JP2009198336A - Optical height/step measuring device - Google Patents

Optical height/step measuring device Download PDF

Info

Publication number
JP2009198336A
JP2009198336A JP2008040739A JP2008040739A JP2009198336A JP 2009198336 A JP2009198336 A JP 2009198336A JP 2008040739 A JP2008040739 A JP 2008040739A JP 2008040739 A JP2008040739 A JP 2008040739A JP 2009198336 A JP2009198336 A JP 2009198336A
Authority
JP
Japan
Prior art keywords
projection
optical system
measured
wedge
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008040739A
Other languages
Japanese (ja)
Inventor
Junichi Tamaki
純一 田巻
Mamoru Okamura
守 岡村
Makoto Shizuno
誠 志津野
Akiyuki Sasahara
亮行 笹原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UNION OPTICAL CO Ltd
Original Assignee
UNION OPTICAL CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UNION OPTICAL CO Ltd filed Critical UNION OPTICAL CO Ltd
Priority to JP2008040739A priority Critical patent/JP2009198336A/en
Publication of JP2009198336A publication Critical patent/JP2009198336A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To heighten measurement accuracy of an optical height/step measuring device, and to shorten a measuring time. <P>SOLUTION: In this measuring device for measuring the size in the Z-direction of a measuring object by detecting a moving amount in the Z-direction by means of detection operation of a focusing point of a target mark image projected onto the measuring object moving relatively in the Z-direction, a wedged prism 11 having a pair of wedged parts combined so as to obtain opposite wedge directions is arranged so that an illumination light flux is halved in a direction orthogonal to an optical axis and deflected to an opposite direction, and a plurality of target marks arranged so as to stride over the halved light flux are provided on a projection original plate. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は被測定物に接触しないで、その高さや段差を測定する光学式高さ・段差測定装置に関し、より詳細には被測定物に投影したターゲットマーク像の合焦点の検出操作により測定を行う装置に関する。   The present invention relates to an optical height / level difference measuring device that measures the height and level difference of a target object without contacting the object to be measured, and more specifically, measurement is performed by detecting a focal point of a target mark image projected on the target object. Relates to the device to perform.

例えば、ICなどの電子部品や精密加工部品などの被測定物の高さや段差を測定する場合において、高さ・段差測定装置が使用されている。被測定物の高さや段差を測定するに際しては被測定物に測定子を接触させる接触式測定装置(例えば、特許文献1)と、被測定物に投影したターゲットマーク像の合焦点の検出操作により測定を行う光学式測定装置(例えば、特許文献2、3)が公知である。   For example, when measuring the height or level difference of an object to be measured such as an electronic part such as an IC or a precision machined part, a height / level difference measuring device is used. When measuring the height or level difference of the object to be measured, a contact-type measuring device (for example, Patent Document 1) for bringing a measuring element into contact with the object to be measured and an operation for detecting a focal point of a target mark image projected on the object to be measured. An optical measuring device (for example, Patent Documents 2 and 3) that performs measurement is known.

この場合、前記のいずれの測定装置においても高さや段差を測定する際には、まず被測定物の1点(以下、「基準箇所」と称する。)に測定子を接触させたり、ターゲットマーク像を合焦させて、この場合の高さ方向(以下、「Z方向」と称する。)の測定値を記録することによりこれを基準値とし、次いで被測定物の高さや段差を測りたい箇所(以下、「被測定箇所」と称する。)に測定子やターゲットマーク像が位置するように、X、Yステージなどにより被測定物を縦方向(以後、「X方向」と称する。)、横方向(以後、「Y方向」と称する。)などの平面方向に移動させて、この箇所における測定値と前記基準値の差をもって高さや段差の値としていた。
特開2005−214833号公報 特開昭63−8508号公報 特開平10−221013号公報
In this case, when measuring the height or level difference in any of the above measuring apparatuses, first, a measuring element is brought into contact with one point (hereinafter referred to as “reference point”) of the object to be measured, or a target mark image. In this case, the measured value in the height direction (hereinafter referred to as the “Z direction”) is recorded, and this is used as a reference value. Hereinafter, the object to be measured is placed in the vertical direction (hereinafter referred to as “X direction”) and the horizontal direction by means of an X, Y stage or the like so that the measuring element or the target mark image is positioned at “measurement point”. (Hereinafter referred to as “Y direction”) and the like, and the difference between the measured value at this point and the reference value is used as the value of the height or step.
JP 2005-214833 A JP 63-8508 A JP-A-10-2221013

前記の従来技術の測定装置の説明から明らかなように、従来技術においては被測定物のZ方向の寸法を測定するに際して、被測定物を平面方向に移動させることが不可避であった。この場合、被測定物を平面方向に移動させるに際しては、少なからずZ方向のぶれが生じることは容易に想定して得るところであり、それが測定時の不確かな要因として残るおそれがある。そこで、それを可及的に減少させるためにX、Yステージなどの工作精度を高める努力が要求された。   As is apparent from the description of the prior art measuring apparatus, in the prior art, when measuring the dimension of the object to be measured in the Z direction, it is inevitable to move the object to be measured in the plane direction. In this case, when the object to be measured is moved in the plane direction, it is easily assumed that there is a considerable amount of shake in the Z direction, which may remain as an uncertain factor during measurement. Therefore, in order to reduce it as much as possible, efforts to increase the working accuracy of the X, Y stage, etc. were required.

また、測定の都度、被測定物を平面方向にいちいち移動させなくてはならないので、そのための作業時間を余分に要し、測定時間の短縮化の妨げとなっていた。   In addition, since the object to be measured must be moved in the plane direction every time measurement is performed, extra work time is required, which hinders shortening of the measurement time.

この発明は前記の問題を解消した高さ・段差測定装置を提供することを目的として創作されたものであり、被測定物に投影したターゲットマーク像の合焦点の検出操作により測定を行う光学式測定装置を直接的な先行技術とする。すなわち、この発明の高さ・段差測定装置はZ方向に相対移動する被測定物に投影したターゲットマーク像の合焦点の検出操作により、Z方向の移動量を検出して、被測定物のZ方向の寸法を測定する測定装置において、照明光束を光軸と直交する方向に2分割して反対方向に偏向させるよう、クサビ方向が反対となるように組み合わされた一対のクサビ部分を有するクサビ型プリズムを投影光学系に配すると共に、2分割された光束を跨ぐように配したターゲットマークを投影原板上に複数個設けたことを特徴とする。   The present invention was created for the purpose of providing a height / level difference measuring apparatus that solves the above-mentioned problems, and is an optical type that performs measurement by detecting the focal point of a target mark image projected on a measurement object. The measuring device is a direct prior art. That is, the height and level difference measuring apparatus of the present invention detects the amount of movement in the Z direction by detecting the focal point of the target mark image projected on the object to be measured that moves relative to the Z direction, and detects the Z of the object to be measured. Wedge type having a pair of wedge parts combined so that the wedge directions are opposite to each other so that the illumination light beam is divided into two in a direction perpendicular to the optical axis and deflected in the opposite direction The prism is arranged in the projection optical system, and a plurality of target marks arranged so as to straddle the two divided light beams are provided on the projection original plate.

また、ここでは第2発明として、前記第1発明において複数個のターゲットマークの設け方を違えた投影原板を複数種用意し、これらを選択的に投影光学系に挿入可能とした高さ・段差測定装置も開示する。   Here, as the second invention, a plurality of types of projection original plates in which a plurality of target marks are provided differently in the first invention are prepared, and the height and step which can be selectively inserted into the projection optical system. A measuring device is also disclosed.

前記の第2発明において、複数種用意した投影原板を選択的に投影光学系に挿入可能とする手段としては、投影光学系の光軸と直交する方向に水平移動可能なスライド部材の移動方向に複数種用意した投影原板を配する他、投影光学系の光軸に対しオフセットされた位置に回転中心を有する回転部材の回転方向に複数種用意した投影原板を配することが挙げられる。また、これらの場合において投影原板単独でなく、クサビ型プリズムと投影原板の組からなる複数組のターゲットマーク像投影用部材を配することが好ましい。   In the second aspect of the present invention, as means for selectively inserting a plurality of types of prepared projection original plates into the projection optical system, the moving direction of the slide member that can move horizontally in a direction orthogonal to the optical axis of the projection optical system In addition to arranging a plurality of types of projection master plates, a plurality of types of projection master plates may be arranged in the rotation direction of a rotating member having a rotation center at a position offset with respect to the optical axis of the projection optical system. In these cases, it is preferable to arrange a plurality of sets of target mark image projection members composed of a wedge prism and a projection original plate instead of the projection original plate alone.

この発明によれば、ターゲットマークを被測定物上に投影するための照明光束は、クサビ方向が反対となるように組み合わされた一対のクサビ部分を有するクサビ型プリズムにより光軸と直交する方向に2分割されて、それぞれが反対方向に偏向される。一方、ターゲットマークは2分割された光束を跨ぐように配されるので、被測定物上に投影されるターゲットマーク像は合焦位置以外では分割ラインを挟んでずれることとなり、ターゲットマークが比較的小さくても容易に合焦操作を行うことが可能となる。   According to the present invention, the illumination light beam for projecting the target mark onto the object to be measured is in a direction orthogonal to the optical axis by the wedge-shaped prism having the pair of wedge portions combined so that the wedge directions are opposite to each other. Divided in two, each deflected in the opposite direction. On the other hand, since the target mark is arranged so as to straddle the light beam divided into two parts, the target mark image projected on the object to be measured is shifted with the division line between the target position and the target mark is relatively Even if it is small, the focusing operation can be easily performed.

この発明においては、前記のターゲットマークは比較的小さくても容易に合焦操作を行うことが可能であることより、投影原板上にターゲットマークを複数個設けている。そうすることにより、被測定物の基準箇所および被測定箇所が視野内の複数個のターゲットマーク像のどれかに合致している限り、被測定物を平面方向に移動させることなく2点間の寸法差を測定することが可能となる。すなわち、視野内の基準箇所に位置するターゲットマーク像の合焦操作を光学系と被測定物のZ方向への相対移動により行った後に、被測定物の平面方向の位置はそのままで、視野内の被測定箇所に位置する別のターゲットマーク像の合焦操作を同じく行えば、これらの間の移動量が求める測定値となる。   In the present invention, a plurality of target marks are provided on the projection original plate because the focusing operation can be easily performed even if the target marks are relatively small. By doing so, as long as the reference location of the object to be measured and the location to be measured match any one of the plurality of target mark images in the field of view, the object to be measured is moved between two points without moving in the plane direction. It becomes possible to measure a dimensional difference. That is, after performing the focusing operation of the target mark image located at the reference position in the field of view by relative movement of the optical system and the object to be measured in the Z direction, the position in the plane direction of the object to be measured remains as it is in the field of view. If the operation of focusing another target mark image located at the location to be measured is performed in the same manner, the amount of movement between them becomes a measured value.

また、第2発明によれば複数個のターゲットマークの設け方を違えた投影原板を複数種用意し、これらを選択的に投影光学系に挿入可能としているので、被測定物の種類に応じてそれに適したターゲットマークの設け方を実施した投影原板を選択することが可能となり、被測定物を平面方向に移動させなくてはならない場面を極力少なくすることが可能となる。被測定物は例えば、ICなどの電子部品や精密加工部品などの種類に応じて、表面の凹凸の傾向はある程度類型化できるので、これらに応じたターゲットマークの設け方を実施した投影原板を複数種用意して選択することは特に有効である。   Further, according to the second invention, a plurality of types of projection original plates with different methods of providing a plurality of target marks are prepared, and these can be selectively inserted into the projection optical system. Accordingly, it is possible to select a projection master plate on which a target mark is appropriately provided, and it is possible to minimize the number of scenes in which the object to be measured must be moved in the plane direction. Depending on the type of electronic parts such as ICs and precision processed parts, the object to be measured can be categorized to a certain extent on the surface irregularities. It is particularly effective to select and prepare seeds.

なお、スライド部材や回転部材に複数種の投影原板を配するに際して、投影原板単独でなく、クサビ型プリズムと投影原板の組からなる複数組のターゲットマーク投影用部材を配することは切り替え時の精度を高めるために特に有効である。   When arranging multiple types of projection original plates on the slide member and the rotation member, it is not necessary to arrange a plurality of target mark projection members consisting of a wedge-shaped prism and projection original plate at the time of switching. This is particularly effective for increasing accuracy.

以上のとおり、この発明の光学式高さ・段差測定装置によれば被測定物を平面方向に移動することなく高さや段差を測定できるので精度の高い測定が可能となり、また、測定時間も短縮することが可能となる。   As described above, according to the optical height / level difference measuring apparatus of the present invention, it is possible to measure the height and level difference without moving the object to be measured in the plane direction, thus enabling high-precision measurement and shortening the measurement time. It becomes possible to do.

以下、この発明の光学式高さ・段差測定装置の具体的実施例を添付図面に基づいて説明する。図1はこの測定装置の光学系を示す図である。図中符号Aは測定者が被測定物を測定のために観察する観察光学系であり、ステージ上の被測定物(図示せず)の観察光束は対物レンズ5を通過して、ビームスプリッター4(ここでは半透ミラーを採用している)により反射されて偏向され、チューブレンズ8を通過し、更にミラー7により偏向され、プリズム6により測定者の接眼レンズ(図示せず)方向とカメラ(図示せず)方向に入射される。   Hereinafter, specific embodiments of the optical height / step measuring apparatus of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a diagram showing an optical system of this measuring apparatus. In the figure, symbol A is an observation optical system in which a measurer observes the object to be measured for measurement, and the observation light beam of the object to be measured (not shown) on the stage passes through the objective lens 5 and is passed through the beam splitter 4. (A semi-transparent mirror is used here) Reflected and deflected, passes through the tube lens 8, further deflected by the mirror 7, and is measured by the prism 6 with the direction of the eyepiece (not shown) of the measurer and the camera ( (Not shown).

一方、図中符号Bは、ターゲットマーク像を被測定物に投影するための投影光学系であり、光源1からの照明光束は集光レンズ2を介して、クサビ型プリズム11および投影原板12を通過した後、チューブレンズ3を通過し、更にビームスプリッター4を通過して対物レンズ5に入射される。   On the other hand, symbol B in the drawing is a projection optical system for projecting the target mark image onto the object to be measured, and the illumination light beam from the light source 1 passes through the condenser lens 2 to the wedge-shaped prism 11 and the projection original plate 12. After passing, the light passes through the tube lens 3, further passes through the beam splitter 4, and enters the objective lens 5.

図5および図6は上記のうち、ターゲットマーク像を被測定物に投影するための投影光学系Bの構成の詳細および作用を説明する図である。この発明の測定装置においては、照明光束は投影光学系に配されるクサビ型プリズム11により光軸Sと直交する方向に2分割されて反対方向に偏向する。このクサビ型プリズム11は適切な角度(例えば2〜3°)で形成された一対のクサビ部分11A、11Bが反対になるように組み合わされるものであり、クサビを形成する両面は精度良く平面に研磨されている。また、その形状は、ここでは平面半円形のものを左右方向に組み合わせたものを図示しているが、これ以外の形状や組み合わせであってもよいことは勿論である。   5 and 6 are diagrams for explaining the details and operation of the configuration of the projection optical system B for projecting the target mark image onto the object to be measured. In the measuring apparatus of the present invention, the illumination light beam is divided into two in the direction perpendicular to the optical axis S by the wedge-shaped prism 11 arranged in the projection optical system and deflected in the opposite direction. The wedge-shaped prism 11 is combined so that a pair of wedge portions 11A and 11B formed at an appropriate angle (for example, 2 to 3 °) are opposite to each other, and both surfaces forming the wedge are polished to a flat surface with high accuracy. Has been. In addition, the shape is shown here as a combination of planar semicircular shapes in the left-right direction, but it is of course possible to have other shapes and combinations.

一方、前記のクサビ型プリズム11と接合または間隔を空けて設けられる原板12上に配されるターゲットマークは2分割された光束の分割ラインを跨ぐように配され、これを言い換えればターゲットマークはクサビ型プリズムのクサビ部分11A、11Bの相対向する稜線を跨ぐように配されることとなる。このターゲットマークは上記の稜線範囲内に複数個配されるものであり、例えば中心1点を含む数か所、もしくは稜線上全てに配される。図4の(4A)〜(4D)はターゲットマークの設け方を違えた投影原板12の例を示す図であり、図中符号Mはターゲットマークを指す。   On the other hand, the target mark arranged on the original plate 12 which is provided to be joined or spaced apart from the wedge-shaped prism 11 is arranged so as to straddle the split line of the light beam divided into two, in other words, the target mark is wedge-shaped. The wedge portions 11 </ b> A and 11 </ b> B of the mold prism are arranged so as to straddle the opposing ridge lines. A plurality of target marks are arranged within the above ridge line range, and are arranged, for example, at several places including one center point or all on the ridge line. (4A) to (4D) in FIG. 4 are diagrams showing examples of the projection original plate 12 in which the target marks are provided in different ways, and the symbol M in the figure indicates the target mark.

この発明によれば、ターゲットマークは2分割された光束を跨ぐように配されるので、被測定物上に投影されるターゲットマーク像は合焦位置以外では分割ラインを挟んでずれることとなる。図5〜図6の投影光学系においては投影原板12には2つのターゲットM1、M2が配されているが、被測定物20上のこれらのターゲット像MM1、MM2は同一の視野内に収まっているので、被測定物20を平面方向に移動することなく双方を視認することが可能である。そこで、先ず被測定物20の基準箇所20Aに位置するターゲットマーク像MM1の合焦操作を粗微動装置(図示せず)による光学系または被測定物を載せたステージのZ方向への移動により行い(図5参照)、次いで被測定物の平面方向の位置はそのままで、視野内の被測定箇所20Bに位置する別のターゲットマーク像MM2の合焦操作を同じく行い(図6参照)、Z軸スケール(高さ・段差) により検出されたこれらの間の移動量を電気信号としてカウンターに送って表示させ、被測定物の高さあるいは段差として表示する。   According to the present invention, since the target mark is arranged so as to straddle the light beam divided into two parts, the target mark image projected on the object to be measured is displaced with the dividing line interposed therebetween except for the in-focus position. In the projection optical system of FIGS. 5 to 6, two targets M1 and M2 are arranged on the projection original plate 12, but these target images MM1 and MM2 on the object to be measured 20 are within the same field of view. Therefore, both of the objects to be measured 20 can be visually recognized without moving in the plane direction. Therefore, first, the focusing operation of the target mark image MM1 located at the reference point 20A of the object to be measured 20 is performed by moving the optical system or the stage on which the object to be measured is placed in the Z direction by a coarse / fine movement device (not shown). (See FIG. 5) Then, the position of the object to be measured in the plane direction is kept as it is, and another focusing operation for another target mark image MM2 located at the measurement location 20B in the field of view is performed in the same manner (see FIG. 6). The amount of movement between them detected by the scale (height / step) is sent to the counter as an electrical signal for display and displayed as the height or step of the object to be measured.

ところで、被測定物は例えば、ICなどの電子部品や精密加工部品などの種類に応じて、表面の凹凸の傾向はある程度類型化できるので、これらに応じたターゲットマークの設け方を予め想定することができる。そこで、被測定物の種類に適したターゲットマークとすれば、被測定物を平面方向に移動させなくてはならない場面を極力少なくすることが可能となる。この実施例においては、前記の前提に立って複数個のターゲットマークの設け方を違えた投影原板を複数種用意し、これらを選択的に投影光学系に挿入可能としている。ここでは、そのための機構として投影光学系の光軸Sと直交する方向に水平移動可能なスライド部材10の移動方向に、クサビ型プリズム11と投影原板12の組からなる2組のターゲットマーク像投影用部材を配し、つまみ13によるスライド操作により、これらを選択的に投影光学系に挿入している。   By the way, for example, depending on the type of electronic parts such as ICs and precision-machined parts, the object to be measured can be categorized to some extent on the surface irregularities. Can do. Therefore, if the target mark is suitable for the type of the object to be measured, it is possible to minimize the number of scenes where the object to be measured must be moved in the plane direction. In this embodiment, a plurality of types of projection original plates with different target mark arrangements are prepared on the basis of the premise described above, and these can be selectively inserted into the projection optical system. Here, as a mechanism for this, two sets of target mark image projections consisting of a set of a wedge-shaped prism 11 and a projection original plate 12 are projected in the moving direction of a slide member 10 that can move horizontally in a direction perpendicular to the optical axis S of the projection optical system. The members are arranged, and these are selectively inserted into the projection optical system by a slide operation with the knob 13.

また、図7〜図8は複数個のターゲットマークの設け方を違えた投影原板を投影光学系に挿入するための異なる機構の実施例を示す図であり、ここでは投影光学系の光軸Sに対しオフセットされた位置に回転中心23を有する回転部材20の回転方向に、クサビ型プリズム21と投影原板22の組からなる複数組のターゲットマーク像投影用部材を配し、回転操作により、これらを選択的に投影光学系に挿入している。   FIGS. 7 to 8 are views showing examples of different mechanisms for inserting a projection original plate in which a plurality of target marks are provided in different ways into the projection optical system. Here, the optical axis S of the projection optical system is shown. A plurality of sets of target mark image projecting members composed of a set of wedge-shaped prisms 21 and projection original plates 22 are arranged in the rotational direction of the rotating member 20 having the rotation center 23 at a position offset with respect to the position. Are selectively inserted into the projection optical system.

この発明に光学式高さ・段差測定装置の光学系を示す構成図。The block diagram which shows the optical system of the optical height and level | step difference measuring apparatus in this invention. 同上、クサビ型プリズムと投影原板箇所の断面図。FIG. 4 is a cross-sectional view of a wedge-shaped prism and a projection original plate. 同上、クサビ型プリズムと投影原板箇所の平面図。The top view of a wedge-shaped prism and a projection original plate location as above. 同上、投影原板の例を示す平面図。The top view which shows the example of a projection original plate same as the above. 同上、照明光学系を示す一部省略斜視図。FIG. 3 is a partially omitted perspective view showing the illumination optical system. 同上、照明光学系を示す一部省略斜視図。FIG. 3 is a partially omitted perspective view showing the illumination optical system. 同上、クサビ型プリズムと投影原板箇所の異なる実施例の断面図。Sectional drawing of the Example from which a wedge-shaped prism differs from a projection original plate location same as the above. 同上、クサビ型プリズムと投影原板箇所の異なる実施例の一部切り欠き平面図。The partially cutaway top view of the Example from which a wedge-shaped prism differs from a projection original plate location same as the above.

符号の説明Explanation of symbols

M ターゲットマーク
1 光源
11 クサビ型プリズム
12 投影原板
M target mark 1 light source 11 wedge prism 12 projection original plate

Claims (4)

Z方向に相対移動する被測定物に投影したターゲットマーク像の合焦点の検出操作により、Z方向の移動量を検出して、被測定物のZ方向の寸法を測定する測定装置において、照明光束を光軸と直交する方向に2分割して反対方向に偏向させるよう、クサビ方向が反対となるように組み合わされた一対のクサビ部分を有するクサビ型プリズムを投影光学系に配すると共に、2分割された光束を跨ぐように配したターゲットマークを投影原板上に複数個設けたことを特徴とする光学式高さ・段差測定装置。 In a measuring apparatus that detects the amount of movement in the Z direction by detecting the in-focus point of a target mark image projected on the object to be measured that moves relative to the Z direction, and measures the dimension in the Z direction of the object to be measured. A wedge-shaped prism having a pair of wedge parts combined so that the wedge directions are opposite to each other is divided into two in the direction perpendicular to the optical axis and deflected in the opposite direction, and the projection optical system is divided into two An optical height / level difference measuring apparatus comprising a plurality of target marks arranged on a projection original plate so as to straddle the emitted light flux. 複数個のターゲットマークの設け方を違えた投影原板を複数種用意し、これらを選択的に投影光学系に挿入可能とした請求項1記載の光学式高さ・段差測定装置。 2. The optical height / step measuring apparatus according to claim 1, wherein a plurality of projection original plates in which a plurality of target marks are provided are prepared, and these can be selectively inserted into a projection optical system. 投影光学系の光軸と直交する方向に水平移動可能なスライド部材の移動方向に、クサビ型プリズムと投影原板の組からなる複数組のターゲットマーク像投影用部材を配することにより、これらを選択的に投影光学系に挿入する手段とした請求項2記載の光学式高さ・段差測定装置。 Select multiple target mark image projection members consisting of a wedge prism and projection master plate in the direction of movement of the slide member that can move horizontally in the direction perpendicular to the optical axis of the projection optical system. 3. The optical height / step measuring apparatus according to claim 2, wherein the optical height / step measuring apparatus is a means for inserting into a projection optical system. 投影光学系の光軸に対しオフセットされた位置に回転中心を有する回転部材の回転方向に、クサビ型プリズムと投影原板の組からなる複数組のターゲットマーク像投影用部材を配することにより、これらを選択的に投影光学系に挿入する手段とした請求項2記載の光学式高さ・段差測定装置。 By arranging a plurality of target mark image projecting members composed of a wedge prism and a projection original plate in the rotational direction of a rotating member having a rotation center at a position offset with respect to the optical axis of the projection optical system, The optical height / step measuring apparatus according to claim 2, wherein the optical height / step difference measuring device is a means for selectively inserting the light into the projection optical system.
JP2008040739A 2008-02-21 2008-02-21 Optical height/step measuring device Pending JP2009198336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008040739A JP2009198336A (en) 2008-02-21 2008-02-21 Optical height/step measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008040739A JP2009198336A (en) 2008-02-21 2008-02-21 Optical height/step measuring device

Publications (1)

Publication Number Publication Date
JP2009198336A true JP2009198336A (en) 2009-09-03

Family

ID=41141985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008040739A Pending JP2009198336A (en) 2008-02-21 2008-02-21 Optical height/step measuring device

Country Status (1)

Country Link
JP (1) JP2009198336A (en)

Similar Documents

Publication Publication Date Title
KR101409644B1 (en) Three-dimensional shape measuring apparatus
JP2000227326A (en) Flatness measuring device
JP5854680B2 (en) Imaging device
JP5074319B2 (en) Image measuring apparatus and computer program
JP2010072017A (en) Automatic focusing device
KR100785802B1 (en) Apparatus for measurment of three-dimensional shape
KR20170009781A (en) Exposure apparatus, exposure method, and device manufacturing method
JP2015108582A (en) Three-dimensional measurement method and device
TW200521481A (en) Focusing system and method
JP2016148569A (en) Image measuring method and image measuring device
JP6155924B2 (en) Dimension measuring apparatus and dimension measuring method
JP2020101743A (en) Confocal microscope and its imaging method
JP2009198336A (en) Optical height/step measuring device
TWI597474B (en) Measuring device
JP2009222449A (en) Distance measuring device using lens system
JPH11133309A (en) Microscopic device, dimension measuring method and device therefor
JP2010101672A (en) Method and device for inspecting shape in inspection body
JP4788968B2 (en) Focal plane tilt type confocal surface shape measuring device
TW201905414A (en) Line width measuring system and line width measuring device
JP2005003667A (en) Reference axis setting optical system, eccentricity measuring machine and eccentricity-measuring method using the optical system
KR102030685B1 (en) Method for determining focus height using prediction of warpage for measuring printed circuit board
JP2005055217A (en) Method for measuring height
KR102069647B1 (en) Optical interferometer
JP2009068942A (en) Roof mirror measuring apparatus
JP2006153575A (en) Three-dimensional measuring instrument