JP2009199830A - Power storage device - Google Patents

Power storage device Download PDF

Info

Publication number
JP2009199830A
JP2009199830A JP2008039078A JP2008039078A JP2009199830A JP 2009199830 A JP2009199830 A JP 2009199830A JP 2008039078 A JP2008039078 A JP 2008039078A JP 2008039078 A JP2008039078 A JP 2008039078A JP 2009199830 A JP2009199830 A JP 2009199830A
Authority
JP
Japan
Prior art keywords
secondary battery
power storage
cell
series
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008039078A
Other languages
Japanese (ja)
Inventor
Keisuke Otsuka
啓右 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2008039078A priority Critical patent/JP2009199830A/en
Publication of JP2009199830A publication Critical patent/JP2009199830A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problems, wherein from among various methods devised as balance circuits, a system using parallel resistors of an easy structure tends to generate a large energy loss due to power loss of the resistors, while an active system tends to have a complex circuit structure, leading to cost increase and concern for the reliability, even though with the loss is small, and all systems have problems. <P>SOLUTION: The power storage device is provided with a plurality of power storage units (U1 to U6) which are connected in series, each (Ui) of which (U1 to U6) is equipped with one secondary battery cell (Bi) or a plurality of secondary battery cells (Bi1, Bi2) connected in series, and one electric double-layer capacitor cell (Ci) which is connected in parallel with the one (Bi) or the plurality (Bi1, Bi2) of secondary battery cells. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、鉛電池等の二次電池と電気二重層キャパシタ(EDLC:Electric Double Layer Capacitor)とを組み合わせた蓄電装置に関する。   The present invention relates to a power storage device that combines a secondary battery such as a lead battery and an electric double layer capacitor (EDLC).

近年、地球環境対応で自動車の燃費削減のための技術開発と実用化が加速している。   In recent years, technology development and commercialization for reducing fuel consumption of automobiles in response to the global environment are accelerating.

自動車の燃費向上技術として最もよく知られるのは、エンジンとモータを駆動源として搭載し、かつ回生エネルギーを回収するための蓄電デバイスをもつハイブリッド自動車である。ハイブリッド自動車は燃費向上効果は大きいものの、通常のガソリンエンジンの自動車に比較してモータや蓄電装置が必要になるのでコストアップとなる。   The most well-known technology for improving the fuel efficiency of automobiles is a hybrid automobile equipped with an engine and a motor as drive sources and having an electricity storage device for recovering regenerative energy. Although the hybrid vehicle has a large fuel economy improvement effect, it requires a motor and a power storage device as compared with a normal gasoline engine vehicle, which increases costs.

一方、燃費向上効果はハイブリッド車ほど大きくないものの、通常のガソリン車ベースの構成で燃費向上ができる技術としてアイドリングストップがある。信号で停止時など車速がゼロの状態ではエンジンをOFFするアイドリングストップは、都会の路線バスなどに実用化され大きな燃費向上効果を上げているが、アイドリングストップをしない普通の自動車に比較してエンジンの停止・起動回数が桁違いに多くなるため、電池への負担が大きく、汎用の自動車用鉛電池では電池寿命(容量低下)が短くなることが大きな課題となっている。
実開平5-23527号公報 「電気二重層キャパシタとの組み合わせによる鉛電池の性能改善の可能性−簡易型バッテリーキャパシタモジュール(BCM)について−」FBテクニカルニュースNo.59,P.22-26,2003.11
On the other hand, although the fuel efficiency improvement effect is not as great as that of a hybrid vehicle, there is an idling stop as a technology that can improve fuel efficiency with a normal gasoline vehicle-based configuration. Idling stop, which turns off the engine when the vehicle speed is zero, such as when stopped at a signal, has been put to practical use in urban route buses etc. and has improved fuel efficiency greatly, but compared to ordinary cars that do not stop idling Since the number of stops / starts of the battery increases by an order of magnitude, the burden on the battery is large, and in general-purpose automotive lead-acid batteries, shortening the battery life (decreasing capacity) is a major issue.
Japanese Utility Model Publication No. 5-23527 “Possibility of performance improvement of lead battery by combination with electric double layer capacitor-About simple battery capacitor module (BCM)-” FB Technical News No.59, P.22-26, 2003.11

一般に鉛電池などの二次電池はエネルギー出力特性(エネルギー密度)に優れるが、短時間に大出力が必要なエンジンスタータ用途(セルモータ起動)では、電池の内部抵抗と放電反応時間の制限で電圧降下が大きくなり、必要な出力が出せないだけでなく寿命特性にも大きな影響を及ぼすことが知られている。   In general, secondary batteries such as lead batteries are excellent in energy output characteristics (energy density), but in engine starter applications (cell motor start-up) that require high output in a short time, the voltage drop is limited by the internal resistance of the battery and the discharge reaction time. It is known that not only the required output cannot be produced, but also the life characteristics are greatly affected.

この問題を解決するため、図3に示すように鉛電池と出力特性に優れるEDLCモジュールとを並列に接続して使うことによって、蓄電モジュールとしての出力を確保し、同時に二次電池の寿命低下も改善させようとする検討がされており、[非特許文献1]のような報告がなされている。   In order to solve this problem, as shown in Fig. 3, a lead battery and an EDLC module with excellent output characteristics are connected in parallel to ensure the output as a power storage module, and at the same time the life of the secondary battery is reduced. Studies to improve it have been made, and a report such as [Non-Patent Document 1] has been made.

自動車用途で二次電池とEDLCを並列に接続して蓄電モジュールを構成する場合、二次電池として12Vの鉛電池が使われることがほとんどである。この鉛電池は、図3に示すように、2Vの単セルを6個(B1〜B6)直列に接続してこれをケースに収納した構造になっている。一方、上記鉛電池に並列接続するEDLCモジュールは、こちらもEDLCの単セル電圧が2.5V程度のため、自動車の12V系電源に接続するには図3に示すように6個の単セル(C1〜C6)を直列接続した15Vのモジュールが使われることが多い。   When a secondary battery and an EDLC are connected in parallel to form an energy storage module in automotive applications, a 12V lead battery is often used as the secondary battery. As shown in FIG. 3, this lead battery has a structure in which six (B1 to B6) 2V single cells are connected in series and housed in a case. On the other hand, the EDLC module connected in parallel to the above lead battery also has an EDLC single cell voltage of about 2.5V. Therefore, to connect to the 12V power supply of an automobile, 6 single cells (C1 A module of 15V with ~ C6) connected in series is often used.

また、EDLCを多数直列接続して使う場合は、図3に示すように、各セルの電圧を均等化するためのバランス回路の搭載が必要である。このバランス回路については、例えば[特許文献1]に開示されているように数々の方法が考案されている。バランス回路が搭載されていない場合には、直列接続した各セルの漏れ電流のばらつきにより、各セルにかかる電圧にアンバランスが生じ、特定のセルに定格以上の電圧が印加された状態になり、過電圧が印加されたセルは寿命特性に大きな悪影響を受ける。   In addition, when a large number of EDLCs are connected in series, as shown in FIG. 3, it is necessary to mount a balance circuit for equalizing the voltage of each cell. For this balance circuit, a number of methods have been devised as disclosed in, for example, [Patent Document 1]. When the balance circuit is not installed, the voltage applied to each cell is unbalanced due to the variation in leakage current of each cell connected in series, and a voltage exceeding the rating is applied to the specific cell. A cell to which an overvoltage is applied is greatly affected by the life characteristics.

バランス回路としていろいろな方法が考案されているが、構成が簡単な並列抵抗を用いる方式は抵抗の電力損失で大きなエネルギーロスが発生することが課題であり、アクティブ方式は損失は少ないが回路構成が複雑になりコストアップと信頼性の面で課題があり、どの方式も課題を抱えている。   Various methods have been devised as a balance circuit, but the method using a parallel resistor with a simple configuration has a problem that a large energy loss occurs due to the power loss of the resistor, and the active method has a small loss but a circuit configuration. There are problems in terms of complexity and cost increase and reliability, and all methods have problems.

本発明による蓄電装置は、直列接続された複数の蓄電ユニット(U1〜U6)を備え、前記複数の蓄電ユニット(U1〜U6)の各々(Ui)は、1つの二次電池セル(Bi)または直列接続された複数の二次電池セル(Bi1,Bi2)と、前記1つ(Bi)または複数(Bi1,Bi2)の二次電池セルと並列に接続された1つの電気二重層キャパシタセル(Ci)とを備える、ことを特徴とする。   The power storage device according to the present invention includes a plurality of power storage units (U1 to U6) connected in series, and each of the plurality of power storage units (U1 to U6) includes one secondary battery cell (Bi) or A plurality of secondary battery cells (Bi1, Bi2) connected in series and one electric double layer capacitor cell (Ci) connected in parallel with the one (Bi) or a plurality of (Bi1, Bi2) secondary battery cells. ).

また、前記1つ(Bi)または複数(Bi1,Bi2)の二次電池セルの耐圧は、前記1つの電気二重層キャパシタセル(Ci)の耐圧以下である、ことを特徴とする。   Further, the withstand voltage of the one (Bi) or plural (Bi1, Bi2) secondary battery cells is lower than the withstand voltage of the one electric double layer capacitor cell (Ci).

本発明による蓄電ユニット(Ui)は、1つの二次電池セル(Bi)または直列接続された複数の二次電池セル(Bi1,Bi2)と、前記1つ(Bi)または複数(Bi1,Bi2)の二次電池セルと並列に接続された1つの電気二重層キャパシタセル(Ci)とを備える、ことを特徴とする。   The storage unit (Ui) according to the present invention includes one secondary battery cell (Bi) or a plurality of secondary battery cells (Bi1, Bi2) connected in series, and the one (Bi) or the plurality (Bi1, Bi2). A secondary battery cell and one electric double layer capacitor cell (Ci) connected in parallel.

一般に、鉛電池に代表される二次電池は定電圧特性を有するため、SOC(State OF Charge:充電状態)の変化に対して電圧変動は小さい。このため、1つの電気二重層キャパシタセル(Ci)と1つの二次電池セル(Bi)とを並列接続して蓄電ユニット(Ui)を構成した場合、当該電気二重層キャパシタセル(Ci)の電圧は当該二次電池セル(Bi)の電圧(鉛電池の単セルの場合、約2V)で規定されることになる。直列接続された複数の二次電池セル(Bi1,Bi2)と1つの電気二重層キャパシタセル(Ci)とを並列接続して蓄電ユニット(Ui)を構成した場合も同様に、当該電気二重層キャパシタセル(Ci)の電圧は当該複数の二次電池セル(Bi1,Bi2)の電圧(NiMH電池の単セルが2つ直列接続された場合、約2.4V(=約1.2×2))で規定されることになる。   Generally, a secondary battery represented by a lead battery has a constant voltage characteristic, and therefore, a voltage fluctuation is small with respect to a change in SOC (State OF Charge). For this reason, when the electric storage unit (Ui) is configured by connecting one electric double layer capacitor cell (Ci) and one secondary battery cell (Bi) in parallel, the voltage of the electric double layer capacitor cell (Ci) Is defined by the voltage of the secondary battery cell (Bi) (about 2 V in the case of a single cell of a lead battery). Similarly, when a plurality of secondary battery cells (Bi1, Bi2) connected in series and one electric double layer capacitor cell (Ci) are connected in parallel to form a storage unit (Ui), the electric double layer capacitor The voltage of the cell (Ci) is defined by the voltage of the secondary battery cells (Bi1, Bi2) (about 2.4V (= 1.2 × 2) when two NiMH single cells are connected in series) Will be.

本発明による蓄電装置は、上記のような蓄電ユニット(Ui)を複数個(U1〜U6)直列に接続して構成されている。このため、直列接続された複数の電気二重層キャパシタセル(C1〜C6)において漏れ電流のばらつきがあっても、各電気二重層キャパシタセル(Ci)の電圧は、その電気二重層キャパシタセル(Ci)に並列接続されている1つの二次電池セル(Bi)または複数の二次電池セル(Bi1,Bi2)の電圧で規定される。したがって、各電気二重層キャパシタセル(Ci)間で電圧アンバランスが生じることはない。   The power storage device according to the present invention is configured by connecting a plurality (U1 to U6) of power storage units (Ui) as described above in series. For this reason, even if there is a variation in leakage current among a plurality of electric double layer capacitor cells (C1 to C6) connected in series, the voltage of each electric double layer capacitor cell (Ci) is not reduced. ) In parallel with one secondary battery cell (Bi) or a plurality of secondary battery cells (Bi1, Bi2). Therefore, no voltage imbalance occurs between the electric double layer capacitor cells (Ci).

すなわち、本発明によれば、各電気二重層キャパシタセル(Ci)の電圧を均等化するためのバランス回路を設けずとも、各電気二重層キャパシタセル(Ci)の電圧を均等化することができる。同時に、従来のバランス回路が有するさまざまな課題も解決される。   That is, according to the present invention, the voltage of each electric double layer capacitor cell (Ci) can be equalized without providing a balance circuit for equalizing the voltage of each electric double layer capacitor cell (Ci). . At the same time, various problems of the conventional balance circuit are solved.

以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、図面において同一または相当部分には同じ参照符号を付けている。また、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals. Further, the following description of the preferred embodiments is merely illustrative in nature and is not intended to limit the present invention, its application, or its use.

(第1の実施形態)
本発明の第1の実施形態による蓄電装置の構成を図1に示す。この蓄電装置は、直列接続された複数(ここでは6個)の蓄電ユニット(U1〜U6)を備える。各蓄電ユニット(Ui)[i=1〜6]は、鉛電池の単セル(Bi)と、電気二重層キャパシタ(EDLC)の単セル(Ci)とを備える。鉛電池の単セル(Bi)とEDLCの単セル(Ci)は並列に接続されている。鉛電池の単セル(Bi)の耐圧は約2Vであり、EDLCの単セル(Ci)の耐圧は約2.5Vである。
(First embodiment)
The configuration of the power storage device according to the first embodiment of the present invention is shown in FIG. This power storage device includes a plurality (six in this case) of power storage units (U1 to U6) connected in series. Each power storage unit (Ui) [i = 1 to 6] includes a single cell (Bi) of a lead battery and a single cell (Ci) of an electric double layer capacitor (EDLC). The single cell (Bi) of the lead battery and the single cell (Ci) of the EDLC are connected in parallel. The withstand voltage of the single cell (Bi) of the lead battery is about 2V, and the withstand voltage of the single cell (Ci) of the EDLC is about 2.5V.

一般に、鉛電池に代表される二次電池は定電圧特性を有するため、SOC(State OF Charge:充電状態)の変化に対して電圧変動は小さい。このため、図1のようにEDLCの単セル(Ci)と鉛電池の単セル(Bi)とを並列接続して蓄電ユニット(Ui)を構成した場合、当該EDLCの単セル(Ci)の電圧は当該鉛電池の単セル(Bi)の電圧(約2V)で規定されることになる。また、鉛電池の単セル(Bi)の耐圧(約2V)はEDLCの単セル(Ci)の耐圧(約2.5V)以下であるため、EDLCの単セル(Ci)に過電圧が印加されることはない。   Generally, a secondary battery represented by a lead battery has a constant voltage characteristic, and therefore, a voltage fluctuation is small with respect to a change in SOC (State OF Charge). For this reason, as shown in FIG. 1, when an EDLC single cell (Ci) and a lead battery single cell (Bi) are connected in parallel to form a power storage unit (Ui), the voltage of the EDLC single cell (Ci) Is defined by the voltage (about 2V) of the single cell (Bi) of the lead battery. In addition, since the withstand voltage (about 2V) of the single cell (Bi) of the lead battery is less than the withstand voltage (about 2.5V) of the single cell (Ci) of the EDLC, an overvoltage should be applied to the single cell (Ci) of the EDLC. There is no.

本実施形態による蓄電装置は、上記のような蓄電ユニット(Ui)を6個(U1〜U6)直列に接続して構成されている。このため、直列接続された6個のEDLC単セル(C1〜C6)において漏れ電流のばらつきがあっても、各EDLC単セル(Ci)の電圧は、そのEDLC単セル(Ci)に並列接続されている鉛電池の単セル(Bi)の電圧で規定される。したがって、各EDLC単セル(Ci)間で電圧アンバランスが生じることはない。   The power storage device according to the present embodiment is configured by connecting six power storage units (Ui) as described above (U1 to U6) in series. For this reason, even if there are variations in leakage current among six EDLC single cells (C1 to C6) connected in series, the voltage of each EDLC single cell (Ci) is connected in parallel to that EDLC single cell (Ci). It is specified by the voltage of the lead cell single cell (Bi). Therefore, voltage imbalance does not occur between each EDLC single cell (Ci).

すなわち、本実施形態によれば、各EDLC単セル(Ci)の電圧を均等化するためのバランス回路を設けずとも、各EDLC単セル(Ci)の電圧を均等化することができる。同時に、従来のバランス回路が有するさまざまな課題も解決される。   That is, according to the present embodiment, the voltage of each EDLC single cell (Ci) can be equalized without providing a balance circuit for equalizing the voltage of each EDLC single cell (Ci). At the same time, various problems of the conventional balance circuit are solved.

なお、ここでは6個の蓄電ユニット(U1〜U6)を直列接続した蓄電装置を例に挙げて説明したが、直列接続される蓄電ユニット(Ui)の数は6個に限られず、用途に応じて適宜変更可能である。   Here, the power storage device in which six power storage units (U1 to U6) are connected in series has been described as an example, but the number of power storage units (Ui) connected in series is not limited to six, and depends on the application. Can be changed as appropriate.

(第2の実施形態)
本発明の第2の実施形態による蓄電装置の構成を図2に示す。この蓄電装置は、図1に示した蓄電装置の各蓄電ユニット(Ui)[i=1〜6]における鉛電池の単セル(Bi)に代えて、直列接続された2個のNiMH電池セル(Bi1,Bi2)を設けたものである。
(Second Embodiment)
The structure of the electrical storage apparatus by the 2nd Embodiment of this invention is shown in FIG. This power storage device is replaced with two NiMH battery cells connected in series (Bi) instead of the single cell (Bi) of the lead battery in each power storage unit (Ui) [i = 1 to 6] of the power storage device shown in FIG. Bi1, Bi2) are provided.

図2のようにEDLC単セル(Ci)と2個のNiMH電池セル(Bi1,Bi2)とを並列接続して蓄電ユニット(Ui)を構成した場合、当該EDLC単セル(Ci)の電圧は当該直列接続された2個のNiMH電池セル(Bi1,Bi2)の電圧で規定されることになる。NiMH電池の単セルの耐圧は約1.2Vであるため、直列接続された2個のNiMH電池セル(Bi1,Bi2)の耐圧は約2.4Vである。直列接続された2個のNiMH電池セル(Bi1,Bi2)の耐圧(約2.4V)はEDLC単セル(Ci)の耐圧(約2.5V)以下であるため、EDLCの単セル(Ci)に過電圧が印加されることはない。   As shown in FIG. 2, when an EDLC single cell (Ci) and two NiMH battery cells (Bi1, Bi2) are connected in parallel to form a storage unit (Ui), the voltage of the EDLC single cell (Ci) It is defined by the voltage of two NiMH battery cells (Bi1, Bi2) connected in series. Since the withstand voltage of a single NiMH battery cell is about 1.2V, the withstand voltage of two NiMH battery cells (Bi1, Bi2) connected in series is about 2.4V. Since the withstand voltage (about 2.4V) of the two NiMH battery cells (Bi1, Bi2) connected in series is less than the withstand voltage (about 2.5V) of the EDLC single cell (Ci), overvoltage is applied to the single cell (Ci) of EDLC. Is not applied.

以上のように構成された蓄電装置によっても第1の実施形態と同様の効果が得られる。   The same effect as that of the first embodiment can be obtained by the power storage device configured as described above.

なお、ここでは鉛電池の単セル(Bi)に代えて、直列接続された2個のNiMH電池セル(Bi1,Bi2)を設けた場合を例に挙げて説明したが、各蓄電ユニット(Ui)においてEDLC単セル(Ci)と並列接続される二次電池はこれに限られない。EDLC単セル(Ci)と並列接続される二次電池の単セル(または複数の直列接続された二次電池セル)の耐圧がEDLC単セル(Ci)の耐圧以下であればよい。この条件の下で、用途に応じた二次電池を利用可能である。   Here, the case where two NiMH battery cells (Bi1, Bi2) connected in series are provided instead of the single cell (Bi) of the lead battery has been described as an example, but each storage unit (Ui) The secondary battery connected in parallel with the EDLC single cell (Ci) is not limited to this. The withstand voltage of a single cell (or a plurality of series connected secondary battery cells) of a secondary battery connected in parallel with the EDLC single cell (Ci) may be less than or equal to the withstand voltage of the EDLC single cell (Ci). Under these conditions, a secondary battery according to the application can be used.

本発明による蓄電装置は、アイドリングストップ自動車用の蓄電装置等として有用である。   The power storage device according to the present invention is useful as a power storage device for an idling stop vehicle.

本発明の第1の実施形態による蓄電装置の構成を示す図である。It is a figure which shows the structure of the electrical storage apparatus by the 1st Embodiment of this invention. 本発明の第2の実施形態による蓄電装置の構成を示す図である。It is a figure which shows the structure of the electrical storage apparatus by the 2nd Embodiment of this invention. 鉛電池とEDLCモジュールとを並列に接続した従来の蓄電装置の構成を示す図である。It is a figure which shows the structure of the conventional electrical storage apparatus which connected the lead battery and the EDLC module in parallel.

符号の説明Explanation of symbols

U1〜U6……蓄電ユニット
B1〜B6……鉛電池セル
C1〜C6……EDLCセル
B11〜B62…NiMH電池セル
U1 to U6 …… Storage unit
B1 ~ B6 …… Lead battery cell
C1 to C6 …… EDLC cell
B11 ~ B62 ... NiMH battery cell

Claims (3)

直列接続された複数の蓄電ユニット(U1〜U6)を備え、
前記複数の蓄電ユニット(U1〜U6)の各々(Ui)は、
1つの二次電池セル(Bi)または直列接続された複数の二次電池セル(Bi1,Bi2)と、
前記1つ(Bi)または複数(Bi1,Bi2)の二次電池セルと並列に接続された1つの電気二重層キャパシタセル(Ci)とを備える、
ことを特徴とする蓄電装置。
A plurality of power storage units (U1 to U6) connected in series are provided,
Each (Ui) of the plurality of power storage units (U1 to U6)
One secondary battery cell (Bi) or a plurality of secondary battery cells (Bi1, Bi2) connected in series;
One electric double layer capacitor cell (Ci) connected in parallel with the one (Bi) or plural (Bi1, Bi2) secondary battery cells,
A power storage device.
請求項1において、
前記1つ(Bi)または複数(Bi1,Bi2)の二次電池セルの耐圧は、前記1つの電気二重層キャパシタセル(Ci)の耐圧以下である、
ことを特徴とする蓄電装置。
In claim 1,
The withstand voltage of the one (Bi) or plural (Bi1, Bi2) secondary battery cells is equal to or less than the withstand voltage of the one electric double layer capacitor cell (Ci).
A power storage device.
1つの二次電池セル(Bi)または直列接続された複数の二次電池セル(Bi1,Bi2)と、
前記1つ(Bi)または複数(Bi1,Bi2)の二次電池セルと並列に接続された1つの電気二重層キャパシタセル(Ci)とを備える、
ことを特徴とする蓄電ユニット(Ui)。
One secondary battery cell (Bi) or a plurality of secondary battery cells (Bi1, Bi2) connected in series;
One electric double layer capacitor cell (Ci) connected in parallel with the one (Bi) or plural (Bi1, Bi2) secondary battery cells,
A power storage unit (Ui) characterized by the above.
JP2008039078A 2008-02-20 2008-02-20 Power storage device Pending JP2009199830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008039078A JP2009199830A (en) 2008-02-20 2008-02-20 Power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008039078A JP2009199830A (en) 2008-02-20 2008-02-20 Power storage device

Publications (1)

Publication Number Publication Date
JP2009199830A true JP2009199830A (en) 2009-09-03

Family

ID=41143136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008039078A Pending JP2009199830A (en) 2008-02-20 2008-02-20 Power storage device

Country Status (1)

Country Link
JP (1) JP2009199830A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108372A (en) * 2009-11-12 2011-06-02 Asahi Kasei Corp Module for power supply device and automobile equipped with this
US20130057198A1 (en) * 2011-09-02 2013-03-07 Boston-Power, Inc. Method for balancing cells in batteries
JP2014003794A (en) * 2012-06-18 2014-01-09 Rohm Co Ltd Battery module and its battery control circuit, and household storage battery and vehicle using the same
WO2015001222A1 (en) * 2013-07-03 2015-01-08 Renault S.A.S. Hybrid starter battery for a motor vehicle
CN105656068A (en) * 2016-03-23 2016-06-08 河海大学 Balance switching method for storage battery sets in hybrid energy storage system
WO2016174870A1 (en) * 2015-04-27 2016-11-03 池田 合良 Hybrid capacitor battery
WO2018004471A1 (en) * 2016-07-01 2018-01-04 Gunngritt Gunn Power supply device for starting engines and box structure
KR102164439B1 (en) * 2019-09-26 2020-10-13 (주)엠피에스코리아 Balancing device of convergence cell connected super-capacity module and battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108372A (en) * 2009-11-12 2011-06-02 Asahi Kasei Corp Module for power supply device and automobile equipped with this
US20130057198A1 (en) * 2011-09-02 2013-03-07 Boston-Power, Inc. Method for balancing cells in batteries
US9166416B2 (en) * 2011-09-02 2015-10-20 Boston-Power, Inc. Method for balancing cells in batteries
JP2014003794A (en) * 2012-06-18 2014-01-09 Rohm Co Ltd Battery module and its battery control circuit, and household storage battery and vehicle using the same
WO2015001222A1 (en) * 2013-07-03 2015-01-08 Renault S.A.S. Hybrid starter battery for a motor vehicle
FR3008236A1 (en) * 2013-07-03 2015-01-09 Renault Sa BATTERY STARTING A MOTOR VEHICLE
WO2016174870A1 (en) * 2015-04-27 2016-11-03 池田 合良 Hybrid capacitor battery
CN105656068A (en) * 2016-03-23 2016-06-08 河海大学 Balance switching method for storage battery sets in hybrid energy storage system
WO2018004471A1 (en) * 2016-07-01 2018-01-04 Gunngritt Gunn Power supply device for starting engines and box structure
KR102164439B1 (en) * 2019-09-26 2020-10-13 (주)엠피에스코리아 Balancing device of convergence cell connected super-capacity module and battery

Similar Documents

Publication Publication Date Title
Kumar et al. A comparative review on power conversion topologies and energy storage system for electric vehicles
JP2009199830A (en) Power storage device
US20160059712A1 (en) Battery pack and hybrid vehicle including the battery pack
CN101385186B (en) Hybrid-typed battery pack operated in high efficiency
CN110303946B (en) Control method and device for fuel cell vehicle
Karangia et al. Battery-supercapacitor hybrid energy storage system used in Electric Vehicle
Guo et al. Development of supercapacitor hybrid electric vehicle
US20130241491A1 (en) Balanced battery pack system based on two-way energy transfer
Marshall et al. Design of an efficient fuel cell vehicle drivetrain, featuring a novel boost converter
Gagliardi et al. Experimental results of on-board battery-ultracapacitor system for electric vehicle applications
Vacheva et al. Application of HEVs for Smart Home
Akhtar et al. Electric vehicle technology: Trends and challenges
CN103359108B (en) A kind of maximum available power generation torque method of calculating of motor of hybrid power automobile and system
CN109606136B (en) Hybrid power energy storage system, control method thereof and hybrid power automobile
CN102501778A (en) Extended-range electric vehicle energy distribution method based on dual-voltage composite energy storage system
Ahmed Sher et al. Power storage options for hybrid electric vehicles—A survey
Williamson et al. Energy storage
Salah et al. EV energy management strategy based on a single converter fed by a hybrid battery/supercapacitor power source
WO2023177478A1 (en) Energy recovery using supercapacitors
CN204055293U (en) There is the integrated electric drive system of distance increasing unit
Behjati et al. Comparative reliability study of hybrid energy storage systems in hybrid electric vehicles
Burke et al. Electrochemical capacitors as energy storage in hybrid-electric vehicles: Present status and future prospects
Jha et al. A review on hybrid electric vehicles and power sources
CN210852065U (en) Electric automobile and vehicle-mounted power supply device thereof
CN203427601U (en) Single-shaft type hybrid power system