JP2009201256A - Transistor drive device - Google Patents

Transistor drive device Download PDF

Info

Publication number
JP2009201256A
JP2009201256A JP2008040359A JP2008040359A JP2009201256A JP 2009201256 A JP2009201256 A JP 2009201256A JP 2008040359 A JP2008040359 A JP 2008040359A JP 2008040359 A JP2008040359 A JP 2008040359A JP 2009201256 A JP2009201256 A JP 2009201256A
Authority
JP
Japan
Prior art keywords
transistor
state
drive
current
transistors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008040359A
Other languages
Japanese (ja)
Inventor
Takeshi Yoneyama
剛 米山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2008040359A priority Critical patent/JP2009201256A/en
Publication of JP2009201256A publication Critical patent/JP2009201256A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transistor drive device suitable for driving a transistor at the low side of a bridge circuit for driving a load. <P>SOLUTION: A transistor drive device 100 comprises a drive control part 10, a drive power supplying part 11, and a current level detecting part 12. The drive power supplying part 11 drives Q2 or Q4 which is a DMOSFET on the low side of an H bridge circuit only by PTr2, first; and when the Q2 or Q4 is discriminated as being in half-on state, based on the comparison signal from the current level detecting part 12 that compares the voltage level of a current detection resistor of the H bridge circuit with a voltage level in half-on state, a PTr3, as well as the PTr2, is turned on, a drive current is supplied to the gate terminal of Q2 or Q4 via these two transistors. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、モータ等の負荷を駆動するブリッジ回路のローサイド側のトランジスタをオフ状態からオン状態へと駆動するのに好適なトランジスタ駆動装置に関する。   The present invention relates to a transistor driving apparatus suitable for driving a low-side transistor of a bridge circuit that drives a load such as a motor from an off state to an on state.

従来、モータなどの負荷を駆動する回路として、高電位側(ハイサイド側)のトランジスタと、低電位側(ローサイド側)のトランジスタとから構成されるハーフ・ブリッジ回路、フル・ブリッジ回路などがある。このようなブリッジ回路は、ハイサイド側のトランジスタと、ローサイド側のトランジスタとがそれぞれ独立にオン又はオフに駆動制御され、負荷を通電又は非通電の状態にする。   Conventionally, as a circuit for driving a load such as a motor, there are a half-bridge circuit, a full-bridge circuit, and the like including a transistor on a high potential side (high side) and a transistor on a low potential side (low side). . In such a bridge circuit, the high-side transistor and the low-side transistor are independently driven to be turned on or off, and the load is turned on or off.

また、比較的高い電力を必要とし且つ高速なスイッチング動作を要求される負荷に対しては、ブリッジ回路を構成するトランジスタとして大電力用に設計されたMOSFET(metal-oxide-semiconductor field-effect transistor)が用いられる。大電力用のMOSFETとしては、例えば、DMOS(Double-Diffused MOSFET)などがある。
また、ブリッジ回路のローサイド側のトランジスタを駆動する回路としては、例えば、非特許文献1に記載のロー・サイド・ゲート・ドライブ回路がある。かかるゲート・ドライブ回路は、図14に示すように、NPNバイポーラ型トランジスタであるNPNTrと、PNPバイポーラ型トランジスタであるPNPTrと、ゲート直列抵抗RGと、ショットキ・バリア・ダイオードSDとを含んで構成される。NPNTrのエミッタ端子とPNPTrのエミッタ端子とが接続されており、更に、NPNTrのコレクタ端子が電源に接続され、PNPTrのコレクタ端子が接地されて、エミッタ・フォロア回路を構成している。NPNTrとPNPTrとの接続部はゲート直列抵抗RGを介してブリッジ回路のローサイド側のFETQ2のゲート端子に電気的に接続されている。更に、RGと並列にSDが、Q2のターン・オン時にはオフとなる方向に接続されている。
For loads that require relatively high power and require high-speed switching operation, a MOSFET (metal-oxide-semiconductor field-effect transistor) designed for high power as a transistor that constitutes a bridge circuit Is used. An example of a high power MOSFET is DMOS (Double-Diffused MOSFET).
Further, as a circuit for driving the transistor on the low side of the bridge circuit, for example, there is a low side gate drive circuit described in Non-Patent Document 1. As shown in FIG. 14, the gate drive circuit includes an NPNTr that is an NPN bipolar transistor, a PNPTr that is a PNP bipolar transistor, a gate series resistance RG, and a Schottky barrier diode SD. Is done. The emitter terminal of the NPNTr and the emitter terminal of the PNPTr are connected, the collector terminal of the NPNTr is connected to the power source, and the collector terminal of the PNPTr is grounded to constitute an emitter-follower circuit. The connection between NPNTr and PNPTr is electrically connected to the gate terminal of the FET Q2 on the low side of the bridge circuit via a gate series resistor R G. Further, SD is connected in parallel with RG in a direction that turns off when Q2 is turned on.

従って、NPNTrとPNPTrの共通の入力端子にパルス・ジェネレータ(以下、PGという)からハイレベル(以下、Hレベルという)の信号が入力されると、NPNTrがオン状態に、PNPTr、SDはオフ状態になる。これによって、NPNTrのコレクタ−エミッタ間を電流が流れ、この電流がRGを介してQ2のゲートに流れ込む。この流れ込む電流は、Q2の入力容量Ciss(電極間容量+α)をチャージして、Q2のゲート電圧を駆動電位にまで引き上げ、Q2をオン状態へと駆動する。 Therefore, when a high level (hereinafter referred to as H level) signal is input from a pulse generator (hereinafter referred to as PG) to the common input terminal of NPNTr and PNPTr, NPNTr is turned on and PNPTr and SD are turned off. become. As a result, a current flows between the collector and emitter of the NPNTr, and this current flows into the gate of Q2 via R G. This flowing current charges the input capacitance C iss (interelectrode capacitance + α) of Q2, raises the gate voltage of Q2 to the drive potential, and drives Q2 to the on state.

一方、入力端子にPGからローレベル(以下、Lレベルという)の信号が入力されると、PNPTr、SDがオン状態に、NPNTrはオフ状態になる。これにより、Q2のゲート電流(Cissの蓄積電荷)がRGをパスしてSDを流れ、PNPTrのエミッタ−コレクタ間を通ってグラウンド(低電位側)に放出される。そして、Cissの蓄積電荷が放出されるとQ2がオフ状態となる。
パワーMOSFET活用の基礎と実際、稲葉 保著、CQ出版社、2004年初版、P.053〜054
On the other hand, when a low level (hereinafter referred to as L level) signal is input from the PG to the input terminal, the PNPTr and SD are turned on and the NPNTr is turned off. As a result, the gate current of Q2 (the accumulated charge of Ciss ) flows through SD through R G, and is discharged to the ground (low potential side) through the emitter and collector of PNPTr. When the accumulated charge of Ciss is released, Q2 is turned off.
Fundamentals and actual use of power MOSFET, Yasu Inaba, CQ Publisher, 2004, first edition, P.053-054

しかしながら、上記従来技術においては、Q2がオフ状態からオン状態へと移行する途中において、Q2トランジスタのゲート−ドレイン間容量Cgdによるミラー効果の影響によって、図15に示すように、Q2のゲート電位(入力波形)とドレイン電位(出力波形)とが中間電位で一定になる状態(ハーフ・オン状態)が発生する。図15において、横軸は時間[μs]、縦軸は電圧[V]である。特に、Q2のCgdが大きくなるほどハーフ・オン状態の期間は長くなり、ブリッジ回路の動作に不具合を引き起こす恐れがある。また、このハーフ・オン状態は、特にHブリッジ回路のトランジスタのオン・オフ動作時にハイサイド側のトランジスタとローサイド側のトランジスタとの間に多大な貫通電流を生じさせて、消費電流の増大化を引き起こす恐れがあった。 However, in the above prior art, during the transition of Q2 from the OFF state to the ON state, as shown in FIG. 15, the gate potential of Q2 is affected by the mirror effect due to the gate-drain capacitance C gd of the Q2 transistor. A state (half-on state) in which the (input waveform) and the drain potential (output waveform) are constant at an intermediate potential occurs. In FIG. 15, the horizontal axis represents time [μs] and the vertical axis represents voltage [V]. In particular, as the C gd of Q2 increases, the half-on state period becomes longer, which may cause problems in the operation of the bridge circuit. In addition, this half-on state causes a large through current between the high-side transistor and the low-side transistor, particularly during the on / off operation of the H-bridge circuit transistor, thereby increasing current consumption. There was a risk of causing it.

そこで、本発明は、このような従来の技術の有する未解決の課題に着目してなされたものであって、負荷を駆動するブリッジ回路のローサイド側のトランジスタを駆動するのに好適なトランジスタ駆動装置を提供することを目的としている。   Therefore, the present invention has been made paying attention to such an unsolved problem of the conventional technology, and is suitable for driving a transistor on the low side of a bridge circuit for driving a load. The purpose is to provide.

〔形態1〕 上記目的を達成するために、形態1のトランジスタ駆動装置は、駆動対象である負荷に電気的に接続されるハイサイド側の第1のトランジスタとローサイド側の第2のトランジスタとを含み、前記第1及び第2のトランジスタをオン又はオフにすることで前記負荷が通電又は非通電の状態となるブリッジ回路の前記第2のトランジスタを駆動するトランジスタ駆動装置であって、第1電源電位の供給される第1電源ノードと、前記第1電源電位よりも低電位の第2電源電位の供給される第2電源ノードと、前記第1電源ノードと前記第2電源ノードとの間に並列に接続された、第1の入力でオン・オフする第3のトランジスタ及び第2の入力でオン・オフする第4のトランジスタとを含み、前記第3及び第4のトランジスタの電流供給端子を前記第2のトランジスタの駆動端子に電気的に接続して、前記第3及び第4のトランジスタの一方又は両方をオンにしたときに前記第2のトランジスタの前記駆動端子に駆動電力を供給する駆動電力供給手段と、前記第2のトランジスタのオフからオンへの移行途中における、該第2のトランジスタの出力電圧が中間電位で略一定となるハーフ・オン状態を検出する駆動状態検出手段と、前記第2のトランジスタをオフからオンにするときに、前記第1及び第2の入力を制御して前記第4のトランジスタよりも先に前記第3のトランジスタをオンにし、前記駆動状態検出手段で前記ハーフ・オン状態が検出されると前記第1及び第2の入力を制御して前記第3のトランジスタに加えて前記第4のトランジスタをオンにする駆動制御手段と、を備える。   [Mode 1] In order to achieve the above object, a transistor driving apparatus according to mode 1 includes a high-side first transistor and a low-side second transistor that are electrically connected to a load to be driven. A transistor driver for driving the second transistor of the bridge circuit in which the load is energized or de-energized by turning on or off the first and second transistors, the first power supply A first power supply node supplied with a potential, a second power supply node supplied with a second power supply potential lower than the first power supply potential, and between the first power supply node and the second power supply node A third transistor that is turned on / off at a first input and a fourth transistor that is turned on / off at a second input, connected in parallel, and the electric power of the third and fourth transistors. When the supply terminal is electrically connected to the drive terminal of the second transistor and one or both of the third and fourth transistors are turned on, the drive power is supplied to the drive terminal of the second transistor. Drive power supply means for supplying, and drive state detection means for detecting a half-on state in which the output voltage of the second transistor becomes substantially constant at an intermediate potential during the transition from the OFF state to the ON state of the second transistor When the second transistor is turned on from off, the first and second inputs are controlled to turn on the third transistor before the fourth transistor, and the driving state is detected. Drive control for controlling the first and second inputs to turn on the fourth transistor in addition to the third transistor when the means detects the half-on state Means.

このような構成であれば、駆動制御手段が、第1及び第2の入力を制御して第3のトランジスタをオン状態にすると、第2のトランジスタに駆動電位が供給され駆動電流の供給が開始される。駆動電流が供給されると、第2のトランジスタはその入力容量がチャージされチャージ量の増加に伴いオフからオンへと移行していく。このオフからオンへの移行途中において、駆動状態検出手段によって、第2のトランジスタがハーフ・オン状態となったことが検出されると、駆動制御手段は、第1及び第2の入力を制御して、第3のトランジスタに加えて第4のトランジスタをオンにする。第4のトランジスタがオンされると、第2のトランジスタには、第3のトランジスタからの駆動電流に加え、第4のトランジスタからの駆動電流が供給される。   With this configuration, when the drive control unit controls the first and second inputs to turn on the third transistor, the drive potential is supplied to the second transistor and the supply of the drive current is started. Is done. When the drive current is supplied, the input capacitance of the second transistor is charged, and the second transistor shifts from off to on as the charge amount increases. During the transition from OFF to ON, when the drive state detection means detects that the second transistor is in the half-ON state, the drive control means controls the first and second inputs. Thus, the fourth transistor is turned on in addition to the third transistor. When the fourth transistor is turned on, the drive current from the fourth transistor is supplied to the second transistor in addition to the drive current from the third transistor.

これによって、第2のトランジスタには、ハーフ・オン状態のときに2つのトランジスタからの駆動電流が流れ込むことになり、入力容量のチャージ速度が上がって、従来のトランジスタ1つの駆動と比較して、ハーフ・オン状態となる期間を短くすることができるという効果が得られる。
更に、ハーフ・オン状態が検出されるまでは第3のトランジスタだけをオンにして電流を供給し、ハーフ・オン状態が検出されてから第4のトランジスタもオンにするようにしたので、トランジスタがハーフ・オン状態になるまでの急激な電位変動の発生を低減しつつ、ハーフ・オン状態の期間を短くすることができるという効果が得られる。
As a result, the drive current from the two transistors flows into the second transistor in the half-on state, the charge speed of the input capacitance is increased, and compared with the conventional drive of one transistor, The effect that the period which becomes a half-on state can be shortened is acquired.
Furthermore, until the half-on state is detected, only the third transistor is turned on to supply current, and after the half-on state is detected, the fourth transistor is also turned on. There is an effect that the period of the half-on state can be shortened while reducing the occurrence of a rapid potential fluctuation until the half-on state is reached.

ここで、トランジスタがハーフ・オン状態になるまでに発生する急激な電位変動は負荷に接続する配線等のインダクタ成分によるサージ電圧を発生させやすくし、これによるトランジスタの破壊(ゲート膜破壊やドレイン端子破壊など)を引き起こしやすくする。
また、特にHブリッジ回路では、縦に接続された、ハイサイド側の第1のトランジスタと、ローサイド側の第2のトランジスタとが同時にオン状態となる場合があるため、このときに両者に貫通電流が流れる。そのため、例えば、第3及び第4のトランジスタを同時にオンにしたり、最初から第3のトランジスタよりも電流供給能力の大きいトランジスタを用いたりして、第2のトランジスタを駆動した場合は、トランジスタのゲート電位が第3のトランジスタだけで駆動したときよりも高くなり(VTHより高い電位で一度フラットになる)、両者に流れる貫通電流を大きくしてしまう可能性がある。
Here, sudden potential fluctuations that occur before the transistor is in a half-on state make it easy to generate a surge voltage due to inductor components such as wiring connected to the load. Destruction).
In particular, in the H-bridge circuit, the first transistor on the high side and the second transistor on the low side connected in the vertical direction may be turned on at the same time. Flows. Therefore, for example, when the second transistor is driven by turning on the third and fourth transistors at the same time or using a transistor having a larger current supply capacity than the third transistor from the beginning, the gate of the transistor The potential becomes higher than when driven by only the third transistor (it becomes flat once at a potential higher than V TH ), and there is a possibility that the through current flowing through both of them will be increased.

つまり、ハーフ・オン状態になるまでは、比較的ゆっくりと入力容量のチャージを行ない、ハーフ・オン状態になってから一気にチャージを行うことで、サージ電圧の発生や貫通電流の増加を引き起こし難くしつつ、チャージ速度を増加させることができる。
ここで、上記ハーフ・オン状態とは、トランジスタの入力容量のチャージ中に、ミラー効果の影響で入力容量が増加するために発生する状態であり、トランジスタの出力電圧が中間の電位で略一定となる状態のことである。具体例を挙げると、例えば、トランジスタがMOSFETである場合は、ゲート駆動によって入力容量のチャージ中に、該MOSFETのゲート電圧がミラー効果の影響で中間電位で略一定となる期間が発生する。この期間では、FETの出力電圧(ドレイン電圧)も略一定となる。
また、上記電流供給端子は、第3及び第4のトランジスタが、バイポーラトランジスタであれば、例えば、エミッタ端子となり、FETであれば、例えば、ドレイン端子となる。
In other words, the input capacitance is charged relatively slowly until the half-on state is reached, and charging is performed at a stroke after the half-on state is reached, making it difficult to generate surge voltage or increase the through current. However, the charge rate can be increased.
Here, the half-on state is a state that occurs because the input capacitance increases due to the effect of the Miller effect during charging of the input capacitance of the transistor, and the output voltage of the transistor is substantially constant at an intermediate potential. It is a state. As a specific example, for example, when the transistor is a MOSFET, a period in which the gate voltage of the MOSFET becomes substantially constant at an intermediate potential occurs due to the effect of the Miller effect during charging of the input capacitance by gate driving. During this period, the output voltage (drain voltage) of the FET is also substantially constant.
The current supply terminal is, for example, an emitter terminal when the third and fourth transistors are bipolar transistors, and is a drain terminal, for example, when the FET is an FET.

〔形態2〕 更に、形態2のトランジスタ駆動装置は、形態1に記載のトランジスタ駆動装置において、前記第4のトランジスタは、前記第3のトランジスタよりも電流供給能力の大きいトランジスタサイズである。   [Mode 2] Further, the transistor drive device according to mode 2 is the transistor drive device according to mode 1, wherein the fourth transistor has a transistor size having a larger current supply capability than the third transistor.

このような構成であれば、前記ハーフ・オン状態になるまでは、サイズの比較的小さい(電流供給能力の小さい)第3のトランジスタで第2のトランジスタの入力容量をチャージし、前記ハーフ・オン状態となると、第3のトランジスタに加えてサイズの比較的大きい(電流供給能力の大きい)第4のトランジスタで第2のトランジスタの入力容量をチャージすることができる。これにより、前記ハーフ・オン状態となるまでは、比較的少ない電流量でチャージし、前記ハーフ・オン状態となると比較的大きい電流量で一気に入力容量をチャージすることができるという効果が得られる。   In such a configuration, until the half-on state is reached, the third transistor having a relatively small size (small current supply capability) is charged with the input capacitance of the second transistor, and the half-on state is obtained. In this state, in addition to the third transistor, the fourth transistor having a relatively large size (large current supply capability) can charge the input capacitance of the second transistor. Thereby, it is possible to charge with a relatively small amount of current until the half-on state is reached, and to charge the input capacitance at a stretch with a relatively large amount of current when the half-on state is established.

〔形態3〕 更に、形態3のトランジスタ駆動装置は、形態2に記載のトランジスタ駆動装置において、前記駆動制御手段は、前記ハーフ・オン状態が検出されると前記第3のトランジスタに代えて前記第4のトランジスタをオンにするように前記第1及び第2の入力を制御する。
このような構成であれば、前記ハーフ・オン状態になるまでは、サイズの比較的小さい(電流供給能力の小さい)第3のトランジスタで第2のトランジスタの入力容量をチャージし、前記ハーフ・オン状態となると、第3のトランジスタに代えてサイズの比較的大きい(電流供給能力の大きい)第4のトランジスタで第2のトランジスタの入力容量をチャージすることができる。つまり、第3及び第4のトランジスタのサイズが異なる場合(電流供給能力の異なる場合)は、ハーフ・オン状態になったときに、2つともオンにするのではなく、第4のトランジスタだけをオン状態にする。
[Mode 3] Further, the transistor drive device according to mode 3 is the transistor drive device according to mode 2, wherein the drive control means replaces the third transistor when the half-on state is detected. The first and second inputs are controlled to turn on four transistors.
In such a configuration, until the half-on state is reached, the third transistor having a relatively small size (small current supply capability) is charged with the input capacitance of the second transistor, and the half-on state is obtained. In this state, the input capacitance of the second transistor can be charged by a fourth transistor having a relatively large size (a large current supply capability) instead of the third transistor. In other words, when the sizes of the third and fourth transistors are different (when the current supply capability is different), when the half-on state is entered, not both of them are turned on, but only the fourth transistor is turned on. Turn on.

〔形態4〕 更に、形態4のトランジスタ駆動装置は、形態1乃至3のいずれか1に記載のトランジスタ駆動装置において、前記第1及び第2のトランジスタは、電界効果トランジスタであり、前記第2のトランジスタの駆動端子はゲート端子である。
このような構成であれば、電界効果トランジスタである第2のトランジスタのターン・オン時間(入力容量のチャージ時間)を短縮することができ、従来と比較して、前記ハーフ・オン状態となる期間を短くすることができるという効果が得られる。
[Mode 4] Furthermore, the transistor drive device according to mode 4 is the transistor drive device according to any one of modes 1 to 3, wherein the first and second transistors are field effect transistors, and the second The drive terminal of the transistor is a gate terminal.
With such a configuration, the turn-on time (charge time of the input capacitor) of the second transistor, which is a field effect transistor, can be shortened, and the period during which the half-on state is achieved as compared with the conventional case. Can be shortened.

ここで、上記電界効果トランジスタ(FET)が、例えば、大電力用に設計されたものである場合は、第2のトランジスタの入力容量が比較的大きくなり、それだけ前記ハーフ・オン状態の期間が長くなる。この入力容量は、電流量やオン状態時の抵抗の大きさなどとのトレードオフとなる。つまり、FETを大電流且つ低抵抗にしたい場合は、トランジスタサイズを大きくする必要があり入力容量も大きくなる。   Here, when the field effect transistor (FET) is designed for high power, for example, the input capacity of the second transistor becomes relatively large, and the half-on state period is increased accordingly. Become. This input capacitance is a trade-off between the amount of current and the magnitude of resistance in the on state. That is, when it is desired to make the FET have a large current and a low resistance, it is necessary to increase the transistor size and the input capacitance also increases.

〔形態5〕 更に、形態5のトランジスタ駆動装置は、形態1乃至請求項4のいずれか1に記載のトランジスタ駆動装置において、前記駆動状態検出手段は、前記負荷を通って前記第2のトランジスタに流れる電流の電流レベルを検出する電流検出部と、前記電流検出部で検出した電流レベルと前記第2のトランジスタが前記ハーフ・オン状態となるときの所定の電流レベルとを比較する電流レベル比較部とを有し、前記電流検出部で検出される電流レベルが前記所定の電流レベルとなったときに、前記ハーフ・オン状態を検出する。   [Mode 5] Further, the transistor drive device according to mode 5 is the transistor drive device according to any one of modes 1 to 4, wherein the drive state detection means passes through the load to the second transistor. A current detection unit that detects a current level of a flowing current; and a current level comparison unit that compares a current level detected by the current detection unit and a predetermined current level when the second transistor is in the half-on state. The half-on state is detected when the current level detected by the current detection unit reaches the predetermined current level.

このような構成であれば、第3のトランジスタがオン状態になり、第2のトランジスタに駆動電流が供給されると、駆動状態検出手段は、電流検出部において、負荷を通って第2のトランジスタに流れる電流の電流レベルを検出する。電流レベルが検出されると、電流レベル比較部において、検出された電流レベルと予め用意された前記ハーフ・オン状態時の電流レベル(以下、不完全電流レベルという)とが比較される。そして、駆動制御手段は、この比較結果から、検出された電流レベルの方が不完全電流レベルよりも小さいレベルであれば、第3のトランジスタのみをオン状態にする。一方、検出された電流レベルが不完全電流レベル以上となった場合は、第3のトランジスタに加えて又は代えて、第4のトランジスタをオン状態にする。   With such a configuration, when the third transistor is turned on and a driving current is supplied to the second transistor, the driving state detecting means passes the load through the second transistor in the current detecting unit. The current level of the current flowing in When the current level is detected, the current level comparison unit compares the detected current level with a prepared current level in the half-on state (hereinafter referred to as an incomplete current level). If the detected current level is smaller than the incomplete current level based on the comparison result, the drive control means turns on only the third transistor. On the other hand, when the detected current level is equal to or higher than the incomplete current level, the fourth transistor is turned on in addition to or instead of the third transistor.

これにより、負荷の特性や第2のトランジスタの特性などに応じた不完全電流レベルを予め実験等によって得ておくことで、前記ハーフ・オン状態を確実に検出することができるという効果が得られる。
ここで、上記電流レベルの比較は、電流レベルを電圧レベルに変換して行っても良い。
As a result, the incomplete current level according to the characteristics of the load, the characteristics of the second transistor, and the like is obtained in advance by experiments or the like, so that the half-on state can be reliably detected. .
Here, the comparison of the current level may be performed by converting the current level into a voltage level.

〔形態6〕 更に、形態6のトランジスタ駆動装置は、形態1乃至4のいずれか1に記載のトランジスタ駆動装置において、前記駆動状態検出手段は、前記第2のトランジスタの前記負荷との接続部の電圧レベルを検出する電圧検出部と、前記電圧検出部で検出される前記電圧レベルと前記第2のトランジスタが前記ハーフ・オン状態となるときの所定の電圧レベルとを比較する電圧レベル比較部とを有し、前記電圧検出部で検出される電圧レベルが前記所定の電圧レベルとなったときに、前記ハーフ・オン状態を検出する。   [Mode 6] Further, the transistor drive device according to Mode 6 is the transistor drive device according to any one of Modes 1 to 4, wherein the drive state detection means is configured to connect the load of the second transistor to the load. A voltage detection unit that detects a voltage level; and a voltage level comparison unit that compares the voltage level detected by the voltage detection unit with a predetermined voltage level when the second transistor is in the half-on state; And the half-on state is detected when the voltage level detected by the voltage detector becomes the predetermined voltage level.

このような構成であれば、第3のトランジスタがオン状態になり、第2のトランジスタに駆動電流が供給されると、駆動状態検出手段は、電圧検出部において、第2のトランジスタと負荷との電気的な接続部の電圧レベルを検出する。電圧レベルが検出されると、電圧レベル比較部において、検出された電圧レベルと予め用意された前記ハーフ・オン状態時の電圧レベル(以下、不完全電圧レベルという)とが比較される。そして、駆動制御手段は、この比較結果から、検出された電圧レベルの方が不完全電圧レベルよりも小さいレベルであれば、第3のトランジスタのみをオン状態にする。一方、検出された電圧レベルが不完全電圧レベル以上となった場合は、第3のトランジスタに加えて又は代えて、第4のトランジスタをオン状態にする。   With such a configuration, when the third transistor is turned on and a driving current is supplied to the second transistor, the driving state detecting means detects the second transistor and the load in the voltage detecting unit. Detect the voltage level of electrical connections. When the voltage level is detected, the voltage level comparison unit compares the detected voltage level with a previously prepared voltage level in the half-on state (hereinafter referred to as an incomplete voltage level). If the detected voltage level is smaller than the incomplete voltage level based on the comparison result, the drive control means turns on only the third transistor. On the other hand, when the detected voltage level becomes equal to or higher than the incomplete voltage level, the fourth transistor is turned on in addition to or instead of the third transistor.

これにより、負荷の特性や第2のトランジスタの特性などに応じた不完全電圧レベルを予め実験等によって得ておくことで、前記ハーフ・オン状態を確実に検出することができるという効果が得られる。   As a result, it is possible to obtain the effect that the half-on state can be reliably detected by obtaining an incomplete voltage level according to the characteristics of the load, the characteristics of the second transistor, and the like in advance through experiments or the like. .

〔形態7〕 更に、形態7のトランジスタ駆動装置は、形態6に記載のトランジスタ駆動装置において、前記第2のトランジスタに駆動電流が供給されてからの経過時間を計測する時間計測手段と、前記電圧検出部で検出される電圧レベルが前記所定の電圧レベルとなるときの前記時間計測部の計測時間の情報を記録する時間記録手段とを更に備え、前記駆動制御手段は、前記時間記録手段によって計測時間が記録されると、以降は、前記時間計測手段の計測時間が前記記録した計測時間になるタイミングで、前記第4のトランジスタをオンにするように前記第1及び第2の入力を制御する。   [Mode 7] Furthermore, the transistor drive device according to mode 7 is the transistor drive device according to mode 6, wherein a time measuring means for measuring an elapsed time since a drive current is supplied to the second transistor, and the voltage A time recording unit that records information of a measurement time of the time measurement unit when the voltage level detected by the detection unit becomes the predetermined voltage level, and the drive control unit is measured by the time recording unit When the time is recorded, thereafter, the first and second inputs are controlled so as to turn on the fourth transistor at the timing when the measurement time of the time measuring means becomes the recorded measurement time. .

このような構成であれば、第3のトランジスタがオンされ、第2のトランジスタに駆動電流が供給されると、時間計測手段によって、駆動電流の供給が開始されてからの時間が計測される。一方、電圧検出部では接続部の電圧レベルが検出され、電圧レベル比較部において、検出された電圧レベルと不完全電圧レベルとが比較される。そして、検出された電圧レベルが不完全電圧レベルになると、時間記録手段において、そのときの時間計測手段の計測時間が記録される。計測時間が記録されると、以降は、駆動制御手段は、第2のトランジスタをオフ状態からオン状態にするときに、時間計測手段の計測時間が、記録された計測時間になるまでは、第3のトランジスタのみをオンにして駆動電流を供給し、時間計測手段の計測時間が記録された計測時間になるタイミングで、第3のトランジスタに加えて又は代えて、第4のトランジスタをオンにする。   With such a configuration, when the third transistor is turned on and the driving current is supplied to the second transistor, the time from when the supply of the driving current is started is measured by the time measuring means. On the other hand, the voltage detection unit detects the voltage level of the connection unit, and the voltage level comparison unit compares the detected voltage level with the incomplete voltage level. When the detected voltage level becomes an incomplete voltage level, the time recording means records the measurement time of the time measurement means at that time. After the measurement time is recorded, the drive control means thereafter changes the first transistor until the measurement time of the time measurement means reaches the recorded measurement time when turning the second transistor from the off state to the on state. Only the third transistor is turned on to supply the drive current, and the fourth transistor is turned on in addition to or instead of the third transistor at the timing when the measured time of the time measuring means becomes the recorded measurement time. .

これにより、前記ハーフ・オン状態をより確実に検出することができるという効果が得られる。
更に、例えば、起動後に変動の少ない負荷(例えば、PCのファンモータなど)を駆動するときは、計測時間の記録後に、電圧レベル比較部の動作を完全に停止することができるので、低消費電流化できるという効果も得られる。
Thereby, the effect that the said half-on state can be detected more reliably is acquired.
Furthermore, for example, when driving a load with little fluctuation after startup (for example, a fan motor of a PC), the operation of the voltage level comparison unit can be completely stopped after recording the measurement time. The effect that it can be made is also obtained.

ここで、時間計測部は、第2のトランジスタに駆動電流の供給が開始されてからの経過時間を、例えば、カウンタ回路によって、外部から又は内部で供給されるクロックをカウントすることで計測する。そして、時間記録部は、不完全オン状態が発生したときのカウント値を記録し、次回からは、時間計測部のカウント値が記録されたカウント値になったときに不完全オン状態が発生したと判断する。   Here, the time measuring unit measures the elapsed time since the supply of the drive current to the second transistor is started, for example, by counting a clock supplied from the outside or inside by a counter circuit. Then, the time recording unit records the count value when the incomplete on-state occurs, and from the next time, the incomplete on-state occurs when the count value of the time measuring unit reaches the recorded count value. Judge.

〔形態8〕 更に、形態8のトランジスタ駆動装置は、形態1乃至7のいずれか1に記載のトランジスタ駆動装置において、前記ブリッジ回路は、ハイサイド側の一対の前記第1のトランジスタと、ローサイド側の一対の前記第2のトランジスタとから構成され、前記負荷への通電方向に応じて、対角に位置する第1のトランジスタ及び第2のトランジスタがオン又はオフされるHブリッジ型の回路である。   [Mode 8] Further, the transistor drive device according to mode 8 is the transistor drive device according to any one of modes 1 to 7, wherein the bridge circuit includes a pair of the first transistor on the high side and the low side side. A pair of the second transistors, and an H-bridge type circuit in which the first transistor and the second transistor located diagonally are turned on or off according to the direction of energization to the load. .

このような構成であれば、負荷への通電方向を任意に変えることができるHブリッジ型の回路のローサイド側の第2のトランジスタに対しても、従来と比較して、ハーフ・オン状態への移行時の急激な電位変動の発生を抑えつつ、前記ハーフ・オン状態となる期間を短くすることができるという効果が得られる。   With such a configuration, the second transistor on the low side of the H-bridge circuit that can arbitrarily change the direction of energization of the load can be changed to the half-on state as compared with the conventional case. The effect that the period during which the half-on state is achieved can be shortened while suppressing the occurrence of sudden potential fluctuations during the transition can be obtained.

〔形態9〕 更に、形態9のトランジスタ駆動装置は、形態1乃至8のいずれか1に記載のトランジスタ駆動装置において、前記駆動電力供給手段は、前記第3のトランジスタと前記第2電源ノードとの間に直列に接続された、第3の入力でオン・オフする第5のトランジスタと、前記第4のトランジスタと前記第2電源ノードとの間に直列に接続された、第4の入力でオン・オフする第6のトランジスタとを更に含み、前記第3及び第5のトランジスタの接続部と、前記第4及び第6のトランジスタの接続部とを前記第2のトランジスタの駆動端子に電気的に接続して、前記第3及び第4のトランジスタをオフにし且つ前記第5及び第6のトランジスタの一方又は両方をオンにしたときに前記第2のトランジスタから前記第2電源ノード側に電流を引き込む構成となっており、前記駆動制御手段は、前記第2のトランジスタをオン状態からオフ状態にするときに、前記第3及び第4のトランジスタを両方ともオフ状態にし、前記第5及び第6のトランジスタを両方ともオン状態にするように前記第1〜第4の入力を制御する。   [Mode 9] Furthermore, the transistor drive device according to Mode 9 is the transistor drive device according to any one of Modes 1 to 8, wherein the drive power supply means includes the third transistor and the second power supply node. A fifth transistor that is connected in series between the fourth transistor and the fourth power source node, and that is connected in series between the fourth transistor and the second power supply node. A sixth transistor that is turned off, and the connection portion of the third and fifth transistors and the connection portion of the fourth and sixth transistors are electrically connected to the drive terminal of the second transistor. Connected to the second power supply node side from the second transistor when the third and fourth transistors are turned off and one or both of the fifth and sixth transistors are turned on The drive controller is configured to turn off both the third and fourth transistors when turning the second transistor from an on state to an off state. The first to fourth inputs are controlled so that both of the sixth transistors are turned on.

このような構成であれば、第2のトランジスタをオン状態からオフ状態にするときに、その入力容量として蓄積された電荷を2つのトランジスタを介して第2電源ノード側に引き込むことができるので、トランジスタ1つで引き込んでいた従来と比較して第2のトランジスタのターン・オフ時間を短縮することができる。これにより、オフ状態への移行中に発生する不完全オン状態の期間を従来と比較して短くすることができるという効果が得られる。   With such a configuration, when the second transistor is turned from the on state to the off state, the charge accumulated as the input capacitance can be drawn to the second power supply node side via the two transistors. The turn-off time of the second transistor can be shortened as compared with the conventional case where the single transistor is used. Thereby, the effect that the period of the incomplete ON state generated during the transition to the OFF state can be shortened as compared with the conventional case is obtained.

〔第1の実施の形態〕
以下、本発明の第1の実施の形態を図面に基づき説明する。図1〜図9は、本発明に係るトランジスタ駆動装置の第1の実施の形態を示す図である。
本実施の形態において、本発明に係るトランジスタ駆動装置を、モータを駆動するHブリッジ回路に適用し、このHブリッジ回路のローサイド側のトランジスタを駆動する構成とした。
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. 1 to 9 are diagrams showing a first embodiment of a transistor driving device according to the present invention.
In the present embodiment, the transistor driving device according to the present invention is applied to an H-bridge circuit that drives a motor, and the low-side transistor of the H-bridge circuit is driven.

まず、本発明に係るモータ駆動装置1の構成を図1に基づき説明する。図1は、本発明に係るモータ駆動装置1の構成を示すブロック図である。
モータ駆動装置1は、図1に示すように、トランジスタ駆動装置100と、Hブリッジ回路200とを含んで構成される。
トランジスタ駆動装置100は、不図示のマイコンからの制御信号に基づき、Hブリッジ回路200を構成する各トランジスタを駆動する。
First, the structure of the motor drive device 1 according to the present invention will be described with reference to FIG. FIG. 1 is a block diagram showing a configuration of a motor drive device 1 according to the present invention.
As shown in FIG. 1, the motor driving device 1 includes a transistor driving device 100 and an H bridge circuit 200.
The transistor driving device 100 drives each transistor constituting the H bridge circuit 200 based on a control signal from a microcomputer (not shown).

Hブリッジ回路200は、自身を構成するハイサイド側のトランジスタとローサイド側のトランジスタとが、トランジスタ駆動装置100によってそれぞれ独立に駆動制御されると、その制御内容に応じて、駆動対象である直流モータ2を、正回転駆動、逆回転駆動、ブレーキ駆動などする。   When the high-side transistor and the low-side transistor that constitute the H-bridge circuit 200 are independently driven and controlled by the transistor driving device 100, the DC motor that is a driving target is controlled according to the control contents. 2 is forward rotation drive, reverse rotation drive, brake drive, and the like.

次に、図2に基づき、Hブリッジ回路200の詳細な構成を説明する。
ここで、図2は、Hブリッジ回路200の詳細な構成を示す図である。
Hブリッジ回路200は、図2に示すように、スイッチング素子としての役割を果たす4つのNチャンネル型のDMOSFETQ1〜Q4を、Q1、Q3をハイサイド側に、Q2、Q4をローサイド側に配してHブリッジ型に接続して構成される。
具体的に、Q1のソース端子とQ2のドレイン端子とを電気的に接続し、Q3のソース端子とQ4のドレイン端子とを電気的に接続し、Q1及びQ2の接続部から出力を取り出す出力端子OUTAと、Q3及びQ4の接続部から出力を取り出す出力端子OUTBとをそれぞれ形成して構成される。そして、このOUTA及びOUTBには、直流モータ2が接続されている。また、D1〜D4は、Q1〜Q4の内部に寄生的に作られたボディダイオードである。
Next, a detailed configuration of the H bridge circuit 200 will be described with reference to FIG.
Here, FIG. 2 is a diagram showing a detailed configuration of the H-bridge circuit 200.
As shown in FIG. 2, the H-bridge circuit 200 includes four N-channel type DMOSFETs Q1 to Q4 that function as switching elements, with Q1 and Q3 on the high side and Q2 and Q4 on the low side. Connected to an H-bridge type.
Specifically, the source terminal of Q1 and the drain terminal of Q2 are electrically connected, the source terminal of Q3 and the drain terminal of Q4 are electrically connected, and an output terminal that takes out an output from the connection part of Q1 and Q2 OUTA and an output terminal OUTB for taking out an output from a connection portion between Q3 and Q4 are formed. A DC motor 2 is connected to OUTA and OUTB. D1 to D4 are body diodes formed parasitically inside Q1 to Q4.

このHブリッジ回路200のハイサイド側(Q1、Q3のドレイン端子)には、モータの駆動電源から駆動電圧VBBが供給されるようになっている。一方、ローサイド側(Q2、Q4のソース端子側)は、電流検出用の抵抗Rsを介してグラウンドに接続されている。
Hブリッジ回路200のQ1〜Q4のゲート端子には、トランジスタ駆動装置100からの駆動線がそれぞれ電気的に接続されており、該駆動線を介して供給される駆動電位及び駆動電流に基づきQ1〜Q4がそれぞれ独立に駆動制御される。
A driving voltage V BB is supplied from the driving power source of the motor to the high side (the drain terminals of Q1 and Q3) of the H bridge circuit 200. On the other hand, the low side (the source terminal side of Q2 and Q4) is connected to the ground via a resistor Rs for current detection.
The drive lines from the transistor drive device 100 are electrically connected to the gate terminals of Q1 to Q4 of the H bridge circuit 200, respectively, and Q1 to Q4 are based on the drive potential and drive current supplied via the drive lines. Q4 is independently driven and controlled.

次に、図3に基づき、DMOSFET(Q1〜Q4)の入力容量について説明する。
ここで、図3は、DMOSFETの等価回路を示す図である。
DMOSFETは、図3に示すように、ゲート−ドレイン電極間の電極間容量Cgdと、ゲート−ソース電極間の電極間容量Cgsとを有する。ゲート電圧が0[V]のときのCgdとCgsとの和は入力容量Cissと呼ばれる。このようなDMOSFETをオン状態に駆動するには、Cissをチャージする必要がある。しかしながら、DMOSFETがオフからオンへと移行する過程において、ゲート−ソース間電圧VGSの変化によって、Cgdの容量が大きく変化するためCissの容量も大きく変化する(ミラー効果)。この見かけのCissは、下式(1)によって算出できる。

iss=Cgs+(1−AV)・Cgd ・・・(1)

上式(1)において、AVは電流増幅率である。
Next, the input capacitance of the DMOSFETs (Q1 to Q4) will be described with reference to FIG.
Here, FIG. 3 is a diagram showing an equivalent circuit of the DMOSFET.
As shown in FIG. 3, the DMOSFET has an interelectrode capacitance C gd between the gate and the drain electrode and an interelectrode capacitance C gs between the gate and the source electrode. The sum of C gd and C gs when the gate voltage is 0 [V] is called the input capacitance C iss . In order to drive such a DMOSFET to an ON state, C iss needs to be charged. However, in the process of transition to on-the DMOSFET is turned off, the gate - by a change in the source voltage V GS, greatly changes capacity C iss for capacity C gd changes significantly (mirror effect). This apparent C iss can be calculated by the following equation (1).

C iss = C gs + (1−A V ) · C gd (1)

In the above formula (1), AV is a current amplification factor.

ミラー効果の影響によって、オフからオンへと移行時のVGSが中間の電位で略一定になる状態が発生する。この状態が発生している期間は、ドレイン−ソース間電圧VDSも中間電位で略一定となる。この状態をハーフ・オン状態と呼ぶ。このハーフ・オン状態の期間は、Cissの容量の大きさに比例して長くなる。例えば、レイアウト換算で、300〜500[pF]などの大容量となると、ハーフ・オン状態の期間が長くなり、チャージ時間、放出時間の増加も重なって、ターン・オン時間、ターン・オフ時間も長くなる。 Due to the influence of the mirror effect, a state occurs in which V GS at the time of transition from OFF to ON becomes substantially constant at an intermediate potential. During this period, the drain-source voltage V DS is also substantially constant at the intermediate potential. This state is called a half-on state. The period of the half-on state becomes longer in proportion to the capacity of C iss . For example, when the capacity becomes 300 to 500 [pF] in terms of layout, the half-on state period becomes longer, the charging time and the discharge time increase, and the turn-on time and turn-off time also increase. become longer.

ハーフ・オン状態の期間が長いと、高抵抗状態のドレイン−ソース間に電流が流れる期間が長くなるため、DMOSFETの発熱による自身のゲート膜の破壊などの不具合が生じる可能性がある。従って、ハーフ・オン状態の期間は短ければ短いほどよく、本発明は、Hブリッジ回路200のローサイド側のトランジスタ(Q2、Q4)について、ハーフ・オン状態の期間を短くすることを目的としている。   If the half-on period is long, the period during which current flows between the drain and the source in the high resistance state becomes long, which may cause problems such as destruction of the gate film due to heat generation of the DMOSFET. Therefore, the shorter the half-on state period is, the better. The present invention aims to shorten the half-on period of the low-side transistors (Q2, Q4) of the H-bridge circuit 200.

次に、図4に基づき、トランジスタ駆動装置100の構成を説明する。
ここで、図4は、トランジスタ駆動装置100の概略構成を示すブロック図である。
トランジスタ駆動装置100は、図4に示すように、駆動制御部10と、駆動電力供給部11と、電流レベル検出部12とを含んで構成される。
駆動制御部10は、不図示のマイコンからの制御信号と電流レベル検出部12からの信号とに基づき、駆動電力供給部11の動作を制御する。
Next, the configuration of the transistor driving device 100 will be described with reference to FIG.
Here, FIG. 4 is a block diagram showing a schematic configuration of the transistor driving device 100.
As shown in FIG. 4, the transistor drive device 100 includes a drive control unit 10, a drive power supply unit 11, and a current level detection unit 12.
The drive control unit 10 controls the operation of the drive power supply unit 11 based on a control signal from a microcomputer (not shown) and a signal from the current level detection unit 12.

駆動電力供給部11は、ハイサイド側のQ1、Q3をそれぞれ独立に制御するハイサイド用の駆動回路と、ローサイド側のQ2、Q4をそれぞれ独立に制御するローサイド用の駆動回路を有し、マイコンからの制御信号及び駆動制御部10からの制御信号に基づき、Hブリッジ回路200のQ1〜Q4のオン・オフ動作を独立に制御する。
電流レベル検出部12は、Hブリッジ回路200の電流検出抵抗Rsを流れる電流のレベルを検出する。更に、検出した電流レベルを電圧レベルに変換し、該電圧レベルと基準電圧レベルとを比較して、この比較結果を示す信号(以下、比較信号signal_aという)を駆動制御部10に出力する。
The drive power supply unit 11 includes a high-side drive circuit that independently controls the high-side Q1 and Q3, and a low-side drive circuit that independently controls the low-side Q2 and Q4. On / off operation of Q1 to Q4 of the H bridge circuit 200 is independently controlled based on the control signal from the control signal and the control signal from the drive control unit 10.
The current level detection unit 12 detects the level of the current flowing through the current detection resistor Rs of the H bridge circuit 200. Further, the detected current level is converted into a voltage level, the voltage level is compared with a reference voltage level, and a signal indicating the comparison result (hereinafter referred to as a comparison signal signal_a) is output to the drive control unit 10.

次に、図5に基づき、駆動制御部10及び駆動電力供給部11の内部構成を説明する。
ここで、図5は、駆動制御部10及び駆動電力供給部11の内部構成を示すブロック図である。
駆動制御部10は、図5に示すように、駆動電力供給部11の第1LST(ローサイド・トランジスタ)駆動回路11cを制御する第1のTG(タイミングジェネレート)回路10aと、第2LST駆動回路11dを制御する第2のTG回路10bとを含んで構成される。
Next, the internal configuration of the drive control unit 10 and the drive power supply unit 11 will be described with reference to FIG.
Here, FIG. 5 is a block diagram showing an internal configuration of the drive control unit 10 and the drive power supply unit 11.
As shown in FIG. 5, the drive control unit 10 includes a first TG (timing generation) circuit 10a that controls a first LST (low-side transistor) drive circuit 11c of the drive power supply unit 11, and a second LST drive circuit 11d. And a second TG circuit 10b for controlling.

第1のTG回路10aは、マイコンからの制御信号ctrl3と不図示のオシレータからのクロック信号CKと電流レベル検出部12からの比較信号signal_aとに基づき第1LST駆動回路11cの動作を制御する制御信号cnt_PTr3(詳細は後述)を生成し、これを第1LST駆動回路11cに供給する。
第2のTG回路10bは、マイコンからの制御信号ctrl4とクロック信号CKと電流レベル検出部12からの比較信号signal_aとに基づき第2LST駆動回路11dの動作を制御する制御信号cnt_PTr3を生成し、これを第2LST駆動回路11dに供給する。
The first TG circuit 10a controls the operation of the first LST drive circuit 11c based on the control signal ctrl3 from the microcomputer, the clock signal CK from the oscillator (not shown), and the comparison signal signal_a from the current level detection unit 12. cnt_PTr3 (details will be described later) is generated and supplied to the first LST drive circuit 11c.
The second TG circuit 10b generates a control signal cnt_PTr3 for controlling the operation of the second LST drive circuit 11d based on the control signal ctrl4 from the microcomputer, the clock signal CK, and the comparison signal signal_a from the current level detection unit 12. Is supplied to the second LST drive circuit 11d.

次に、駆動電力供給部11は、図5に示すように、マイコンからの制御信号ctrl1に基づき、Hブリッジ回路200のQ1のオン・オフ動作を制御する第1HST駆動回路11aと、マイコンからの制御信号ctrl2に基づき、Q3のオン・オフ動作を制御する第2HST駆動回路11bとを含んで構成される。
更に、駆動電力供給部11は、マイコンからの制御信号ctrl3と、制御信号cnt_PTr2(詳細は後述)とに基づき、Hブリッジ回路200のQ2のオン・オフ動作を制御する第1LST駆動回路11cと、マイコンからの制御信号ctrl4と、第1のTG回路10aからの制御信号cnt_PTr3とに基づき、Q4のオン・オフ動作を制御する第2LST駆動回路11dとを含んで構成される。
Next, as shown in FIG. 5, the drive power supply unit 11 includes a first HST drive circuit 11a that controls the on / off operation of Q1 of the H bridge circuit 200 based on a control signal ctrl1 from the microcomputer, And a second HST driving circuit 11b for controlling the on / off operation of Q3 based on the control signal ctrl2.
The drive power supply unit 11 further includes a first LST drive circuit 11c that controls the on / off operation of the Q2 of the H bridge circuit 200 based on a control signal ctrl3 from the microcomputer and a control signal cnt_PTr2 (details will be described later); Based on the control signal ctrl4 from the microcomputer and the control signal cnt_PTr3 from the first TG circuit 10a, a second LST drive circuit 11d for controlling the on / off operation of Q4 is configured.

ここで、マイコンからの制御信号ctrl1〜ctrl4は、モータの駆動内容に応じてQ1〜Q4のオン・オフを制御する信号(例えば、PWM信号)であり、Q1〜Q4は、トランジスタ駆動装置100において、各DMOSFETに対応する制御信号がLレベルでオンに、Hレベルでオフに駆動制御される。   Here, the control signals ctrl1 to ctrl4 from the microcomputer are signals (for example, PWM signals) for controlling on / off of Q1 to Q4 according to the driving contents of the motor, and Q1 to Q4 are in the transistor driving device 100. The control signal corresponding to each DMOSFET is controlled to be turned on at the L level and turned off at the H level.

次に、図6に基づき、第1HST駆動回路11aの詳細な回路構成を説明する。
ここで、図6は、第1HST駆動回路11aの詳細な回路構成を示す図である。
第1HST駆動回路11aは、図6に示すように、Pチャンネル型の電界効果トランジスタPTr1、PTr10と、Nチャンネル型の電界効果トランジスタNTr1、NTr10と、レベルシフタ30と、電圧クランプ回路32とを含んで構成される。
PTr1とNTr1とは、電源電位VBB+VGL(VGH)の供給されるVGHノードと、電源電位VBBの供給されるVBBノードとの間に直列に接続されている。ここで、VBBはモータ駆動電位、VGHは、ハイサイド側のDMOSFET(Q1、Q3)のゲート駆動電位、VGLは、ローサイド側のDMOSFET(Q2、Q4)のゲート駆動電位である。
Next, a detailed circuit configuration of the first HST drive circuit 11a will be described with reference to FIG.
Here, FIG. 6 is a diagram showing a detailed circuit configuration of the first HST drive circuit 11a.
As shown in FIG. 6, the first HST drive circuit 11 a includes P-channel field effect transistors PTr1 and PTr10, N-channel field effect transistors NTr1 and NTr10, a level shifter 30, and a voltage clamp circuit 32. Composed.
PTr1 and NTr1 are connected in series between a V GH node supplied with a power supply potential V BB + V GL (V GH ) and a V BB node supplied with a power supply potential V BB . Here, V BB is the motor drive potential, V GH is the gate drive potential of the high-side DMOSFETs (Q1, Q3), and V GL is the gate drive potential of the low-side DMOSFETs (Q2, Q4).

より具体的に、PTr1のソース端子はVGHノードに電気的に接続され、ドレイン端子はNTr1のドレイン端子に電気的に接続され、NTr1のソース端子はVBBノードに電気的に接続されている。PTr10のソース端子はVGHノードに電気的に接続され、ドレイン端子はNTr10のドレイン端子に電気的に接続され、PTr10及びNTr10のゲート端子は電圧クランプ回路32に電気的に接続され、NTr10のソース端子は、電圧クランプ回路32とQ1及びQ2の接続部(OUTA)と電気的に接続されている。 More specifically, the source terminal of PTr1 is electrically connected to the V GH node, the drain terminal is electrically connected to the drain terminal of NTr1, and the source terminal of NTr1 is electrically connected to the V BB node. . The source terminal of PTr10 is electrically connected to the V GH node, the drain terminal is electrically connected to the drain terminal of NTr10, the gate terminals of PTr10 and NTr10 are electrically connected to the voltage clamp circuit 32, and the source of NTr10 The terminal is electrically connected to the voltage clamp circuit 32 and the connection part (OUTA) of Q1 and Q2.

PTr1とNTr1のゲート端子は、共通線でレベルシフタ30の出力端子と電気的に接続されている。PTr1とNTr1のドレイン接続部は、PTr10とNTr10のゲート接続部と電気的に接続され、PTr10とNTr10のドレイン接続部は、Q1のゲート端子に電気的に接続されている。
レベルシフタ30は、VGLと、VBBと、VGHとの3種類の電源電位に基づき、入力信号の電圧レベル0[V]〜VGL[V]を、VBB[V]〜VGH[V]にレベルシフトして、その信号を出力する回路である。
The gate terminals of PTr1 and NTr1 are electrically connected to the output terminal of the level shifter 30 through a common line. The drain connection part of PTr1 and NTr1 is electrically connected to the gate connection part of PTr10 and NTr10, and the drain connection part of PTr10 and NTr10 is electrically connected to the gate terminal of Q1.
The level shifter 30 includes a V GL, and V BB, on the basis of the three power supply potentials of the V GH, the voltage level of the input signal 0 [V] ~V GL [V] , V BB [V] ~V GH [ V] is a circuit that shifts the level to V and outputs the signal.

具体的に、マイコンからの制御信号ctrl1の信号電位V1がLレベル(例えば0[V])のときは、この信号の電圧レベルをVBB[V]までシフトして、VBB[V]の信号を出力する。この場合は、PTr1がオン、NTr1がオフとなり、PTr1を介して駆動電流がQ1のゲート端子に供給され、Q1をオフからオンへと駆動する。
一方、マイコンからの制御信号の信号電位V1がHレベル(例えば5[V])のときは、この信号の電圧レベルをVGH[V]にレベルシフトして、VGH[V]の信号を出力する。この場合は、NTr1がオン、PTr1がオフとなり、NTr1を介して、Q1の入力容量Cissに蓄積された電荷をVBBノード側へと引き込む。
Specifically, when the signal voltage V 1 of the control signal ctrl1 from the microcomputer is at L level (e.g. 0 [V]), the voltage level of the signal is shifted to V BB [V], V BB [V] The signal is output. In this case, PTr1 is turned on and NTr1 is turned off, and a drive current is supplied to the gate terminal of Q1 via PTr1 to drive Q1 from off to on.
On the other hand, when the signal voltage V 1 of the control signal from the microcomputer is at the H level (e.g., 5 [V]), the signal of the voltage level of the signal is level-shifted to V GH [V], V GH [V] Is output. In this case, NTr1 is on, PTr1 is turned off, via the NTr1, draw the charge accumulated in the input capacitance C iss of Q1 to V BB node side.

電圧クランプ回路32は、ツェナーダイオード等で構成されており、NTr10のゲート−ソース間に定格電圧以上の高い電圧が印加されないように保護する回路である。
なお、第2HST駆動回路11bは、駆動制御する対象がQ3となるだけで、第1HST駆動回路11aと同様の構成となる。
The voltage clamp circuit 32 is configured by a Zener diode or the like, and is a circuit that protects a voltage higher than the rated voltage from being applied between the gate and source of the NTr10.
The second HST drive circuit 11b has the same configuration as that of the first HST drive circuit 11a, except that the target to be driven is Q3.

次に、図7に基づき、第1LST駆動回路11cの詳細な回路構成を説明する。
ここで、図7は、第1LST駆動回路11cの詳細な回路構成を示す図である。
第1LST駆動回路11cは、図7に示すように、Pチャンネル型の電界効果トランジスタPTr2と、Nチャンネル型の電界効果トランジスタNTr2、NTr3と、PTr2よりも電流供給能力の大きいPチャンネル型の電界効果トランジスタPTr3と、レベルシフタ31とを含んで構成される。
Next, a detailed circuit configuration of the first LST driving circuit 11c will be described with reference to FIG.
Here, FIG. 7 is a diagram showing a detailed circuit configuration of the first LST driving circuit 11c.
As shown in FIG. 7, the first LST driving circuit 11c includes a P-channel field effect transistor PTr2, N-channel field effect transistors NTr2, NTr3, and a P-channel field effect having a larger current supply capability than PTr2. A transistor PTr3 and a level shifter 31 are included.

PTr2とNTr2とは、電源電位VGLの供給されるVGLノード(第1電源ノード)と、接地電位の供給される接地ノード(第2電源ノード)との間に直列に接続されており、PTr3とNTr3とは、VGLノードと、接地ノードとの間に直列に接続されている。そして、これら直列接続されたPTr2及びNTr2と、PTr3及びNTr3とは並列に接続されている。 PTr2 and NTr2 includes a V GL node supplied the power supply potential V GL (first power supply node) are connected in series between the ground node supplied a ground potential (second power supply node), PTr3 and NTr3 includes a V GL nodes are connected in series between the ground node. These PTr2 and NTr2 connected in series and PTr3 and NTr3 are connected in parallel.

より具体的に、PTr2のソース端子は、VGLノードに電気的に接続され、ドレイン端子はNTr2のドレイン端子に電気的に接続され、NTr2のソース端子は接地ノードに電気的に接続されている。PTr3のソース端子は、VGLノードに電気的に接続され、ドレイン端子はNTr3のドレイン端子に電気的に接続され、NTr3のソース端子は接地ノードに電気的に接続されている。 More specifically, the source terminal of PTr2 is electrically connected to the V GL node, the drain terminal is electrically connected to the drain terminal of NTr2, the source terminal of NTr2 is electrically connected to the ground node . The source terminal of PTr3 is electrically connected to the V GL node, the drain terminal is electrically connected to the drain terminal of NTr3, the source terminal of NTr3 is electrically connected to the ground node.

PTr2とNTr2のゲート端子は、共通線でレベルシフタ31の出力端子と電気的に接続されている。PTr2とNTr2のドレイン接続部はQ2のゲート端子に電気的に接続されている。
PTr3のゲート端子は、マイコンからの制御信号を入力する不図示の端子に電気的に接続されている。NTr3のゲート端子はレベルシフタ31の出力端子に電気的に接続されている。PTr3とNTr3の接続部はQ2のゲート端子に電気的に接続されている。
The gate terminals of PTr2 and NTr2 are electrically connected to the output terminal of the level shifter 31 through a common line. The drain connection part of PTr2 and NTr2 is electrically connected to the gate terminal of Q2.
The gate terminal of PTr3 is electrically connected to a terminal (not shown) that inputs a control signal from the microcomputer. The gate terminal of NTr3 is electrically connected to the output terminal of the level shifter 31. The connection between PTr3 and NTr3 is electrically connected to the gate terminal of Q2.

レベルシフタ31は、VGLと、マイコンからの制御信号の電位V2と接地電位との3種類の電源電位に基づき、入力信号の電圧レベルV2[V]をVGL[V]にレベルシフトした信号を出力する回路である。なお、V2が0[V]の場合は、0[V](接地電位)の信号を出力するように構成されている。
具体的に、マイコンからの制御信号の信号電位V2がLレベル(例えば0[V])のときは、Lレベルの信号(0[V]の信号)を制御信号cnt_PTr2(第1の入力)として出力する。この場合は、PTr2がオン、NTr2がオフとなり、PTr2を介して駆動電流がQ2のゲート端子に供給される。
The level shifter 31 shifts the voltage level V 2 [V] of the input signal to V GL [V] based on three types of power supply potentials, V GL , the control signal potential V 2 from the microcomputer, and the ground potential. This circuit outputs a signal. When V 2 is 0 [V], a signal of 0 [V] (ground potential) is output.
Specifically, when the signal voltage V 2 of the control signal from the microcomputer is at L level (e.g. 0 [V]), the control signal of L level signal (signal of 0 [V]) cnt_PTr2 (first input) Output as. In this case, PTr2 is turned on and NTr2 is turned off, and the drive current is supplied to the gate terminal of Q2 via PTr2.

一方、マイコンからの制御信号がHレベル(例えば5[V])のときは、この信号の電圧レベルをVGL[V]にレベルシフトして、VGL[V]の信号を制御信号cnt_PTr2として出力する。この場合は、NTr2がオン、NTr3がオン、PTr2がオフとなり、NTr2、NTr3を介して、Q2の入力容量Cissに蓄積された電荷を接地ノード側へと引き込む。 On the other hand, when the control signal from the microcomputer is at the H level (e.g., 5 [V]), the voltage level of the signal is level-shifted to V GL [V], the signal of V GL [V] as a control signal cnt_PTr2 Output. In this case, NTr2 is on, NTr3 is on, PTr2 is turned off, NTr2, NTr3 via draw the charge accumulated in the Q2 of the input capacitance C iss to the ground node side.

つまり、2つのトランジスタを介して入力容量Cissにチャージされた電荷を引き込むようにしたので、トランジスタ1つで引き込む場合と比較して、オン状態からオフ状態への移行時のハーフ・オン状態の期間を短くできると共に、Q2のターン・オフ時間も短くすることができる。
更に、第1のTG回路10aからのLレベル(例えば0[V])の制御信号cnt_PTr3(第2の入力)がPTr3のゲート端子に入力されると、PTr3がオンとなり、PTr3を介して駆動電流がQ2のゲート端子に供給される。このPTr3を、PTr2と同時にオンにすると、PTr2及びPTr3の2つのトランジスタを介して駆動電流がQ2へと供給される。しかも、PTr2よりも電流供給能力の大きいPTr3が加わるため、これにより、入力容量のチャージ速度が急激に上がり、ハーフ・オン状態の期間を短縮することができる。
That is, since the charge charged into the input capacitance C iss is drawn through the two transistors, the half-on state at the time of transition from the on state to the off state is compared with the case where the single transistor is drawn. The period can be shortened and the turn-off time of Q2 can be shortened.
Furthermore, when a control signal cnt_PTr3 (second input) of L level (for example, 0 [V]) from the first TG circuit 10a is input to the gate terminal of PTr3, PTr3 is turned on and driven via PTr3. Current is supplied to the gate terminal of Q2. When this PTr3 is turned on simultaneously with PTr2, a driving current is supplied to Q2 through two transistors PTr2 and PTr3. In addition, since PTr3 having a larger current supply capability than PTr2 is added, the charge rate of the input capacitance is rapidly increased, and the period of the half-on state can be shortened.

従って、駆動制御部10における第1のTG回路10aは、PTr2とPTr3の両方を用いて、Q2をオフからオン状態に駆動するタイミングの制御信号cnt_PTr3を生成し、第1LST駆動回路11cに供給するようになっている。第2のTG回路10bについても、対象が第2LST駆動回路11dとなるだけで同様である。
本発明は、このPTr3を設け、Q2(Q4)をオン駆動するときにPTr2に加えてPTr3をオンにする点と、PTr3をオンにするタイミングとに主な特徴がある。PTr3をオンにするタイミングについては後述する。
Accordingly, the first TG circuit 10a in the drive control unit 10 uses both PTr2 and PTr3 to generate the control signal cnt_PTr3 at the timing for driving Q2 from the off state to the on state, and supplies the control signal cnt_PTr3 to the first LST drive circuit 11c. It is like that. The same applies to the second TG circuit 10b except that the target is the second LST drive circuit 11d.
The present invention is mainly characterized in that the PTr3 is provided and the PTr3 is turned on in addition to the PTr2 when the Q2 (Q4) is turned on, and the timing when the PTr3 is turned on. The timing for turning on PTr3 will be described later.

なお、第2LST駆動回路11dは、駆動制御する対象がQ4となるだけで、第1LST駆動回路11cと同様の構成となる。
また、PTr2とPTr3のトランジスタサイズを「PTr2<PTr3」としたが、PTr2のトランジスタサイズは、Q2、Q4のデバイス特性に基づき決定する。また、PTr3のトランジスタサイズは、Q2、Q4のターン・オン時間、ターン・オフ時間、ターン・オン、オフ時の伝播遅延時間などに基づき決定する。
The second LST drive circuit 11d has the same configuration as that of the first LST drive circuit 11c, except that the target to be driven is Q4.
The transistor sizes of PTr2 and PTr3 are “PTr2 <PTr3”, but the transistor size of PTr2 is determined based on the device characteristics of Q2 and Q4. The transistor size of PTr3 is determined based on the turn-on time, turn-off time, turn-on, and propagation delay time at turn-off of Q2 and Q4.

例えば、Q2、Q4のデバイス特性が、スレッショルド電圧VTHが「1.4±0.2[V]」、オン状態における抵抗RONが「0.30Ω・mm2以下」、ブレークダウン電圧BVDS「60[V]以上」、電流容量「1.0[A]〜1.5[A]」であるとすると、これらの特性に基づき、Q2、Q4のゲートをドライブ可能なサイズにPTr2のトランジスタサイズを決定する。   For example, the device characteristics of Q2 and Q4 are as follows: threshold voltage VTH is “1.4 ± 0.2 [V]”, resistance RON in ON state is “0.30Ω · mm2 or less”, breakdown voltage BVDS “60 V or more”, current Assuming that the capacitance is “1.0 [A] to 1.5 [A]”, the transistor size of PTr2 is determined based on these characteristics so that the gates of Q2 and Q4 can be driven.

また、Q2、Q4の伝播遅延時間が「出力電流IO=±1.3[A]、50%to90%ENABLEオンからシンク出力オン1.0[μs]」、「出力電流IO=±1.3[A]、50%to90%ENABLEオフからシンク出力オフ0.8[μs]」であるとすると、これらの遅延時間に基づきPTr3のトランジスタサイズを決定する。   Further, the propagation delay time of Q2 and Q4 is “output current IO = ± 1.3 [A], 50% to 90% ENABLE ON to sink output ON 1.0 [μs]”, “output current IO = ± 1.3 [A], 50% If it is assumed that the output from to90% ENABLE is OFF to sink output OFF 0.8 [μs], the transistor size of PTr3 is determined based on these delay times.

次に、図8に基づき、電流レベル検出部12の構成を説明する。
ここで、図8は、電流レベル検出部12の構成を示す図である。
電流レベル検出部12は、図8に示すように、I/V変換回路12aと、比較器12bとを含んで構成される。
I/V変換回路12aは、その入力端子がHブリッジ回路200の電流検出抵抗Rsの両端に電気的に接続されており、その出力端子が比較器12bの入力端子に電気的に接続されている。そして、Hブリッジ回路のRsを流れる電流が入力されると、その電流を電圧に変換して比較器12bに入力する。
Next, the configuration of the current level detection unit 12 will be described with reference to FIG.
Here, FIG. 8 is a diagram illustrating a configuration of the current level detection unit 12.
As shown in FIG. 8, the current level detector 12 includes an I / V conversion circuit 12a and a comparator 12b.
The input terminal of the I / V conversion circuit 12a is electrically connected to both ends of the current detection resistor Rs of the H bridge circuit 200, and the output terminal thereof is electrically connected to the input terminal of the comparator 12b. . When a current flowing through Rs of the H bridge circuit is input, the current is converted into a voltage and input to the comparator 12b.

比較器12bは、その出力端子が、駆動制御部10の第1のTG回路10a及び第2のTG回路10bの入力端子に電気的に接続されている。そして、I/V変換回路12aから入力された電圧Vsと、基準電圧Vrefとを比較して、Vsの電圧レベルがVrefのレベル以上であればHレベルの比較信号signal_aを出力し、Vsの電圧レベルがVrefのレベル未満であればLレベルの比較信号signal_aを出力する。 The output terminal of the comparator 12b is electrically connected to the input terminals of the first TG circuit 10a and the second TG circuit 10b of the drive control unit 10. Then, the voltage V s input from the I / V conversion circuit 12a is compared with the reference voltage V ref, and if the voltage level of V s is equal to or higher than the level of V ref, an H level comparison signal signal_a is output. When the voltage level of V s is lower than the level of V ref , the L level comparison signal signal_a is output.

ここで、Rsを流れる電流Isは、例えば、図8に示すように、Hブリッジ回路200のQ3がオン状態のときで、且つQ2がオフ状態からオン状態へと移行し、Q2のドレイン−ソース間を電流が流れる状態となったときに、モータ2のコイルMLを通過して流れる電流である(図中の点線矢印)。
本実施の形態においては、検出電圧Vsのレベルが、先述したハーフ・オン状態となるレベル(中間電位)を予め実験で得るか、負荷(モータ)や回路を構成する各素子の特性等から算出などして得ておき、そのレベルの電圧を基準電圧Vrefとして比較器12bに入力する。
Here, the current Is flowing through Rs is, for example, as shown in FIG. 8, when Q3 of the H-bridge circuit 200 is in the on state, and Q2 shifts from the off state to the on state, and the drain-source of Q2 This is the current that flows through the coil ML of the motor 2 when a current flows between them (dotted line arrow in the figure).
In the present embodiment, the level of the detection voltage V s is obtained from an experiment in advance to obtain the level (intermediate potential) at which the above-described half-on state is obtained, or from the characteristics of each element constituting the load (motor) and the circuit. It is obtained by calculation or the like, and the voltage at that level is input to the comparator 12b as the reference voltage Vref .

つまり、電流レベル検出部12は、Rsを流れるIsのレベルを電圧レベルVsに変換してVrefと比較し、この比較結果を駆動制御部10に出力する。
従って、この比較結果を示す信号signal_aは、検出電圧Vsが中間電位の状態にあるときはHレベルの信号となり、そうでないときはLレベルの信号となる。
That is, the current level detector 12 compares the V ref by converting the level of Is flowing Rs to the voltage level V s, and outputs the comparison result to the drive control unit 10.
Therefore, the signal signal_a indicating the comparison result is an H level signal when the detection voltage V s is in an intermediate potential state, and an L level signal otherwise.

次に、図9に基づき、第1又は第2LST駆動回路11c又は11dのPTr2及びPTr3の駆動タイミングについて説明する。
ここで、図9は、第1又は第2LST駆動回路11c又は11dのPTr2及びPTr3の駆動タイミングを示すタイミングチャートである。
本発明は、Q2、Q4のオフ状態からオン状態への移行時のハーフ・オン状態の期間を短くするために、第1及び第2LST駆動回路11c及び11dのPTr2及びPTr3をオン・オフのタイミングを制御する。なお、PTr2及びPTr3のタイミング制御については、第1及び第2LST駆動回路11c及び11dの双方において同様の制御内容となるので、以下、第1LST駆動回路11cのPTr2及びPTr3のタイミング制御について説明する。
Next, the drive timing of PTr2 and PTr3 of the first or second LST drive circuit 11c or 11d will be described with reference to FIG.
Here, FIG. 9 is a timing chart showing drive timings of PTr2 and PTr3 of the first or second LST drive circuit 11c or 11d.
In the present invention, in order to shorten the period of the half-on state when Q2 and Q4 shift from the off-state to the on-state, the timing of turning on / off PTr2 and PTr3 of the first and second LST drive circuits 11c and 11d To control. The timing control of PTr2 and PTr3 has the same control contents in both the first and second LST drive circuits 11c and 11d, and therefore the timing control of PTr2 and PTr3 of the first LST drive circuit 11c will be described below.

本実施の形態においては、マイコンからの制御信号ctrl3がそのまま第1LST駆動回路11cに入力される。そして、第1LST駆動回路11cは、ctrl3がHレベルの信号の場合はレベルシフタ31でゲートの駆動電位VGLまでレベルシフトして、この信号をPTr2のゲート端子に供給する。一方、ctrl3がLレベルの場合はそのままPTr2のゲート端子に供給する。 In the present embodiment, the control signal ctrl3 from the microcomputer is directly input to the first LST drive circuit 11c. Then, the 1LST driving circuit 11c may, CTRL 3 is level-shifted to drive potential V GL of the gate in the level shifter 31 in the case of H-level signal, supplies the signal to the gate terminal of PTr2. On the other hand, when ctrl3 is at L level, it is supplied to the gate terminal of PTr2 as it is.

従って、ctrl3がLレベルの信号であればPTr2を制御する制御信号cnt_PTr2はLレベルの信号となり、PTr2をオンにする。これにより、PTr2を介してQ2のゲート端子に駆動電流が供給され、入力容量Cissのチャージが開始される。
一方、第1のTG回路10aは、マイコンからの制御信号であるctrl3と、電流レベル検出部12の比較器12bから入力されるsignal_aとに基づきPTr3のオン・オフを制御する制御信号cnt_PTr3を生成する。
Therefore, if ctrl3 is an L level signal, the control signal cnt_PTr2 for controlling PTr2 becomes an L level signal, and PTr2 is turned on. This will drive current supplied to the gate terminal of Q2 via PTr2, charge of the input capacitance C iss is started.
On the other hand, the first TG circuit 10a generates a control signal cnt_PTr3 for controlling on / off of PTr3 based on ctrl3 which is a control signal from the microcomputer and signal_a input from the comparator 12b of the current level detection unit 12. To do.

具体的に、マイコンからのctrl3がLレベルの信号であり、図9に示すように、比較器12bからのsignal_aがLレベルの信号であるときは、Q2はハーフ・オン状態ではないと判断できるので、cnt_PTr3としてHレベルの信号を生成し、この信号をPTr3のゲート端子に供給する。この場合、PTr3はオフとなる。
一方、ctrl3がLレベルの信号であり、図9に示すように、signal_aがHレベルの信号であるときは、Q2がハーフ・オン状態になっていると判断できるので、cnt_PTr3としてLレベルの信号を生成し、この信号をPTr3のゲート端子に供給する。この場合、PTr3はオン状態となる。このとき、cnt_PTr2をLレベルに維持してPTr2のオン状態を維持する。従って、PTr2及びPTr3の2つのトランジスタを介して、Q2のゲート端子に駆動電流が供給される。
Specifically, when ctrl3 from the microcomputer is an L level signal and signal_a from the comparator 12b is an L level signal as shown in FIG. 9, it can be determined that Q2 is not in a half-on state. Therefore, an H level signal is generated as cnt_PTr3, and this signal is supplied to the gate terminal of PTr3. In this case, PTr3 is turned off.
On the other hand, when ctrl3 is an L level signal and signal_a is an H level signal as shown in FIG. 9, it can be determined that Q2 is in a half-on state, so an L level signal as cnt_PTr3. And this signal is supplied to the gate terminal of PTr3. In this case, PTr3 is turned on. At this time, cnt_PTr2 is maintained at the L level, and the on state of PTr2 is maintained. Accordingly, the drive current is supplied to the gate terminal of Q2 via the two transistors PTr2 and PTr3.

また、ctrl3がLレベルからHレベルの信号になると、図9に示すように、cnt_PTr2もHレベルの信号となり、PTr2をオフにする。cnt_PTr2はNTr2及びNTr3のゲート端子にも供給されるので、NTr2及びNTr3が共にオン状態となる。そして、これら2つのトランジスタを介して、Q2のCissにチャージされた電荷が接地ノード側に引き込まれ放出される。 When ctrl3 changes from L level to H level, cnt_PTr2 also changes to H level as shown in FIG. 9, and PTr2 is turned off. Since cnt_PTr2 is also supplied to the gate terminals of NTr2 and NTr3, both NTr2 and NTr3 are turned on. Through these two transistors, the charge charged in Ciss of Q2 is drawn to the ground node side and released.

一方、図9に示すように、ctrl3(cnt_PTr2)がHレベルの信号になると、第1のTG回路10aは、cnt_PTr3としてHレベル(VGL)の信号を生成し、この信号をPTr3のゲート端子に供給する。これにより、PTr3はオフとなる。
なお、本実施の形態においては、PTr3を、PTr2よりも電流供給能力の大きなトランジスタサイズで形成しているため、PTr3をオンにするときに、PTr2をオフにしてもよい。
On the other hand, as shown in FIG. 9, when ctrl3 (cnt_PTr2) becomes an H level signal, the first TG circuit 10a generates an H level (V GL ) signal as cnt_PTr3, and this signal is used as the gate terminal of PTr3. To supply. As a result, PTr3 is turned off.
In this embodiment, since PTr3 is formed with a transistor size having a larger current supply capability than PTr2, PTr2 may be turned off when PTr3 is turned on.

以上、本実施の形態のトランジスタ駆動装置100は、モータ2を駆動するHブリッジ回路200のローサイド側のトランジスタQ2、Q4をオフからオンに駆動する際に、Q2、Q4をオンに駆動するトランジスタであるPTr2及びPTr3における、PTr2を先にオンにして、PTr2のみでQ2又はQ4のゲートに駆動電流を供給し、電流レベル検出部12の比較結果から、Q2又はQ4のハーフ・オン状態が検出されたときは、PTr2に加えてPTr3をオンにして、PTr2及びPTr3の2つのトランジスタを介して、Q2のゲートに駆動電流を供給するようにした。   As described above, the transistor driving apparatus 100 according to the present embodiment is a transistor that drives Q2 and Q4 on when the transistors Q2 and Q4 on the low side of the H bridge circuit 200 that drives the motor 2 are driven from off to on. In a certain PTr2 and PTr3, PTr2 is turned on first, the drive current is supplied to the gate of Q2 or Q4 only by PTr2, and the half-on state of Q2 or Q4 is detected from the comparison result of the current level detection unit 12 In this case, PTr3 was turned on in addition to PTr2, and the drive current was supplied to the gate of Q2 via the two transistors PTr2 and PTr3.

これにより、トランジスタがハーフ・オン状態になるまでの急激な電位変動の発生を低減しつつ、オフからオンに移行時のハーフ・オン状態の期間を短くすることができる。
更に、Q2、Q4をオンからオフに駆動する際に、NTr2及びNTr3の2つのトランジスタをオンにして、Q2、Q4の入力容量Cissにチャージされた電荷が接地ノード側に引き込むこうにした。
Accordingly, it is possible to reduce the period of the half-on state at the time of transition from the off state to the on state while reducing the occurrence of a rapid potential fluctuation until the transistor is in the half-on state.
Furthermore, when driving off the Q2, Q4 from ON, turns on the two transistors of NTr2 and NTr3, Q2, the input capacitance C iss charged charges into the Q4 is in said drawn into the ground node side.

これにより、オンからオフへの移行時のハーフ・オン状態の期間を短くすることができる。
上記第1の実施の形態において、駆動電力供給部11は、形態1又は9に記載の駆動電力供給手段に対応し、駆動制御部10及びマイコンによる駆動電力供給部11の制御処理は、形態1、3及び9のいずれか1に記載の駆動制御手段に対応し、電流レベル検出部12は、形態1又は5に記載の駆動状態検出手段に対応する。
Thereby, the period of the half-on state at the time of transition from on to off can be shortened.
In the first embodiment, the drive power supply unit 11 corresponds to the drive power supply means described in the form 1 or 9, and the control processing of the drive power supply unit 11 by the drive control unit 10 and the microcomputer is the form 1 The current level detection unit 12 corresponds to the drive state detection unit according to the first or fifth aspect, corresponding to the drive control unit according to any one of 3 and 9.

〔第2の実施の形態〕
次に、本発明の第2の実施の形態を図面に基づき説明する。図10〜図13は、本発明に係るトランジスタ駆動装置の第2の実施の形態を示す図である。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to the drawings. 10 to 13 are diagrams showing a second embodiment of the transistor driving device according to the present invention.

本実施の形態は、上記第1の実施の形態のHブリッジ回路200のQ2、Q4のハーフ・オン状態を判断するのに、Q2、Q4のドレイン−ソース間電圧VDSを基準電圧Vrefと比較する点と、Q2、Q4をオフ状態からオン状態に駆動するときに、最初の1回目は、PTr2のみを駆動したときの、Q2、Q4に駆動電流の供給を開始してからハーフ・オン状態となるまでの時間(カウント値)を計測して記録し、2回目以降は、カウント値が記録した値となったときに、PTr2に加えてPTr3をオンに駆動する点とが上記第1の実施の形態と異なる。 This embodiment, to determine the half-on state of the Q2, Q4 of H-bridge circuit 200 of the first embodiment, Q2, Q4 drain - reference voltage V DS between the source voltage V ref and When driving Q2 and Q4 from the OFF state to the ON state for the first time, the first time, when only PTr2 is driven, the drive current is supplied to Q2 and Q4 and then half-on The time until the state (count value) is measured and recorded, and after the second time, when the count value reaches the recorded value, PTr3 is driven to turn on in addition to PTr2. This is different from the embodiment.

以下、上記第1の実施の形態と同様の構成部については同じ符号を付して説明を適宜省略し、異なる部分について詳細に説明する。
まず、図10に基づき、本実施の形態に係るトランジスタ駆動装置100’の構成を説明する。
ここで、図10は、トランジスタ駆動装置100’の構成を示すブロック図である。
Hereinafter, the same components as those in the first embodiment are denoted by the same reference numerals, description thereof will be omitted as appropriate, and different portions will be described in detail.
First, based on FIG. 10, the structure of transistor drive device 100 'concerning this Embodiment is demonstrated.
Here, FIG. 10 is a block diagram showing a configuration of the transistor driving device 100 ′.

トランジスタ駆動装置100’は、図10に示すように、駆動制御部13と、駆動電力供給部11と、電圧レベル検出部14とを含んで構成される。
駆動制御部13は、第1及び第2LST駆動回路11c及び11dからのPTr2の出力信号out_PTr2(Q2のゲートに供給される信号)と電圧レベル検出部14からの信号とに基づき、駆動電力供給部11の動作を制御する。
As shown in FIG. 10, the transistor drive device 100 ′ includes a drive control unit 13, a drive power supply unit 11, and a voltage level detection unit 14.
Based on the output signal out_PTr2 (signal supplied to the gate of Q2) of PTr2 from the first and second LST drive circuits 11c and 11d and the signal from the voltage level detection unit 14, the drive control unit 13 11 operations are controlled.

電圧レベル検出部14は、Hブリッジ回路200のQ2、Q4のVDSを検出し、この電圧レベルと基準電圧レベルとを比較して、この比較結果を示す信号(以下、比較信号outCompという)を駆動制御部13に出力する。 The voltage level detection unit 14 detects the V DS of Q2, Q4 of H-bridge circuit 200 compares the voltage level with the reference voltage level, the signal indicating the comparison result (hereinafter, referred to as the comparison signal OutComp) a Output to the drive control unit 13.

次に、図11に基づき、駆動制御部13の内部構成を説明する。
ここで、図11は、駆動制御部13及び駆動電力供給部11の内部構成を示すブロック図である。
駆動制御部13は、図11に示すように、第1LST駆動回路11cを制御する第1制御回路13aと、第2LST駆動回路11dを制御する第2制御回路13bとを含んで構成される。
Next, the internal configuration of the drive control unit 13 will be described with reference to FIG.
Here, FIG. 11 is a block diagram showing the internal configuration of the drive control unit 13 and the drive power supply unit 11.
As shown in FIG. 11, the drive control unit 13 includes a first control circuit 13a that controls the first LST drive circuit 11c and a second control circuit 13b that controls the second LST drive circuit 11d.

第1制御回路13aは、第1LST駆動回路11cからの出力信号out_PTr2と不図示のオシレータからのクロック信号CKと電圧レベル検出部14からの比較信号outComp1とに基づき第1LST駆動回路11cのPTr3のオン・オフ動作を制御する制御信号cnt_PTr3を生成し、これを第1LST駆動回路11cに供給する。   The first control circuit 13a turns on PTr3 of the first LST drive circuit 11c based on the output signal out_PTr2 from the first LST drive circuit 11c, the clock signal CK from the oscillator (not shown), and the comparison signal outComp1 from the voltage level detection unit 14. A control signal cnt_PTr3 for controlling the off operation is generated and supplied to the first LST drive circuit 11c.

第2制御回路13bは、第2LST駆動回路11dからの出力信号out_PTr2とクロック信号CKと電圧レベル検出部14からの比較信号outComp2とに基づき第2LST駆動回路11dのPTr3のオン・オフ動作を制御する制御信号cnt_PTr3を生成し、これを第2LST駆動回路11dに供給する。
なお、図示しないが、第1LST駆動回路11cから出力信号out_PTr2を得るために、第1制御回路13aのout_PTr2の入力端子と、第1LST駆動回路11cのPTr2の出力端子とが電気的に接続されている。
同様に、第2制御回路13bのout_PTr2の入力端子と、第2LST駆動回路11dのPTr2の出力端子とが電気的に接続されている。
The second control circuit 13b controls the on / off operation of the PTr3 of the second LST drive circuit 11d based on the output signal out_PTr2 from the second LST drive circuit 11d, the clock signal CK, and the comparison signal outComp2 from the voltage level detection unit 14. A control signal cnt_PTr3 is generated and supplied to the second LST drive circuit 11d.
Although not shown, in order to obtain the output signal out_PTr2 from the first LST drive circuit 11c, the input terminal of out_PTr2 of the first control circuit 13a and the output terminal of PTr2 of the first LST drive circuit 11c are electrically connected. Yes.
Similarly, the input terminal of out_PTr2 of the second control circuit 13b and the output terminal of PTr2 of the second LST drive circuit 11d are electrically connected.

次に、図12に基づき、電圧レベル検出部14の構成を説明する。
ここで、図12は、電圧レベル検出部14の構成を示す図である。
電圧レベル検出部14は、図12に示すように、第1比較器14aと、第2比較器14bとを含んで構成される。
Next, based on FIG. 12, the structure of the voltage level detection part 14 is demonstrated.
Here, FIG. 12 is a diagram illustrating a configuration of the voltage level detection unit 14.
As shown in FIG. 12, the voltage level detector 14 includes a first comparator 14a and a second comparator 14b.

第1比較器14aは、入力端子にHブリッジ回路200のQ1とQ2との接続部N1が電気的に接続されており、出力端子が駆動制御部10の第1制御回路13aの入力端子に電気的に接続されている。そして、入力端子に入力される接続部N1の電位(Q2のVDS)と、基準電圧Vrefとを比較して、VDSの電圧レベルがVrefのレベル以上であればHレベルの第1比較信号outComp1を出力し、VDSの電圧レベルがVrefのレベル未満であればLレベルの第1比較信号outComp1を出力する。 In the first comparator 14a, the connection portion N1 between Q1 and Q2 of the H bridge circuit 200 is electrically connected to the input terminal, and the output terminal is electrically connected to the input terminal of the first control circuit 13a of the drive control unit 10. Connected. Then, the potential of the connection portion N1 (V DS of Q2) input to the input terminal is compared with the reference voltage V ref, and if the voltage level of V DS is equal to or higher than the level of V ref , the first of H level. The comparison signal outComp1 is output, and if the voltage level of V DS is less than the level of V ref , the L-level first comparison signal outComp1 is output.

第2比較器14bは、入力端子にHブリッジ回路200のQ3とQ4との接続部N2が電気的に接続されており、出力端子が駆動制御部10の第2制御回路13bの入力端子に電気的に接続されている。そして、入力端子に入力される接続部N2の電位(Q4のVDS)と、基準電圧Vrefとを比較して、VDSの電圧レベルがVrefのレベル以上であればHレベルの第2比較信号outComp2を出力し、VDSの電圧レベルがVrefのレベル未満であればLレベルの第2比較信号outComp2を出力する。 In the second comparator 14b, the connection portion N2 between Q3 and Q4 of the H bridge circuit 200 is electrically connected to the input terminal, and the output terminal is electrically connected to the input terminal of the second control circuit 13b of the drive control portion 10. Connected. Then, the potential of the connection portion N2 (V DS of Q4) input to the input terminal is compared with the reference voltage V ref, and if the voltage level of V DS is equal to or higher than the level of V ref , the second of H level. The comparison signal outComp2 is output, and if the voltage level of V DS is less than the level of V ref , the L-level second comparison signal outComp2 is output.

ここで、VDSのレベルは、Q2又はQ4の入力容量のチャージ量と比例する。そこで、本実施の形態では、VDSのレベルがハーフ・オン状態となるレベルか否かを検出する。
なお、本実施の形態においては、Q2及びQ4のVDSのレベルが、先述したハーフ・オン状態となるレベル(中間電位)を予め実験で得るか、負荷(モータ)や回路を構成する各素子の特性等から算出などして得ておき、そのレベルの電圧を基準電圧Vrefとして比較器12bに入力する。
Here, the level of V DS is proportional to the charge amount of the input capacitance of Q2 or Q4. Therefore, in the present embodiment, it is detected whether or not the level of V DS is a level at which the half-on state is achieved.
In the present embodiment, the V DS levels of Q2 and Q4 are obtained in advance by experiment to obtain the level (intermediate potential) at which the above-described half-on state is achieved, or each element constituting a load (motor) or a circuit. The voltage at that level is obtained as a reference voltage Vref and is input to the comparator 12b.

つまり、電圧レベル検出部14は、接続部N1、N2の電圧レベルVDSとVrefとを比較し、この比較結果を駆動制御部13に出力する。
従って、この比較結果を示す信号outComp1、outComp2は、Q2、Q4のVDSが中間電位の状態にあるときはHレベルの信号となり、そうでないときはLレベルの信号となる。
That is, the voltage level detection unit 14 compares the voltage levels V DS and V ref of the connection units N 1 and N 2 and outputs the comparison result to the drive control unit 13.
Therefore, the signals outComp1 and outComp2 indicating the comparison results are H level signals when V DS of Q2 and Q4 are in an intermediate potential state, and are L level signals otherwise.

次に、図13に基づき、第1制御回路13aの詳細な回路構成を説明する。
ここで、図13は、第1制御回路13aの詳細な回路構成を示す図である。
第1制御回路13aは、図13に示すように、第1TG(タイミングジェネレータ)40と、カウンタ41と、FF(フリップフロップ)回路42と、比較器43と、第2TG44とを含んで構成される。
Next, a detailed circuit configuration of the first control circuit 13a will be described with reference to FIG.
Here, FIG. 13 is a diagram showing a detailed circuit configuration of the first control circuit 13a.
As shown in FIG. 13, the first control circuit 13a includes a first TG (timing generator) 40, a counter 41, an FF (flip flop) circuit 42, a comparator 43, and a second TG 44. .

第1TG40は、カウンタ41及びFF回路42とそれぞれ電気的に接続されており、第1LST駆動回路11cからの信号cnt_PTr2と、電圧レベル検出部14からの比較信号outComp1と、オシレータからのクロック信号CKとに基づき、カウンタのリセット信号と、FF回路42のラッチタイミング信号とを生成し、それぞれに出力する。カウンタ41のリセット信号は、cnt_PTr2のレベルがHレベルからLレベルに変化したときにカウンタ41に出力される。ラッチタイミング信号は、最初の1回だけ、outComp1がLレベルからHレベルに変化したときに、例えばLレベルからHレベルに変化する信号がFF回路42に出力される。   The first TG 40 is electrically connected to the counter 41 and the FF circuit 42, respectively. The signal cnt_PTr2 from the first LST drive circuit 11c, the comparison signal outComp1 from the voltage level detection unit 14, and the clock signal CK from the oscillator Based on the above, a reset signal for the counter and a latch timing signal for the FF circuit 42 are generated and output to each. The reset signal of the counter 41 is output to the counter 41 when the level of cnt_PTr2 changes from H level to L level. As the latch timing signal, when outComp1 changes from L level to H level only once, a signal that changes from L level to H level, for example, is output to the FF circuit 42.

カウンタ41は、FF回路42と比較器43とそれぞれ電気的に接続されており、オシレータから入力されるCKをカウントし、そのカウント値を示すカウント信号をFF回路42及び比較器43に出力する。また、第1TG40からリセット信号が入力されると、カウンタを初期値へとリセットする。
FF回路42は、第1TG40から入力されるラッチタイミング信号に基づき、カウンタ41から入力されるカウント信号(各ビットの信号)をラッチし、ラッチしたカウント値の信号を比較器43に出力する。なお、ラッチタイミング信号は、ラッチしたカウント値を保持し続けるように制御される(例えばLレベルに固定)。つまり、Q2に駆動電流が供給されてからハーフ・オン状態になる時間(カウント値)がFF回路42に記録(保持)されることになる。
The counter 41 is electrically connected to the FF circuit 42 and the comparator 43, counts CK input from the oscillator, and outputs a count signal indicating the count value to the FF circuit 42 and the comparator 43. When a reset signal is input from the first TG 40, the counter is reset to the initial value.
The FF circuit 42 latches the count signal (the signal of each bit) input from the counter 41 based on the latch timing signal input from the first TG 40, and outputs the latched count value signal to the comparator 43. The latch timing signal is controlled so as to continue to hold the latched count value (for example, fixed at the L level). That is, the time (count value) in which the drive current is supplied to Q2 and the half-on state is reached is recorded (held) in the FF circuit 42.

比較器43は、第2TG44と電気的に接続されており、カウンタ41から入力されるカウント信号と、FF回路42から入力されるラッチされたカウント信号とを比較し、カウント信号のカウント値が、ラッチされたカウント信号のカウント値未満であるときは、Lレベルの信号を第2TG44に出力する。一方、カウント信号のカウント値が、ラッチされたカウント信号のカウント値以上のときは、Hレベルの信号を第2TG44に出力する。つまり、Q2がハーフ・オン状態になったときにHレベルの信号が第2TG44に出力される。   The comparator 43 is electrically connected to the second TG 44, compares the count signal input from the counter 41 with the latched count signal input from the FF circuit 42, and the count value of the count signal is When it is less than the count value of the latched count signal, an L level signal is output to the second TG 44. On the other hand, when the count value of the count signal is equal to or greater than the count value of the latched count signal, an H level signal is output to the second TG 44. That is, when Q2 is in a half-on state, an H level signal is output to the second TG 44.

第2TG44は、第1LST駆動回路11cのPTr3のゲート端子に電気的に接続されており、比較器43から、Hレベルの信号が入力されたときにLレベルの制御信号cnt_PTr3をPTr3のゲート端子に出力し、Lレベルの信号が入力されたときにHレベルの制御信号cnt_PTr3をPTr3のゲート端子に出力する。   The second TG 44 is electrically connected to the gate terminal of PTr3 of the first LST driving circuit 11c, and when the H level signal is input from the comparator 43, the L level control signal cnt_PTr3 is supplied to the gate terminal of PTr3. When an L level signal is input, an H level control signal cnt_PTr3 is output to the gate terminal of PTr3.

つまり、第1制御回路13aは、電源が投入されてから、Q2をオフ状態からオン状態に駆動する最初の1回目は、Q2のゲート端子に供給される信号out_PTr2がHレベルになってからQ2がハーフ・オン状態になるまでの時間(CKのカウント数)を計測して、これをFF回路42に保持する。そして、2回目以降は、outComp1を無視して、保持したカウント値とカウンタ41のカウント値とを比較し、カウンタ41のカウント値がFF42に保持されたカウント値以上になったときに、PTr3をオンにするLレベルのcnt_PTr3を出力する。これにより、マイコンからのctrl3が第1LST駆動回路11cに入力されると、Q2は、最初にPTr2だけで駆動電流が供給され、やがてQ2がハーフ・オン状態になると、PTr2に加えてPTr3がオンとなり、PTr2及びPTr3の2つのトランジスタによって駆動電流が供給される。   That is, the first control circuit 13a first drives Q2 from the off state to the on state after the power is turned on, and after the signal out_PTr2 supplied to the gate terminal of Q2 becomes H level, Q2 Is measured in the half-on state (CK count number), and this is held in the FF circuit 42. In the second and subsequent times, outComp1 is ignored, the held count value is compared with the count value of the counter 41, and when the count value of the counter 41 becomes equal to or larger than the count value held in the FF 42, PTr3 is set. The L level cnt_PTr3 to be turned on is output. As a result, when ctrl3 from the microcomputer is input to the first LST drive circuit 11c, Q2 is initially supplied with drive current only by PTr2, and eventually when Q2 is in a half-on state, PTr3 is turned on in addition to PTr2. Thus, the drive current is supplied by the two transistors PTr2 and PTr3.

なお、第1LST駆動回路11cの動作は、上記第1の実施の形態と同様となる。
また、第2制御回路13bは、駆動制御する対象が第2LST駆動回路11dのPTr3となるだけで、第1制御回路13aと同様の構成及び動作となる。
一方、本実施の形態では、上記2回目以降の動作において、電圧レベル検出部14の第1比較器14a及び第2比較器14bへの電源供給のオン/オフを切り替えることが可能な不図示のスイッチを切り替えて、電圧レベル検出部14の第1比較器14aへの電流供給を停止する。なお、Q4の2回目以降の動作に対しては、第2比較器14bへの電流供給を停止する。
The operation of the first LST drive circuit 11c is the same as that in the first embodiment.
Further, the second control circuit 13b has the same configuration and operation as the first control circuit 13a, except that the target to be driven is the PTr3 of the second LST drive circuit 11d.
On the other hand, in the present embodiment, in the second and subsequent operations, power supply to the first comparator 14a and the second comparator 14b of the voltage level detector 14 can be switched on / off (not shown). The switch is switched to stop the current supply to the first comparator 14a of the voltage level detector 14. Note that the current supply to the second comparator 14b is stopped for the second and subsequent operations of Q4.

なお、電流供給の停止(オフ)タイミングは、例えば、モータ2が、変動の少ない負荷であれば、2回目以降の動作において、ずっと停止状態にする。また、モータ2が、動作状態(通常回転、逆回転、ブレーキなど)が変わるまでは変動が少ないような負荷である場合は、動作状態が変わるまで停止状態にするなど、負荷の性質に応じてタイミングを制御することができる。   For example, if the motor 2 is a load with little fluctuation, the current supply stop (off) timing is set to the stop state throughout the second and subsequent operations. Depending on the nature of the load, such as when the motor 2 is a load that does not fluctuate until the operating state (normal rotation, reverse rotation, brake, etc.) changes, the motor 2 is stopped until the operating state changes. Timing can be controlled.

以上、本実施の形態のトランジスタ駆動装置100’は、ハーフ・オン状態の検出において、電圧レベル検出部14によって、Q2、Q4のVDSを検出し、この電圧レベルと、予め得ておいたハーフ・オン状態のときの電圧レベルVrefとを比較して、VDSがVref以上となったときにハーフ・オン状態になったことを示す信号を出力することができる。
これにより、Q2、Q4の入力容量と関係の深いゲートにかかる電圧で判断をすることができるので、ハーフ・オン状態の検出をより正確に行うことができる。
As described above, in the transistor drive device 100 ′ according to the present embodiment, when the half-on state is detected, the voltage level detection unit 14 detects the V DS of Q2 and Q4. By comparing with the voltage level V ref in the on state, it is possible to output a signal indicating that the half on state is obtained when V DS becomes V ref or more.
This makes it possible to make a determination based on the voltage applied to the gate having a close relationship with the input capacitances of Q2 and Q4, so that the half-on state can be detected more accurately.

更に、最初の1回目のオフ状態からオン状態への駆動時において、Q2又はQ4に駆動電流が供給されてからハーフ・オン状態となるまでの経過時間(カウント値)を計測して、これを保持し、2回目以降は、この保持された経過時間と、計測時間とを比較し、計測時間が保持された経過時間以上となったときに、Q2又はQ4がハーフ・オン状態になったと判断し、PTr3をオンに駆動する信号を生成して出力することができる。更に、Q2、Q4の2回目以降の動作において、第1比較器14a、第2比較器14bへの電源供給を停止することができる。   Furthermore, at the time of driving from the first off state to the on state for the first time, the elapsed time (count value) from when the drive current is supplied to Q2 or Q4 until the half on state is measured is measured. In the second and subsequent times, this retained elapsed time is compared with the measured time, and when the measured time is equal to or greater than the retained elapsed time, it is determined that Q2 or Q4 is in a half-on state. Then, it is possible to generate and output a signal for driving PTr3 on. Furthermore, in the second and subsequent operations of Q2 and Q4, power supply to the first comparator 14a and the second comparator 14b can be stopped.

これにより、ハーフ・オン状態になるまでの経過時間が記録されると、比較器の動作を停止して、カウンタ41のカウント値に基づく制御を行うことができるので、低消費電流化できる。
上記第2の実施の形態において、駆動電力供給部11は、形態1又は9に記載の駆動電力供給手段に対応し、駆動制御部13及びマイコンによる駆動電力供給部11の制御処理は、形態7又は9に記載の駆動制御手段に対応し、電圧レベル検出部14は、形態6に記載の駆動状態検出手段に対応する。
Thereby, when the elapsed time until the half-on state is recorded, the operation of the comparator can be stopped and the control based on the count value of the counter 41 can be performed, so that the current consumption can be reduced.
In the second embodiment, the drive power supply unit 11 corresponds to the drive power supply unit described in the form 1 or 9, and the control processing of the drive power supply unit 11 by the drive control unit 13 and the microcomputer is in the form 7. Alternatively, the voltage level detection unit 14 corresponds to the drive state detection unit described in the sixth aspect.

なお、上記第1及び第2の実施の形態においては、Q2、Q4をオン状態からオフ状態にするときに、最初からNTr2及びNTr3を両方ともオンにする構成としたが、これに限らず、PTr2及びPTr3と同様に、最初にNTr2だけをオンにし、ハーフ・オン状態が検出されたら、NTr2に加えてNTr3をオンにする構成としてもよい。この場合において、NTr2とNTr3のトランジスタサイズを「NTr2<NTr3」としてもよい。また、「NTr2<NTr3」とした場合は、ハーフ・オン状態が検出されたら、NTr2に代えてNTr3をオンさせる構成としてもよい。   In the first and second embodiments, when Q2 and Q4 are turned from the on state to the off state, both NTr2 and NTr3 are turned on from the beginning. However, the present invention is not limited to this. Similarly to PTr2 and PTr3, only NTr2 may be turned on first, and when a half-on state is detected, NTr3 may be turned on in addition to NTr2. In this case, the transistor sizes of NTr2 and NTr3 may be “NTr2 <NTr3”. Further, when “NTr2 <NTr3” is set, NTr3 may be turned on instead of NTr2 when a half-on state is detected.

また、上記第1及び第2の実施の形態においては、第1及び第2HST駆動回路11a及び11bと第1及び第2LST駆動回路11c及び11dとを、電界効果トランジスタ(NTr1〜3,10及びPTr1〜3,10)で構成したが、これに限らず、Q1〜Q4を駆動可能なバイポーラトランジスタで構成してもよい。
また、上記第1及び第2の実施の形態においては、Q1〜Q4を全てNチャンネル型のDMOSFETとしたが、これに限らず、ハイサイド側のQ1、Q3をPチャンネル型で構成したり、DMOSFETに限らず、他のパワートランジスタや、IGBT(Insulated Gate Bipolar Transistor)などで構成したりしてもよい。
In the first and second embodiments, the first and second HST drive circuits 11a and 11b and the first and second LST drive circuits 11c and 11d are connected to field effect transistors (NTr1 to 3, 10 and PTr1). However, the present invention is not limited to this, and a bipolar transistor capable of driving Q1 to Q4 may be used.
In the first and second embodiments, Q1 to Q4 are all N-channel type DMOSFETs. However, the present invention is not limited to this, and the high-side Q1 and Q3 are configured as P-channel types. Not only the DMOSFET but also other power transistors or IGBTs (Insulated Gate Bipolar Transistors) may be used.

また、上記第1及び第2の実施の形態においては、本発明を直流モータを駆動するHブリッジ回路に適用したが、これに限らず、電磁弁などの負荷を駆動するブリッジ回路に本発明を適用してもよい。特に、電磁弁は、開弁側又は閉弁側への一方向の通電を行えばよいため、ブリッジ回路をハーフブリッジ構成とすることができる。   In the first and second embodiments, the present invention is applied to an H bridge circuit that drives a DC motor. However, the present invention is not limited to this, and the present invention is applied to a bridge circuit that drives a load such as an electromagnetic valve. You may apply. In particular, since the solenoid valve only needs to energize in one direction to the valve opening side or the valve closing side, the bridge circuit can have a half-bridge configuration.

本発明に係るモータ駆動装置1の構成を示すブロック図である。It is a block diagram which shows the structure of the motor drive device 1 which concerns on this invention. Hブリッジ回路200の詳細な構成を示す図である。2 is a diagram illustrating a detailed configuration of an H-bridge circuit 200. FIG. DMOSFETの等価回路を示す図である。It is a figure which shows the equivalent circuit of DMOSFET. トランジスタ駆動装置100の概略構成を示すブロック図である。1 is a block diagram showing a schematic configuration of a transistor drive device 100. FIG. 駆動制御部13及び駆動電力供給部11の内部構成を示すブロック図である。3 is a block diagram showing the internal configuration of a drive control unit 13 and a drive power supply unit 11. FIG. 第1HST駆動回路11aの詳細な回路構成を示す図である。It is a figure which shows the detailed circuit structure of the 1st HST drive circuit 11a. 第1LST駆動回路11cの詳細な回路構成を示す図である。It is a figure which shows the detailed circuit structure of the 1st LST drive circuit 11c. 電流レベル検出部12の構成を示す図である。FIG. 3 is a diagram illustrating a configuration of a current level detection unit 12. 第1又は第2LST駆動回路11c又は11dのPTr2及びPTr3の駆動タイミングを示すタイミングチャートである。It is a timing chart which shows the drive timing of PTr2 and PTr3 of the 1st or 2nd LST drive circuit 11c or 11d. トランジスタ駆動装置100’の構成を示すブロック図である。It is a block diagram which shows the structure of transistor drive device 100 '. 駆動制御部13及び駆動電力供給部11の内部構成を示すブロック図である。3 is a block diagram showing the internal configuration of a drive control unit 13 and a drive power supply unit 11. FIG. 電圧レベル検出部14の構成を示す図である。3 is a diagram illustrating a configuration of a voltage level detection unit 14. FIG. 第1制御回路13aの詳細な回路構成を示す図である。It is a figure which shows the detailed circuit structure of the 1st control circuit 13a. 従来のローサイド側のトランジスタのゲート駆動回路の一例を示す図である。It is a figure which shows an example of the gate drive circuit of the conventional low side transistor. ハーフ・オン状態の例を示す波形図である。It is a wave form diagram which shows the example of a half-on state.

符号の説明Explanation of symbols

1…モータ駆動装置、2…直流モータ、100…トランジスタ駆動装置、200…Hブリッジ回路、Q1〜Q4…Nチャンネル型のDMOSFET、10,13…駆動制御回路、10a,10b…第1、第2TG回路、11…駆動電力供給部、11a,11b…第1,第2HST駆動回路、11c,11d…第1,第2LST駆動回路、12…電流レベル検出部、12a…I/V変換回路、12b…比較器、13a、13b…第1、第2制御回路、14…電圧レベル検出部、14a,14b…第1、第2比較器、PTr1〜PTr3,PTr10…Pチャンネル型の電界効果トランジスタ、NTr1〜NTr3,NTr10…Nチャンネル型の電界効果トランジスタ、41…カウンタ、42…FF回路、43…比較器 DESCRIPTION OF SYMBOLS 1 ... Motor drive device, 2 ... DC motor, 100 ... Transistor drive device, 200 ... H bridge circuit, Q1-Q4 ... N channel type DMOSFET, 10, 13 ... Drive control circuit, 10a, 10b ... 1st, 2nd TG Circuit 11, drive power supply unit 11 a, 11 b, first and second HST drive circuit 11 c, 11 d, first and second LST drive circuit 12, current level detection unit 12 a, I / V conversion circuit 12 b,. Comparator, 13a, 13b ... first and second control circuits, 14 ... voltage level detector, 14a, 14b ... first and second comparators, PTr1-PTr3, PTr10 ... P-channel field effect transistors, NTr1- NTr3, NTr10 ... N channel type field effect transistor, 41 ... counter, 42 ... FF circuit, 43 ... comparator

Claims (9)

駆動対象である負荷に電気的に接続されるハイサイド側の第1のトランジスタとローサイド側の第2のトランジスタとを含み、前記第1及び第2のトランジスタをオン又はオフにすることで前記負荷が通電又は非通電の状態となるブリッジ回路の前記第2のトランジスタを駆動するトランジスタ駆動装置であって、
第1電源電位の供給される第1電源ノードと、前記第1電源電位よりも低電位の第2電源電位の供給される第2電源ノードと、前記第1電源ノードと前記第2電源ノードとの間に並列に接続された、第1の入力でオン・オフする第3のトランジスタ及び第2の入力でオン・オフする第4のトランジスタとを含み、前記第3及び第4のトランジスタの電流供給端子を前記第2のトランジスタの駆動端子に電気的に接続して、前記第3及び第4のトランジスタの一方又は両方をオンにしたときに前記第2のトランジスタの前記駆動端子に駆動電力を供給する駆動電力供給手段と、
前記第2のトランジスタのオフからオンへの移行途中における、該第2のトランジスタの出力電圧が中間電位で略一定となるハーフ・オン状態を検出する駆動状態検出手段と、
前記第2のトランジスタをオフからオンにするときに、前記第1及び第2の入力を制御して前記第4のトランジスタよりも先に前記第3のトランジスタをオンにし、前記駆動状態検出手段で前記ハーフ・オン状態が検出されると前記第1及び第2の入力を制御して前記第3のトランジスタに加えて前記第4のトランジスタをオンにする駆動制御手段と、を備えることを特徴とするトランジスタ駆動装置。
A high-side first transistor and a low-side second transistor that are electrically connected to a load to be driven, and turning the first and second transistors on or off to load the load Is a transistor driving device for driving the second transistor of the bridge circuit that is energized or de-energized,
A first power supply node to which a first power supply potential is supplied; a second power supply node to which a second power supply potential lower than the first power supply potential is supplied; the first power supply node and the second power supply node; A third transistor that is turned on / off at a first input and a fourth transistor that is turned on / off at a second input, connected in parallel between the first and second transistors, and currents of the third and fourth transistors When the supply terminal is electrically connected to the drive terminal of the second transistor and one or both of the third and fourth transistors are turned on, the drive power is supplied to the drive terminal of the second transistor. Drive power supply means for supplying,
Driving state detecting means for detecting a half-on state in which the output voltage of the second transistor is substantially constant at an intermediate potential in the middle of the transition of the second transistor from off to on;
When turning on the second transistor from off to on, the first and second inputs are controlled to turn on the third transistor before the fourth transistor, and the driving state detecting means Drive control means for controlling the first and second inputs to turn on the fourth transistor in addition to the third transistor when the half-on state is detected, Transistor driving device.
前記第4のトランジスタは、前記第3のトランジスタよりも電流供給能力の大きいトランジスタサイズであることを特徴とする請求項1に記載のトランジスタ駆動装置。   2. The transistor driving apparatus according to claim 1, wherein the fourth transistor has a transistor size having a larger current supply capability than the third transistor. 前記駆動制御手段は、前記ハーフ・オン状態が検出されると前記第3のトランジスタに代えて前記第4のトランジスタをオンにするように前記第1及び第2の入力を制御することを特徴とする請求項2に記載のトランジスタ駆動装置。   The drive control means controls the first and second inputs to turn on the fourth transistor in place of the third transistor when the half-on state is detected. The transistor driving device according to claim 2. 前記第1及び第2のトランジスタは、電界効果トランジスタであり、前記第2のトランジスタの駆動端子はゲート端子であることを特徴とする請求項1乃至請求項3のいずれか1項に記載のトランジスタ駆動装置。   4. The transistor according to claim 1, wherein the first and second transistors are field effect transistors, and a drive terminal of the second transistor is a gate terminal. 5. Drive device. 前記駆動状態検出手段は、前記負荷を通って前記第2のトランジスタに流れる電流の電流レベルを検出する電流検出部と、前記電流検出部で検出した電流レベルと前記第2のトランジスタが前記ハーフ・オン状態となるときの所定の電流レベルとを比較する電流レベル比較部とを有し、前記電流検出部で検出される電流レベルが前記所定の電流レベルとなったときに、前記ハーフ・オン状態を検出することを特徴とする請求項1乃至請求項4のいずれか1項に記載のトランジスタ駆動装置。   The driving state detection means includes a current detection unit for detecting a current level of a current flowing through the load to the second transistor, a current level detected by the current detection unit, and the second transistor including the half- A current level comparison unit that compares a predetermined current level when the on state is entered, and when the current level detected by the current detection unit becomes the predetermined current level, the half-on state The transistor driving device according to claim 1, wherein the transistor driving device is detected. 前記駆動状態検出手段は、前記第2のトランジスタの前記負荷との電気的な接続部の電圧レベルを検出する電圧検出部と、前記電圧検出部で検出される前記電圧レベルと前記第2のトランジスタが前記ハーフ・オン状態となるときの所定の電圧レベルとを比較する電圧レベル比較部とを有し、前記電圧検出部で検出される電圧レベルが前記所定の電圧レベルとなったときに、前記ハーフ・オン状態を検出することを特徴とする請求項1乃至請求項4のいずれか1項に記載のトランジスタ駆動装置。   The driving state detecting means includes a voltage detecting unit that detects a voltage level of an electrical connection portion of the second transistor with the load, the voltage level detected by the voltage detecting unit, and the second transistor. A voltage level comparison unit that compares a predetermined voltage level when the half-on state is reached, and when the voltage level detected by the voltage detection unit becomes the predetermined voltage level, The transistor driving device according to claim 1, wherein a half-on state is detected. 前記第2のトランジスタに駆動電流が供給されてからの経過時間を計測する時間計測手段と、
前記電圧検出部で検出される電圧レベルが前記所定の電圧レベルとなるときの前記時間計測部の計測時間の情報を記録する時間記録手段とを更に備え、
前記駆動制御手段は、前記時間記録手段によって計測時間が記録されると、以降は、前記時間計測手段の計測時間が前記記録した計測時間になるタイミングで、前記第4のトランジスタをオンにするように前記第1及び第2の入力を制御することを特徴とする請求項6に記載のトランジスタ駆動装置。
Time measuring means for measuring an elapsed time since the driving current is supplied to the second transistor;
A time recording unit for recording information of a measurement time of the time measurement unit when the voltage level detected by the voltage detection unit becomes the predetermined voltage level;
After the measurement time is recorded by the time recording means, the drive control means turns on the fourth transistor at a timing when the measurement time of the time measurement means becomes the recorded measurement time. 7. The transistor driving device according to claim 6, wherein the first and second inputs are controlled.
前記ブリッジ回路は、ハイサイド側の一対の前記第1のトランジスタと、ローサイド側の一対の前記第2のトランジスタとから構成され、前記負荷への通電方向に応じて、対角に位置する第1のトランジスタ及び第2のトランジスタがオン又はオフされるHブリッジ型の回路であることを特徴とする請求項1乃至請求項7のいずれか1項に記載のトランジスタ駆動装置。   The bridge circuit includes a pair of the first transistors on the high side and a pair of the second transistors on the low side, and the first is located diagonally according to the energization direction to the load. The transistor driving device according to claim 1, wherein the transistor driving circuit is an H-bridge circuit in which the transistor and the second transistor are turned on or off. 前記駆動電力供給手段は、前記第3のトランジスタと前記第2電源ノードとの間に直列に接続された、第3の入力でオン・オフする第5のトランジスタと、前記第4のトランジスタと前記第2電源ノードとの間に直列に接続された、第4の入力でオン・オフする第6のトランジスタとを更に含み、前記第3及び第5のトランジスタの接続部と、前記第4及び第6のトランジスタの接続部とを前記第2のトランジスタの駆動端子に電気的に接続して、前記第3及び第4のトランジスタをオフにし且つ前記第5及び第6のトランジスタの一方又は両方をオンにしたときに前記第2のトランジスタから前記第2電源ノード側に電流を引き込む構成となっており、
前記駆動制御手段は、前記第2のトランジスタをオン状態からオフ状態にするときに、前記第3及び第4のトランジスタを両方ともオフ状態にし、前記第5及び第6のトランジスタを両方ともオン状態にするように前記第1〜第4の入力を制御することを特徴とする請求項1乃至請求項8のいずれか1項に記載のトランジスタ駆動装置。
The drive power supply means includes a fifth transistor connected in series between the third transistor and the second power supply node and turned on / off at a third input; the fourth transistor; A sixth transistor that is connected in series with the second power supply node and that is turned on / off at a fourth input; and a connection portion between the third and fifth transistors, and the fourth and second transistors. 6 is electrically connected to the drive terminal of the second transistor, the third and fourth transistors are turned off, and one or both of the fifth and sixth transistors are turned on. In this configuration, current is drawn from the second transistor to the second power supply node.
The drive control means turns off both the third and fourth transistors and turns on both the fifth and sixth transistors when turning the second transistor from an on state to an off state. The transistor driving device according to claim 1, wherein the first to fourth inputs are controlled so as to satisfy the following conditions.
JP2008040359A 2008-02-21 2008-02-21 Transistor drive device Withdrawn JP2009201256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008040359A JP2009201256A (en) 2008-02-21 2008-02-21 Transistor drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008040359A JP2009201256A (en) 2008-02-21 2008-02-21 Transistor drive device

Publications (1)

Publication Number Publication Date
JP2009201256A true JP2009201256A (en) 2009-09-03

Family

ID=41144172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008040359A Withdrawn JP2009201256A (en) 2008-02-21 2008-02-21 Transistor drive device

Country Status (1)

Country Link
JP (1) JP2009201256A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107976629A (en) * 2017-12-25 2018-05-01 深圳市巴丁微电子有限公司 A kind of detection method and device of current of electric flow direction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107976629A (en) * 2017-12-25 2018-05-01 深圳市巴丁微电子有限公司 A kind of detection method and device of current of electric flow direction

Similar Documents

Publication Publication Date Title
US8710878B2 (en) Output circuit
JP5934925B2 (en) Gate driver and power module including the same
US7692474B2 (en) Control circuit for a high-side semiconductor switch for switching a supply voltage
JP6086101B2 (en) Semiconductor device
JP2011211836A (en) Switching device driving unit and semiconductor apparatus
WO2016204122A1 (en) Semiconductor device
US10637348B1 (en) Dead-time control for half-bridge driver circuit
JP5530669B2 (en) Semiconductor circuit
US7884583B2 (en) Speed recognition for half bridge control
EP2678941B1 (en) Driver circuit for a semiconductor power switch
JP2008066929A (en) Semiconductor device
JP7210928B2 (en) High voltage integrated circuit
US10931278B2 (en) Driving circuit of switching transistor
US6326819B1 (en) Current buffer for gate drive
JP7472645B2 (en) Power module with built-in drive circuit
US6813169B2 (en) Inverter device capable of reducing through current
US11916544B2 (en) Short circuit detection and limiting channel current in transistor before turn off in short circuit condition
JP2009201256A (en) Transistor drive device
KR102284186B1 (en) Gate driving circuit for power mosfet
JP4888199B2 (en) Load drive device
JP2001008494A (en) Bridge power converter circuit
TW201233047A (en) A driving circuit without dead time for DC motor
JP4133563B2 (en) Voltage drive element drive circuit
CN115224913A (en) Power switch circuit and corresponding operating method
JP2004147452A (en) Gate drive circuit

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110510