparatus in which the following model gas flows, and the temperature is set to 600 ° C. at a temperature rising rate of 20 ° C./min, and an atmosphere of 1% -O 2 / N 2 (10 L / min). after pretreated by exposure for 30 minutes, the CO 2 concentration in the outlet gas at a temperature from 30 minutes 600 ° C. is switched to an atmosphere of 2% -CO / N 2 (10L / min) was measured, of the catalyst OSC Noh was evaluated.

測定結果を図1に示す。本発明による触媒は、0.4%以上のO(測定されたCO2濃度をO2濃度に換算)が30秒以上持続的に放出可能であることが示された。 The measurement results are shown in FIG. It has been shown that the catalyst according to the present invention can continuously release O 2 of 0.4% or more (measured CO 2 concentration is converted to O 2 concentration) for 30 seconds or more.

[浄化活性評価試験]
得られた各ハニカム型の排気ガス浄化用触媒(テストピース)を、下記のモデルガスが流通する評価装置内に配置し、20℃/分の昇温速度で600℃の温度にし、リーンガス雰囲気に30分間曝して前処理した後、リッチ雰囲気へ切り替え、600℃の温度の出口ガス中のNOx濃度を測定した。NOx濃度の測定結果より、雰囲気切り替えから600秒間の平均NOx浄化率を下記の式によって求めた。
NOx浄化率=[(入ガス濃度−出ガス濃度)÷入ガス濃度]×100
[Purification activity evaluation test]
Each honeycomb type exhaust gas purification catalyst (test piece) obtained was placed in an evaluation apparatus in which the following model gas circulates, and the temperature was raised to 600 ° C. at a rate of temperature increase of 20 ° C./min. After pretreatment by exposure for 30 minutes, the atmosphere was switched to a rich atmosphere, and the NOx concentration in the outlet gas at a temperature of 600 ° C. was measured. From the measurement result of the NOx concentration, the average NOx purification rate for 600 seconds from the atmosphere switching was determined by the following equation.
NOx purification rate = [(input gas concentration−output gas concentration) ÷ input gas concentration] × 100

使用したリッチガスおよびリーンガスの組成を表1に示す。またここでは35ccTP(基本燃料噴射量)を採用した。   The composition of rich gas and lean gas used is shown in Table 1. Here, 35 ccTP (basic fuel injection amount) was adopted.

Figure 2009202054
Figure 2009202054

平均NOx浄化率は、比較例で91%であり、実施例では98%であった。   The average NOx purification rate was 91% in the comparative example and 98% in the example.

OSC能評価試験の結果(図1)より、本発明による触媒(実施例)は比較例に対して、還元雰囲気で材料から持続的に酸素を供給可能なことが明らかである。これに伴い、浄化活性評価試験結果が示すとおり、平均NOx浄化率が明らかに比較例に比べて優れている。   From the results of the OSC ability evaluation test (FIG. 1), it is clear that the catalyst (Example) according to the present invention can continuously supply oxygen from the material in a reducing atmosphere as compared with the comparative example. Accordingly, as the purification activity evaluation test result shows, the average NOx purification rate is clearly superior to the comparative example.

OSC能評価結果を示す。An OSC ability evaluation result is shown.

Claims (4)

OSC能評価試験において、0.4%以上のO(COとして検出)が30秒以上持続的に放出可能なOSC材料を触媒コート層に含む触媒であって、
ここでOSC能評価試験とは、該OSC材料(3.0g)を、下記のモデルガスが流通する評価装置内に配置し、20℃/分の昇温速度で600℃の温度にし、1%−O2/N2(10L/分)の雰囲気に30分間曝して前処理した後、2%−CO/N2(10L/分)の雰囲気に切り替えてから30分間600℃の温度における出口ガス中のCO2濃度を測定し、該触媒のOSC能を評価する試験である、触媒。
In the OSC ability evaluation test, the catalyst coat layer includes an OSC material in which 0.4% or more of O 2 (detected as CO 2 ) can be continuously released for 30 seconds or more,
Here, the OSC ability evaluation test means that the OSC material (3.0 g) is placed in an evaluation apparatus in which the following model gas flows, and the temperature is raised to 600 ° C. at a temperature rising rate of 20 ° C./min. After pre-treatment by exposure to an atmosphere of -O 2 / N 2 (10 L / min) for 30 minutes, after switching to an atmosphere of 2% -CO / N 2 (10 L / min), the outlet gas at a temperature of 600 ° C. for 30 minutes A catalyst which is a test for measuring the concentration of CO 2 in the catalyst and evaluating the OSC ability of the catalyst.
OSC材料がプラセオジムオキシ硫酸塩に貴金属を担持させたものである、請求項1に記載の触媒。   The catalyst according to claim 1, wherein the OSC material is obtained by supporting noble metal on praseodymium oxysulfate. 貴金属がプラセオジムオキシ硫酸塩に対して0.5質量%のPtである、請求項2に記載の触媒。   The catalyst according to claim 2, wherein the noble metal is 0.5% by mass of Pt based on praseodymium oxysulfate. 触媒コート層には多孔質金属酸化物担体に貴金属を担持させたものをさらに含む、請求項1〜3のいずれか1項に記載の触媒。   The catalyst according to any one of claims 1 to 3, wherein the catalyst coat layer further comprises a porous metal oxide support on which a noble metal is supported.
JP2008044494A 2008-02-26 2008-02-26 High-activity catalyst for cleaning car exhaust gas in reducing atmosphere Withdrawn JP2009202054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008044494A JP2009202054A (en) 2008-02-26 2008-02-26 High-activity catalyst for cleaning car exhaust gas in reducing atmosphere

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008044494A JP2009202054A (en) 2008-02-26 2008-02-26 High-activity catalyst for cleaning car exhaust gas in reducing atmosphere

Publications (1)

Publication Number Publication Date
JP2009202054A true JP2009202054A (en) 2009-09-10

Family

ID=41144858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008044494A Withdrawn JP2009202054A (en) 2008-02-26 2008-02-26 High-activity catalyst for cleaning car exhaust gas in reducing atmosphere

Country Status (1)

Country Link
JP (1) JP2009202054A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103229348A (en) * 2010-10-19 2013-07-31 原子能和替代能源委员会 A battery for an electric motor of a motor vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103229348A (en) * 2010-10-19 2013-07-31 原子能和替代能源委员会 A battery for an electric motor of a motor vehicle

Similar Documents

Publication Publication Date Title
JP6703537B2 (en) Nitrous oxide removal catalyst for exhaust systems
ES2458499T5 (en) Method for preparing a NOx storage material
US9216384B2 (en) Method for improving lean performance of PGM catalyst systems: synergized PGM
US9555400B2 (en) Synergized PGM catalyst systems including platinum for TWC application
JP2853901B2 (en) Preparation of three-way catalyst containing highly dispersed ceria
CN102112211B (en) Nox storage materials and traps resistant to thermal aging
JP4292005B2 (en) Exhaust gas purification catalyst composition
US20140271387A1 (en) Optimal Composition of Copper-Manganese Spinel in ZPGM Catalyst for TWC Applications
JP5910833B2 (en) Exhaust gas purification catalyst
US20150148225A1 (en) Systems and Methods for Managing a Synergistic Relationship Between PGM and Copper-Manganese in a Three Way Catalyst Systems
SE436837B (en) PREPARATION OF A CURRENT CATALYST
BRPI0514502B1 (en) catalytically coated particle filter and process for producing and using it
JPH0631173A (en) Catalyst for purification of exhaust gas and method for purifying exhaust gas
JP2013223840A (en) Exhaust gas purification catalyst material and exhaust gas purifying catalyst containing the catalyst material
US20160167024A1 (en) Synergized PGM Catalyst Systems Including Rhodium for TWC Application
JP3870783B2 (en) Exhaust gas purification system for fuel cell vehicle and purification method for exhaust gas of fuel cell vehicle
JP2006224032A (en) Catalyst for cleaning exhaust gas
JP4853495B2 (en) Exhaust gas purification catalyst
CN108940279A (en) A kind of tail-gas from gasoline automobiles three-effect catalyst for purifying and preparation method thereof
JP2010069380A (en) Catalyst for cleaning exhaust gas
KR20150086490A (en) Oxidation catalyst and method for its preparation
JP2006297259A (en) Exhaust gas clarifying catalyst
JP2009202054A (en) High-activity catalyst for cleaning car exhaust gas in reducing atmosphere
JP4371600B2 (en) Exhaust gas purification catalyst and method for producing the same
JP6167834B2 (en) Exhaust gas purification catalyst

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110510