JP2009200425A - Manufacturing method of rare-earth magnet, and rare-earth magnet manufactured by the manufacturing method - Google Patents
Manufacturing method of rare-earth magnet, and rare-earth magnet manufactured by the manufacturing method Download PDFInfo
- Publication number
- JP2009200425A JP2009200425A JP2008043247A JP2008043247A JP2009200425A JP 2009200425 A JP2009200425 A JP 2009200425A JP 2008043247 A JP2008043247 A JP 2008043247A JP 2008043247 A JP2008043247 A JP 2008043247A JP 2009200425 A JP2009200425 A JP 2009200425A
- Authority
- JP
- Japan
- Prior art keywords
- earth magnet
- rare earth
- slurry
- magnet
- rare
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacturing Cores, Coils, And Magnets (AREA)
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
本発明は希土類磁石の製造方法および前記製造方法により製造された希土類磁石に関する。さらに詳しくは、希土類磁石の粒界相にM金属元素(但し、MはPr、Dy、Tb、またはHo)を拡散浸透させた希土類磁石の製造方法および前記製造方法により製造された希土類磁石に関する。 The present invention relates to a method for producing a rare earth magnet and a rare earth magnet produced by the method. More specifically, the present invention relates to a method for manufacturing a rare earth magnet in which an M metal element (where M is Pr, Dy, Tb, or Ho) is diffused and penetrated into the grain boundary phase of the rare earth magnet, and the rare earth magnet manufactured by the manufacturing method.
Nd−Fe−B系等の希土類磁石は、ハードデスクドライブのボイスコイルモータ(VCM)、磁気断層撮影装置(MRI)の磁気回路、および電気自動車の駆動モータ等に応用されている。一般的に磁石は熱により磁力が低下し易いため、150〜200℃の高温下で使用される自動車用途には、熱による磁力低下を防止する必要があり、一層の高保磁力を有する磁石が求められている。 Rare earth magnets such as Nd—Fe—B are applied to voice coil motors (VCM) for hard disk drives, magnetic circuits for magnetic tomography (MRI), drive motors for electric vehicles, and the like. In general, magnets tend to be reduced in magnetic force due to heat. Therefore, it is necessary to prevent lowering of magnetic force due to heat in automobile applications used at high temperatures of 150 to 200 ° C., and magnets having higher coercive force are required. It has been.
たとえば、Nd−Fe−B系の焼結磁石は、Nd2Fe14B化合物主相をNdリッチな粒界相が取り囲んだ構造をしている。Dy2Fe14B化合物またはTb2Fe14B化合物は、Nd2Fe14B化合物と比較して異方性磁界が大きいという磁気的性質を利用して、磁石の合金中にDyやTbを数〜十数質量%程度含有させることにより、保磁力を向上させることが、従来から行われてきた。しかし、この場合には、磁束密度Bと磁界Hとの積で表わされる最大エネルギー積(BH)maxおよび残留磁化(Br)が著しく低下するという問題がある。 For example, an Nd—Fe—B based sintered magnet has a structure in which an Nd 2 Fe 14 B compound main phase is surrounded by an Nd-rich grain boundary phase. The Dy 2 Fe 14 B compound or the Tb 2 Fe 14 B compound uses a magnetic property that an anisotropic magnetic field is larger than that of the Nd 2 Fe 14 B compound. Increasing the coercive force by adding about ˜10% by mass has been conventionally performed. However, in this case, there is a problem that the maximum energy product (BH) max and the residual magnetization (Br) represented by the product of the magnetic flux density B and the magnetic field H are significantly reduced.
本発明者らはこの問題を解決する方法として、残留磁束密度の低下を抑制しつつ保磁力を向上させるため、Dy金属等を含まないNd−Fe−B系の焼結磁石の表面にDy金属等をスパッタリングによって成膜した後、Dy金属等を磁石の表面から粒界相に熱拡散する方法(特許文献1)、およびPr、Dy、TbやHo(以下M金属元素ともいう)のフッ化物等の化合物を固相還元法(M金属化合物、例えばフッ化物、酸化物または塩化物と還元剤の混合粉末に希土類磁石を埋設して加熱処理する方法)、液相還元法(耐熱容器中でM金属化合物と、LiF及び還元剤、Ca金属粒の混合物中に希土類磁石を埋設した後、加熱して前記混合物を溶融させる方法)や溶融塩電解法(SUS製の籠に入れた希土類磁石を、M金属化合物、LiF、Ba塩を含む溶融塩中に投入し、前記SUS製籠を陰極とし、黒鉛等を陽極として電解する方法)により還元してM金属元素を粒界相に拡散浸透する還元拡散法(特許文献2)などの、いわゆる粒界改質法を開発した。 In order to improve the coercive force while suppressing the decrease in the residual magnetic flux density, the present inventors have proposed a method for solving this problem by using a Dy metal on the surface of a Nd—Fe—B based sintered magnet that does not contain Dy metal or the like. And the like, and a method of thermally diffusing Dy metal and the like from the surface of the magnet to the grain boundary phase, and a fluoride of Pr, Dy, Tb, and Ho (hereinafter also referred to as M metal element) Solid phase reduction method (method in which a rare earth magnet is embedded in a mixed powder of M metal compound such as fluoride, oxide or chloride and a reducing agent, and heat treatment), liquid phase reduction method (in a heat-resistant container) After embedding a rare earth magnet in a mixture of an M metal compound, LiF, a reducing agent, and Ca metal particles, a method of melting the mixture by heating) or a molten salt electrolysis method (a rare earth magnet placed in a SUS cage) , M metal compound, LiF A reducing diffusion method in which M metal element is diffused and permeated into the grain boundary phase by being charged into a molten salt containing Ba salt and reduced by an electrolysis using the SUS steel as a cathode and graphite or the like as an anode (Patent Document 2) ) And other so-called grain boundary modification methods have been developed.
このような方法は、Dy金属等をNd2Fe14B化合物主相よりも粒界相に選択的に拡散浸透させるため、残留磁化の低下を抑制して大幅な保磁力向上を実現している。これらの粒界改質した磁石はDy金属等の含有量を半減させても、市販の焼結磁石と同等の保磁力を有するため、希少資源で且つ高価なDy金属等を節減できる効果を有する。 In such a method, since Dy metal or the like is selectively diffused and penetrated into the grain boundary phase rather than the main phase of the Nd 2 Fe 14 B compound, a reduction in residual magnetization is suppressed and a significant improvement in coercive force is realized. . These grain boundary modified magnets have the same coercive force as commercially available sintered magnets even if the content of Dy metal etc. is halved, so that they have the effect of saving rare resources and expensive Dy metal etc. .
前記の方法においてスパッタリングによる方法は高価な設備と多くの手間と長い処理時間要するため、還元拡散法が好ましく、中でも固相還元による還元拡散法が加熱中、高温状況下で何らの処置を必要とせず、また還元剤以外の薬剤を必要としない点で好ましい方法である。
しかしながら、前記固相還元法においては、希土類磁石をM金属元素の化合物(以下M金属化合物ともいう)と還元剤の混合粉末の中に埋め込んだ状態で加熱処理を行うため、前記希土類磁石を前記混合粉末の中に埋め込む工程で大量のM金属化合物と多くの手間を必要とし、コストアップにつながる。また、加熱処理終了後には還元反応によって生じたCaF2、CaOや余剰となったM金属の化合物、M金属と置換されて生じたNdOといった多くの残渣が固まって希土類磁石の周囲に強固に付着し、さらに表面に固まった残渣が多く付着したままの状態で酸洗浄を行うと洗浄時間が長くなるばかりでなく酸の汚染が著しくなり、洗浄効果が損なわれるため、付着残渣を取り除く必要がある。このため、加熱処理後に希土類磁石を固まった残渣から取り出し、付着残渣を取り除く工程において多くの手間を必要とし、処理に長時間を要す。さらに、取り除いた残渣に含まれる高価なM金属化合物は加熱処理されているため容易には再利用することができない。このように、従来の方法では大量生産上多くの問題を有する。 However, in the solid-phase reduction method, the rare earth magnet is heated in a state where the rare earth magnet is embedded in a mixed powder of an M metal element compound (hereinafter also referred to as an M metal compound) and a reducing agent. The process of embedding in the mixed powder requires a large amount of M metal compound and a lot of labor, leading to an increase in cost. In addition, after the heat treatment, many residues such as CaF 2 , CaO generated by the reduction reaction, excess M metal compound, and NdO generated by substitution with M metal are hardened and firmly attached around the rare earth magnet. In addition, if acid cleaning is performed with a large amount of solid residue remaining on the surface, not only the cleaning time is increased, but also the acid contamination becomes significant and the cleaning effect is impaired. . For this reason, a lot of work is required in the process of removing the rare earth magnet from the solidified residue after the heat treatment and removing the adhered residue, and the process takes a long time. Furthermore, the expensive M metal compound contained in the removed residue cannot be easily reused because it has been heat-treated. Thus, the conventional method has many problems in mass production.
以上より本発明は、大量生産の場合においても作業時間を減らすことなどにより短時間で粒界改質処理を行うことができ、粒界改質処理に費やすM金属化合物の量を低減してコストを抑制することができ、さらに高保磁力を有する希土類磁石の製造方法を提供することを課題とする。 As described above, the present invention can perform the grain boundary reforming process in a short time, for example, by reducing the working time even in the case of mass production, thereby reducing the amount of M metal compound consumed for the grain boundary reforming process and reducing the cost. It is an object of the present invention to provide a method for producing a rare earth magnet having a high coercive force.
本発明者は、鋭意研究の結果、前記の課題を解決し、本発明を完成するに至った。
以下、各請求項の発明について説明する。
As a result of diligent research, the present inventor has solved the above problems and has completed the present invention.
Hereinafter, the invention of each claim will be described.
請求項1に記載の発明は、
希土類磁石の粒界相にM金属元素(但し、MはPr、Dy、Tb、またはHo)を拡散浸透させた希土類磁石の製造方法であって、前記M金属元素のフッ化物、酸化物および塩化物から選ばれる1種以上の化合物と還元剤を含むスラリーを所定容器に収容し、前記希土類磁石を前記スラリーに浸漬した後、前記所定容器から取り出し、その後加熱処理することを特徴とする希土類磁石の製造方法である。
The invention described in claim 1
A method of manufacturing a rare earth magnet in which an M metal element (where M is Pr, Dy, Tb, or Ho) is diffused and penetrated into a grain boundary phase of the rare earth magnet, the fluoride, oxide, and chloride of the M metal element A rare earth magnet characterized in that a slurry containing one or more compounds selected from a product and a reducing agent is contained in a predetermined container, the rare earth magnet is immersed in the slurry, taken out from the predetermined container, and then heat-treated. It is a manufacturing method.
請求項1の発明においては、短時間で粒界改質処理を行うことができ、粒界改質処理に費やすM金属化合物の量、ひいてはM金属自体の量を低減することができ、さらに高保磁力を有する希土類磁石の製造方法を提供することができる。 In the first aspect of the invention, the grain boundary modification treatment can be performed in a short time, and the amount of the M metal compound consumed for the grain boundary modification treatment, and hence the amount of the M metal itself can be reduced. A method for producing a rare earth magnet having magnetic force can be provided.
即ち、前記M金属元素のフッ化物、酸化物および塩化物から選ばれる1種以上の化合物と還元剤を含むスラリー(以下M金属スラリーともいう)に浸漬(以下スラリー浸漬処理ともいう)した後、取り出すという効率の良い方法で短時間に粒界改質に必要なM金属元素化合物および還元剤を希土類磁石の表面に付着させることができる。 That is, after being immersed in a slurry (hereinafter also referred to as M metal slurry) containing one or more compounds selected from fluoride, oxide and chloride of the M metal element and a reducing agent (hereinafter also referred to as M metal slurry), The M metal element compound and the reducing agent necessary for grain boundary modification can be attached to the surface of the rare earth magnet in a short time by an efficient method of taking out.
また、埋め込み方式ではなく、浸漬方式であるため高価なM金属スラリーを大量に用いる必要がない。さらに、希土類磁石を前記M金属スラリーに浸漬した後、前記所定容器から取り出し、その後加熱処理するため、即ち後に残されたM金属スラリーは加熱処理されていないため、繰り返して使用することができる。通常、M金属スラリーのすべてを余すところなく使い切るのは困難であり、実際の生産現場では夜間や休日には生産は停止となるため、M金属スラリーの余剰分が発生するが、前記の如く、このような余剰分を再利用することができるため、廃却する必要がない。このように、M金属化合物を無駄にすることがないため、粒界改質処理に費やすM金属化合物の使用量を節減することができる。なお、溶媒の気化を考慮するとスラリーの状態で保存するのは困難であり、また溶媒と還元剤が徐々に反応し、還元能力が低下することを考慮すると、一旦乾燥させてM金属混合粉末の状態で保存することが好ましい。 Moreover, since it is not an embedding method but an immersion method, it is not necessary to use a large amount of expensive M metal slurry. Further, after the rare earth magnet is immersed in the M metal slurry, it is taken out from the predetermined container and then heat-treated, that is, the M metal slurry left behind is not heat-treated, so that it can be used repeatedly. Usually, it is difficult to use up all of the M metal slurry, and since production is stopped at night or on holidays at actual production sites, a surplus of M metal slurry is generated. Since such surplus can be reused, it does not need to be discarded. Thus, since the M metal compound is not wasted, the amount of the M metal compound used for the grain boundary modification process can be reduced. In consideration of the vaporization of the solvent, it is difficult to store in a slurry state, and considering that the solvent and the reducing agent react gradually and the reducing ability is lowered, the M metal mixed powder is once dried. It is preferable to store in a state.
また、加熱処理終了後には残渣が固まって希土類磁石の周囲に強固に付着するということが少なく、そのままの状態で酸洗浄に供することができるため、直ちに酸洗浄を行うことができ、さらに、洗浄液が汚染されることも少ない。 In addition, after the heat treatment is completed, the residue is hardened and hardly adheres to the periphery of the rare earth magnet, and can be subjected to acid cleaning as it is, so that acid cleaning can be performed immediately. Is less contaminated.
このように請求項1の発明は、スラリー浸漬処理という短時間で付着させることができ、さらに高価なM金属スラリーの使用量を節減できる方法でありながら、希土類磁石の表面に十分な量のM金属化合物と還元剤を付着させることができるため、その後の処理で十分な還元拡散が起こり、磁気特性が基準値に達しない不良品の発生頻度が増えるということがない。 As described above, the invention of claim 1 is a method capable of adhering in a short time of slurry immersion treatment and further reducing the amount of the expensive M metal slurry used, but a sufficient amount of M on the surface of the rare earth magnet. Since the metal compound and the reducing agent can be attached, sufficient reduction diffusion occurs in the subsequent treatment, and the occurrence frequency of defective products whose magnetic characteristics do not reach the reference value does not increase.
なお、前記M金属スラリーの溶媒は、M金属化合物と還元剤に不活性でこれらを分散可能であり、且つ乾燥により揮発するものであれば限定はない。たとえば、アルコール(メタノール、エタノール、イソプロパノール、n−ブタノールなど)、ケトン(アセトン、メトルエチルケトン、メチルイソブチルケトンなど)、エステル(酢酸エチル、酢酸n−ブチルなど)が挙げられる。但し、スラリーの状態ではアセトンを構成するカルボニル基やヘキサンを構成するメチル基、およびエチルアルコールを構成する水酸基などはCaH2と徐々に反応して還元能力が不足していく為、これらの内で好ましいのはn−ブタノールである。 The solvent of the M metal slurry is not limited as long as it is inert to the M metal compound and the reducing agent and can disperse them, and volatilizes by drying. For example, alcohol (methanol, ethanol, isopropanol, n-butanol, etc.), ketones (acetone, metholethyl ketone, methyl isobutyl ketone, etc.), esters (ethyl acetate, n-butyl acetate, etc.) can be mentioned. However, in the slurry state, the carbonyl group constituting acetone, the methyl group constituting hexane, and the hydroxyl group constituting ethyl alcohol gradually react with CaH 2 and the reducing ability becomes insufficient. Preference is given to n-butanol.
また、M金属化合物はM金属元素(Pr、Dy、Tb、またはHo)のフッ化物、酸化物および塩化物から選択される1種以上の化合物であり、好ましくはフッ化物であり、特に好ましくはDyまたはTbのフッ化物である。還元剤としては金属の水素化物が好ましく、例えばCaH2,MgH2などの公知のものが使用できる。 The M metal compound is one or more compounds selected from fluorides, oxides and chlorides of M metal elements (Pr, Dy, Tb, or Ho), preferably fluorides, particularly preferably. Dy or Tb fluoride. As the reducing agent, metal hydrides are preferable, and known ones such as CaH 2 and MgH 2 can be used.
M金属化合物と還元剤の溶媒中の濃度は、必要な性能に応じて異なるが、好ましくはM金属化合物と還元剤の合計重量が全体の重量に対して65〜75%である。M金属化合物と還元剤の比率は好ましくは重量比で3:1〜3:2.5である。
M金属スラリーは、従来公知の混合機を用いて攪拌すれば容易に得られ特に条件の限定はないが、特にCaH2粉末は非常に活性で水と容易に反応する為、これらの酸化防止のためにM金属スラリーの製造は不活性雰囲気中で行うことが好ましい。
The concentration of the M metal compound and the reducing agent in the solvent varies depending on the required performance, but the total weight of the M metal compound and the reducing agent is preferably 65 to 75% with respect to the total weight. The ratio of the M metal compound to the reducing agent is preferably 3: 1 to 3: 2.5 by weight.
The M metal slurry can be easily obtained by stirring using a conventionally known mixer and is not particularly limited. However, since CaH 2 powder is very active and easily reacts with water, these antioxidants can be prevented. Therefore, it is preferable to produce the M metal slurry in an inert atmosphere.
M金属スラリーを磁石表面に付着させた後、乾燥させて溶媒成分を気化させると、磁石表面にM金属化合物と還元剤の混合物が均一に分布することとなる。また、M金属化合物を取り扱う際と還元拡散を行う際には、酸化の影響を排除するため、大気中ではなくArガスなどの不活性雰囲気中で行うのが好ましい。 When the M metal slurry is attached to the magnet surface and then dried to vaporize the solvent component, the mixture of the M metal compound and the reducing agent is uniformly distributed on the magnet surface. Further, when handling the M metal compound and performing the reduction diffusion, it is preferable to carry out in an inert atmosphere such as Ar gas, not in the atmosphere, in order to eliminate the influence of oxidation.
請求項2に記載の発明は、
希土類磁石の粒界相にM金属元素(但し、MはPr、Dy、Tb、またはHo)を拡散浸透させた希土類磁石の製造方法であって、前記希土類磁石を密閉容器内に収容した後、前記M金属元素のフッ化物、酸化物および塩化物から選ばれる1種以上の化合物と還元剤を含む混合粉末を前記密閉容器内に霧状に散布し、所定時間後、前記希土類磁石を前記密閉容器から取り出し、その後加熱処理することを特徴とする希土類磁石の製造方法である。
The invention described in claim 2
A method for producing a rare earth magnet in which an M metal element (where M is Pr, Dy, Tb, or Ho) is diffused and penetrated into a grain boundary phase of the rare earth magnet, and after the rare earth magnet is accommodated in a sealed container, A mixed powder containing one or more compounds selected from fluorides, oxides and chlorides of the M metal element and a reducing agent is sprayed into the sealed container in a mist, and after a predetermined time, the rare earth magnet is sealed. It is a method for producing a rare earth magnet, which is taken out from a container and then heat-treated.
請求項2に記載の発明においても、短時間で粒界改質処理を行うことができ、粒界改質処理に費やすM金属化合物の量を低減することができ、さらに高保磁力を有する希土類磁石の製造方法を提供することができる。 Also in the invention according to claim 2, a rare earth magnet having a high coercive force, which can perform the grain boundary reforming process in a short time, reduce the amount of M metal compound consumed for the grain boundary reforming process. The manufacturing method of can be provided.
即ち、希土類磁石を密閉容器内に収容した後、前記M金属元素のフッ化物、酸化物および塩化物から選ばれる1種以上の化合物と還元剤を含む混合粉末(以下M金属混合粉末ともいう)を前記密閉容器内に霧状に散布し、所定時間後、前記希土類磁石を前記密閉容器から取り出す(以下霧状散布処理ともいう)という効率の良い方法で短時間に粒界改質に必要なM金属元素化合物および還元剤を希土類磁石の表面に付着させることができる。また、加熱処理終了後にはM金属化合物と還元剤の混合粉末が固まって希土類磁石の周囲に強固に付着するということが少なく、そのままの状態で酸洗浄に供することができるため、直ちに酸洗浄を行うことができ、さらに洗浄液が汚染されることも少ない。 That is, after containing a rare earth magnet in a sealed container, a mixed powder containing one or more compounds selected from fluorides, oxides and chlorides of the M metal element and a reducing agent (hereinafter also referred to as M metal mixed powder). Is sprayed in the airtight container in a mist form, and after a predetermined time, the rare earth magnet is taken out from the airtight container (hereinafter also referred to as a mist-spraying process) and is necessary for grain boundary reforming in a short time. The M metal element compound and the reducing agent can be attached to the surface of the rare earth magnet. In addition, after completion of the heat treatment, the mixed powder of the M metal compound and the reducing agent is hardened and hardly adheres to the periphery of the rare earth magnet, and can be used for acid cleaning as it is. And the cleaning liquid is less likely to be contaminated.
また、M金属混合粉末を密閉容器内に霧状に散布する場合、希土類磁石に対して直接M金属混合粉末を噴霧しないことが好ましい。このようにすることにより、M金属混合粉末が局所的に過度に付着したり堆積することがなく、M金属化合物を希土類磁石の表面に除々に堆積させて安定的に均一な付着を行うことができ、付着物の剥離も抑制することができる。なお、希土類磁石の表面にM金属混合粉末を効率的に付着させるため、霧状散布に先立って、予め希土類磁石の表面をブタノール等の溶媒で濡らしておくことが好ましい。 In addition, when the M metal mixed powder is sprayed in a sealed container in the form of a mist, it is preferable not to spray the M metal mixed powder directly on the rare earth magnet. By doing so, the M metal mixed powder is not excessively adhered or deposited locally, and the M metal compound is gradually deposited on the surface of the rare earth magnet to stably and uniformly adhere. It is also possible to suppress the peeling of the deposits. In order to efficiently attach the M metal mixed powder to the surface of the rare earth magnet, it is preferable to wet the surface of the rare earth magnet in advance with a solvent such as butanol prior to spraying in a mist.
また、スラリーを用いる方法と同様に密閉容器内に堆積したM金属混合粉末を回収して再利用することができ、粒界改質処理に費やすM金属化合物の量を低減することができる。 Further, the M metal mixed powder deposited in the sealed container can be collected and reused in the same manner as the method using the slurry, and the amount of M metal compound spent on the grain boundary reforming process can be reduced.
また、霧状散布処理はスラリー浸漬処理に比べて付着量が少ないが、例えば霧状散布を複数回行ったり、散布濃度を調整したり、希土類磁石を霧状にM金属混合粉末が飛散した状態に晒す時間を調節することにより適切な量のM金属混合粉末を付着させることができる。 Moreover, although the amount of adhesion is smaller than the slurry immersion treatment, for example, the mist-like spraying treatment is performed in a state where, for example, the mist-like spraying is performed a plurality of times, the spraying concentration is adjusted, or the rare earth magnet is sprayed in the M metal mixed powder. By adjusting the exposure time, an appropriate amount of M metal mixed powder can be deposited.
請求項3に記載の発明は、
前記希土類磁石を、前記所定容器に収容されたスラリーに浸漬した後、前記所定容器から取り出し、次いで前記密閉容器内に収容し、その後前記混合粉末を前記密閉容器内に霧状に散布し、所定時間後、前記希土類磁石を前記密閉容器から取り出し、その後加熱処理することを特徴とする請求項1に記載の希土類磁石の製造方法である。
The invention according to claim 3
After the rare earth magnet is immersed in the slurry contained in the predetermined container, the rare earth magnet is taken out from the predetermined container, and then stored in the sealed container, and then the mixed powder is sprayed in the sealed container in the form of a mist. 2. The method for producing a rare earth magnet according to claim 1, wherein the rare earth magnet is removed from the sealed container after a period of time, and then heat-treated.
請求項3に記載の発明においては、希土類磁石をスラリー浸漬処理した後、さらにM金属混合粉末が霧状に散布された雰囲気に晒す霧状散布処理を行うことにより、M金属化合物および還元剤を剥離させることなく付着したスラリーの上にさらに均一に薄く付着させることができるため、粒界改質の効果を高め、より高保磁力を有する希土類磁石の製造方法を提供することができる。 In invention of Claim 3, after carrying out the slurry immersion process of the rare earth magnet, the M metal compound and the reducing agent are further carried out by performing a mist spraying treatment in which the M metal mixed powder is exposed to an atmosphere sprayed in a mist form. Since it can be made to adhere evenly and thinly onto the adhered slurry without being peeled off, it is possible to provide a method for producing a rare earth magnet having an enhanced effect of grain boundary modification and higher coercive force.
即ち、M金属化合物および還元剤の付着量を多くするためには、スラリー浸漬処理に用いるM金属スラリーの濃度を上げる方法もあるが、濃度を高くすると乾燥中に付着物が剥離する可能性がある。これに対して、必要以上にM金属スラリーの濃度を上げずにスラリー浸漬処理を行った後、希土類磁石をM金属混合粉末が霧状に散布された雰囲気に晒すと、M金属スラリーの表面にM金属混合粉末が除々に堆積するため剥離することがなく、M金属化合物および還元剤の付着量を多くすることができる。 That is, in order to increase the adhesion amount of the M metal compound and the reducing agent, there is a method of increasing the concentration of the M metal slurry used for the slurry immersion treatment, but if the concentration is increased, the deposit may be peeled off during drying. is there. On the other hand, after performing the slurry immersion treatment without increasing the concentration of the M metal slurry more than necessary, when the rare earth magnet is exposed to an atmosphere in which the M metal mixed powder is sprayed, the surface of the M metal slurry is exposed. Since the M metal mixed powder is gradually deposited, it does not peel off, and the adhesion amount of the M metal compound and the reducing agent can be increased.
なお、スラリー浸漬処理後、乾燥せずにまたは半乾燥状態で霧状散布処理を行うと、スラリーは溶媒で濡れており、スラリーの表面にM金属混合粉末を効率的に付着させることができるため好ましい。 In addition, if the mist spraying process is performed after the slurry immersion treatment without drying or in a semi-dry state, the slurry is wet with the solvent, and the M metal mixed powder can be efficiently attached to the surface of the slurry. preferable.
請求項4に記載の発明は、
前記希土類磁石を、前記所定容器に収容されたスラリーに浸漬する前、または前記密閉容器内に収容する前に前記希土類磁石の表面に凹凸を形成することを特徴とする請求項1ないし請求項3のいずれか1項に記載の希土類磁石の製造方法である。
The invention according to claim 4
4. The unevenness is formed on the surface of the rare earth magnet before the rare earth magnet is immersed in the slurry accommodated in the predetermined container or before the rare earth magnet is accommodated in the sealed container. The method for producing a rare earth magnet according to any one of the above.
粒界改質を行うに際して、希土類磁石の表面に付着させたM金属化合物や還元剤が希土磁石の表面から剥離しないこと、またM金属元素が磁石表面から内部の粒界相に効率よく拡散浸透することが重要であり、そのためには、希土類磁石とM金属混合粉末の密着性が良いことおよび希土類磁石の表面積が大きいことが好ましい。 When performing grain boundary modification, M metal compounds and reducing agents attached to the surface of rare earth magnets do not peel off from the surface of rare earth magnets, and M metal elements diffuse efficiently from the magnet surface to the internal grain boundary phase. It is important to penetrate, and for that purpose, it is preferable that the adhesion between the rare earth magnet and the M metal mixed powder is good and the surface area of the rare earth magnet is large.
請求項4に記載の発明においては、希土類磁石の表面に凹凸を設けているため、平滑な表面に比べて希土類磁石とM金属混合粉末の密着性が向上し、希土類磁石の表面からの剥離を抑制することができる。また、希土類磁石の表面積が大きいため、M金属元素を内部の粒界相に効率よく拡散浸透させることができる。 In the invention according to claim 4, since the surface of the rare earth magnet is provided with irregularities, the adhesion between the rare earth magnet and the M metal mixed powder is improved as compared with a smooth surface, and the rare earth magnet is peeled off from the surface. Can be suppressed. Further, since the surface area of the rare earth magnet is large, the M metal element can be efficiently diffused and penetrated into the internal grain boundary phase.
なお、凹凸を形成させる方法としては、酸液への浸漬、電解研磨、ヤスリがけなどが挙げられる。 Examples of the method for forming irregularities include immersion in an acid solution, electrolytic polishing, and sanding.
請求項5に記載の発明は、
前記希土類磁石を酸液に浸漬することにより前記希土類磁石の表面に凹凸を形成することを特徴とする請求項4に記載の希土類磁石の製造方法である。
The invention described in claim 5
5. The method for producing a rare earth magnet according to claim 4, wherein irregularities are formed on the surface of the rare earth magnet by immersing the rare earth magnet in an acid solution.
請求項5に記載の発明においては、希土類磁石を単に希土類磁石を酸に浸漬するという簡単な操作で希土類磁石の表面に短時間に凹凸を形成することができる。また、同時に磁石の表面に強固に付着した不純物残渣を効率的に除去することができる。その結果、M金属元素を磁石表面から内部の結晶粒界に効率よく拡散浸透させることができる。 In the fifth aspect of the present invention, irregularities can be formed on the surface of the rare earth magnet in a short time by a simple operation of simply immersing the rare earth magnet in an acid. At the same time, the impurity residue firmly adhered to the surface of the magnet can be efficiently removed. As a result, the M metal element can be efficiently diffused and penetrated from the magnet surface to the internal crystal grain boundary.
使用する酸液は、塩酸、硝酸、硫酸、フッ化水素酸など無機の強酸を、水で数十〜数百倍に希釈したもの、あるいはシュウ酸、ギ酸、酢酸、安息香酸、ベンゼンスルホン酸など有機の酸水溶液などを用いることができる。好ましいのは無機の強酸の水溶液である。 The acid solution used is a strong inorganic acid such as hydrochloric acid, nitric acid, sulfuric acid or hydrofluoric acid diluted with water several tens to several hundred times, or oxalic acid, formic acid, acetic acid, benzoic acid, benzenesulfonic acid, etc. An organic acid aqueous solution or the like can be used. Preference is given to aqueous solutions of strong inorganic acids.
酸液への浸漬条件については、磁石の種類と形態、酸の種類により異なるが、平滑性を考慮して酸の濃度、温度、時間などを適宜調整して行う。酸液への浸漬は、磁石表面に微細な凹凸を設けるために行うが、過度に行うと改質処理後の磁石表面の平滑化が著しく損なわれ、平滑化処理が必要となる場合がある。事前に酸液処理の条件を十分検討することが好ましい。 The conditions for immersion in the acid solution vary depending on the type and form of the magnet and the type of acid, but are adjusted by appropriately adjusting the acid concentration, temperature, time, etc. in consideration of smoothness. The immersion in the acid solution is performed in order to provide fine irregularities on the magnet surface. However, if it is performed excessively, smoothing of the magnet surface after the modification treatment may be significantly impaired, and a smoothing treatment may be necessary. It is preferable to fully study the conditions for the acid solution treatment in advance.
また、酸液に超音波を作用させることによって、洗浄前に対して磁気特性が低下するという欠点を防止することができるので好ましい。即ち、希土類磁石を酸液に浸漬すると磁石の表面に発生する水素の気泡が時間の経過とともに成長して目視できるようになり、その後、各気泡が磁石の表面から離脱するまでのおよそ1分間程度の時間内に水素が磁石に吸収されるため磁気特性が低下する。これに対して、磁石を浸漬した酸液に超音波を作用させると、液中にキャビテーションによる衝撃力と大きな加速度が生じ、磁石表面に水素ガスが発生せず、発生しても水素ガスを瞬時に磁石表面から離脱させる働きがあり、超音波を用いない場合に比較して、磁石中への水素吸収を抑制することができ、磁気特性の低下を免れる顕著な効果が認められる。この酸液に超音波を作用させる方法は量産に適した方法であり、後の酸洗浄にも適用することができる。 In addition, it is preferable to apply an ultrasonic wave to the acid solution because it can prevent a disadvantage that the magnetic properties are deteriorated compared with that before washing. That is, when a rare earth magnet is immersed in an acid solution, hydrogen bubbles generated on the surface of the magnet grow and become visible with the passage of time, and after that, it takes about 1 minute until each bubble separates from the surface of the magnet. During this period, hydrogen is absorbed by the magnet, so that the magnetic properties are deteriorated. On the other hand, when ultrasonic waves are applied to the acid solution in which the magnet is immersed, impact force and large acceleration due to cavitation are generated in the solution, and hydrogen gas is not generated on the magnet surface. Has a function of separating from the surface of the magnet, and compared with a case where ultrasonic waves are not used, hydrogen absorption into the magnet can be suppressed, and a remarkable effect of avoiding deterioration in magnetic properties is recognized. This method of applying ultrasonic waves to the acid solution is a method suitable for mass production, and can be applied to subsequent acid cleaning.
請求項6に記載の発明は、
前記希土類磁石がNd−Fe−B系の希土類磁石であることを特徴とする請求項1ないし請求項5のいずれか1項に記載の希土類磁石の製造方法である。
The invention described in claim 6
The method for producing a rare earth magnet according to any one of claims 1 to 5, wherein the rare earth magnet is an Nd-Fe-B rare earth magnet.
請求項6の発明においては、希土類磁石の中でも特に粒界改質効果が顕著に現れるNd−Fe−B系の希土類磁石を対象としているため、特に高い保持力の希土類磁石を提供することができる。 In the invention of claim 6, among the rare earth magnets, the Nd—Fe—B type rare earth magnet, in which the grain boundary modification effect is particularly prominent, is targeted. Therefore, a rare earth magnet having particularly high holding power can be provided. .
請求項7に記載の発明は、
請求項1ないし請求項6のいずれか1項に記載の希土類磁石の製造方法により製造されたことを特徴とする希土類磁石である。
The invention described in claim 7
A rare earth magnet manufactured by the method of manufacturing a rare earth magnet according to any one of claims 1 to 6.
請求項7に記載の発明においては、短い作業時間で粒界改質処理を行うことができ、またコストアップを抑えた高保持力を有する希土類磁石を提供することができる。 According to the seventh aspect of the present invention, it is possible to provide a rare earth magnet that can perform the grain boundary reforming process in a short working time and has a high holding force while suppressing an increase in cost.
本発明によれば、大量生産の場合においても短い作業時間で粒界改質処理を行うことができ、粒界改質処理に費やすM金属化合物の量を低減してコストを抑制でき、さらに高保磁力を有する希土類磁石の製造方法および前記製造方法によって製造された希土類磁石を提供することができる。 According to the present invention, it is possible to perform the grain boundary reforming process in a short working time even in the case of mass production, to reduce the amount of the M metal compound that is spent on the grain boundary reforming process, to suppress the cost, and to further increase the cost. A method for producing a rare earth magnet having magnetic force and a rare earth magnet produced by the above production method can be provided.
以下、本発明をその最良の実施の形態に基づいて説明する。なお、本発明は、以下の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、以下の実施の形態に対して種々の変更を加えることが可能である。 Hereinafter, the present invention will be described based on the best mode. Note that the present invention is not limited to the following embodiments. Various modifications can be made to the following embodiments within the same and equivalent scope as the present invention.
本発明に係る希土類磁石の粒界改質処理の全工程を図1に示す。そして、数mm程度の大きさのNd−Fe−B系希土類磁石の好ましい製造方法を例に採って、各工程毎に説明する。 The whole process of the grain boundary modification process of the rare earth magnet according to the present invention is shown in FIG. Then, a preferred method for manufacturing an Nd—Fe—B rare earth magnet having a size of several millimeters will be described as an example for each step.
イ.前処理
先ず希土類磁石に前処理を施す。前処理は、希土類磁石の表面に凹凸を形成する工程である。凹凸を形成するための方法としては酸液への浸漬、電解研磨、鑢がけ等の方法を挙げることができるが、中でも好ましい酸液への浸漬による前処理について説明する。
I. Pretreatment First, the rare earth magnet is pretreated. The pretreatment is a step of forming irregularities on the surface of the rare earth magnet. Examples of the method for forming the irregularities include immersion in an acid solution, electrolytic polishing, and scratching. Among these methods, pretreatment by immersion in an acid solution is preferable.
酸液への浸漬に際しては、希土類磁石が水素を吸収するのを回避するため、酸液に超音波を作用させた状況下にて行う。使用する超音波洗浄器は、広く市販の機器を用いることができる。周波数に大きく影響されることはなく、その効果も十分ではあるが、一般磁石には汎用の25〜80kHzを使用し、微小な磁石粉末には100〜950kHzを使用するのが、洗浄能力と表面平滑性の観点から好ましい。 The immersion in the acid solution is performed under a condition where ultrasonic waves are applied to the acid solution in order to prevent the rare earth magnet from absorbing hydrogen. A commercially available apparatus can be widely used as the ultrasonic cleaner to be used. Although it is not greatly affected by the frequency and the effect is sufficient, it is possible to use general-purpose 25 to 80 kHz for general magnets and 100 to 950 kHz for fine magnet powder. It is preferable from the viewpoint of smoothness.
大きさが数mmのNd−Fe−B系の希土類磁石を例に採って説明すると、市販の超音波洗浄器の槽内に水を注入し、70%濃度の硝酸を純水で100倍に希釈した酸液を注いだガラス製容器を装填する。超音波を発振させてからガラス容器内の酸液に、多数の磁石を入れたテフロン(登録商標)被覆SUS製網カゴを浸漬する。また磁石をそのままガラス容器内に入れても良い。浸漬中はカゴを回転や揺動する、あるいは酸液を撹拌することにより磁石相互の接触位置を常時変えたりして、磁石表面が均一に酸液に接触するようにすることが好ましい。時間は2分間程度で、磁石の重量の減少が処理前の1%減程度に留めるようにするのが好ましい。 Taking a Nd-Fe-B rare earth magnet with a size of several mm as an example, water is injected into a tank of a commercially available ultrasonic cleaner, and nitric acid with a concentration of 70% is increased 100 times with pure water. A glass container filled with diluted acid solution is charged. After oscillating ultrasonic waves, a Teflon (registered trademark) -covered SUS mesh basket containing a large number of magnets is immersed in an acid solution in a glass container. Moreover, you may put a magnet in a glass container as it is. During immersion, it is preferable that the magnet surface is uniformly contacted with the acid solution by rotating or swinging the cage or constantly changing the contact position between the magnets by stirring the acid solution. The time is preferably about 2 minutes, and it is preferable that the decrease in the weight of the magnet is limited to about 1% before the treatment.
前処理後の洗浄は、流水あるいは水を交換しながら繰り返し洗浄を行い、錆びの原因となる酸根を完全に除去する。次に、エタノール置換をして水分を除去し、最後に自然乾燥あるいは数十℃に加熱して乾燥する。 Washing after the pretreatment is performed repeatedly while changing running water or water to completely remove acid radicals that cause rust. Next, the water is removed by replacing with ethanol, and finally, it is naturally dried or dried by heating to several tens of degrees Celsius.
以後は、図1に示すように、スラリー浸漬処理、霧状散布処理、スラリー浸漬処理+霧状散布処理の3つのルートに分かれる。なお、以降の工程はArガス雰囲気のグローブボックス内で行う。はじめに図1に示した3つのルートのうちスラリー浸漬処理のルートを選択した場合について説明する。 Thereafter, as shown in FIG. 1, the route is divided into three routes: slurry immersion treatment, mist spraying treatment, slurry immersion treatment + mist spraying treatment. The subsequent steps are performed in a glove box with an Ar gas atmosphere. First, the case where the slurry immersion treatment route is selected from the three routes shown in FIG. 1 will be described.
ロ.スラリー浸漬処理
スラリー浸漬処理は、前処理後の希土類磁石の表面に、M金属スラリーを付着させる工程である。具体例を示すとTbF3、CaH2、n−ブタノール(C4H9OH)を混合しスラリーを作製し、磁石が十分浸る程度の深さのバット状容器に入れる。TbF3とCaH2の割合は重量比で3:2程度が好ましく、n−ブタノールの割合を磁石の形状や大きさにより変化させ濃度の調節を行う。テフロン(登録商標)被覆SUS製網もしくはモリブデン製の網に前処理の終了した磁石を重ならないように並べ、前述のスラリーを満たした容器に浸漬する。磁石が完全にスラリーに埋没してから数秒で静かに引き上げ乾燥させる。
B. Slurry immersion treatment The slurry immersion treatment is a step of attaching an M metal slurry to the surface of the pre-treated rare earth magnet. As a specific example, TbF 3 , CaH 2 , and n-butanol (C 4 H 9 OH) are mixed to prepare a slurry, which is put in a vat-like container having a depth enough to sufficiently immerse the magnet. The ratio of TbF 3 and CaH 2 is preferably about 3: 2 by weight, and the concentration is adjusted by changing the ratio of n-butanol depending on the shape and size of the magnet. The pre-treated magnets are lined up on a Teflon (registered trademark) -coated SUS net or molybdenum net so as not to overlap, and immersed in a container filled with the slurry. Gently lift and dry within a few seconds after the magnet is completely buried in the slurry.
ハ.加熱処理
加熱処理は、希土類磁石の表面に付着させたTbF3とCaH2を反応させてTbを生成させ、生成したTbを希土類磁石の粒界に拡散させる(還元拡散)工程である。スラリー浸漬した後、常温で10分程度乾燥させた後、網ごと静かに電気炉に投入する。加熱処理は一般的に800〜1000℃で1分〜24時間加熱処理し、その後600℃で1分〜1時間程度の時効処理を行った後、室温付近まで冷却する。なお、加熱処理の温度及び時間は磁石の大きさ、形状を考慮して適宜決定する。
C. Heat treatment The heat treatment is a step in which TbF 3 adhered to the surface of the rare earth magnet reacts with CaH 2 to produce Tb, and the produced Tb is diffused into the grain boundaries of the rare earth magnet (reduction diffusion). After dipping the slurry, after drying at room temperature for about 10 minutes, the whole net is gently put into an electric furnace. In general, the heat treatment is performed at 800 to 1000 ° C. for 1 minute to 24 hours, and then an aging treatment is performed at 600 ° C. for about 1 minute to 1 hour, followed by cooling to around room temperature. Note that the temperature and time of the heat treatment are appropriately determined in consideration of the size and shape of the magnet.
ニ.酸洗浄
次いで酸洗浄を行う、酸洗浄は、希土類磁石の表面に付着した残渣を除去する工程であり、前記前処理における酸液への浸漬と同じ方法を適用することができる。
D. Acid cleaning Next, acid cleaning, in which acid cleaning is performed, is a step of removing residues adhering to the surface of the rare earth magnet, and the same method as the immersion in the acid solution in the pretreatment can be applied.
次いで図1に示した霧状散布処理を選択した場合の方法について説明する。 Next, a method when the mist-like spraying process shown in FIG. 1 is selected will be described.
ホ.霧状散布処理
霧状散布処理は、前処理後の希土類磁石の表面にM金属混合粉末を付着させる工程である。TbF3の粉末とCaH2の粉末を所定の重量比(M金属スラリーと同様TbF3とCaH2の割合は重量比で3:2程度が好ましい。)で混合して混合粉末とする。希土類磁石の表面をn−ブタノールで濡らし、SUS製の網に載せて密閉容器(袋)の中に収容し、前記混合粉末を希土類磁石に当たらないように密閉空間内に噴霧する。噴霧量は密閉空間の容積1リットル当たり3g程度が好ましく、必要に応じてArガスを噴霧し、或いはファンを用いて密閉容器内に気流を生じさせ霧状の散布状態を保つ。また、希土類磁石の底面にも混合粉末が付着するように、希土類磁石を密閉容器の底面から浮かせた状態にしておく。
次に所定時間経過後、希土類磁石を密閉容器から取り出し、その後加熱処理を行い次いで酸洗浄を行う。
E. Mist-like spraying process The mist-like spreading process is a process of attaching the M metal mixed powder to the surface of the pre-treated rare earth magnet. The powder of TbF 3 and the powder of CaH 2 are mixed at a predetermined weight ratio (the ratio of TbF 3 and CaH 2 is preferably about 3: 2 by weight as with the M metal slurry) to obtain a mixed powder. The surface of the rare earth magnet is wetted with n-butanol, placed on a SUS net and accommodated in a sealed container (bag), and the mixed powder is sprayed into a sealed space so as not to hit the rare earth magnet. The amount of spraying is preferably about 3 g per liter of the volume of the sealed space, and Ar gas is sprayed as necessary, or an air current is generated in the sealed container using a fan to maintain a mist-like sprayed state. Further, the rare earth magnet is kept floating from the bottom surface of the sealed container so that the mixed powder adheres to the bottom surface of the rare earth magnet.
Next, after the elapse of a predetermined time, the rare earth magnet is taken out from the sealed container, and then subjected to heat treatment and then acid cleaning.
ヘ.スラリー浸漬処理+霧状散布処理
図1に示した、スラリー浸漬処理に次いで霧状散布処理を行う方法は、M金属酸化物および還元剤を剥離させることなく付着したスラリーの上にさらに均一に薄く付着させることができるため、特に高い保磁力を得たいときに好適な方法である。なお、各工程については既に説明済のため、ここでは説明を省略する。
F. Slurry soaking process + mist spraying process
The method of performing the mist spraying process subsequent to the slurry immersion process shown in FIG. 1 can be more uniformly and thinly deposited on the adhered slurry without peeling off the M metal oxide and the reducing agent. This method is suitable for obtaining a high coercive force. Since each process has already been described, the description is omitted here.
以下、実施例に基づき本発明をより具体的に説明する。
(実施例1)
イ、前処理
実施例1は、スラリー浸漬処理を用いた本発明の効果を示す例であるが、さらに、スラリー浸漬処理を行う前に酸液に浸漬することによる前処理の有効性についても調べた例である。
市販の超音波装置を用いて、大きさ3mm×3mm×2.8mmのNd−Fe−B系の焼結磁石を、70%濃度の硝酸を純水で100倍に希釈した酸液に2分間、超音波を作用させながら浸漬し、前処理を行った。前処理前と前処理後の希土類磁石の表面の実体顕微鏡による顕微鏡写真を図2に示す。図2(a)は前処理前、図2(b)は前処理後の顕微鏡写真である。図2に示すように、前処理前に比べて前処理後は表面が荒らされ、全面に微細な凹凸が形成されていることが分かる。また、前処理を行う前の磁石の重量は191mg、前処理後の重量は189mgであった。
Hereinafter, based on an Example, this invention is demonstrated more concretely.
(Example 1)
B. Pretreatment Example 1 is an example showing the effect of the present invention using a slurry dipping treatment. Further, the effectiveness of the pretreatment by dipping in an acid solution before the slurry dipping treatment is also examined. This is an example.
Using a commercially available ultrasonic apparatus, an Nd—Fe—B sintered magnet having a size of 3 mm × 3 mm × 2.8 mm is diluted with an acid solution obtained by diluting 70% nitric acid 100 times with pure water for 2 minutes. Then, it was immersed and subjected to pretreatment while applying ultrasonic waves. FIG. 2 shows micrographs of the surface of the rare-earth magnet before and after the pretreatment using a stereomicroscope. 2A is a photomicrograph before pretreatment, and FIG. 2B is a photomicrograph after pretreatment. As shown in FIG. 2, it can be seen that the surface is roughened after the pretreatment as compared with that before the pretreatment, and fine irregularities are formed on the entire surface. Moreover, the weight of the magnet before pre-processing was 191 mg, and the weight after pre-processing was 189 mg.
ロ、スラリー浸漬処理
前処理を行った磁石と前処理行っていない同種同サイズの磁石をArガス雰囲気のグローブボックスへ入れ、グローブボックス内でTbF3、CaH2、n−ブタノール(C4H9OH)を重量比で3:2:2の割合で混合したスラリーを作製、上記2種類の磁石を2秒程度浸漬して取り出した。
B) Slurry soaking treatment A magnet having been pretreated and a magnet of the same type and size not being pretreated are put into a glove box in an Ar gas atmosphere, and TbF 3 , CaH 2 , n-butanol (C 4 H 9) are contained in the glove box. OH) was mixed at a weight ratio of 3: 2: 2 to prepare a slurry, and the two kinds of magnets were immersed for about 2 seconds and taken out.
乾燥中に前処理の有無によるスラリーの付着状態を観察したところ、前処理を行わなかった磁石は、側面部分の剥離が多かった。前処理の有無によるスラリーの付着量を測定した結果を表1に示す。剥離が発生する以前においては、前処理の有無による付着量に差がないが、前処理なしのものには剥離が発生するため付着量が少なくなることが分かる。 When the adhesion state of the slurry depending on the presence or absence of the pretreatment was observed during drying, the side portions of the magnet that had not been pretreated were often peeled off. Table 1 shows the result of measuring the amount of slurry adhered depending on the presence or absence of pretreatment. Before the peeling occurs, there is no difference in the amount of adhesion depending on the presence or absence of the pretreatment, but it can be seen that the amount of adhesion decreases because the peeling occurs without the pretreatment.
表1の磁石について950℃で2時間、さらに時効処理として600℃で1時間の加熱処理をして粒界改質を行い、性能を評価した結果を表2に示す。表2に示すように、実施例1における希土類磁石は前処理なし、前処理あり共に優れた磁気特性を有する。中でも前処理を行った希土類磁石の方が、高い保磁力(Hcj)を示すことが分かる。 Table 2 shows the results of evaluating the performance of the magnets shown in Table 1 which were subjected to grain boundary modification by heat treatment at 950 ° C. for 2 hours and further aging treatment at 600 ° C. for 1 hour. As shown in Table 2, the rare earth magnet in Example 1 has excellent magnetic properties both with and without pretreatment. In particular, it can be seen that the pretreated rare earth magnet shows a higher coercive force (Hcj).
(実施例2)
実施例2はスラリー浸漬処理を行った後さらに、霧状散布処理を行うことによる粒界改質効果に及ぼす影響を調べた例である。
前処理を行わない以外は実施例1と同様にしてスラリーに浸漬して磁石を引き上げた。この磁石を半乾燥でSUS製の網に載せた状態で約1リットルの袋に入れ、重量比でTbF3:CaH2=3:2で混合した混合粉を、袋内に磁石に直接当たらないよう隙間空間に噴射し、磁石付近に霧状に分布させ、約1分経過後に袋から取り出した。なお、磁石の底面にも混合粉が付着するように希土類磁石を載せた網を袋の底面から浮かせた状態にして霧状散布処理を行った。噴射量は約1リットルの容積の袋に対し3g程度であり、散布したほとんどの混合粉は袋内に堆積しており、袋内に堆積した混合粉末を回収した。
(Example 2)
Example 2 is an example in which after the slurry immersion treatment was performed, the influence on the grain boundary reforming effect by performing the mist spraying treatment was examined.
The magnet was pulled up by dipping in a slurry in the same manner as in Example 1 except that no pretreatment was performed. This magnet is put into a bag of about 1 liter in a semi-dry state and placed on a SUS net, and the mixed powder mixed at a weight ratio of TbF 3 : CaH 2 = 3: 2 does not directly hit the magnet in the bag. Injected into the gap space, distributed in the form of a mist in the vicinity of the magnet, and taken out from the bag after about 1 minute. In addition, the spraying process was performed with the net on which the rare earth magnet was placed floating from the bottom surface of the bag so that the mixed powder adhered to the bottom surface of the magnet. The injection amount was about 3 g for a bag having a volume of about 1 liter, and most of the sprayed mixed powder was deposited in the bag, and the mixed powder deposited in the bag was recovered.
霧状散布処理の有無による付着量を測定した結果を表3に示す。なお、表3に示す付着量にはスラリー浸漬処理後、霧状散布処理前に剥離した分は含んでいない。なお、使用した磁石の重量は未処理の状態では190mgである。 Table 3 shows the results of measuring the amount of adhesion depending on the presence or absence of mist spraying treatment. The amount of adhesion shown in Table 3 does not include the amount peeled off after the slurry immersion treatment and before the mist-spreading treatment. In addition, the weight of the used magnet is 190 mg in an untreated state.
表3に示すように、霧状散布処理によって付着量がスラリー浸漬のみの場合に比べ50%程度増加していることが分かる。このように付着量が増加しても付着物の剥離はなかった。この磁石について上記と同様な加熱処理を行った後性能評価した結果を表4に示す。霧状散布処理を行った方が保磁力において優位性が認められた。 As shown in Table 3, it can be seen that the amount of adhesion increased by about 50% as compared with the case of only slurry immersion by the mist-like spraying treatment. Thus, even if the adhesion amount increased, there was no peeling of the deposit. Table 4 shows the results of performance evaluation of the magnets after heat treatment similar to the above. The superiority in coercive force was observed when the atomized spray treatment was applied.
(実施例3)
実施例3は、スラリー浸漬処理後に回収したスラリーを保存した後、再利用できるか否かを調べた例である。
スラリー浸漬処理に使用したTbF3、CaH2、n−ブタノール(C4H9OH)を重量比で3:2:2の割合で混合したスラリーを常温で2時間乾燥させて溶媒であるn−ブタノールを除去してTbF3とCaH2の混合粉末とした後、Arガス雰囲気中室温密閉下で1105時間保存した。保存後の混合粉末にn−ブタノールを添加し、混合してスラリーを作製した。作製したスラリーを用いて希土類磁石の粒界改質処理を行い、得られた希土類磁石の磁気特性を評価した。これと同時に新規な原料を用いてスラリーを作製し、希土類磁石の粒界改質処理を行い、前記再利用のスラリーを用いて粒界改質処理を行った希土類磁石の磁気特性と比較した。
Example 3
Example 3 is an example of investigating whether or not the recovered slurry after the slurry immersion treatment can be reused after storage.
A slurry prepared by mixing TbF 3 , CaH 2 , and n-butanol (C 4 H 9 OH) used in the slurry immersion treatment at a weight ratio of 3: 2: 2 is dried at room temperature for 2 hours, and is a solvent n- After removing butanol to obtain a mixed powder of TbF 3 and CaH 2 , the powder was stored in an Ar gas atmosphere at room temperature in a sealed state for 1105 hours. N-butanol was added to the mixed powder after storage and mixed to prepare a slurry. Using the prepared slurry, grain boundary modification treatment of the rare earth magnet was performed, and the magnetic properties of the obtained rare earth magnet were evaluated. At the same time, a slurry was prepared using a new raw material, a grain boundary modification treatment of the rare earth magnet was performed, and the magnetic properties of the rare earth magnet subjected to the grain boundary modification treatment using the recycled slurry were compared.
結果を図3に示す。図3に示すように、1105時間を経過したスラリーを用いて粒界改質処理を行った希土類磁石は、新規スラリーを用いて粒界改質処理を行った希土類磁石と同等の磁気特性を性能有することが分かる。このことから、余剰となったM金属スラリーを乾燥させM金属化合物と還元剤との混合物であるM金属混合粉末とすることで長期保存ができ、繰り返し使用できることが確認された。 The results are shown in FIG. As shown in FIG. 3, the rare earth magnet that has undergone the grain boundary modification treatment using the slurry after 1105 hours has the same magnetic properties as the rare earth magnet that has undergone the grain boundary modification treatment using the new slurry. It turns out that it has. From this, it was confirmed that the excess M metal slurry was dried to obtain an M metal mixed powder, which is a mixture of an M metal compound and a reducing agent, so that it could be stored for a long time and used repeatedly.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008043247A JP2009200425A (en) | 2008-02-25 | 2008-02-25 | Manufacturing method of rare-earth magnet, and rare-earth magnet manufactured by the manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008043247A JP2009200425A (en) | 2008-02-25 | 2008-02-25 | Manufacturing method of rare-earth magnet, and rare-earth magnet manufactured by the manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009200425A true JP2009200425A (en) | 2009-09-03 |
Family
ID=41143575
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008043247A Pending JP2009200425A (en) | 2008-02-25 | 2008-02-25 | Manufacturing method of rare-earth magnet, and rare-earth magnet manufactured by the manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009200425A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10589355B2 (en) | 2015-11-02 | 2020-03-17 | Nissan Motor Co., Ltd. | Method for modifying grain boundary of Nd—Fe—B base magnet, and body with modified grain boundary treated by the method |
CN115472371A (en) * | 2022-09-22 | 2022-12-13 | 慈溪市新虹实业有限公司 | Processing method of sintered neodymium iron boron |
-
2008
- 2008-02-25 JP JP2008043247A patent/JP2009200425A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10589355B2 (en) | 2015-11-02 | 2020-03-17 | Nissan Motor Co., Ltd. | Method for modifying grain boundary of Nd—Fe—B base magnet, and body with modified grain boundary treated by the method |
EP3373315B1 (en) * | 2015-11-02 | 2020-04-08 | Nissan Motor Co., Ltd. | Grain boundary reforming method for nd-fe-b-based magnet |
CN115472371A (en) * | 2022-09-22 | 2022-12-13 | 慈溪市新虹实业有限公司 | Processing method of sintered neodymium iron boron |
CN115472371B (en) * | 2022-09-22 | 2023-04-07 | 慈溪市新虹实业有限公司 | Processing method of sintered neodymium iron boron |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101076870B (en) | Nd-fe-b magnet with modified grain boundary and process for producing the same | |
CN103839670B (en) | A kind of method of the sintered Nd-Fe-B permanent magnet of preparing high-coercive force | |
Soderžnik et al. | High-coercivity Nd-Fe-B magnets obtained with the electrophoretic deposition of submicron TbF3 followed by the grain-boundary diffusion process | |
JP5925254B2 (en) | Method for preparing R-Fe-B sintered magnet | |
CN104651908B (en) | The preparation method and method for sealing of a kind of Mg alloy surface ceramic film | |
JP5849956B2 (en) | Method for producing RTB-based sintered magnet | |
EP3591675B1 (en) | Method for producing heavy rare earth grain-boundary-diffused re-fe-b-based rare earth magnet | |
JP6191497B2 (en) | Electrodeposition apparatus and method for producing rare earth permanent magnet | |
KR102456079B1 (en) | Cleaning composition for removing oxide and method of cleaning using the same | |
EP2835450B1 (en) | Micro-nano processing method for aluminum or aluminum alloy surface | |
US20150191604A1 (en) | Composition and Method for Inhibiting Corrosion of an Anodized Material | |
CN114318341B (en) | Metallographic etching method for aluminum alloy and metallographic etchant thereof | |
CN110211797A (en) | A method of promoting Sintered NdFeB magnet magnetic property | |
CN108385150A (en) | A kind of laminated film and preparation method thereof | |
JP2009200425A (en) | Manufacturing method of rare-earth magnet, and rare-earth magnet manufactured by the manufacturing method | |
JP5278732B2 (en) | Treatment liquid for rare earth magnet and rare earth magnet using the same | |
CN108417374A (en) | A kind of preparation method of neodymium iron boron magnetic body | |
JP2008218647A (en) | Acid cleaning method for rare-earth magnet, and rare-earth magnet subjected to acid cleaning by the method | |
CN111101173A (en) | Multilayer nickel plating and dehydrogenation process for neodymium iron boron permanent magnet material | |
JP5551742B2 (en) | Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor | |
JP5573663B2 (en) | Method for producing corrosion-resistant magnet | |
JP2018142641A (en) | Method for manufacturing r-t-b based sintered magnet | |
JP3796567B2 (en) | R-Fe-B permanent magnet and manufacturing method thereof | |
JP5373745B2 (en) | Method for producing aluminum material for electrolytic capacitor electrode having excellent etching characteristics, electrode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor | |
JP4874596B2 (en) | Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor |