JP2009200571A - Reception device - Google Patents

Reception device Download PDF

Info

Publication number
JP2009200571A
JP2009200571A JP2008037095A JP2008037095A JP2009200571A JP 2009200571 A JP2009200571 A JP 2009200571A JP 2008037095 A JP2008037095 A JP 2008037095A JP 2008037095 A JP2008037095 A JP 2008037095A JP 2009200571 A JP2009200571 A JP 2009200571A
Authority
JP
Japan
Prior art keywords
signal
bandpass filter
output
adjacent channel
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008037095A
Other languages
Japanese (ja)
Inventor
Mamoru Shimoda
衛 霜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2008037095A priority Critical patent/JP2009200571A/en
Publication of JP2009200571A publication Critical patent/JP2009200571A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reception device which can be switched to suitable filter characteristics by considering the degree of influence of an adjacent channel signal on a desired signal. <P>SOLUTION: A power measuring circuit 9 measures electric power of a desired signal when measuring electric power of an output signal from a first band-pass filter 4, and measures electric power of the desired signal and the adjacent channel signal when measuring electric power of an output signal from a second band-pass filter 5. As the degree of influence of the adjacent channel signal on the desired signal, the SN ratio of both the signals is calculated from the measured values. On the basis of the SN ratio and a frequency error amount by automatic frequency control, a CPU 7 outputs an AFC signal for following a reception signal to a local oscillator 2, and also outputs a signal (c) to vary characteristics of the first band-pass filter 4 thereto. The first band-pass filter 4 removes the adjacent channel signal and also passes the desired signal therethrough. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、自動周波数制御手段を有する受信装置であって、特に隣接チャネル信号による妨害特性改善を図る受信装置に関する。   The present invention relates to a receiving apparatus having automatic frequency control means, and more particularly to a receiving apparatus that improves interference characteristics due to adjacent channel signals.

従来、受信した信号に追従する手段の一つとして自動周波数制御(以下、「AFC」と呼ぶ)が知られている。AFCを用いることで、受信信号の周波数が目標とする周波数からずれた場合でも受信信号に追従することができ、受信信号への追従ができれば信号を復調することが可能になる。特に、同期検波方式の受信装置では、受信信号に対して周波数と位相が同期した局部発振信号を作る必要があり、AFCが必要となる。しかしながら、AFCで受信装置の局部発振周波数を変化させることで、隣接チャネル信号との周波数差が小さくなり、中間周波数フィルタやベースバンドフィルタ等での除去量が低下し、隣接チャネル妨害特性が低下してしまう問題があった。   Conventionally, automatic frequency control (hereinafter referred to as “AFC”) is known as one of means for following a received signal. By using AFC, it is possible to follow the received signal even when the frequency of the received signal deviates from the target frequency. If the follow-up to the received signal is possible, the signal can be demodulated. In particular, in a synchronous detection type receiver, it is necessary to create a local oscillation signal whose frequency and phase are synchronized with the received signal, which requires AFC. However, by changing the local oscillation frequency of the receiving device with AFC, the frequency difference with the adjacent channel signal is reduced, the removal amount in the intermediate frequency filter, the baseband filter, etc. is reduced, and the adjacent channel interference characteristic is reduced. There was a problem.

上記問題を解決する方法として、以下に説明する直接変換受信機が提案されている(特許文献1参照)。この直接変換受信機について、図6に基づいて簡単に説明する。図6に示す直接変換受信機は、無線信号を受信する受信アンテナ101と、受信アンテナ101からの受信信号を増幅して変調信号aを出力する受信信号増幅器102と、受信した送信波の搬送周波数にほぼ等しい周波数を有する第1のローカル信号b1を発生する第1の局部発振器103と、第1のローカル信号a1を90度移相する90度移相器104と、変調信号a1と第1のローカル信号b1とを混合する第1の信号混合器105と、変調信号a1と90度移相した第1のローカル信号b1とを混合する第2の信号混合器106とを備えている。   As a method for solving the above problem, a direct conversion receiver described below has been proposed (see Patent Document 1). This direct conversion receiver will be briefly described with reference to FIG. The direct conversion receiver shown in FIG. 6 includes a reception antenna 101 that receives a radio signal, a reception signal amplifier 102 that amplifies the reception signal from the reception antenna 101 and outputs a modulated signal a, and a carrier frequency of the received transmission wave. A first local oscillator 103 that generates a first local signal b1 having a frequency substantially equal to the first local signal b1, a 90-degree phase shifter 104 that shifts the first local signal a1 by 90 degrees, a modulation signal a1, and a first A first signal mixer 105 that mixes the local signal b1 and a second signal mixer 106 that mixes the modulated signal a1 and the first local signal b1 shifted by 90 degrees are provided.

上記直接変換受信機はまた、I低域通過フィルタ107とQ低域通過フィルタ108とを備えている。I低域通過フィルタ107は、ベースバンドフィルタ制御信号g1により自動周波数制御に応じて遮断周波数を制御する遮断周波数切替手段を備え、第1の信号混合器105の出力信号から遮断周波数に応じて高周波成分を除去してIベースバンド信号c1を抽出する。また、Q低域通過フィルタ108は、ベースバンドフィルタ制御信号g1により自動周波数制御に応じて遮断周波数を制御する遮断周波数切替手段を備え、第2の信号混合器106の出力信号から遮断周波数に応じて高周波成分を除去してQベースバンド信号d1を抽出する。   The direct conversion receiver also includes an I low pass filter 107 and a Q low pass filter 108. The I low-pass filter 107 includes cutoff frequency switching means for controlling the cutoff frequency according to the automatic frequency control by the baseband filter control signal g1, and the high frequency according to the cutoff frequency from the output signal of the first signal mixer 105. The component is removed and the I baseband signal c1 is extracted. Further, the Q low-pass filter 108 includes cutoff frequency switching means for controlling the cutoff frequency according to the automatic frequency control by the baseband filter control signal g1, and according to the cutoff frequency from the output signal of the second signal mixer 106. The high frequency component is removed to extract the Q baseband signal d1.

上記直接変換受信機は更に、Iベースバンド信号c1及びQベースバンド信号d1を処理して復調信号e1を出力する復調手段109と、復調手段109からの復調信号e1より受信周波数信号と第1の局部発振器103の周波数誤差を検出するための周波数ずれ検出手段111と、周波数ずれ検出手段111の出力信号により第1の局部発振器103の周波数誤差を制御するための自動周波数制御信号f1を出力する自動周波数制御手段110と、周波数ずれ検出手段111の出力信号によりI及びQ低域通過フィルタ7,8の遮断周波数を制御するためのベースバンドフィルタ制御手段112とを備えている。この直接変換受信機は、上記の構成を備えているので、自動周波数制御に連動してI及びQ低域通過フィルタ7,8の遮断周波数を制御することで、AFCを動作させても隣接チャネル妨害特性が改善するとしている。
特開平10−313344号公報
The direct conversion receiver further processes the I baseband signal c1 and the Q baseband signal d1 and outputs a demodulated signal e1, and receives the received frequency signal and the first frequency from the demodulated signal e1 from the demodulator 109. A frequency shift detector 111 for detecting the frequency error of the local oscillator 103 and an automatic output of an automatic frequency control signal f1 for controlling the frequency error of the first local oscillator 103 by the output signal of the frequency shift detector 111. A frequency control unit 110 and a baseband filter control unit 112 for controlling the cutoff frequency of the I and Q low-pass filters 7 and 8 by the output signal of the frequency shift detection unit 111 are provided. Since this direct conversion receiver has the above-described configuration, it is possible to control adjacent frequencies even if the AFC is operated by controlling the cutoff frequencies of the I and Q low-pass filters 7 and 8 in conjunction with automatic frequency control. The jamming characteristics will be improved.
Japanese Patent Laid-Open No. 10-313344

しかしながら、上記従来の技術では、隣接チャネルの妨害信号が有る無しに関わらず、AFCの動作に応じてフィルタの遮断周波数が変動する動作を示す。通常の無線通信においては、特定のチャネルに常時電波が出し続けられることはなく、必ず電波が出ていない時間がある。データ通信等では1日に1回決まった時間に数分だけ通信を行うというものもある。このように、従来技術では隣接チャネルの妨害信号が無いにも関わらず遮断周波数を下げる場合が出てきて、無用な動作を行ってしまう問題がある。   However, the above conventional technique shows an operation in which the cutoff frequency of the filter fluctuates according to the operation of the AFC regardless of whether there is an interference signal of the adjacent channel. In normal wireless communication, radio waves are not continuously output to a specific channel, and there is always a time during which no radio waves are output. In some cases, data communication or the like is performed for several minutes at a predetermined time once a day. As described above, in the conventional technique, there is a case where the cut-off frequency is lowered even though there is no interference signal of the adjacent channel, and there is a problem that an unnecessary operation is performed.

また、従来技術にあるように、単純に低域通過フィルタの遮断周波数を下げ隣接チャネル信号を除去しようとすると、希望信号の通過帯域まで減衰し、受信感度が劣化してしまう問題がある。例えば、特定小電力無線のARIB STD−T67では、希望信号の占有帯域幅が8.5kHzや16kHzに対してチャネル間隔が12.5kHzや25kHzであり、希望信号の通過帯域を確保しながら遮断周波数を下げるには限界があり、隣接チャネル信号を十分除去することは困難である。   In addition, as in the prior art, if an attempt is made to simply lower the cut-off frequency of the low-pass filter and remove the adjacent channel signal, there is a problem that the reception sensitivity is deteriorated by attenuation to the pass band of the desired signal. For example, in the specific low power radio ARIB STD-T67, the occupied bandwidth of the desired signal is 8.5 kHz or 16 kHz, and the channel interval is 12.5 kHz or 25 kHz. Is limited, and it is difficult to sufficiently remove adjacent channel signals.

このように、従来の技術では、隣接チャネル信号を十分に除去しようとすると、希望信号を減衰させてしまう問題がある。また、希望信号を減衰させないように遮断周波数を下げるのを抑えると、隣接チャネル信号を十分除去できず、SN比が劣化し受信感度か落ちるという問題がある。   As described above, in the conventional technique, there is a problem that the desired signal is attenuated if the adjacent channel signal is sufficiently removed. Further, if the cut-off frequency is suppressed so as not to attenuate the desired signal, there is a problem that the adjacent channel signal cannot be sufficiently removed, the SN ratio is deteriorated and the reception sensitivity is lowered.

また、従来の技術では、隣接チャネル信号レベルを知ることができない。そのため、希望信号レベルが十分あり隣接チャネル信号レベルとのSN比から、フィルタの遮断周波数を変えずとも、通信性能に影響しないにも関わらず、AFC動作に応じてフィルタの遮断周波数を変えてしまうという無用な動作を行う問題がある。   Also, the conventional technique cannot know the adjacent channel signal level. Therefore, the desired signal level is sufficient, and the filter cutoff frequency is changed according to the AFC operation, even if the cutoff frequency of the filter is not changed or the communication performance is not affected from the SN ratio with the adjacent channel signal level. There is a problem of performing unnecessary operations.

そこで、隣接チャネル信号レベルを知ることで、希望信号レベルと隣接チャネル信号レベルとのSN比に基づいて、隣接チャネル信号を除去するためのフィルタの周波数特性を変更する点で解決すべき課題がある。   Therefore, there is a problem to be solved in that the frequency characteristic of the filter for removing the adjacent channel signal is changed based on the S / N ratio between the desired signal level and the adjacent channel signal level by knowing the adjacent channel signal level. .

この発明の目的は、上記問題を解決し、隣接チャネル信号が希望信号に与える影響度を考慮して最適なフィルタ特性に切り替えることが可能な受信装置を提供することである。   An object of the present invention is to provide a receiving apparatus that solves the above-described problem and can switch to an optimum filter characteristic in consideration of the influence of an adjacent channel signal on a desired signal.

上記目的を達するために、本発明は、自動周波数制御を有する受信装置において、受信信号の内、希望信号を通過させる第1の帯域通過フィルタと、前記希望信号と隣接チャネル信号を通過させる第2の帯域通過フィルタと、前記第1の帯域通過フィルタからの出力信号及び前記第2の帯域通過フィルタからの出力信号の電力を測定する電力測定回路とを備え、前記電力測定回路にて測定した値より計算した前記希望信号と前記隣接チャネル信号のSN比と、前記自動周波数制御による周波数誤差量とに基づいて前記第1の帯域通過フィルタの特性を可変することを特徴とする。   To achieve the above object, according to the present invention, in a receiving apparatus having automatic frequency control, a first band-pass filter that passes a desired signal among received signals, and a second that passes the desired signal and an adjacent channel signal. And a power measurement circuit that measures the power of the output signal from the first bandpass filter and the output signal from the second bandpass filter, and a value measured by the power measurement circuit The characteristic of the first band pass filter is varied based on the S / N ratio between the desired signal and the adjacent channel signal calculated in addition and the frequency error amount by the automatic frequency control.

この受信装置によれば、電力測定回路が第1の帯域通過フィルタからの出力信号の電力を測定するときは希望信号の電力を測定し、第2の帯域通過フィルタからの出力信号の電力を測定するときは希望信号と隣接チャネル信号との電力を測定する。これらの測定値から、希望信号と隣接チャネル信号のそれぞれの電力が算出でき、隣接チャネル信号が希望信号に与える影響度として、両信号のSN比を求めることができる。当該SN比と、自動周波数制御による周波数誤差量とに基づいて、第1の帯域通過フィルタの特性を可変としているので、第1の帯域通過フィルタにおいて隣接チャネル信号を除去して希望信号を通過させることができる。   According to this receiving apparatus, when the power measurement circuit measures the power of the output signal from the first band pass filter, the power of the desired signal is measured, and the power of the output signal from the second band pass filter is measured. When doing so, the power of the desired signal and the adjacent channel signal is measured. From these measured values, the respective powers of the desired signal and the adjacent channel signal can be calculated, and the SN ratio of both signals can be determined as the degree of influence of the adjacent channel signal on the desired signal. Since the characteristics of the first bandpass filter are variable based on the S / N ratio and the frequency error amount by automatic frequency control, the adjacent channel signal is removed and the desired signal is allowed to pass through the first bandpass filter. be able to.

また、上記受信装置において、上側の前記隣接チャネル信号の受信電力と下側の前記隣接チャネル信号の受信電力を測定し、前記自動周波数制御により周波数が近づく前記隣接チャネル側の信号レベルが低い場合は、前記第1の帯域通過フィルタを可変しないようにすることができる。これにより第1の帯域通過フィルタの無用な可変動作を回避することができる。   In the receiving apparatus, when the reception power of the adjacent channel signal on the upper side and the reception power of the adjacent channel signal on the lower side are measured, and the signal level on the adjacent channel side whose frequency approaches by the automatic frequency control is low, The first band pass filter can be prevented from being varied. Thereby, useless variable operation of the first bandpass filter can be avoided.

また、上記受信装置において、前記SN比が、前記自動周波数制御における前記周波数誤差量に対して予め定められた関係に基づいて設定された前記SN比の閾値以上では前記第1の帯域通過フィルタを可変せず、前記SN比が前記閾値以下では、前記第1の帯域通過フィルタを可変することができる。第1の帯域通過フィルタを可変するか否かは、SN比の大きさに基づいて定めることができる。即ち、SN比が閾値以上に大きく隣接チャネル信号の影響が小さいと判断される場合には第1の帯域通過フィルタのフィルタ帯域幅を可変せず、SN比が閾値以下で隣接チャネル信号の影響が大きいと判断される場合には、閾値との差に応じて第1の帯域通過フィルタのフィルタ帯域幅を狭くするように特性を可変とすることができる。   In the receiving apparatus, the first band pass filter may be used when the SN ratio is greater than or equal to the SN ratio threshold set based on a predetermined relationship with respect to the frequency error amount in the automatic frequency control. If the S / N ratio is not more than the threshold value without being varied, the first band pass filter can be varied. Whether or not the first band pass filter is varied can be determined based on the magnitude of the SN ratio. That is, when it is judged that the SN ratio is larger than the threshold value and the influence of the adjacent channel signal is small, the filter bandwidth of the first bandpass filter is not changed, and the influence of the adjacent channel signal is reduced when the SN ratio is less than the threshold value. If it is determined that the value is large, the characteristic can be made variable so as to narrow the filter bandwidth of the first bandpass filter according to the difference from the threshold.

また、上記受信装置において、受信信号を増幅する増幅器と、局部発振信号を出力する局部発振器と、前記増幅器から増幅された出力信号と前記局部発振器の局部発振信号を混合する混合器と、前記混合器から出力された中間周波数信号を帯域制限する前記第1の帯域通過フィルタと、前記混合器から出力された中間周波数信号を帯域制限する前記第2の帯域通過フィルタと、前記第1の帯域通過フィルタから出力された中間周波数信号を復調する復調回路と、前記復調回路より出力された復調信号を処理するCPUと、前記第1の帯域通過フィルタからの出力又は前記第2の帯域通過フィルタからの出力を切り替える第1の切り替えスイッチと、前記第1の切り替えスイッチよりの出力電力を測定する前記電力測定回路と、前記電力測定回路の電力値を前記CPUを介して記憶保持するメモリと、から構成されることを特徴とする。電力測定回路は、第1の切り替えスイッチが操作されて第1の帯域通過フィルタからの出力信号の電力を測定するときは希望信号の電力を測定し、第1の切り替えスイッチが切替操作されて第2の帯域通過フィルタからの出力信号の電力を測定するときは希望信号と隣接チャネル信号との電力を測定し、測定値はメモリに記憶保持される。隣接チャネル信号が希望信号に与える影響度として両信号のSN比を求めることができる。   In the above receiver, the amplifier for amplifying the received signal, the local oscillator for outputting the local oscillation signal, the mixer for mixing the output signal amplified from the amplifier and the local oscillation signal of the local oscillator, and the mixing The first band pass filter for band limiting the intermediate frequency signal output from the mixer, the second band pass filter for band limiting the intermediate frequency signal output from the mixer, and the first band pass. A demodulation circuit that demodulates the intermediate frequency signal output from the filter, a CPU that processes the demodulated signal output from the demodulation circuit, an output from the first band-pass filter, or from the second band-pass filter A first changeover switch for switching output, the power measurement circuit for measuring output power from the first changeover switch, and the power measurement circuit. Characterized in a memory for storing and holding power values through the CPU, and it is composed of. The power measurement circuit measures the power of the desired signal when the first changeover switch is operated to measure the power of the output signal from the first bandpass filter, and the first changeover switch is operated to switch the first changeover switch. When measuring the power of the output signal from the second band pass filter, the power of the desired signal and the adjacent channel signal is measured, and the measured value is stored in the memory. The signal-to-noise ratio of both signals can be obtained as the degree of influence of the adjacent channel signal on the desired signal.

また、上記受信装置において、前記第2の帯域通過フィルタと並列に第3の帯域通過フィルタを設け、前記第1の切り替えスイッチの変わりに、前記第1の帯域通過フィルタ出力と前記第2の帯域通過フィルタ出力と前記第3の帯域通過フィルタ出力を切り替える第2の切り替えスイッチを設ける構成において、前記第2の帯域通過フィルタを希望信号と上側隣接チャネル信号のみが通過する特性とし、前記第3の帯域通過フィルタを希望信号と下側隣接チャネル信号のみが通過する特性とすることができる。これにより、隣接チャネル信号としては、上側と下側との両方を扱うことができる。   In the receiving apparatus, a third bandpass filter is provided in parallel with the second bandpass filter, and the first bandpass filter output and the second band are used instead of the first changeover switch. In the configuration in which the second changeover switch for switching between the pass filter output and the third band pass filter output is provided, the second band pass filter has a characteristic that only the desired signal and the upper adjacent channel signal pass, The band-pass filter can have a characteristic that only the desired signal and the lower adjacent channel signal pass. Thereby, both the upper side and the lower side can be handled as the adjacent channel signal.

また、上記受信装置において、前記第1の帯域通過フィルタは並列にスイッチを設けた帯域通過フィルタユニットが少なくとも2段以上従属に接続される構成で、前記帯域通過フィルタユニットの各々は通過帯域幅と減衰特性の異なる特性を有することができる。これにより、並列に設けられたスイッチの操作で、通過帯域幅と減衰特性の異なる特性を持つ2段以上の帯域通過フィルタユニットのうちいずれかを選択することができる。   Further, in the receiving apparatus, the first bandpass filter is configured such that a bandpass filter unit provided with a switch in parallel is connected in at least two or more stages, and each of the bandpass filter units has a passband width. It can have different characteristics of attenuation characteristics. As a result, it is possible to select one of two or more stages of bandpass filter units having different characteristics of the passband width and the attenuation characteristic by operating the switches provided in parallel.

以上説明したとおりに、本発明によれば、従来技術にあるような妨害を及ぼす隣接チャネル信号が存在しないにも関わらずフィルタの特性を可変させるという無用な動作を行う問題を解決することが可能になる。これにより、無用な電力を消費しないですむ。
また、本発明によれば、従来の技術にあるような隣接チャネル信号を十分に除去しようとすると、希望信号を減衰させてしまう問題を解決し、隣接チャネル信号を十分除去することが可能になる。これにより、受信感度と妨害特性の両特性を確保できるので、通信品質が向上する。
As described above, according to the present invention, it is possible to solve the problem of performing an unnecessary operation of changing the characteristics of a filter even though there is no adjacent channel signal that causes interference as in the prior art. become. This eliminates unnecessary power consumption.
In addition, according to the present invention, it is possible to solve the problem of attenuating the desired signal when the adjacent channel signal is sufficiently removed as in the prior art, and to sufficiently remove the adjacent channel signal. . As a result, both reception sensitivity and interference characteristics can be ensured, and communication quality is improved.

また、本発明によれば、第2の通過帯域フィルタ5又は第3の帯域通過フィルタ11は隣接チャネル周波数も通過させるので、帯域幅の広いフィルタで良いため、簡易な構成で可能になるメリットがある。
また、本発明によれば、従来の技術のような隣接チャネル信号レベルを知ることができないとうい問題を解決でき、さらに、希望信号レベルと隣接チャネル信号レベルとのSN比を計測することで、AFC実行後に最適なフィルタ特性に変えることが可能になり、通信品質が大幅に向上する。
In addition, according to the present invention, since the second passband filter 5 or the third bandpass filter 11 also passes the adjacent channel frequency, a filter with a wide bandwidth may be used, so that there is a merit that is possible with a simple configuration. is there.
Further, according to the present invention, the problem that the adjacent channel signal level cannot be known as in the prior art can be solved, and furthermore, by measuring the SN ratio between the desired signal level and the adjacent channel signal level, It becomes possible to change to optimum filter characteristics after AFC execution, and communication quality is greatly improved.

以下、図面を参照して本発明による受信装置の実施形態を詳細に説明する。   Hereinafter, embodiments of a receiving apparatus according to the present invention will be described in detail with reference to the drawings.

図1に本発明による受信装置の第1の実施例に係る受信装置の構成図を示す。図1に示す受信装置は、受信信号を増幅する増幅器1と、局部発振信号を出力する局部発振器2と、増幅器1から増幅された出力信号と局部発振器2の局部発振信号を混合する混合器3と、混合器3から出力された中間周波数信号を帯域制限する第1の帯域通過フィルタ4と、混合器3から出力された中間周波数信号を帯域制限する第2の帯域通過フィルタ5と、第1の帯域通過フィルタ4から出力された中間周波数信号を復調する復調回路6と、復調回路6より出力された復調信号を処理するCPU7と、第1の帯域通過フィルタ4からの出力又は第2の帯域通過フィルタ5からの出力を切り替える第1の切り替えスイッチ8と、第1の切り替えスイッチ8よりの出力電力を測定する電力測定回路9と、電力測定回路9の電力値をCPU7を介して記憶保持するメモリ10と、から構成されている。ここで、局部発振器2は例えば電圧制御発振器が使用される。   FIG. 1 shows a configuration diagram of a receiving apparatus according to a first embodiment of a receiving apparatus according to the present invention. 1 includes an amplifier 1 that amplifies a received signal, a local oscillator 2 that outputs a local oscillation signal, and a mixer 3 that mixes the output signal amplified from the amplifier 1 and the local oscillation signal of the local oscillator 2. A first bandpass filter 4 for band-limiting the intermediate frequency signal output from the mixer 3, a second bandpass filter 5 for band-limiting the intermediate frequency signal output from the mixer 3, and a first A demodulating circuit 6 for demodulating the intermediate frequency signal output from the band-pass filter 4, a CPU 7 for processing the demodulated signal output from the demodulating circuit 6, and an output from the first band-pass filter 4 or the second band A first changeover switch 8 that switches the output from the pass filter 5, a power measurement circuit 9 that measures the output power from the first changeover switch 8, and the power value of the power measurement circuit 9 is set to the CPU 7. A memory 10 for storing and holding through, and a. Here, the local oscillator 2 is, for example, a voltage controlled oscillator.

受信動作の測定手順を以下に説明する。説明を簡単にするために、局部発振信号の周波数はずれておらず、受信信号の周波数がずれており、また上側隣接チャネル信号のみが存在する場合を考える。図1に示すように、希望信号と妨害信号を含んだ受信信号を増幅器1で増幅する。増幅した受信信号と局部発振器2による局部発振信号が混合器3により混合され中間周波数信号が出力される。中間周波数信号は、第1の帯域通過フィルタ4で帯域制限され、復調回路6に送られる。復調回路6によって復調され復調信号はCPU7に送られCPU7にて信号処理を行う。   The measurement procedure of the reception operation will be described below. To simplify the explanation, consider a case where the frequency of the local oscillation signal is not shifted, the frequency of the received signal is shifted, and only the upper adjacent channel signal exists. As shown in FIG. 1, a received signal including a desired signal and an interference signal is amplified by an amplifier 1. The amplified received signal and the local oscillation signal from the local oscillator 2 are mixed by the mixer 3 to output an intermediate frequency signal. The intermediate frequency signal is band-limited by the first band pass filter 4 and sent to the demodulation circuit 6. The demodulated signal demodulated by the demodulating circuit 6 is sent to the CPU 7 where the CPU 7 performs signal processing.

ここで、第1の帯域通過フィルタ4はAFC動作前なので希望信号のみが通過する(図2a)。CPU7よりのスイッチ切り替え信号eにより第1の切り替えスイッチ8を第1の帯域通過フィルタ4の出力に切り替え電力測定回路9で測定することで、希望信号の電力(以下、「S」とする)が得られる。この値をCPU7を介してメモリ10に記憶保持させておく。   Here, since the first band-pass filter 4 is before the AFC operation, only the desired signal passes (FIG. 2a). The power of the desired signal (hereinafter referred to as “S”) is obtained by measuring the first changeover switch 8 to the output of the first band-pass filter 4 by the switch power measurement circuit 9 by the switch change signal e from the CPU 7. can get. This value is stored and held in the memory 10 via the CPU 7.

尚、受信周波数のずれが大きく、中間周波数信号が大きくずれた場合、第1の帯域通過フィルタ4の帯域外に中間周波数信号が移り、電力が正確に測定できなくなる。しかし、電波法により、用途に応じて周波数偏差の許容値が決められているので、通常フィルタの通過帯域内での変動に抑えられるように設計される。例えば、特定小電力無線ARIB STD−T67(429MHz帯)では送信周波数偏差は、4ppm以内である。中間周波数が450kHzの帯域制限フィルタの場合、3dB帯域幅は通常8〜12kHz程度に設定するので、通信機間の最大のずれ8ppm(=4ppm−(−4ppm))が3.4kHz(8ppm)になり、通過帯域内に入る。   When the reception frequency shift is large and the intermediate frequency signal is largely shifted, the intermediate frequency signal moves out of the band of the first bandpass filter 4 and the power cannot be measured accurately. However, since the allowable value of the frequency deviation is determined according to the application by the radio wave method, it is designed to be suppressed to fluctuations in the pass band of the normal filter. For example, in the specific low power radio ARIB STD-T67 (429 MHz band), the transmission frequency deviation is within 4 ppm. In the case of a band limiting filter with an intermediate frequency of 450 kHz, since the 3 dB bandwidth is normally set to about 8 to 12 kHz, the maximum deviation between the communication devices 8 ppm (= 4 ppm − (− 4 ppm)) is changed to 3.4 kHz (8 ppm). And enters the passband.

次に、第2の帯域通過フィルタ5には希望信号と隣接チャネル信号が入力される(図2b)。CPU7よりのスイッチ切り替え信号eにより第1の切り替えスイッチ8を第2の帯域通過フィルタ5の出力に切り替え、電力測定回路9で測定することで、希望信号と隣接チャネル信号の電力(以下、「S’」とする)が得られる。この値をCPU7を介してメモリ10に記憶保持させておく。   Next, the desired signal and the adjacent channel signal are input to the second bandpass filter 5 (FIG. 2b). The first changeover switch 8 is switched to the output of the second bandpass filter 5 by the switch changeover signal e from the CPU 7, and the power measurement circuit 9 measures the power of the desired signal and the adjacent channel signal (hereinafter referred to as “S '") Is obtained. This value is stored and held in the memory 10 via the CPU 7.

ここで、隣接チャネルの信号レベルをNとすると、次の式(1)で隣接チャネル信号の電力Nが求まる。
N=S’−S (1)
この値をCPU7を介してメモリ10に記憶保持させておく。ここで、先程求めた希望信号の電力Sと(1)式より求めた隣接チャネル信号の電力NよりCPU7にてSN比を計算し、メモリ10に記憶保持しておく。
Here, when the signal level of the adjacent channel is N, the power N of the adjacent channel signal is obtained by the following equation (1).
N = S′−S (1)
This value is stored and held in the memory 10 via the CPU 7. Here, the S / N ratio is calculated by the CPU 7 from the power S of the desired signal obtained previously and the power N of the adjacent channel signal obtained from the equation (1), and stored in the memory 10.

次に、AFC動作を開始する。復調回路6の周波数誤差信号出力端子aより、所望の中間周波数からの周波数のずれとしての周波数誤差が周波数誤差信号bとしてCPU7に送られる。CPU7は、周波数誤差信号bとして入力された周波数誤差をゼロにするようにAFC制御信号dを局部発振器2に出力してこれを制御し、局部発振器2の出力周波数を所望の局部発振周波数にすることで受信信号に追従させる。ここで、AFC動作終了後は局部発振周波数が変化しているので、隣接チャネル信号との周波数差が変化する(図3a)。   Next, the AFC operation is started. From the frequency error signal output terminal a of the demodulation circuit 6, a frequency error as a frequency deviation from a desired intermediate frequency is sent to the CPU 7 as a frequency error signal b. The CPU 7 outputs and controls the AFC control signal d to the local oscillator 2 so that the frequency error input as the frequency error signal b becomes zero, and sets the output frequency of the local oscillator 2 to a desired local oscillation frequency. To follow the received signal. Here, since the local oscillation frequency has changed after the end of the AFC operation, the frequency difference with the adjacent channel signal changes (FIG. 3a).

図3aに示すように、AFC動作により局部発振周波数を高くした場合、上側の隣接チャネルと近くなるので、第1の帯域通過フィルタ4の通過帯域内に隣接チャネル信号が近づいてくることで、第1の帯域通過フィルタ4による除去量が減少し、妨害を受け受信特性が劣化してしまう。このとき、図3bに示すように帯域通過フィルタ4の帯域幅を狭くし、減衰特性を良くすることで、隣接チャネル信号を除去することが可能になる。尚、AFC動作を完了するまでの受信信号はプリアンブル等の周波数調整専用の信号であり、実際の情報は含まれないため、第1の帯域通過フィルタ4の切り替えを行うことで復調信号にエラーが発生する等の問題は起きない。   As shown in FIG. 3a, when the local oscillation frequency is increased by the AFC operation, the frequency is close to the adjacent channel on the upper side, so that the adjacent channel signal comes close to the pass band of the first band pass filter 4, so that The amount of removal by the first band pass filter 4 is reduced, and the reception characteristics are deteriorated due to interference. At this time, as shown in FIG. 3b, it is possible to remove the adjacent channel signal by narrowing the bandwidth of the band pass filter 4 and improving the attenuation characteristic. The received signal until the AFC operation is completed is a signal dedicated to frequency adjustment such as a preamble and does not include actual information. Therefore, an error occurs in the demodulated signal by switching the first bandpass filter 4. Problems such as occurrence do not occur.

図4aに第1の帯域通過フィルタ4の構成例の一例を示す。本説明では2段の従属接続フィルタ構成について説明するが任意の複数段にすることも可能であることは自明である。図4aに示すように、第1の帯域通過フィルタユニット20と第2の帯域通過フィルタユニット21を従属接続し、第1の帯域通過フィルタユニット20に並列にスイッチ22を設け、第2の帯域通過フィルタユニット21に並列にスイッチ23を設けている。ここで、第1の帯域通過フィルタユニット20は帯域幅と減衰特性が標準特性を有し、第2の帯域通過フィルタユニット21は、帯域幅が狭帯域で、減衰特性の良いフィルタとする。   FIG. 4 a shows an example of the configuration example of the first bandpass filter 4. In this description, a two-stage dependent connection filter configuration will be described, but it is obvious that it is possible to have any number of stages. As shown in FIG. 4a, the first band-pass filter unit 20 and the second band-pass filter unit 21 are cascade-connected, and a switch 22 is provided in parallel with the first band-pass filter unit 20 to provide a second band-pass filter. A switch 23 is provided in parallel with the filter unit 21. Here, the first band-pass filter unit 20 has standard characteristics in terms of bandwidth and attenuation characteristics, and the second band-pass filter unit 21 is a filter having a narrow bandwidth and good attenuation characteristics.

スイッチ22をオフ、スイッチ23をオンにした場合は、帯域幅と減衰特性が標準特性を有する第1の帯域通過フィルタユニット20に切り替わり、スイッチ22をオン、スイッチ23をオフにした場合は、帯域幅が狭帯域で、減衰特性の良い第2の帯域通過フィルタユニット21に切り替えることが可能になる。CPU7からのフィルタ切り替え信号cにより、スイッチ22、スイッチ23を制御することで、第1の帯域通過フィルタ4の特性を切り替えることが可能になる。   When the switch 22 is turned off and the switch 23 is turned on, the bandwidth and attenuation characteristics are switched to the first bandpass filter unit 20 having standard characteristics. When the switch 22 is turned on and the switch 23 is turned off, the band It is possible to switch to the second bandpass filter unit 21 having a narrow band and good attenuation characteristics. The characteristics of the first band pass filter 4 can be switched by controlling the switch 22 and the switch 23 by the filter switching signal c from the CPU 7.

図4bにより第1の帯域通過フィルタ4の特性切り替え判定方法について説明する。
横軸を周波数誤差量、縦軸をSN比とし、受信した信号のSN比をAとする。周波数誤差量が小さい場合(P点)は、隣接チャネル信号の影響は少ないので、第1の帯域通過フィルタ4を標準特性のフィルタに切り替える。周波数誤差量が多くなると(Q点)、隣接チャネル信号の影響が大きくなるので、第1の帯域通過フィルタ4を狭帯域特性のフィルタに切り替える。
The characteristic switching determination method of the first bandpass filter 4 will be described with reference to FIG.
The horizontal axis is the frequency error amount, the vertical axis is the SN ratio, and the SN ratio of the received signal is A. When the amount of frequency error is small (point P), the influence of the adjacent channel signal is small, so the first band pass filter 4 is switched to a filter with standard characteristics. When the frequency error amount increases (Q point), the influence of the adjacent channel signal increases, so the first band-pass filter 4 is switched to a narrow-band characteristic filter.

このように、SN比と周波数誤差量との間に第1の帯域通過フィルタ4の特性切り替え閾値(R点)があり、他のSN比での閾値をプロットしていくと、図4bに示すような切り替え判定線(直線又は曲線)で表せる。図4bの特性をメモリ10に記憶保持させておけば、受信時に測定したSN比と周波数誤差量より第1の帯域通過フィルタ4を最適なフィルタ特性に切り替えることが可能になる。   Thus, there is a characteristic switching threshold value (R point) of the first bandpass filter 4 between the SN ratio and the frequency error amount, and when the threshold values at other SN ratios are plotted, FIG. Such a switching determination line (straight line or curve) can be represented. If the characteristics of FIG. 4 b are stored in the memory 10, the first bandpass filter 4 can be switched to the optimum filter characteristics based on the SN ratio and frequency error amount measured at the time of reception.

詳細な説明は省略するが、図4cに示すように複数のフィルタの特性を用意すれば、より最適なフィルタの特性に切り替えることが可能になる。例えば、第1の帯域通過フィルタ4をデフォルトで標準特性のフィルタとして設定しておき、SN比と周波数誤差量とに基づいてフィルタ切り替え信号cで適切なフィルタ特性を備えるフィルタに切り替えることができる。図4cに示すような3種類のフィルタを切り替える場合には、図4aに示すフィルタユニットは、もう一つカスケード接続された構造となり、選択するフィルタ特性によっていずれか一つのスイッチがOFFになり他のスイッチがONするように、フィルタ切り替え信号cでスイッチを切り替えることになる。
こうすることで、信号を受信した際に、第1の帯域通過フィルタ4は標準特性のフィルタに設定されており、特性を切り替える必要がある時のみに切り替え動作をすれば良くなる。
Although a detailed description is omitted, if characteristics of a plurality of filters are prepared as shown in FIG. 4c, it is possible to switch to more optimal filter characteristics. For example, the first band-pass filter 4 can be set as a standard characteristic filter by default, and the filter can be switched to a filter having an appropriate filter characteristic based on the S / N ratio and the frequency error amount by the filter switching signal c. When switching three types of filters as shown in FIG. 4c, the filter unit shown in FIG. 4a has another cascade connection structure, and one of the switches is turned off depending on the filter characteristics to be selected. The switch is switched by the filter switching signal c so that the switch is turned on.
In this way, when the signal is received, the first bandpass filter 4 is set to a standard characteristic filter, and it is only necessary to perform the switching operation when the characteristic needs to be switched.

次に、本発明による受信装置の第2の実施例について説明する。ここで、説明を簡単にするために、下側隣接チャネル信号のみが存在する場合を考える。図5aに第2の実施例に係る受信装置の構成を示す。図5aに示すように、本発明の第1の実施例との違いは、第2の帯域通過フィルタ5と並列に第3の帯域通過フィルタ11を設け、第1の切り替えスイッチ8の変わりに、第1の帯域通過フィルタ4の出力と第2の帯域通過フィルタ5の出力と第3の帯域通過フィルタ11の出力を切り替える第2の切り替えスイッチ12を設ける構成としている点にある。   Next, a second embodiment of the receiving apparatus according to the present invention will be described. Here, in order to simplify the description, consider a case where only the lower adjacent channel signal exists. FIG. 5a shows the configuration of the receiving apparatus according to the second embodiment. As shown in FIG. 5a, the difference from the first embodiment of the present invention is that a third bandpass filter 11 is provided in parallel with the second bandpass filter 5, and the first changeover switch 8 is changed. The second switching switch 12 is provided to switch the output of the first bandpass filter 4, the output of the second bandpass filter 5, and the output of the third bandpass filter 11.

第2の帯域通過フィルタ5の特性を図5bに示す。フィルタの中心周波数は中間周波数の中心周波数と上側隣接チャネル周波数の中間で、希望信号と上側隣接チャネル信号が通過する特性とする。
第3の帯域通過フィルタ11の特性を図5cに示す。フィルタの中心周波数は中間周波数の中心周波数と下側隣接チャネル周波数の中間で、希望信号と下側隣接チャネル信号が通過する特性とする。
The characteristics of the second bandpass filter 5 are shown in FIG. The center frequency of the filter is between the center frequency of the intermediate frequency and the upper adjacent channel frequency, and the desired signal and the upper adjacent channel signal pass.
The characteristics of the third band pass filter 11 are shown in FIG. The center frequency of the filter is between the center frequency of the intermediate frequency and the lower adjacent channel frequency, and the desired signal and the lower adjacent channel signal pass through.

第2の切り替えスイッチ12を第1の帯域通過フィルタ4の出力に切り替え電力測定回路9で測定することで、希望信号の電力Sが得られる。この値をCPU7を介してメモリ10に記憶保持させておく。次に、第2の切り替えスイッチ12を第2の帯域通過フィルタ5の出力に切り替え電力測定回路9で測定することで、希望信号と上側隣接チャネル信号の電力S’が得られる。この値をCPU7を介してメモリ10に記憶保持させておく。次に、切り替えスイッチ12を第3の帯域通過フィルタ11の出力に切り替え電力測定回路9で測定することで、希望信号と下側隣接チャネルの電力S”が得られる。この値をCPU7を介してメモリ10に記憶保持させておく。   The power S of the desired signal can be obtained by measuring the second changeover switch 12 to the output of the first bandpass filter 4 by the switching power measurement circuit 9. This value is stored and held in the memory 10 via the CPU 7. Next, the power S 'of the desired signal and the upper adjacent channel signal is obtained by measuring the second changeover switch 12 to the output of the second bandpass filter 5 and measuring it with the power measurement circuit 9. This value is stored and held in the memory 10 via the CPU 7. Next, the changeover switch 12 is switched to the output of the third bandpass filter 11 and measured by the power measurement circuit 9 to obtain the desired signal and the power S ″ of the lower adjacent channel. This value is obtained via the CPU 7. Stored in the memory 10.

ここで、図5b、図5cから分かるように、上側隣接チャネル信号は存在しなしので、 S=S’ (2)
となり、(1)式より
N=0 (3)
となる。尚、(2)式と(3)式よりSN比が無限大になるように見えるが、実際には希望信号は熱雑音や受信機内で発生する雑音による一定のSN比を持った信号である。(3)式は隣接チャネルに電力測定回路9で検出できる信号が無いことを意味しており、隣接チャネルにも熱雑音等のノイズは存在する。
また、下側隣接チャネルは信号が存在するので、下側隣接チャネル信号の電力をN’とすると、
N’=S”−S (4)
となる。
Here, as can be seen from FIGS. 5b and 5c, there is no upper adjacent channel signal, so S = S ′ (2)
And from equation (1)
N = 0 (3)
It becomes. Although the S / N ratio appears to be infinite from the equations (2) and (3), the desired signal is actually a signal having a certain S / N ratio due to thermal noise or noise generated in the receiver. . Equation (3) means that there is no signal that can be detected by the power measurement circuit 9 in the adjacent channel, and noise such as thermal noise also exists in the adjacent channel.
Also, since there is a signal in the lower adjacent channel, if the power of the lower adjacent channel signal is N ′,
N ′ = S ″ −S (4)
It becomes.

次に、AFC動作を実行すると、第1の帯域通過フィルタ4の出力は図5dに示すようになる。図5dに示すように局部発振信号をシフトしたことにより、上側隣接チャネル周波数がフィルタの通過帯域内に近づいてくるが、上側隣接チャネルには信号が存在しない。このことは、メモリ10に記憶保持されている、(2)、(3)式よりの値から分かるので、第1の帯域通過フィルタ4は通常特性のフィルタにより、通信性能を確保できることが分かるため、フィルタの切り替えは行わない。   Next, when the AFC operation is executed, the output of the first bandpass filter 4 becomes as shown in FIG. 5d. By shifting the local oscillation signal as shown in FIG. 5d, the upper adjacent channel frequency approaches the filter passband, but there is no signal in the upper adjacent channel. This can be understood from the values stored in the memory 10 from the expressions (2) and (3), so that the first band-pass filter 4 can be secured with a normal characteristic filter to ensure communication performance. The filter is not switched.

尚、AFC動作後に局部発振信号が下側にシフトした場合は、下側隣接チャネルに近づくので、希望信号電力Sと(4)式による下側隣接チャネル信号電力N’によるSN比と周波数誤差信号により第1の帯域通過フィルタ4を切り替えるか判定する。   When the local oscillation signal shifts downward after the AFC operation, the signal approaches the lower adjacent channel, so that the desired signal power S and the SN ratio and frequency error signal by the lower adjacent channel signal power N ′ according to the equation (4) are used. To determine whether to switch the first bandpass filter 4.

本発明の第1の実施例に係る受信装置の構成を示すブロック図The block diagram which shows the structure of the receiver which concerns on 1st Example of this invention 本発明の第1の帯域通過フィルタ出力の周波数スペクトルの模式図Schematic diagram of frequency spectrum of first band pass filter output of the present invention 本発明の第2の帯域通過フィルタ出力の周波数スペクトルの模式図Schematic diagram of frequency spectrum of second bandpass filter output of the present invention 本発明の第1の帯域通過フィルタ出力のAFC実行後の周波数スペクトルの模式図Schematic diagram of frequency spectrum after AFC execution of first band pass filter output of the present invention 本発明の第1の帯域通過フィルタ出力のAFC実行後に第1の帯域通過フィルタの特性を切り替えた後の周波数スペクトルの模式図The schematic diagram of the frequency spectrum after switching the characteristic of the 1st band pass filter after AFC execution of the 1st band pass filter output of this invention 本発明の第1の帯域通過フィルタの具体的構成を示すブロック図The block diagram which shows the specific structure of the 1st band pass filter of this invention. 本発明の第1の帯域通過フィルタの切り替えを判定する、周波数誤差量とSN比との関係を示す模式図The schematic diagram which shows the relationship between the frequency error amount and S / N ratio which determines switching of the 1st bandpass filter of this invention 本発明の第1の帯域通過フィルタの切り替えを判定する、周波数誤差量とSN比との関係を示す別の模式図Another schematic diagram showing the relationship between the frequency error amount and the SN ratio for determining the switching of the first bandpass filter of the present invention. 本発明の第2の実施例に係る受信装置の構成を示すブロック図The block diagram which shows the structure of the receiver which concerns on 2nd Example of this invention. 本発明の第2の帯域通過フィルタ出力の周波数スペクトルの模式図Schematic diagram of frequency spectrum of second bandpass filter output of the present invention 本発明の第3の帯域通過フィルタ出力の周波数スペクトルの模式図Schematic diagram of frequency spectrum of third band-pass filter output of the present invention 本発明の第1の帯域通過フィルタ出力のAFC実行後の周波数スペクトルの模式図Schematic diagram of frequency spectrum after AFC execution of first band pass filter output of the present invention 従来技術の受信装置の構成を示すブロック図The block diagram which shows the structure of the receiver of a prior art

符号の説明Explanation of symbols

1 増幅器 2 局部発振器
3 混合器 4 第1の帯域通過フィルタ
5 第2の帯域通過フィルタ 6 復調回路
7 CPU 8 第1の切り替えスイッチ
9 電力測定回路 10 メモリ
11 第3の帯域通過フィルタ 12 第2の切り替えスイッチ
20 第1の帯域通過フィルタユニット 21 第2の帯域通過フィルタユニット
22 第1のスイッチ 23 第2のスイッチ
a 周波数誤差出力端子 b 周波数誤差信号
c フィルタ切り替え信号 d AFC制御信号
e スイッチ切り替え信号
101 アンテナ 102 受信信号増幅器
103 第1の局部発振器 104 90度移相器
105 第1の信号混合器 106 第2の信号混合器
107 I低域通過フィルタ 108 Q低域通過フィルタ
109 復調手段 110 自動周波数制御手段
111 周波数ずれ検出手段 112 ベースバンドフィルタ制御手段
113 信号処理手段
a1 変調信号 b1 第1のローカル信号
c1 Iベースバンド信号 d1 Qベースバンド信号
e1 復調信号 f1 自動周波数制御信号
g1 復調信号
DESCRIPTION OF SYMBOLS 1 Amplifier 2 Local oscillator 3 Mixer 4 1st band pass filter 5 2nd band pass filter 6 Demodulation circuit 7 CPU 8 1st changeover switch 9 Power measurement circuit 10 Memory 11 3rd band pass filter 12 2nd Selector switch 20 first bandpass filter unit 21 second bandpass filter unit 22 first switch 23 second switch a frequency error output terminal b frequency error signal c filter switching signal d AFC control signal e switch switching signal 101 Antenna 102 reception signal amplifier 103 first local oscillator 104 90-degree phase shifter 105 first signal mixer 106 second signal mixer 107 I low-pass filter 108 Q low-pass filter 109 demodulating means 110 automatic frequency control Means 111 Frequency deviation detection means 112 Base Band filter control means 113 Signal processing means a1 Modulated signal b1 First local signal c1 I Baseband signal d1 Q Baseband signal e1 Demodulated signal f1 Automatic frequency control signal g1 Demodulated signal

Claims (7)

自動周波数制御を有する受信装置において、受信信号の内、希望信号を通過させる第1の帯域通過フィルタと、
前記希望信号と隣接チャネル信号を通過させる第2の帯域通過フィルタと、
前記第1の帯域通過フィルタからの出力信号及び前記第2の帯域通過フィルタからの出力信号の電力を測定する電力測定回路とを備え、
前記電力測定回路にて測定した値より計算した前記希望信号と前記隣接チャネル信号のSN比と、前記自動周波数制御による周波数誤差量とに基づいて前記第1の帯域通過フィルタの特性を可変することを特徴とする受信装置。
In a receiving apparatus having automatic frequency control, a first bandpass filter that passes a desired signal among received signals;
A second bandpass filter that passes the desired signal and an adjacent channel signal;
A power measurement circuit for measuring the power of the output signal from the first band pass filter and the output signal from the second band pass filter;
Varying the characteristics of the first bandpass filter based on the S / N ratio between the desired signal and the adjacent channel signal calculated from the value measured by the power measurement circuit and the frequency error amount by the automatic frequency control. A receiving device.
上側の前記隣接チャネル信号の受信電力と下側の前記隣接チャネル信号の受信電力を測定し、前記自動周波数制御により周波数が近づく前記隣接チャネル側の信号レベルが低い場合は、前記第1の帯域通過フィルタを可変しないことを特徴とする請求項1に記載の受信装置。   The received power of the adjacent channel signal on the upper side and the received power of the adjacent channel signal on the lower side are measured, and when the signal level on the adjacent channel side whose frequency approaches by the automatic frequency control is low, the first band pass The receiving apparatus according to claim 1, wherein the filter is not variable. 前記SN比が、前記自動周波数制御における前記周波数誤差量に対して予め定められた関係に基づいて設定された前記SN比の閾値以上では前記第1の帯域通過フィルタを可変せず、前記SN比が前記閾値以下では、前記第1の帯域通過フィルタを可変することを特徴とする請求項1又は2に記載の受信装置。   If the S / N ratio is equal to or greater than the S / N ratio threshold value set based on a predetermined relationship with respect to the frequency error amount in the automatic frequency control, the S / N ratio is not changed. 3. The receiving apparatus according to claim 1, wherein the first bandpass filter is varied when the value is less than or equal to the threshold value. 4. 前記SN比が前記閾値以下の場合、前記閾値との差に応じて前記帯域通過フィルタのフィルタ帯域幅を狭くすることを特徴とする請求項1〜3のいずれか1項に記載の受信装置。   4. The receiving apparatus according to claim 1, wherein when the SN ratio is equal to or less than the threshold value, a filter bandwidth of the band-pass filter is narrowed according to a difference from the threshold value. 受信信号を増幅する増幅器と、
局部発振信号を出力する局部発振器と、
前記増幅器から増幅された出力信号と前記局部発振器の局部発振信号を混合する混合器と、
前記混合器から出力された中間周波数信号を帯域制限する前記第1の帯域通過フィルタと、
前記混合器から出力された中間周波数信号を帯域制限する前記第2の帯域通過フィルタと、
前記第1の帯域通過フィルタから出力された中間周波数信号を復調する復調回路と、
前記復調回路より出力された復調信号を処理するCPUと、
前記第1の帯域通過フィルタからの出力又は前記第2の帯域通過フィルタからの出力を切り替える第1の切り替えスイッチと、
前記第1の切り替えスイッチよりの出力電力を測定する前記電力測定回路と、
前記電力測定回路の電力値を前記CPUを介して記憶保持するメモリと、
から構成されることを特徴とする請求項1〜4のいずれか1項に記載の受信装置。
An amplifier for amplifying the received signal;
A local oscillator that outputs a local oscillation signal;
A mixer for mixing the output signal amplified from the amplifier and the local oscillation signal of the local oscillator;
The first bandpass filter for band limiting the intermediate frequency signal output from the mixer;
The second bandpass filter for band-limiting the intermediate frequency signal output from the mixer;
A demodulation circuit for demodulating the intermediate frequency signal output from the first bandpass filter;
A CPU for processing the demodulated signal output from the demodulation circuit;
A first changeover switch for switching an output from the first bandpass filter or an output from the second bandpass filter;
The power measuring circuit for measuring output power from the first changeover switch;
A memory for storing and holding the power value of the power measurement circuit via the CPU;
The receiving device according to claim 1, comprising:
前記第2の帯域通過フィルタと並列に第3の帯域通過フィルタを設け、前記第1の切り替えスイッチの変わりに、前記第1の帯域通過フィルタ出力と前記第2の帯域通過フィルタ出力と前記第3の帯域通過フィルタ出力を切り替える第2の切り替えスイッチを設ける構成において、前記第2の帯域通過フィルタを希望信号と上側隣接チャネル信号のみが通過する特性とし、前記第3の帯域通過フィルタを希望信号と下側隣接チャネル信号のみが通過する特性とすることを特徴とする請求項5に記載の受信装置。   A third bandpass filter is provided in parallel with the second bandpass filter, and instead of the first changeover switch, the first bandpass filter output, the second bandpass filter output, and the third In the configuration in which the second changeover switch for switching the output of the bandpass filter is provided, the second bandpass filter has a characteristic that only the desired signal and the upper adjacent channel signal pass, and the third bandpass filter is the desired signal. 6. The receiving apparatus according to claim 5, wherein only the lower adjacent channel signal passes. 前記第1の帯域通過フィルタは並列にスイッチを設けた帯域通過フィルタユニットが少なくとも2段以上従属に接続される構成で、前記帯域通過フィルタユニットの各々は通過帯域幅と減衰特性の異なる特性を有することを特徴とする請求項1〜6のいずれか1項に記載の受信装置。   The first bandpass filter has a configuration in which bandpass filter units provided with switches in parallel are connected in at least two or more stages, and each of the bandpass filter units has characteristics different in passband width and attenuation characteristics. The receiving apparatus according to claim 1, wherein
JP2008037095A 2008-02-19 2008-02-19 Reception device Pending JP2009200571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008037095A JP2009200571A (en) 2008-02-19 2008-02-19 Reception device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008037095A JP2009200571A (en) 2008-02-19 2008-02-19 Reception device

Publications (1)

Publication Number Publication Date
JP2009200571A true JP2009200571A (en) 2009-09-03

Family

ID=41143653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008037095A Pending JP2009200571A (en) 2008-02-19 2008-02-19 Reception device

Country Status (1)

Country Link
JP (1) JP2009200571A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102098464A (en) * 2009-11-25 2011-06-15 夏普株式会社 Television broadcast receiving apparatus, control method and control program for television broadcast receiving apparatus, and recording medium having the control program recorded thereon
JP2011234152A (en) * 2010-04-28 2011-11-17 Icom Inc Frequency control circuit and frequency control method, receiver and receiving method
JP2012191266A (en) * 2011-03-08 2012-10-04 Casio Comput Co Ltd Receiver and program

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102098464A (en) * 2009-11-25 2011-06-15 夏普株式会社 Television broadcast receiving apparatus, control method and control program for television broadcast receiving apparatus, and recording medium having the control program recorded thereon
KR101211759B1 (en) * 2009-11-25 2012-12-13 샤프 가부시키가이샤 Television broadcast receiving apparatus, control method, and recording medium having the control program recorded thereon
US8483640B2 (en) 2009-11-25 2013-07-09 Sharp Kabushiki Kaisha Television broadcast receiving apparatus, control method and control program for television broadcast receiving apparatus, and recording medium having the control program recorded thereon
JP2011234152A (en) * 2010-04-28 2011-11-17 Icom Inc Frequency control circuit and frequency control method, receiver and receiving method
JP2012191266A (en) * 2011-03-08 2012-10-04 Casio Comput Co Ltd Receiver and program

Similar Documents

Publication Publication Date Title
JP5331130B2 (en) System and method for station detection and search in a wireless receiver
US5598430A (en) Analog/digital receiver
US6826418B2 (en) Radio circuit and control method of radio circuit
EP1182788B1 (en) Adjacent frequency amplitude reduction system and method
JPH10126301A (en) Receiver
JP4094985B2 (en) Signal strength measuring apparatus and receiving apparatus using the same
JP2009200571A (en) Reception device
US20120288045A1 (en) Signal receiving apparatus and method of controlling filters in signal receiving apparatus
JP2007228342A (en) Receiver and transmitter-receiver using same
JP2007158780A (en) Passband controller and passband control method
JP2004080455A (en) Reception circuit and wireless communication apparatus using same
JP4035455B2 (en) Portable receiver
US8694037B1 (en) Method for improving radio performance in a simulcast environment using phase tilted filters
JP4121410B2 (en) Signal detecting apparatus and receiving apparatus capable of using the apparatus
JP3911267B2 (en) FM radio receiver
JP2005197918A (en) Receiver of cordless telephone set
JP6887890B2 (en) Semiconductor devices and their methods
JP4107980B2 (en) Wireless receiver
WO2011157620A1 (en) Direct down conversion receiver and method of operation
JP3675138B2 (en) Receiving machine
JP7464881B2 (en) Wireless Receiver Circuit
KR101457009B1 (en) Auto gain controller using rf switch and radio communication device having the same
JP6306408B2 (en) Signal level measuring device
JP2006067036A (en) High frequency receiver
JP6981387B2 (en) Receiver