JP2009199022A - Optical member - Google Patents

Optical member Download PDF

Info

Publication number
JP2009199022A
JP2009199022A JP2008043418A JP2008043418A JP2009199022A JP 2009199022 A JP2009199022 A JP 2009199022A JP 2008043418 A JP2008043418 A JP 2008043418A JP 2008043418 A JP2008043418 A JP 2008043418A JP 2009199022 A JP2009199022 A JP 2009199022A
Authority
JP
Japan
Prior art keywords
layer
film
refractive index
optical member
antireflection film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008043418A
Other languages
Japanese (ja)
Other versions
JP5285300B2 (en
Inventor
Naomi Ogawa
直美 小川
Takashi Mitsuishi
剛史 三石
Yukihiro Takahashi
幸弘 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2008043418A priority Critical patent/JP5285300B2/en
Publication of JP2009199022A publication Critical patent/JP2009199022A/en
Application granted granted Critical
Publication of JP5285300B2 publication Critical patent/JP5285300B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical member having an excellent anti-reflection film with low luminous reflectance and high luminous transmittance as well as improved film density and excellent scratch resistance in a thin film of a low refractive index layer made of a deposition raw material containing SiO<SB>2</SB>and Al<SB>2</SB>O<SB>3</SB>. <P>SOLUTION: The optical member has a plastic base material and the anti-reflection film formed by vacuum vapor deposition. At least one layer in the anti-reflection film is provided with a layer made of the deposition raw material containing SiO<SB>2</SB>and Al<SB>2</SB>O<SB>3</SB>. The layer is the low refractive index layer with a push-in depth of 70-95 nm when push-in load is 0.98 mN on the basis of nanoindentation. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、反射防止膜を有する光学部材に関する。さらに詳しくは、視感反射率が小さく、視感透過率が高いという優れた反射防止膜を有するだけでなく、プラスチック基材上における、耐スクラッチ性(耐摩耗性)に優れた良好な反射防止膜を有する光学部材、特に眼鏡用プラスチックレンズに関する。   The present invention relates to an optical member having an antireflection film. More specifically, not only has an excellent antireflection film with low luminous reflectance and high luminous transmittance, but also good antireflection with excellent scratch resistance (wear resistance) on plastic substrates. The present invention relates to an optical member having a film, particularly to a plastic lens for spectacles.

従来から、プラスチック基材に、無機物質を蒸着してなる反射防止膜を設けた光学部材が知られている。かかる光学部材は優れた反射防止性、耐スクラッチ性を有している。しかしながら、このような反射防止膜を有する光学部材は、耐衝撃性及び耐熱性が十分ではない。その課題を解決する方法として、例えば、プラスチック基材と反射防止膜との間に有機化合物よりなるプライマー層を施すことが知られている(例えば、特許文献1参照)。しかしながら、このプライマー層は、プライマー液をプラスチック基材に塗布し、その後、加熱して硬化させて、反射防止膜を蒸着により形成させるため、プライマー層の膜厚が、均一にならないことがあった。
また、視感反射率が小さく、視感透過率が高いという優れた反射防止膜を有するだけでなく、プラスチック基材上における、耐衝撃性、密着性、耐熱性、耐スクラッチ性及び耐アルカリ性に優れた良好な光学部材として、プラスチック基材と、真空蒸着法で形成された反射防止膜とを有する光学部材の少なくとも1層の反射防止膜中に、無機物質及び有機物質よりなるハイブリッド層を有する反射防止膜を有する光学部材が知られている(例えば、特許文献2参照)。しかしながら、さらなる耐スクラッチ性の改善された光学部材が求められている。
2. Description of the Related Art Conventionally, there has been known an optical member in which an antireflection film formed by depositing an inorganic substance on a plastic substrate is provided. Such an optical member has excellent antireflection properties and scratch resistance. However, an optical member having such an antireflection film is not sufficient in impact resistance and heat resistance. As a method for solving the problem, for example, it is known to apply a primer layer made of an organic compound between a plastic substrate and an antireflection film (see, for example, Patent Document 1). However, since the primer layer is formed by applying a primer solution to a plastic substrate and then curing it by heating to form an antireflection film by vapor deposition, the thickness of the primer layer may not be uniform. .
In addition to having an excellent antireflection film with low luminous reflectance and high luminous transmittance, it also has impact resistance, adhesion, heat resistance, scratch resistance and alkali resistance on plastic substrates. As an excellent and good optical member, a hybrid layer made of an inorganic substance and an organic substance is included in at least one antireflection film of an optical member having a plastic substrate and an antireflection film formed by vacuum deposition. An optical member having an antireflection film is known (see, for example, Patent Document 2). However, there is a need for an optical member with further improved scratch resistance.

特開昭63−141001号公報JP 63-14001 A 特開2003−202407号公報Japanese Patent Laid-Open No. 2003-202407

本発明はかかる状況下でなされたもので、視感反射率が小さく、視感透過率が高いという優れた反射防止膜を有するだけでなく、光学部材のSiO2とAl23によりなる成膜原料を用いた層から構成された低屈折率層の薄膜において、膜密度を向上させ、耐スクラッチ性の改善された光学部材を提供することを目的とする。 The present invention has been made under such circumstances. In addition to having an excellent antireflection film having a low luminous reflectance and a high luminous transmittance, the present invention is composed of SiO 2 and Al 2 O 3 as optical members. An object of the present invention is to provide an optical member having improved film density and improved scratch resistance in a thin film of a low refractive index layer composed of a layer using a film raw material.

本発明者らは、前記の課題を解決すべく鋭意研究を重ねた結果、反射防止膜の構成層の少なくとも1層にSiO2とAl23とからなる成膜原料を用いた層を具備し、ナノインデンテーション測定法((株)エリオニクス、超微小押し込み硬さ試験機、ENT−2100使用)での測定において、特定の物性を有する低屈折率層を設けることにより、耐スクラッチ性が改善された反射防止膜を有する光学部材が得られることを見出し、この知見により、本発明を完成した。
すなわち、本発明の光学部材は、プラスチック基材と、真空蒸着法で形成された反射防止膜とを有する光学部材であって、この反射防止膜の少なくとも1層に、SiO2とAl23とからなる、成膜原料を用いた層を具備し、その層がナノインデンテーション測定法での測定において、押し込み荷重0.98mNのときの押し込み深さが70〜95nmである、低屈折率層を有することを特徴とする。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have provided a layer using a film forming material composed of SiO 2 and Al 2 O 3 in at least one of the constituent layers of the antireflection film. In the measurement with the nanoindentation measurement method (Elionix Co., Ltd., ultra indentation hardness tester, using ENT-2100), by providing a low refractive index layer having specific physical properties, scratch resistance is improved. It has been found that an optical member having an improved antireflection film can be obtained, and based on this finding, the present invention has been completed.
That is, the optical member of the present invention is an optical member having a plastic substrate and an antireflection film formed by a vacuum deposition method, and at least one layer of the antireflection film includes SiO 2 and Al 2 O 3. A low refractive index layer comprising a layer using a film forming raw material, and the indentation depth is 70 to 95 nm when the indentation load is 0.98 mN in the measurement by the nanoindentation measurement method. It is characterized by having.

本発明によれば、視感反射率が小さく、視感透過率が高いという優れた反射防止膜を有するだけでなく、光学部材のSiO2とAl23からなる成膜原料を用いた低屈折率層を具備する反射防止膜の、膜密度を向上させ、耐スクラッチ性の改善された光学部材を提供することができる。 According to the present invention, not only has an excellent antireflection film having a low luminous reflectance and a high luminous transmittance, but also a low film-forming raw material made of SiO 2 and Al 2 O 3 for optical members. It is possible to provide an optical member having an improved anti-scratch property by improving the film density of the antireflection film including the refractive index layer.

以下、詳細に本発明について説明する。
本発明の光学部材は、真空蒸着法によって形成される反射防止膜中に、SiO2とAl23とからなる、成膜原料を用いた層を有し、その層はナノインデンテーション測定法での測定において、押し込み荷重0.98mNのときの押し込み深さが70〜95nmである低屈折率層であり、該層を形成することで、反射防止膜の膜内応力低減を図ることが可能となり、耐衝撃性を損なうことなく、さらに、耐スクラッチ性が向上した反射防止膜を有する光学部材を提供することができる。
さらに、本発明では、イオンアシスト法における出力を高くすることにより、SiO2とAl23とからなる成膜原料を用いた膜密度の高い層が形成され、さらに耐スクラッチ性の高い薄膜となる。また、プライマー液を大気中にて、塗布、加熱してなるプライマー層を設ける必要がないので、硬化を行う時間を必要とせず、異物の混入を防ぎ、さらに、反射防止膜の膜厚をより正確に制御することもできる。
Hereinafter, the present invention will be described in detail.
The optical member of the present invention has a layer made of SiO 2 and Al 2 O 3 using a film forming raw material in an antireflection film formed by a vacuum deposition method, and the layer is a nanoindentation measuring method. In this measurement, the indentation depth is 70 to 95 nm when the indentation load is 0.98 mN. By forming this layer, it is possible to reduce the stress in the antireflection film. Thus, an optical member having an antireflection film with improved scratch resistance can be provided without impairing impact resistance.
Furthermore, in the present invention, by increasing the output in the ion assist method, a layer having a high film density using a film forming material composed of SiO 2 and Al 2 O 3 is formed, and a thin film having high scratch resistance is obtained. Become. In addition, it is not necessary to provide a primer layer that is formed by applying and heating the primer solution in the air, so that it does not require time for curing, prevents contamination, and further increases the thickness of the antireflection film. It can also be controlled accurately.

前記低屈折率層は、反射防止膜中の任意の層に形成できるが、反射率特性、上述した物性、特に、耐スクラッチ性を改善するために、反射防止膜の少なくとも最外層、すなわちプラスチック基材側から最も遠い層に形成されるのが特に好ましい。また、前記反射防止膜は、複数の層から形成されることが好ましく、前記低屈折率層は、良好な膜強度及び密着性を得るためイオンアシスト法で形成されていることが好ましい。   The low refractive index layer can be formed in any layer in the antireflection film. However, in order to improve the reflectance characteristics, the above-described physical properties, particularly scratch resistance, at least the outermost layer of the antireflection film, that is, a plastic group. It is particularly preferable to form the layer farthest from the material side. The antireflection film is preferably formed of a plurality of layers, and the low refractive index layer is preferably formed by an ion assist method in order to obtain good film strength and adhesion.

イオンアシスト法において、出力に関し好ましい範囲は、特に、良好な低屈折率層を得る観点から、特許文献2に記載の加速電圧50〜150V、加速電流30〜100mAに比べて高く、加速電圧は250V〜450V、加速電流160〜220mAである。前記イオンアシスト法を実施する際に使用されるイオン化ガスは、アルゴンと酸素との混合ガスを用いるのが好ましく、該アルゴン/酸素の混合比(分圧比)は90/10〜25/75程度が好ましい。特に好ましくは、75/25〜40/60である。   In the ion assist method, a preferable range regarding the output is higher than the acceleration voltage of 50 to 150 V and the acceleration current of 30 to 100 mA described in Patent Document 2, particularly from the viewpoint of obtaining a good low refractive index layer, and the acceleration voltage is 250 V. 450V and acceleration current 160-220 mA. It is preferable to use a mixed gas of argon and oxygen as the ionizing gas used when the ion assist method is performed, and the argon / oxygen mixing ratio (partial pressure ratio) is about 90/10 to 25/75. preferable. Particularly preferred is 75/25 to 40/60.

ここで、本発明の反射防止膜はプラスチック基材層上に直接形成してもよく、また、ニッケル(Ni)、銀(Ag),白金(Pt)、ニオブ(Nb)及びチタニウム(Ti)などの下地層を介して形成してもよい。
下地層を介して形成する場合には、プラスチック基材と下地層との密着性確保及び蒸着物質の初期膜形成状態の均一化を図るために、下地層を形成する前にイオン銃前処理を行ってもよい。イオン銃前処理におけるイオン化ガスは、酸素、アルゴン(Ar)などを用いることができ、出力で好ましい範囲は、特に良好な密着性、耐スクラッチ性を得る観点から、加速電圧が50〜200V、加速電流が50〜150mAである。
Here, the antireflection film of the present invention may be formed directly on the plastic substrate layer, and nickel (Ni), silver (Ag), platinum (Pt), niobium (Nb), titanium (Ti), etc. It may be formed via an underlayer.
In the case of forming via an underlayer, an ion gun pretreatment is performed before forming the underlayer in order to ensure adhesion between the plastic substrate and the underlayer and to make the initial film formation state of the vapor deposition material uniform. You may go. As the ionization gas in the ion gun pretreatment, oxygen, argon (Ar), or the like can be used, and the preferable range of output is an acceleration voltage of 50 to 200 V, from the viewpoint of obtaining particularly good adhesion and scratch resistance. The current is 50 to 150 mA.

低屈折率層に用いられるSiO2とAl23の混合比率は、SiO2に対してAl23が1〜10質量%が好ましく、より好ましくは3〜5質量%である。Al23をこの範囲で混合することによりSiO2の成膜中に発生する圧縮応力を抑えることが可能となり、かつ、イオンアシスト法によって成膜することで膜密度の高いSiO2を主成分とする膜が形成され、耐スクラッチ性が高められた薄膜とすることができる。
本発明の反射防止膜の低屈折率層以外の膜構成層に関しては、必要に応じて、物理的蒸着法(PVD法)、化学的蒸着法(CVD法)、スパッタリング法、イオンプレーティング法、プラズマCVD法等で形成することもできる。これらの層は特に限定されないが、良好な反射防止効果等の物性を得るため、低屈折率層として、SiO2層、SiO2とAl23とからなる成膜原料を用いた層、SiO2とAl23との混合層、高屈折率層として、Nb25層、Ta25層、ZrO2層、ITO層、TiN層及びTiO2層の中から選ばれる少なくとも1種類の層を有することが好ましい。
The mixing ratio of SiO 2 and Al 2 O 3 for use in the low refractive index layer, Al 2 O 3 is preferably 1 to 10 mass% with respect to SiO 2, more preferably 3 to 5 wt%. By mixing Al 2 O 3 in this range, it is possible to suppress the compressive stress generated during the film formation of SiO 2 , and the main component is SiO 2 having a high film density by film formation by the ion assist method. Thus, a thin film with improved scratch resistance can be obtained.
Regarding film constituent layers other than the low refractive index layer of the antireflection film of the present invention, physical vapor deposition (PVD method), chemical vapor deposition (CVD), sputtering, ion plating, It can also be formed by a plasma CVD method or the like. Although these layers are not particularly limited, in order to obtain physical properties such as a good antireflection effect, as a low refractive index layer, a layer using a film forming material composed of SiO 2 layer, SiO 2 and Al 2 O 3 , SiO 2 2 and Al 2 O 3 mixed layer, high refractive index layer, at least one kind selected from Nb 2 O 5 layer, Ta 2 O 5 layer, ZrO 2 layer, ITO layer, TiN layer and TiO 2 layer It is preferable to have these layers.

イオンアシスト法を実施する際に使用されるイオン化ガスは、前記したように、成膜中の反応性の点からアルゴンと酸素との混合ガスを用いるのが好ましい。アルゴンガスのみでも成膜自体は可能であるがSiO2膜が酸欠状態(SiO(2-n))になりやすく、結果的に膜が茶色に着色してしまう。この不足する酸素を補うために酸素ガスを併用することでこの問題は解決される。 As described above, it is preferable to use a mixed gas of argon and oxygen as the ionization gas used when the ion assist method is performed from the viewpoint of reactivity during film formation. The film formation itself is possible with only argon gas, but the SiO 2 film tends to be in an oxygen deficient state (SiO (2-n) ), and as a result, the film is colored brown. This problem is solved by using oxygen gas together to make up for the insufficient oxygen.

本発明のイオンアシスト法において、出力に関しては、加速電圧は250V〜450V、加速電流160〜220mAが好ましい。かかるイオンアシスト出力にてイオンアシストすることにより、ナノインデンテーション測定法での測定において、押し込み荷重0.98mNのときの押し込み深さが70〜95nm、好ましくは70〜90nmである低屈折率層を形成することができる。
このとき、該出力を上げすぎるとSiO2やAl23が、例えば高屈折率層の内部に入ってしまい、アバタ等の光学的欠陥が生じ、また、出力が足りないと耐スクラッチ性等眼鏡に必要な膜硬度が確保できないといった弊害が生じる。
In the ion assist method of the present invention, regarding the output, the acceleration voltage is preferably 250 V to 450 V and the acceleration current 160 to 220 mA. By ion assisting with such an ion assist output, a low refractive index layer having an indentation depth of 70 to 95 nm, preferably 70 to 90 nm when the indentation load is 0.98 mN in the measurement by the nanoindentation measurement method. Can be formed.
At this time, if the output is increased too much, SiO 2 or Al 2 O 3 enters the inside of the high refractive index layer, for example, and an optical defect such as an avatar occurs, and if the output is insufficient, scratch resistance, etc. There is a problem that the film hardness required for the glasses cannot be secured.

本発明におけるプラスチック基材上に形成される反射防止膜の構成としては、例えば以下のようなものが好ましい。
例1
第1層:SiO2とAl23とからなる成膜原料を用いてなる本発明に係る低屈折率 層(層厚 10〜180nm)、
第2層:Nb25からなる高屈折率層(層厚 1〜25nm)、
第3層:SiO2とAl23とからなる成膜原料を用いてなる通常の低屈折率層(層 厚10〜500nm)、
第4層:Nb25からなる高屈折率層(層厚 10〜55nm)、
第5層:SiO2とAl23とからなる成膜原料を用いてなる通常の低屈折率層(層 厚 10〜50nm)、
第6層:Nb25からなる高屈折率層(層厚 10〜120nm)、
第7層:SiO2とAl23とからなる成膜原料を用いてなる本発明に係る低屈折率 層(層厚 70〜100nm)。
上記層厚範囲は、プラスチック基材上に反射防止膜を有した光学部材の耐衝撃性、密着性、耐熱性及び耐スクラッチ性において好ましい範囲である。
ここで、第1層がプラスチック基材側である。
例2
第1層:SiO2とAl23とからなる成膜原料を用いてなる本発明に係る低屈折率 層(層厚 10〜180nm)、
第2層:Ta25からなる高屈折率層(層厚 1〜25nm)、
第3層:SiO2とAl23とからなる成膜原料を用いてなる通常の低屈折率層(層 厚10〜500nm)、
第4層:Ta25からなる高屈折率層(層厚 10〜55nm)、
第5層:SiO2とAl23とからなる成膜原料を用いてなる通常の低屈折率層(層 厚 10〜50nm)、
第6層:Ta25からなる高屈折率層(層厚 10〜120nm)、
第7層:SiO2とAl23とからなる成膜原料を用いてなる本発明に係る低屈折率 層(層厚 70〜100nm)。
上記層厚範囲は、プラスチック基材上に反射防止膜を有した光学部材の耐衝撃性、密着性、耐熱性及び耐スクラッチ性において好ましい範囲である。
ここで、第1層がプラスチック基材側である。
As a structure of the antireflection film formed on the plastic substrate in the present invention, for example, the following is preferable.
Example 1
First layer: a low refractive index layer (layer thickness: 10 to 180 nm) according to the present invention using a film forming material composed of SiO 2 and Al 2 O 3 ,
Second layer: a high refractive index layer (layer thickness: 1 to 25 nm) made of Nb 2 O 5 ,
Third layer: a normal low refractive index layer (layer thickness: 10 to 500 nm) using a film forming material composed of SiO 2 and Al 2 O 3 ,
Fourth layer: high refractive index layer (layer thickness: 10 to 55 nm) made of Nb 2 O 5 ,
Fifth layer: a normal low refractive index layer (layer thickness: 10 to 50 nm) using a film forming raw material composed of SiO 2 and Al 2 O 3 ,
Sixth layer: high refractive index layer (layer thickness: 10 to 120 nm) made of Nb 2 O 5 ,
Seventh layer: a low refractive index layer (layer thickness: 70 to 100 nm) according to the present invention using a film forming material composed of SiO 2 and Al 2 O 3 .
The layer thickness range is a preferable range in terms of impact resistance, adhesion, heat resistance, and scratch resistance of an optical member having an antireflection film on a plastic substrate.
Here, the first layer is the plastic substrate side.
Example 2
First layer: a low refractive index layer (layer thickness: 10 to 180 nm) according to the present invention using a film forming material composed of SiO 2 and Al 2 O 3 ,
Second layer: high refractive index layer (layer thickness: 1 to 25 nm) made of Ta 2 O 5 ,
Third layer: a normal low refractive index layer (layer thickness: 10 to 500 nm) using a film forming material composed of SiO 2 and Al 2 O 3 ,
Fourth layer: a high refractive index layer (layer thickness: 10 to 55 nm) made of Ta 2 O 5 ,
Fifth layer: a normal low refractive index layer (layer thickness: 10 to 50 nm) using a film forming raw material composed of SiO 2 and Al 2 O 3 ,
Sixth layer: high refractive index layer (layer thickness: 10 to 120 nm) made of Ta 2 O 5 ,
Seventh layer: a low refractive index layer (layer thickness: 70 to 100 nm) according to the present invention using a film forming material composed of SiO 2 and Al 2 O 3 .
The layer thickness range is a preferable range in terms of impact resistance, adhesion, heat resistance, and scratch resistance of an optical member having an antireflection film on a plastic substrate.
Here, the first layer is the plastic substrate side.

また、以下のような反射防止膜の構成も好ましい。
例3
下地層:Nb層(層厚 1〜5nm)、
第1層:SiO2とAl23とからなる成膜原料を用いてなる本発明に係る低屈折率 層(層厚 10〜180nm)、
第2層:Nb25からなる高屈折率層(層厚1〜25nm)、
第3層:SiO2とAl23とからなる成膜原料を用いてなる通常の低屈折率層(層 厚10〜500nm)、
第4層:Nb25からなる高屈折率層(層厚 10〜55nm)、
第5層:SiO2とAl23とからなる成膜原料を用いてなる通常の低屈折率層(層 厚 10〜50nm)、
第6層:Nb25からなる高屈折率層(層厚 10〜120nm)、
第7層:SiO2とAl23とからなる成膜原料を用いてなる本発明に係る低屈折率 層(層厚 70〜100nm)。
ここで、第1層がプラスチック基材側である。
例4
下地層:Nb層(層厚 1〜5nm)、
第1層:SiO2とAl23とからなる成膜原料を用いてなる本発明に係る低屈折率 層(層厚 10〜180nm)、
第2層:Ta25からなる高屈折率層(層厚 1〜25nm)、
第3層:SiO2とAl23とからなる成膜原料を用いてなる通常の低屈折率層(層 厚10〜500nm)、
第4層:Ta25からなる高屈折率層(層厚 10〜55nm)、
第5層:SiO2とAl23とからなる成膜原料を用いてなる通常の低屈折率層(層 厚 10〜50nm)、
第6層:Ta25からなる高屈折率層(層厚 10〜120nm)、
第7層:SiO2とAl23とからなる成膜原料を用いてなる本発明に係る低屈折率 層(層厚 70〜100nm)。
ここで、第1層がプラスチック基材側である。
Further, the following antireflection film configuration is also preferable.
Example 3
Underlayer: Nb layer (layer thickness 1-5 nm),
First layer: a low refractive index layer (layer thickness: 10 to 180 nm) according to the present invention using a film forming material composed of SiO 2 and Al 2 O 3 ,
Second layer: a high refractive index layer (layer thickness: 1 to 25 nm) made of Nb 2 O 5 ,
Third layer: a normal low refractive index layer (layer thickness: 10 to 500 nm) using a film forming material composed of SiO 2 and Al 2 O 3 ,
Fourth layer: high refractive index layer (layer thickness: 10 to 55 nm) made of Nb 2 O 5 ,
Fifth layer: a normal low refractive index layer (layer thickness: 10 to 50 nm) using a film forming raw material composed of SiO 2 and Al 2 O 3 ,
Sixth layer: high refractive index layer (layer thickness: 10 to 120 nm) made of Nb 2 O 5 ,
Seventh layer: a low refractive index layer (layer thickness: 70 to 100 nm) according to the present invention using a film forming material composed of SiO 2 and Al 2 O 3 .
Here, the first layer is the plastic substrate side.
Example 4
Underlayer: Nb layer (layer thickness 1-5 nm),
First layer: a low refractive index layer (layer thickness: 10 to 180 nm) according to the present invention using a film forming material composed of SiO 2 and Al 2 O 3 ,
Second layer: high refractive index layer (layer thickness: 1 to 25 nm) made of Ta 2 O 5 ,
Third layer: a normal low refractive index layer (layer thickness: 10 to 500 nm) using a film forming material composed of SiO 2 and Al 2 O 3 ,
Fourth layer: a high refractive index layer (layer thickness: 10 to 55 nm) made of Ta 2 O 5 ,
Fifth layer: a normal low refractive index layer (layer thickness: 10 to 50 nm) using a film forming raw material composed of SiO 2 and Al 2 O 3 ,
Sixth layer: high refractive index layer (layer thickness: 10 to 120 nm) made of Ta 2 O 5 ,
Seventh layer: a low refractive index layer (layer thickness: 70 to 100 nm) according to the present invention using a film forming material composed of SiO 2 and Al 2 O 3 .
Here, the first layer is the plastic substrate side.

上記層厚範囲は、プラスチック基材上に反射防止膜を有した光学部材の耐衝撃性、密着性、耐熱性及び耐スクラッチ性において好ましい範囲である。上記本発明に係るSiO2とAl23とからなる成膜原料を用いてなる低屈折率層の好ましい屈折率の範囲は、良好な反射防止性を得る観点から1.47〜1.55である。 The layer thickness range is a preferable range in terms of impact resistance, adhesion, heat resistance, and scratch resistance of an optical member having an antireflection film on a plastic substrate. The preferable range of the refractive index of the low refractive index layer using the film forming raw material composed of SiO 2 and Al 2 O 3 according to the present invention is 1.47 to 1.55 from the viewpoint of obtaining good antireflection properties. It is.

本発明で使用するプラスチック基材の材質は、特に限定されず、例えば、メチルメタクリレ−ト単独重合体、メチルメタクリレ−トと1種以上の他のモノマ−との共重合体、ジエチレングリコールビスアリルカーボネート単独重合体、ジエチレングリコールビスアリルカーボネ−トと1種以上の他のモノマ−との共重合体、イオウ含有共重合体、ハロゲン共重合体、ポリカーボネート、ポリスチレン、ポリ塩化ビニル、不飽和ポリエステル、ポリエチレンテレフタレート、ポリウレタン、ポリチオウレタン、エピスルフィド化合物などが挙げられる。   The material of the plastic substrate used in the present invention is not particularly limited. For example, methyl methacrylate homopolymer, copolymer of methyl methacrylate and one or more other monomers, diethylene glycol bis Allyl carbonate homopolymer, copolymer of diethylene glycol bisallyl carbonate and one or more other monomers, sulfur-containing copolymer, halogen copolymer, polycarbonate, polystyrene, polyvinyl chloride, unsaturated polyester , Polyethylene terephthalate, polyurethane, polythiourethane, episulfide compound and the like.

本発明の光学部材は、前記プラスチック基材と前記下地層との間に、硬化被膜を有しても良い。硬化被膜としては、通常、金属酸化物コロイド粒子と下記一般式
(R1a(R2)bSi(OR34-(a+b)
(式中、R1及びR2は、それぞれ独立に、炭素数1〜8のアルキル基、炭素数2〜8のアルケニル基、炭素数6〜10のアリール基、炭素数1〜8のアシル基、ハロゲン原子、グリシドキシ基、エポキシ基、アミノ基、メルカプト基、メタクリロキシ基及びシアノ基の中から選ばれる有機基を示し、R3は炭素数1〜8のアルキル基、炭素数1〜8アシル基及び炭素数6〜10のアリール基の中から選ばれる有機基を示し、a及びbは、それぞれ独立に0又は1の整数である)で表される有機ケイ素化合物とからなる組成物が使用される。
The optical member of the present invention may have a cured film between the plastic substrate and the base layer. As the cured coating, metal oxide colloidal particles and the following general formula (R 1 ) a (R 2 ) b Si (OR 3 ) 4- (a + b)
Wherein R 1 and R 2 are each independently an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an aryl group having 6 to 10 carbon atoms, or an acyl group having 1 to 8 carbon atoms. Represents an organic group selected from a halogen atom, a glycidoxy group, an epoxy group, an amino group, a mercapto group, a methacryloxy group and a cyano group, and R 3 represents an alkyl group having 1 to 8 carbon atoms and an acyl group having 1 to 8 carbon atoms. And an organic group selected from aryl groups having 6 to 10 carbon atoms, wherein a and b are each independently an integer of 0 or 1). The

前記金属酸化物コロイド粒子としては、例えば、酸化タングステン(WO3)、酸化亜鉛(ZnO)、酸化ケイ素(SiO2)、酸化アルミニウム(Al23)、酸化チタニウム(TiO2)、酸化ジルコニウム(ZrO2)、酸化スズ(SnO2)、酸化ベリリウム(BeO)又は酸化アンチモン(Sb25)等が挙げられ、単独又は2種以上を併用することができる。 Examples of the metal oxide colloidal particles include tungsten oxide (WO 3 ), zinc oxide (ZnO), silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), titanium oxide (TiO 2 ), zirconium oxide ( ZrO 2 ), tin oxide (SnO 2 ), beryllium oxide (BeO), or antimony oxide (Sb 2 O 5 ), and the like can be used alone or in combination of two or more.

前記一般式で示される有機ケイ素化合物としては、例えば、メチルシリケート、エチルシリケート、n−プロピルシリケート、i−プロピルシリケート、n−ブチルシリケート、sec−ブチルシリケート、t−ブチルシリケート、テトラアセトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリアセトキシシラン、メチルトリブトキシシラン、メチルトリプロポキシシラン、メチルトリアミロキシシラン、メチルトリフェノキシシラン、メチルトリベンジルオキシシラン、メチルトリフェネチルオキシシラン、グリシドキシメチルトリメトキシシラン、グリシドキシメチルトリエトキシシラン、α−グリシドキシエチルトリエトキシシラン、β−グリシドキシエチルトリメトキシシラン、β−グリシドキシエチルトリエトキシシラン、α−グリシドキシプロピルトリメトキシシラン、α−グリシドキシプロピルトリエトキシシラン、β−グリシドキシプロピルトリメトキシシラン、β−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルトリプロポキシシラン、γ−グリシドキシプロピルトリブトキシシラン、γ−グリシドキシプロピルトリフェノキシシラン、α−グリシドキシブチルトリメトキシシラン、α−グリシドキシブチルトリエトキシシラン、β−グリシドキシブチルトリメトキシシラン、β−グリシドキシブチルトリエトキシシラン、γ−グリシドキシブチルトリメトキシシラン、γ−グリシドキシブチルトリエトキシシラン、δ−グリシドキシブチルトリメトキシシラン、δ−グリシドキシブチルトリエトキシシラン、(3,4−エポキシシクロヘキシル)メチルトリメトキシシラン、(3,4−エポキシシクロヘキシル)メチルトリエトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリプロポキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリブトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリフェノキシシラン、γ−(3,4−エポキシシクロヘキシル)プロピルトリメトキシシラン、γ−(3,4−エポキシシクロヘキシル)プロピルトリエトキシシラン、δ−(3,4−エポキシシクロヘキシル)ブチルトリメトキシシラン、δ−(3,4−エポキシシクロヘキシル)ブチルトリエトキシシラン、グリシドキシメチルメチルジメトキシシラン、グリシドキシメチルメチルジエトキシシラン、α−グリシドキシエチルメチルジメトキシシラン、α−グリシドキシエチルメチルジエトキシシラン、β−グリシドキシエチルメチルジメトキシシラン、β−グリシドキシエチルメチルジエトキシシラン、α−グリシドキシプロピルメチルジメトキシシラン、α−グリシドキシプロピルメチルジエトキシシラン、β−グリシドキシプロピルメチルジメトキシシラン、β−グリシドキシプロピルメチルジエトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、γ−グリシドキシプロピルメチルジプロポキシシラン、γ−グリシドキシプロピルメチルジブトキシシラン、γ−グリシドキシプロピルメチルジフェノキシシラン、γ−グリシドキシプロピルエチルジメトキシシラン、γ−グリシドキシプロピルエチルジエトキシシラン、γ−グリシドキシプロピルビニルジメトキシシラン、γ−グリシドキシプロピルビニルジエトキシシラン、γ−グリシドキシプロピルフェニルジメトキシシラン、γ−グリシドキシプロピルフェニルジエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリアセトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−クロロプロピルトリエトキシシラン、γ−クロロプロピルトリアセトキシシラン、3,3,3−トリフルオロプロピルトリメトキシシラン、γ−メタクリルオキシプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、β−シアノエチルトリエトキシシラン、クロロメチルトリメトキシシラン、クロロメチルトリエトキシシラン、N−(β−アミノエチル)γ−アミノプロピルトリメトキシシラン、N−(β−アミノエチル)γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルメチルジメトキシシラン、N−(β−アミノエチル)γ−アミノプロピルトリエトキシシラン、N−(β−アミノエチル)γ−アミノプロピルメチルジエトキシシラン、ジメチルジメトキシシラン、フェニルメチルジメトキシシラン、ジメチルジエトキシシラン、フェニルメチルジエトキシシラン、γ−クロロプロピルメチルジメトキシシラン、γ−クロロプロピルメチルジエトキシシラン、ジメチルジアセトキシシラン、γ−メタクリルオキシプロピルメチルジメトキシシラン、γ−メタクリルオキシプロピルメチルジエトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルメチルジエトキシシラン、メチルビニルジメトキシシラン、メチルビニルジエトキシシラン等が挙げられる。   Examples of the organosilicon compound represented by the above general formula include methyl silicate, ethyl silicate, n-propyl silicate, i-propyl silicate, n-butyl silicate, sec-butyl silicate, t-butyl silicate, tetraacetoxysilane, methyl Trimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltriacetoxysilane, methyltributoxysilane, methyltripropoxysilane, methyltriamyloxysilane, methyltriphenoxysilane, methyltribenzyloxysilane, methyltriphenethyloxy Silane, glycidoxymethyltrimethoxysilane, glycidoxymethyltriethoxysilane, α-glycidoxyethyltriethoxysilane, β-glycidoxyethyltrimethoxy Silane, β-glycidoxyethyltriethoxysilane, α-glycidoxypropyltrimethoxysilane, α-glycidoxypropyltriethoxysilane, β-glycidoxypropyltrimethoxysilane, β-glycidoxypropyltriethoxy Silane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltripropoxysilane, γ-glycidoxypropyltributoxysilane, γ-glycidoxypropyltriphenoxy Silane, α-glycidoxybutyltrimethoxysilane, α-glycidoxybutyltriethoxysilane, β-glycidoxybutyltrimethoxysilane, β-glycidoxybutyltriethoxysilane, γ-glycidoxybutyltrimethoxy Silane, γ-glycidoxy Tiltlyethoxysilane, δ-glycidoxybutyltrimethoxysilane, δ-glycidoxybutyltriethoxysilane, (3,4-epoxycyclohexyl) methyltrimethoxysilane, (3,4-epoxycyclohexyl) methyltriethoxysilane , Β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltripropoxysilane, β- (3 , 4-epoxycyclohexyl) ethyltributoxysilane, β- (3,4-epoxycyclohexyl) ethyltriphenoxysilane, γ- (3,4-epoxycyclohexyl) propyltrimethoxysilane, γ- (3,4-epoxycyclohexyl) ) Propyl triet Xysilane, δ- (3,4-epoxycyclohexyl) butyltrimethoxysilane, δ- (3,4-epoxycyclohexyl) butyltriethoxysilane, glycidoxymethylmethyldimethoxysilane, glycidoxymethylmethyldiethoxysilane, α -Glycidoxyethylmethyldimethoxysilane, α-glycidoxyethylmethyldiethoxysilane, β-glycidoxyethylmethyldimethoxysilane, β-glycidoxyethylmethyldiethoxysilane, α-glycidoxypropylmethyldimethoxysilane , Α-glycidoxypropylmethyldiethoxysilane, β-glycidoxypropylmethyldimethoxysilane, β-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-glycidoxypropylme Rudiethoxysilane, γ-glycidoxypropylmethyldipropoxysilane, γ-glycidoxypropylmethyldibutoxysilane, γ-glycidoxypropylmethyldiphenoxysilane, γ-glycidoxypropylethyldimethoxysilane, γ-glycyl Sidoxypropylethyldiethoxysilane, γ-glycidoxypropylvinyldimethoxysilane, γ-glycidoxypropylvinyldiethoxysilane, γ-glycidoxypropylphenyldimethoxysilane, γ-glycidoxypropylphenyldiethoxysilane, Ethyltrimethoxysilane, ethyltriethoxysilane, vinyltrimethoxysilane, vinyltriacetoxysilane, vinyltrimethoxyethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltria Toxisilane, γ-chloropropyltrimethoxysilane, γ-chloropropyltriethoxysilane, γ-chloropropyltriacetoxysilane, 3,3,3-trifluoropropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ- Mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, β-cyanoethyltriethoxysilane, chloromethyltrimethoxysilane, chloromethyltriethoxysilane, N- (β-aminoethyl) γ-aminopropyltrimethoxysilane, N -(Β-aminoethyl) γ-aminopropylmethyldimethoxysilane, γ-aminopropylmethyldimethoxysilane, N- (β-aminoethyl) γ-aminopropyltriethoxysilane, N- (β-aminoethyl) γ-a Nopropylmethyldiethoxysilane, dimethyldimethoxysilane, phenylmethyldimethoxysilane, dimethyldiethoxysilane, phenylmethyldiethoxysilane, γ-chloropropylmethyldimethoxysilane, γ-chloropropylmethyldiethoxysilane, dimethyldiacetoxysilane, γ -Methacryloxypropylmethyldimethoxysilane, γ-methacryloxypropylmethyldiethoxysilane, γ-mercaptopropylmethyldimethoxysilane, γ-mercaptopropylmethyldiethoxysilane, methylvinyldimethoxysilane, methylvinyldiethoxysilane and the like.

前記硬化被膜を作るコ−ティング組成物は、従来知られている方法で調製される。所望により、硬化触媒、塗布時における濡れ性を向上させ硬化被膜の平滑性を向上させる目的で各種の有機溶剤や界面活性剤を含有させることもできる。さらに、紫外線吸収剤、酸化防止剤、光安定剤、老化防止剤等もコーティング組成物及び硬化被膜の所望の物性が得られる限り添加することができる。   The coating composition for producing the cured film is prepared by a conventionally known method. If desired, various organic solvents and surfactants can be included for the purpose of improving the curing catalyst and wettability during coating and improving the smoothness of the cured film. Furthermore, ultraviolet absorbers, antioxidants, light stabilizers, anti-aging agents, and the like can be added as long as the desired physical properties of the coating composition and cured film are obtained.

コ−ティング組成物の硬化は、熱風乾燥または活性エネルギー線照射によって行い、硬化条件としては、70〜200℃の熱風中にて行うのが良く、特に好ましくは90〜150℃である。なお活性エネルギー線としては遠赤外線等があり、熱による損傷を低く抑えることができる。また、コ−ティング組成物よりなる硬化膜を基材上に形成する方法としては、上述したコ−ティング組成物を基材に塗布する方法が挙げられる。塗布手段としてはディッピング法、スピンコーティング法、スプレー法等の通常行われる方法が適用できるが、面精度の面からディッピング法、スピンコーティング法が特に好ましい。   Curing of the coating composition is performed by hot air drying or active energy ray irradiation, and the curing conditions are preferably 70-200 ° C. in hot air, particularly preferably 90-150 ° C. Active energy rays include far infrared rays and the like, and damage due to heat can be kept low. Moreover, the method of apply | coating the coating composition mentioned above to a base material as a method of forming the cured film which consists of a coating composition on a base material is mentioned. As a coating means, a commonly performed method such as a dipping method, a spin coating method, or a spray method can be applied, but a dipping method or a spin coating method is particularly preferable in terms of surface accuracy.

以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例及び比較例において得られた光学部材の物性評価は以下のようにして行った。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples. In addition, the physical property evaluation of the optical member obtained in the Example and the comparative example was performed as follows.

(1)耐スクラッチ性
プラスチックレンズの表面にスチールウールにて19.6N/cm2、29.4N/cm2の荷重をかけ、10ストローク擦り、表面状態により以下の基準で評価した。この試験を3回行なった。
○:殆ど傷なし、
×:傷あり
得点:荷重19.6N/cm2で○のときを2点、29.4N/cm2、で○のときを3点、とし、その合計点で示した。
(1) 19.6N / cm 2 at the steel wool on the surface of the scratch resistant plastic lens, a load of 29.4 N / cm 2, 10 strokes rubbed, the surface state was evaluated by the following criteria. This test was performed three times.
○: Almost no scratch,
×: scratch Yes Scoring: 2 points when the ○ a load 19.6N / cm 2, 29.4N / cm 2, in three points when ○, and then, as shown in the total score.

(2)ナノインデンテーション測定法による押し込み深さの測定
ガラス板に、光学部材のSiO2とAl23からなる成膜原料を用いてなる低屈折率層の単層薄膜を200nmの厚みで形成し、ナノインデンテーション測定法の測定装置((株)エリオニクス 超微小押し込み硬さ試験機 ENT−2100)を用いて押込み試験を行った。測定には、稜間隔115度の三角錐ダイヤモンド圧子を用いた。測定は圧子が0.2mgf/secの荷重速度で負荷をし、最大荷重0.98mNを1秒間保持した後、同様の荷重速度で除荷をするよう設定した。この測定から得られる圧子押込み深さ−荷重曲線から、最大荷重に到達した時の押込み深さを読み取った。
また、インデンテーション硬さHは次の式を用いて求めた。
H=Pmax/A(hA)・・・・・(1)
ナノインデンテーション測定法から得られる、荷重−変位曲線を図1に示す。
ここで、Pmaxは最大荷重、A(hA)は圧子の接触投影面積である。A(hA)はまず、hAを最大押込み深さhmaxおよび除荷曲線勾配と変位軸の交点hSから求めた後で、ダイヤモンドからなる正三角錐(バーコビッチ型)圧子の幾何学形状(対頂角65.03°)から求めた。hA、A(hA)はそれぞれ以下の式で表される。
A=hmax−0.75(hmax−hS)・・・・・・・・(2)
A(hA)=3√3tan2(65.03°)hA 2・・・(3)
(ここで、(2)式の0.75はバーコビッチ型圧子の定数である。)
さらに、複合ヤング率E*は、荷重−変位曲線の、除荷曲線の傾き(接触剛性)S、および圧子との接触投影面積Aを用い、以下の式より求めた。
S=(2/π1/2)E*1/2・・・・・(4)
(2) Measurement of indentation depth by nano-indentation measurement method A single-layer thin film of a low refractive index layer made of a raw material made of SiO 2 and Al 2 O 3 for an optical member is formed on a glass plate with a thickness of 200 nm. Then, an indentation test was performed using a measuring device for nanoindentation measurement (Elionix, Inc., ultra-fine indentation hardness tester ENT-2100). For the measurement, a triangular pyramid diamond indenter with a ridge interval of 115 degrees was used. The measurement was set so that the indenter was loaded at a load speed of 0.2 mgf / sec, the maximum load of 0.98 mN was held for 1 second, and then unloaded at the same load speed. The indentation depth when the maximum load was reached was read from the indenter indentation depth-load curve obtained from this measurement.
The indentation hardness H was determined using the following formula.
H = P max / A (h A ) (1)
A load-displacement curve obtained from the nanoindentation measurement method is shown in FIG.
Here, P max is the maximum load and A (h A ) is the contact projected area of the indenter. A (h A ) is obtained by first obtaining h A from the maximum indentation depth h max and the unloading curve gradient and the displacement axis intersection h S, and then the geometric shape of a regular triangular pyramid (Berkovic) indenter made of diamond ( (Vertical angle 65.03 °). h A and A (h A ) are each represented by the following formula.
h A = h max −0.75 (h max −h S ) (2)
A (h A ) = 3√3 tan 2 (65.03 °) h A 2 (3)
(Here, 0.75 in equation (2) is a constant of the Barkovic indenter.)
Furthermore, the composite Young's modulus E * was obtained from the following equation using the slope (contact stiffness) S of the unloading curve and the contact projected area A with the indenter of the load-displacement curve.
S = (2 / π 1/2 ) E * A 1/2 (4)

(3)視感反射率
視感反射率は、分光光度計U−4100((株)日立ハイテクノロジーズ)を用い、視感反射率Y%を測定した。
(3) Luminous reflectance The luminous reflectance was measured by using a spectrophotometer U-4100 (Hitachi High-Technologies Corporation) to measure luminous reflectance Y%.

(4)視感透過率
視感透過率は、分光光度計U−4100((株)日立ハイテクノロジーズ)を用い、視感反射率Yt%を測定した。
(4) Luminous transmittance For luminous transmittance, a luminous reflectance Yt% was measured using a spectrophotometer U-4100 (Hitachi High-Technologies Corporation).

(5)イオンアシスト法
イオンアシストは、(株)シンクロン製、真空蒸着装置、CES−1050−HP型に設置のイオン銃 RIS−120−Dを使用して行った。
また、蒸着物質成膜中は常時イオンアシスト状態で使用した。
(5) Ion Assist Method Ion assist was performed by using an ion gun RIS-120-D manufactured by Shincron Co., Ltd., a vacuum deposition apparatus, and installed in CES-1050-HP type.
In addition, it was always used in an ion assist state during the deposition of the deposited material.

実施例1
単層膜は、前記真空装置、イオンアシスト装置を用いて成膜を実施した。
使用原料は、SiO2とAl23を96:4で混合している市販のL5(商品名:メルク(株)製)で、ガラス基板上に200nmの厚さで膜を形成した。イオンアシストは、350V/170mA、イオン化ガスはArとO2を50:50で導入した。
ナノインデンテーション測定法による押し込み深さの測定(4回測定と、平均値表示)を表1に示した。なお、その測定チャートを図2に示した。
表記した様に、押込み深さは95nm以下である。又、複合弾性係数E*は73.6GPaを示している。
Example 1
The single layer film was formed using the vacuum apparatus and ion assist apparatus.
The raw material used was a commercially available L5 (trade name: manufactured by Merck & Co., Inc.) in which SiO 2 and Al 2 O 3 were mixed at a ratio of 96: 4, and a film having a thickness of 200 nm was formed on a glass substrate. The ion assist was 350 V / 170 mA, and the ionization gas was Ar and O 2 introduced at 50:50.
Table 1 shows the measurement of the indentation depth by the nanoindentation measurement method (four measurements and an average value display). The measurement chart is shown in FIG.
As indicated, the indentation depth is 95 nm or less. The composite elastic modulus E * is 73.6 GPa.

実施例2
実施例1に記載の単層膜の条件を使用して作成した単層膜(低屈折率層)を最外層とする7層からなり、高屈折率層にはTa25を使用した反射射防止膜を基材A、基材B上にそれぞれ形成し、得られた反射防止膜の視感反射率、視感透過率および耐スクラッチ性を測定し、その膜性能評価結果を表2に示した。
基材A:EYNOA基材(商品名、HOYA(株)製造、ポリチオウレタン樹脂)、屈折率1.67、中心厚1.0mm、レンズ度数0.00
基材B:EYRY基材(商品名、HOYA(株)製、エピスルフィド化合物)、屈折率1.70、中心厚1.0mm、レンズ度数0.00
Example 2
Reflection using a single layer film (low refractive index layer) prepared using the conditions of the single layer film described in Example 1 as the outermost layer, and Ta 2 O 5 is used for the high refractive index layer An anti-reflection film was formed on each of the base material A and the base material B, the luminous reflectance, luminous transmittance and scratch resistance of the obtained antireflection film were measured, and the film performance evaluation results are shown in Table 2. Indicated.
Base material A: EYNOA base material (trade name, manufactured by HOYA Co., Ltd., polythiourethane resin), refractive index 1.67, center thickness 1.0 mm, lens power 0.00
Base material B: EYRY base material (trade name, manufactured by HOYA, episulfide compound), refractive index 1.70, center thickness 1.0 mm, lens power 0.00

実施例1に記載の単層膜の条件を使用して作成した単層膜を低屈折率層に有する、7層構成の反射防止膜で、高屈折率層にはTa25を使用した。反射防止膜の膜構成と成膜条件を以下に示す。
前記硬化膜上に真空蒸着法(真空度2.67×10-3Pa(2×10-5Torr))と、酸素、アルゴン混合イオンビームを照射するイオンビームアシスト法で得られるL5からなる層〔屈折率1.48、膜厚0.10λ(λは550nmである)〕を形成し、次に酸素イオンビームを照射するイオンビームアシスト法で得られる二酸化タンタルからなる層(膜厚0.06λ)、酸素、アルゴン混合イオンビームを照射するイオンビームアシスト法で得られるL5からなる層〔屈折率1.48(膜厚0.50λ)〕を設けた。さらに、イオンビームアシスト法で得られる二酸化タンタルからなる層よりなる3層等価高屈折率層の第1層〔屈折率2.20、膜厚0.2λ〕を形成した。この第1層の上に、酸素、アルゴン混合イオンビームを照射するイオンビームアシスト法で得られるL5からなる、第2層〔屈折率1.48(膜厚0.12λ)〕を設けた。さらに、イオンビームアシスト法により二酸化タンタルからなる第3層(屈折率2.20、膜厚0.22λ)を形成し、3層等価高屈折率を設けた。その次に、酸素、アルゴン混合イオンビームを照射するイオンビームアシスト法で得られるL5からなる層〔屈折率1.48(膜厚0.25λ)〕を形成し反射防止膜付きプラスチックレンズを得た。このレンズの視感反射率は0.4%、視感透過率は99.1%であった。
A seven-layer antireflection film having a single-layer film prepared using the single-layer film conditions described in Example 1 in a low-refractive index layer, and Ta 2 O 5 was used for the high-refractive index layer. . The film configuration and film forming conditions of the antireflection film are shown below.
A layer comprising L5 obtained by a vacuum deposition method (vacuum degree: 2.67 × 10 −3 Pa (2 × 10 −5 Torr)) and an ion beam assist method of irradiating a mixed ion beam of oxygen and argon on the cured film. [Refractive index 1.48, film thickness 0.10λ (λ is 550 nm)], and then a layer made of tantalum dioxide (film thickness 0.06λ) obtained by an ion beam assist method in which an oxygen ion beam is irradiated. ), An L5 layer [refractive index 1.48 (film thickness 0.50λ)] obtained by an ion beam assist method of irradiating a mixed ion beam of oxygen and argon. Furthermore, a first layer [refractive index 2.20, film thickness 0.2λ] of a three-layer equivalent high refractive index layer made of a tantalum dioxide layer obtained by an ion beam assist method was formed. On this first layer, a second layer [refractive index 1.48 (film thickness 0.12λ)] made of L5 obtained by an ion beam assist method of irradiating a mixed ion beam of oxygen and argon was provided. Further, a third layer (refractive index 2.20, film thickness 0.22λ) made of tantalum dioxide was formed by an ion beam assist method to provide a three-layer equivalent high refractive index. Next, a layer made of L5 [refractive index: 1.48 (film thickness: 0.25λ)] obtained by an ion beam assist method of irradiating a mixed ion beam of oxygen and argon was formed to obtain a plastic lens with an antireflection film. . This lens had a luminous reflectance of 0.4% and a luminous transmittance of 99.1%.

比較例1
単層膜を、前記真空装置、イオンアシスト装置を用いて成膜を実施した。
使用原料は、エマロンL(商品名:(株)東京製品開発研究所製)で、ガラス基板上に200nmの厚さで膜を形成した。イオンアシストは、350V/170mA、イオン化ガスは、ArとO2を50:50で導入した。
ナノインデンテーション測定法による押し込み深さの測定を表1に示した。なお、その測定チャートを図3に示した。
押込み深さは100nm以上で、又、複合弾性係数E*は64.1GPaであった。
測定結果を表1に示す。
Comparative Example 1
A single layer film was formed using the vacuum apparatus and ion assist apparatus.
The raw material used was Emaron L (trade name: manufactured by Tokyo Product Development Laboratory Co., Ltd.), and a film was formed on a glass substrate with a thickness of 200 nm. The ion assist was 350 V / 170 mA, and the ionization gas was Ar and O 2 introduced at 50:50.
Table 1 shows the indentation depth measured by the nanoindentation measurement method. The measurement chart is shown in FIG.
The indentation depth was 100 nm or more, and the composite elastic modulus E * was 64.1 GPa.
The measurement results are shown in Table 1.

比較例2
比較例1に記載の単層膜の条件を使用して作成した単層膜(低屈折率層)を最外層とする7層からなり、高屈折率層にはTa25を使用した反射防止膜を基材A、基材B上にそれぞれ形成した。得られた反射防止膜の視感反射率、視感透過率および耐スクラッチ性を測定し、その膜性能評価結果を表2に示した。
Comparative Example 2
It consists of 7 layers with the single layer film (low refractive index layer) prepared using the conditions of the single layer film described in Comparative Example 1 as the outermost layer, and reflection using Ta 2 O 5 for the high refractive index layer The prevention films were formed on the substrate A and the substrate B, respectively. The resulting antireflective film was measured for luminous reflectance, luminous transmittance, and scratch resistance, and the film performance evaluation results are shown in Table 2.

比較例1に記載の単層膜の条件を使用して作成した単層膜を低屈折率層に有する、7層構成の反射防止膜で、高屈折率層にはTa25を使用した。反射防止膜の膜構成と成膜条件を以下に示す。
前記硬化膜上に真空蒸着法(真空度2.67×10-3Pa(2×10-5Torr))と、酸素、アルゴン混合イオンビームを照射するイオンビームアシスト法で得られるSio2からなる層〔屈折率1.468、膜厚0.11λ(λは550nmである)〕を形成し、次に酸素イオンビームを照射するイオンビームアシスト法で得られる二酸化タンタルからなる層(膜厚0.06λ)、酸素、アルゴン混合イオンビームを照射するイオンビームアシスト法で得られるSiO2からなる層〔屈折率1.468(膜厚0.50λ)〕を設けた。さらにイオンビームアシスト法で得られる二酸化タンタルからなる層よりなる3層等価高屈折率層の第1層〔屈折率2.20(膜厚0.2λ)〕を形成した。この第1層の上に、酸素、アルゴン混合イオンビームを照射するイオンビームアシスト法で得られるSiO2からなる、第2層〔屈折率1.468(膜厚0.12λ)〕を設けた。さらに、イオンビームアシスト法により二酸化タンタルからなる第3層〔屈折率2.20(膜厚0.22λ)〕を形成し、3層等価高屈折率を設けた。その次に、酸素、アルゴン混合イオンビームを照射するイオンビームアシスト法で得られるSiO2からなる層〔屈折率1.68(膜厚0.25λ)〕を形成し反射防止膜付きプラスチックレンズを得た。このレンズの視感反射率は0.4%、であった。
反射防止膜の視感反射率、視感透過率および耐スクラッチ性を測定し、その膜性能評価結果を表2に示す。
A seven-layer antireflection film having a single-layer film prepared using the single-layer film conditions described in Comparative Example 1 as a low-refractive index layer, and Ta 2 O 5 was used for the high-refractive index layer. . The film configuration and film forming conditions of the antireflection film are shown below.
A layer made of Sio2 obtained by a vacuum vapor deposition method (vacuum degree 2.67 × 10 −3 Pa (2 × 10 −5 Torr)) and an ion beam assist method of irradiating a mixed ion beam of oxygen and argon on the cured film. [Refractive index 1.468, film thickness 0.11λ (λ is 550 nm)], and then a layer of tantalum dioxide (film thickness 0.06λ) obtained by an ion beam assist method in which an oxygen ion beam is irradiated. ), A layer made of SiO 2 [refractive index 1.468 (film thickness 0.50λ)] obtained by an ion beam assist method of irradiating a mixed ion beam of oxygen and argon. Furthermore, a first layer [refractive index 2.20 (film thickness 0.2λ)] of a three-layer equivalent high refractive index layer made of a tantalum dioxide layer obtained by an ion beam assist method was formed. On the first layer, oxygen, made of SiO 2 obtained by an ion beam assisted method of irradiating an argon mixed ion beam was a second layer [refractive index 1.468 (thickness 0.12Ramuda)] was provided. Furthermore, a third layer [refractive index 2.20 (film thickness 0.22λ)] made of tantalum dioxide was formed by an ion beam assist method to provide a three-layer equivalent high refractive index. Next, a layer made of SiO 2 [refractive index: 1.68 (film thickness: 0.25λ)] obtained by an ion beam assist method of irradiating a mixed ion beam of oxygen and argon is formed to obtain a plastic lens with an antireflection film. It was. The luminous reflectance of this lens was 0.4%.
The luminous reflectance, luminous transmittance and scratch resistance of the antireflection film were measured, and the film performance evaluation results are shown in Table 2.

Figure 2009199022
Figure 2009199022

Figure 2009199022
Figure 2009199022

実施例2の耐スクラッチ性の測定結果に示した様に、実施例1の成膜物質、成膜方法を使用することで、耐スクラッチ性が向上している。
また、ナノインデンテーション測定法での、押し込み深さの測定結果より、実施例2の膜は、比較例2の膜より、押込み変化量が少なく、又、縦弾性係数値が高いことにより、変形しにくい膜質であることが分かった。
従って、ナノインデンテーション測定法での押し込み深さの測定値は、膜の耐スクラッチ性を示す数値として有効であることが示された。
As shown in the measurement results of scratch resistance of Example 2, the scratch resistance is improved by using the film forming material and film forming method of Example 1.
Moreover, from the measurement result of the indentation depth in the nanoindentation measurement method, the film of Example 2 is deformed because the amount of change in indentation is smaller than that of the film of Comparative Example 2 and the longitudinal elastic modulus value is high. It was found that the film quality was difficult to do.
Therefore, it was shown that the measured value of the indentation depth in the nanoindentation measurement method is effective as a numerical value indicating the scratch resistance of the film.

視感反射率が小さく、視感透過率が高いという優れた反射防止膜を有するだけでなく、光学部材のSiO2とAl23からなる、成膜原料を用いてなる低屈折率層の薄膜において、膜密度を向上させ、耐スクラッチ性に優れた光学部材を提供することができる。 Not only has an excellent antireflection film with low luminous reflectance and high luminous transmittance, but also a low refractive index layer made of SiO 2 and Al 2 O 3 for optical members, which uses a film forming raw material. In a thin film, an optical member having improved film density and excellent scratch resistance can be provided.

ナノインデンテーション測定法により得られる荷重−変位曲線を示す。The load-displacement curve obtained by the nanoindentation measurement method is shown. 実施例1のナノインデンテーション測定法による測定結果を示す。The measurement result by the nanoindentation measuring method of Example 1 is shown. 比較例1のナノインデンテーション測定法による測定結果を示す。The measurement result by the nanoindentation measuring method of the comparative example 1 is shown.

Claims (5)

プラスチック基材と、真空蒸着法で形成された反射防止膜とを有する光学部材であって、反射防止膜中の少なくとも1層が、SiO2とAl23とからなる成膜原料を用いた光学薄膜であり、前記光学薄膜が、ナノインデンテーション測定法での測定において、押し込み荷重0.98mNのときの押し込み深さが70〜95nmの低屈折率層である反射防止膜を有する光学部材。 An optical member having a plastic substrate and an antireflection film formed by a vacuum deposition method, wherein at least one layer in the antireflection film uses a film forming raw material made of SiO 2 and Al 2 O 3 An optical member having an antireflection film which is an optical thin film and the optical thin film is a low refractive index layer having an indentation depth of 70 to 95 nm when an indentation load is 0.98 mN in measurement by a nanoindentation measurement method. 前記低屈折率層が、イオンアシスト法で形成されてなる請求項1に記載の反射防止膜を有する光学部材。   The optical member having an antireflection film according to claim 1, wherein the low refractive index layer is formed by an ion assist method. 前記SiO2とAl23とからなる成膜原料を用いた低屈折率層が、アルゴンと酸素の混合ガスを用いたイオンアシスト法によって形成されてなる請求項2に記載の反射防止膜を有する光学部材。 The antireflection film according to claim 2, wherein the low refractive index layer using a film forming material composed of SiO 2 and Al 2 O 3 is formed by an ion assist method using a mixed gas of argon and oxygen. An optical member having. 前記SiO2とAl23とからなる成膜原料を用いてなる低屈折率層が、加速電圧250〜450V、加速電流160〜220mAの出力で実施されるイオンアシスト法で形成されてなる請求項2又は3に記載の反射防止膜を有する光学部材。 A low-refractive index layer using a film-forming raw material made of SiO 2 and Al 2 O 3 is formed by an ion assist method performed at an acceleration voltage of 250 to 450 V and an acceleration current of 160 to 220 mA. Item 4. An optical member having the antireflection film according to Item 2 or 3. 反射防止膜の少なくとも最外層が請求項1に記載の低屈折率層で形成された反射防止膜を有する光学部材。   An optical member having an antireflection film in which at least the outermost layer of the antireflection film is formed of the low refractive index layer according to claim 1.
JP2008043418A 2008-02-25 2008-02-25 Optical member Expired - Fee Related JP5285300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008043418A JP5285300B2 (en) 2008-02-25 2008-02-25 Optical member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008043418A JP5285300B2 (en) 2008-02-25 2008-02-25 Optical member

Publications (2)

Publication Number Publication Date
JP2009199022A true JP2009199022A (en) 2009-09-03
JP5285300B2 JP5285300B2 (en) 2013-09-11

Family

ID=41142525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008043418A Expired - Fee Related JP5285300B2 (en) 2008-02-25 2008-02-25 Optical member

Country Status (1)

Country Link
JP (1) JP5285300B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011186149A (en) * 2010-03-08 2011-09-22 Olympus Corp Optical component and method of manufacturing the same
KR101362420B1 (en) 2012-05-24 2014-02-14 주식회사 삼화옵틱스 Method of coating a sheet
KR20160005076A (en) * 2013-05-07 2016-01-13 코닝 인코포레이티드 Scratch-Resistant Articles With A Gradient Layer
JP2016157816A (en) * 2015-02-24 2016-09-01 シチズンホールディングス株式会社 Multilayer substrate, light-emitting device, and method of manufacturing multilayer substrate
US10416352B2 (en) 2015-09-14 2019-09-17 Corning Incorporated High light transmission and scratch-resistant anti-reflective articles
US10436945B2 (en) 2014-05-12 2019-10-08 Corning Incorporated Durable and scratch-resistant anti-reflective articles
US10444408B2 (en) 2013-05-07 2019-10-15 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
WO2019208426A1 (en) * 2018-04-27 2019-10-31 コニカミノルタ株式会社 Optical thin film, optical member, and method for manufacturing optical thin film
US10837103B2 (en) 2014-08-01 2020-11-17 Corning Incorporated Scratch-resistant materials and articles including the same
US10948629B2 (en) 2018-08-17 2021-03-16 Corning Incorporated Inorganic oxide articles with thin, durable anti-reflective structures
US11267973B2 (en) 2014-05-12 2022-03-08 Corning Incorporated Durable anti-reflective articles
US11667565B2 (en) 2013-05-07 2023-06-06 Corning Incorporated Scratch-resistant laminates with retained optical properties

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03129301A (en) * 1989-10-16 1991-06-03 Canon Inc Multilayered antireflection film
JPH09329701A (en) * 1997-01-10 1997-12-22 Hoya Corp Primer composition for plastic lens
JP2000266905A (en) * 1999-03-19 2000-09-29 Seiko Epson Corp Plastic color lens and manufacture thereof
JP2004206024A (en) * 2002-12-26 2004-07-22 Hoya Corp Optical member having antireflection film
JP2004354828A (en) * 2003-05-30 2004-12-16 Konica Minolta Opto Inc Antireflection film, and polarizing plate and display device having the film
JP2006065038A (en) * 2004-08-27 2006-03-09 Hoya Corp Optical member and its manufacturing method
JP2006095601A (en) * 2004-08-30 2006-04-13 Mitsubishi Cable Ind Ltd Laser guide for working machine and its production method
JP2006195120A (en) * 2005-01-13 2006-07-27 Konica Minolta Photo Imaging Inc Optical member and photographic lens using the same
JP2007035313A (en) * 2005-07-22 2007-02-08 Mitsubishi Chemicals Corp Light take-out film, translucent element with light take-out film, and electroluminescent element
JP2008001929A (en) * 2006-06-21 2008-01-10 Toppan Printing Co Ltd Method for producing antireflection stacked body, optically functional filter, and optical display

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03129301A (en) * 1989-10-16 1991-06-03 Canon Inc Multilayered antireflection film
JPH09329701A (en) * 1997-01-10 1997-12-22 Hoya Corp Primer composition for plastic lens
JP2000266905A (en) * 1999-03-19 2000-09-29 Seiko Epson Corp Plastic color lens and manufacture thereof
JP2004206024A (en) * 2002-12-26 2004-07-22 Hoya Corp Optical member having antireflection film
JP2004354828A (en) * 2003-05-30 2004-12-16 Konica Minolta Opto Inc Antireflection film, and polarizing plate and display device having the film
JP2006065038A (en) * 2004-08-27 2006-03-09 Hoya Corp Optical member and its manufacturing method
JP2006095601A (en) * 2004-08-30 2006-04-13 Mitsubishi Cable Ind Ltd Laser guide for working machine and its production method
JP2006195120A (en) * 2005-01-13 2006-07-27 Konica Minolta Photo Imaging Inc Optical member and photographic lens using the same
JP2007035313A (en) * 2005-07-22 2007-02-08 Mitsubishi Chemicals Corp Light take-out film, translucent element with light take-out film, and electroluminescent element
JP2008001929A (en) * 2006-06-21 2008-01-10 Toppan Printing Co Ltd Method for producing antireflection stacked body, optically functional filter, and optical display

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011186149A (en) * 2010-03-08 2011-09-22 Olympus Corp Optical component and method of manufacturing the same
KR101362420B1 (en) 2012-05-24 2014-02-14 주식회사 삼화옵틱스 Method of coating a sheet
KR102236343B1 (en) 2013-05-07 2021-04-06 코닝 인코포레이티드 Scratch-Resistant Articles With A Gradient Layer
KR20160005076A (en) * 2013-05-07 2016-01-13 코닝 인코포레이티드 Scratch-Resistant Articles With A Gradient Layer
JP2016519340A (en) * 2013-05-07 2016-06-30 コーニング インコーポレイテッド Scratch resistant article having a gradient layer
US11714213B2 (en) 2013-05-07 2023-08-01 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US11667565B2 (en) 2013-05-07 2023-06-06 Corning Incorporated Scratch-resistant laminates with retained optical properties
US10444408B2 (en) 2013-05-07 2019-10-15 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US11231526B2 (en) 2013-05-07 2022-01-25 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US10436945B2 (en) 2014-05-12 2019-10-08 Corning Incorporated Durable and scratch-resistant anti-reflective articles
US11267973B2 (en) 2014-05-12 2022-03-08 Corning Incorporated Durable anti-reflective articles
US10837103B2 (en) 2014-08-01 2020-11-17 Corning Incorporated Scratch-resistant materials and articles including the same
US10995404B2 (en) 2014-08-01 2021-05-04 Corning Incorporated Scratch-resistant materials and articles including the same
JP2016157816A (en) * 2015-02-24 2016-09-01 シチズンホールディングス株式会社 Multilayer substrate, light-emitting device, and method of manufacturing multilayer substrate
US10451773B2 (en) 2015-09-14 2019-10-22 Corning Incorporated High light transmission and scratch-resistant anti-reflective articles
US11002885B2 (en) 2015-09-14 2021-05-11 Corning Incorporated Scratch-resistant anti-reflective articles
US10416352B2 (en) 2015-09-14 2019-09-17 Corning Incorporated High light transmission and scratch-resistant anti-reflective articles
US11698475B2 (en) 2015-09-14 2023-07-11 Corning Incorporated Scratch-resistant anti-reflective articles
JPWO2019208426A1 (en) * 2018-04-27 2021-05-27 コニカミノルタ株式会社 Manufacturing method of optical thin film, optical member and optical thin film
WO2019208426A1 (en) * 2018-04-27 2019-10-31 コニカミノルタ株式会社 Optical thin film, optical member, and method for manufacturing optical thin film
JP7279713B2 (en) 2018-04-27 2023-05-23 コニカミノルタ株式会社 Optical thin film, optical member, and method for producing optical thin film
US11567237B2 (en) 2018-08-17 2023-01-31 Corning Incorporated Inorganic oxide articles with thin, durable anti-reflective structures
US10948629B2 (en) 2018-08-17 2021-03-16 Corning Incorporated Inorganic oxide articles with thin, durable anti-reflective structures
US11906699B2 (en) 2018-08-17 2024-02-20 Corning Incorporated Inorganic oxide articles with thin, durable anti reflective structures

Also Published As

Publication number Publication date
JP5285300B2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
JP5285300B2 (en) Optical member
EP1306695B1 (en) Optical element having antireflection film
US6958172B2 (en) Hybrid film, antireflection film comprising it, optical product, and method for restoring the defogging property of hybrid film
JP3510845B2 (en) Optical member having antireflection film
JP6625049B2 (en) Eyeglass lens
JPH065324B2 (en) Optical article having antireflection property and method for producing the same
WO2015163467A1 (en) Eyeglass lens
WO2015163465A1 (en) Eyeglass lens
WO2015163466A1 (en) Spectacle lens
JP4362032B2 (en) Optical member having antireflection film and method for producing the same
JP3353058B2 (en) Optical member having cured coating film
WO2022209092A1 (en) Eyeglass lens and eyeglasses
JP2003255107A (en) Hybrid thin film, antireflection film and optical member comprising the same, and method for restoring defogging performance of hybrid thin film
WO2015163463A1 (en) Spectacle lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees