JP2009195852A - Method for treating pulp wastewater anaerobically - Google Patents

Method for treating pulp wastewater anaerobically Download PDF

Info

Publication number
JP2009195852A
JP2009195852A JP2008041961A JP2008041961A JP2009195852A JP 2009195852 A JP2009195852 A JP 2009195852A JP 2008041961 A JP2008041961 A JP 2008041961A JP 2008041961 A JP2008041961 A JP 2008041961A JP 2009195852 A JP2009195852 A JP 2009195852A
Authority
JP
Japan
Prior art keywords
wastewater
surfactant
pulp
treatment
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008041961A
Other languages
Japanese (ja)
Other versions
JP5117882B2 (en
Inventor
Isao Onodera
勇雄 小野寺
Reiko Oshima
玲子 大島
Takuo Inoue
拓郎 井上
Kaoru Hamada
薫 濱田
Yuko Iijima
夕子 飯嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paper Industries Co Ltd
Jujo Paper Co Ltd
Original Assignee
Nippon Paper Industries Co Ltd
Jujo Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paper Industries Co Ltd, Jujo Paper Co Ltd filed Critical Nippon Paper Industries Co Ltd
Priority to JP2008041961A priority Critical patent/JP5117882B2/en
Publication of JP2009195852A publication Critical patent/JP2009195852A/en
Application granted granted Critical
Publication of JP5117882B2 publication Critical patent/JP5117882B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating pulp wastewater anaerobically, in which a pretreatment facility is not required but pulp wastewater can be treated stably. <P>SOLUTION: The method for treating pulp wastewater anaerobically includes the steps of: adding a surfactant to pulp wastewater; and treating the surfactant-added pulp wastewater anaerobically. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、パルプ系排水の嫌気性処理方法に関する。より詳細には、本発明は、パルプ系排水中に含まれる油分(樹脂)による発酵阻害を緩和し、安定した処理が可能となる嫌気性排水処理方法に関するものである。   The present invention relates to an anaerobic treatment method for pulp wastewater. More specifically, the present invention relates to an anaerobic wastewater treatment method that can alleviate fermentation inhibition due to oil (resin) contained in pulp wastewater and enable stable treatment.

食品や化学、紙パルプ等といった様々な産業の工場排水は、ほとんどが活性汚泥処理等を利用した好気性処理あるいは嫌気性処理(メタン発酵処理)を経て、海洋や河川へ放流される。活性汚泥を利用した好気的処理は、製紙工場の排水処理として一般的に利用されているが、処理にエネルギーが必要となる。一方、嫌気性処理は、嫌気性微生物群を高濃度かつ高活性に維持することが必要であるものの、排水を処理できるだけでなく、有機性排水をメタン発酵した際に得られるメタンをエネルギー源として活用できる。また、嫌気性処理は、活性汚泥による好気性処理とは異なり、酸素を供給する必要がなく、余剰汚泥の発生量も少ないため有望である。   Industrial wastewater from various industries such as food, chemicals, and paper pulp is mostly discharged to the ocean and rivers through aerobic treatment or anaerobic treatment (methane fermentation treatment) using activated sludge treatment. Aerobic treatment using activated sludge is generally used as wastewater treatment in paper mills, but energy is required for treatment. On the other hand, anaerobic treatment requires maintaining anaerobic microorganisms at a high concentration and high activity, but not only can treat wastewater, but can also use methane obtained from methane fermentation of organic wastewater as an energy source. Can be used. In addition, unlike the aerobic treatment with activated sludge, the anaerobic treatment is promising because it does not need to supply oxygen and the amount of excess sludge generated is small.

しかし、排水中に油分が含有されている場合、その油分が菌体に対して毒性影響を与えたり、油分が菌体の表面を被覆することにより菌体が有機分や栄養分等の摂取を妨げられたりする等の理由から、生物処理の効率は著しく低下する。特に、紙パルプ系排水には木材由来の樹脂が含まれており、この木材由来の樹脂は嫌気性処理に対して発酵阻害を与える。   However, if oil is contained in the wastewater, the oil may have a toxic effect on the cells, or the oil may cover the surface of the cells, preventing the cells from ingesting organic and nutrients. For example, the efficiency of biological treatment is significantly reduced. In particular, the pulp and paper wastewater contains a resin derived from wood, and the resin derived from wood gives fermentation inhibition to the anaerobic treatment.

一般に、排水から油分(樹脂)を除去する方法としては、水と油分の比重差を利用した分離方法が知られている。しかし、油分が微細でエマルション状となっている場合、この方法による油分の分離は困難である。   In general, as a method for removing oil (resin) from waste water, a separation method using a difference in specific gravity between water and oil is known. However, when the oil is fine and in the form of an emulsion, it is difficult to separate the oil by this method.

油分を含有する排水の生物処理に伴う上記課題に対して特許文献1(特開平8−267095号公報)には、油分含有排水に対して植物体からの抽出液であるサポニンを添加することで、油分を分離せずに安定した処理が可能となる排水処理方法が報告されている。しかし、この方法によって得られる効果は、好気性処理で生じる余剰な汚泥を膜で分離する際に油分による膜の目詰まりが抑制できること、油分を乳化して微生物処理をし易くすることであり、油分による発酵阻害を十分に緩和することは期待できない。   In response to the above-mentioned problems associated with biological treatment of wastewater containing oil, Patent Document 1 (Japanese Patent Laid-Open No. 8-267095) adds saponin that is an extract from a plant to oil-containing wastewater. A wastewater treatment method that enables stable treatment without separating oil has been reported. However, the effect obtained by this method is that clogging of the membrane due to oil can be suppressed when separating excess sludge generated in the aerobic treatment with the membrane, and emulsifying the oil to facilitate microbial treatment, It cannot be expected that the fermentation inhibition by oil will be sufficiently alleviated.

また、特許文献2(特開2005−288287号公報)には、生物処理後の膜分離処理において、界面活性剤を使用した加圧浮上や泡沫分離処理によって生物処理で生成した親水性の高分子化合物を除去することで、安定した処理が可能となる排水処理方法が報告されている。しかし、この方法は、生物処理後の排液の膜分離処理に関するものであり、前処理として加圧浮上や泡沫分離の設備が必要であることからコスト的な問題がある。さらに、この方法は、好気性処理で生じる余剰な汚泥を膜で分離する際に油分による膜の目詰まりが抑制できるというものであり、樹脂分を含有する排水を処理対象として検討しておらず、樹脂による発酵阻害の影響は一切検討されていない。   Patent Document 2 (Japanese Patent Application Laid-Open No. 2005-288287) discloses a hydrophilic polymer produced by biological treatment by pressurized flotation or foam separation treatment using a surfactant in membrane separation treatment after biological treatment. There has been reported a wastewater treatment method capable of stable treatment by removing a compound. However, this method relates to a membrane separation process of the waste liquid after the biological treatment, and there is a problem in cost because equipment for pressure floating and foam separation is necessary as a pretreatment. Furthermore, this method can suppress clogging of the membrane due to oil when separating excess sludge generated by aerobic treatment with a membrane, and wastewater containing resin is not considered for treatment. The effect of fermentation inhibition by the resin has not been studied at all.

特許文献3(特開2002−219360号公報)には、化学合成繊維に界面活性剤を含浸させた油除去剤が報告されているが、処理の対象が液状廃棄物で比較的濃度が高いものに限定されるうえ、油分が吸着した油除去剤をスクリーン等で分離・回収する必要がある。さらに、回収した油除去剤は分離した汚泥と一緒に処理しなければならない。
特開平8−267095号公報 特開2005−288287号公報 特開2002−219360号公報
Patent Document 3 (Japanese Patent Laid-Open No. 2002-219360) reports an oil removing agent in which a synthetic synthetic fiber is impregnated with a surfactant. However, the treatment target is liquid waste and has a relatively high concentration. In addition, it is necessary to separate and collect the oil removing agent with the oil adsorbed on a screen or the like. In addition, the recovered oil remover must be treated with the separated sludge.
JP-A-8-267095 JP 2005-288287 A JP 2002-219360 A

本発明は、樹脂を含有する排水の嫌気性処理において、前処理を目的とした設備を必要とせずに安定した処理が可能となる排水処理方法を提供しようとするものである。   The present invention is intended to provide a wastewater treatment method that enables stable treatment without requiring equipment for pretreatment in anaerobic treatment of wastewater containing resin.

本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、樹脂を含有する排水に対して界面活性剤を添加することにより、界面活性剤が油滴の周りに吸着し被覆して汚泥(メタン発酵菌)との接触を抑制でき、樹脂による発酵阻害を緩和できることを見い出し、本発明を完成させた。   As a result of intensive studies to solve the above problems, the present inventors have added a surfactant to the wastewater containing the resin so that the surfactant is adsorbed and coated around the oil droplets. Thus, the present inventors have found that contact with sludge (methane fermentation bacteria) can be suppressed and fermentation inhibition by resin can be alleviated, and the present invention has been completed.

すなわち、本発明は、これに限定されるものではないが、以下の発明を包含する。
(1) パルプ系排水を嫌気性処理する方法であって、パルプ系排水に界面活性剤を添加して嫌気性処理することを含む、上記排水処理方法。
(2) 前記パルプ系排水が、クラフトパルプ製造工程から発生する黒液を濃縮する際の蒸留排水である、(1)に記載の排水処理方法。
(3) 前記界面活性剤がノニオン界面活性剤である、(1)または(2)に記載の排水処理方法。
(4) 前記界面活性剤のHLB値が3〜14である、(1)〜(3)のいずれか1項に記載の排水処理方法。
(5) 前記界面活性剤がポリオキシエチレンソルビタン脂肪酸エステルを含んでなる、(1)〜(4)のいずれか1項に記載の排水処理方法。
(6) 前記界面活性剤の添加量が排水に対して0.1〜3.0重量%である、(1)〜(5)のいずれか1項に記載の排水処理方法。
(7) パルプ系排水に界面活性剤を添加して嫌気性処理することを含む、バイオガスの製造方法。
That is, the present invention includes, but is not limited to, the following inventions.
(1) A method for anaerobically treating pulp-based wastewater, the method comprising the step of anaerobically treating a pulp-based wastewater by adding a surfactant.
(2) The wastewater treatment method according to (1), wherein the pulp wastewater is distilled wastewater when the black liquor generated from the kraft pulp manufacturing process is concentrated.
(3) The waste water treatment method according to (1) or (2), wherein the surfactant is a nonionic surfactant.
(4) The waste water treatment method according to any one of (1) to (3), wherein the surfactant has an HLB value of 3 to 14.
(5) The waste water treatment method according to any one of (1) to (4), wherein the surfactant comprises a polyoxyethylene sorbitan fatty acid ester.
(6) The waste water treatment method according to any one of (1) to (5), wherein an addition amount of the surfactant is 0.1 to 3.0% by weight with respect to the waste water.
(7) A method for producing biogas, which comprises anaerobic treatment by adding a surfactant to pulp wastewater.

本発明の排水処理方法は、樹脂分を含有する排水の嫌気性(メタン発酵)処理において、樹脂による発酵阻害の影響を緩和し、安定した排水処理が可能となる。さらに、本発明は、加圧浮上や泡沫分離の様な前処理を目的とした設備を必要とせず、パルプ系排水のBOD、CODを低下させることができる。   In the wastewater treatment method of the present invention, in the anaerobic (methane fermentation) treatment of wastewater containing a resin component, the influence of fermentation inhibition by the resin is alleviated and stable wastewater treatment becomes possible. Furthermore, the present invention does not require equipment for pretreatment such as pressurized flotation and foam separation, and can reduce BOD and COD of pulp wastewater.

以下、本発明の方法を具体的に説明する。
1つの態様において、本発明は、パルプ系排水の嫌気性処理方法であって、パルプ系排水に界面活性剤を添加して嫌気性処理する方法である。したがって、本発明における処理対象はパルプ系排水である。本発明においてパルプ系排水とは、パルプ製造工程から排出される有機性排水を意味し、パルプ系排水は、木材などに由来する樹脂分が含まれるという特徴を有する。このような樹脂分は有機排水の嫌気性処理を阻害するが、本発明によれば、このような樹脂分を含んだパルプ系排水を嫌気性処理により効率的に処理することが可能になる。
Hereinafter, the method of the present invention will be specifically described.
In one embodiment, the present invention is an anaerobic treatment method for pulp-based wastewater, which is an anaerobic treatment by adding a surfactant to pulp-based wastewater. Therefore, the processing target in the present invention is pulp-based waste water. In the present invention, the pulp-based waste water means organic waste water discharged from the pulp manufacturing process, and the pulp-based waste water has a feature that a resin component derived from wood or the like is included. Although such a resin component inhibits the anaerobic treatment of organic wastewater, according to the present invention, it becomes possible to efficiently treat pulp-based wastewater containing such a resin component by anaerobic treatment.

本発明の処理対象であるパルプ系排水に特に制限はなく、例えば、パルプ製造プラントにおいて、黒液(パルプの製造工程から発生するアルカリ廃液)を濃縮する際の蒸留排水(以下、エバドレンなどともいう)やパルプ漂白排水などが挙げられる。中でも、クラフトパルプの製造工程から発生するパルプ系排水は排水に含まれる樹脂分が多く、本発明によって得られる利益が大きいため、本発明の処理対象として好適である。また、黒液濃縮排水は、メタノールを主に含む有機性排水であって、樹脂分を含むが、本発明の適用対象として好適である。その理由としては、排水に含まれる樹脂分が木材由来の樹脂でありメタン発酵を阻害する程度が比較的強いこと、樹脂分がエマルション状態にあり他の方法による分離が困難であること等が挙げられる。   There is no restriction | limiting in particular in the pulp-type waste_water | drain which is a process target of this invention, For example, it is also called distillation waste_water | drain (henceforth evadren etc.) at the time of concentrating black liquor (alkali waste liquid generated from a pulp manufacturing process) in a pulp manufacturing plant. ) And pulp bleach waste water. Among these, pulp-based wastewater generated from the kraft pulp manufacturing process has a large amount of resin contained in the wastewater, and is highly suitable as a treatment target of the present invention because of the great benefits obtained by the present invention. Moreover, although black liquor concentration waste_water | drain is an organic waste_water | drain mainly containing methanol, and contains resin content, it is suitable as an application object of this invention. The reason is that the resin contained in the wastewater is a resin derived from wood and has a relatively strong degree of inhibiting methane fermentation, and the resin is in an emulsion state and is difficult to separate by other methods. It is done.

本発明のパルプ系排水の由来は特に制限はなく、例えば、針葉樹または広葉樹からパルプを製造する際の排水に本発明を適用できることはもちろん、木材以外からパルプを製造する際の排水に本発明を適用することもできる。クラフトパルプ(KP)製造工程からの排液の他にも、例えば、機械パルプや脱墨パルプ(DIP)の製造工程からの排水に本発明を適用することができる。ここで、機械パルプとしては、例えば、砕木パルプ(GP)、リファイナー砕木パルプ(RGP)、サーモメカニカルパルプ(TMP)、ケミサーモメカニカルパルプ(CTMP)、ケミグランドパルプ(CGP)、セミケミカルパルプ(SCP)等が挙げられる。   The origin of the pulp-based wastewater of the present invention is not particularly limited. It can also be applied. Besides the drainage from the kraft pulp (KP) manufacturing process, for example, the present invention can be applied to drainage from the manufacturing process of mechanical pulp and deinked pulp (DIP). Here, as mechanical pulp, for example, groundwood pulp (GP), refiner groundwood pulp (RGP), thermomechanical pulp (TMP), chemithermomechanical pulp (CTMP), chemiground pulp (CGP), semi-chemical pulp (SCP) ) And the like.

本発明においては、パルプ系排水に界面活性剤を添加して嫌気性処理を行う。使用する界面活性剤としては、本発明の効果を損なわない限り特に限定されるものではないが、ノニオン系またはアニオン系の界面活性剤が好ましく、ノニオン系の界面活性剤がより好ましい。カチオン系の界面活性剤では、汚泥の表面がアニオン性に帯電していることから樹脂分に優先して汚泥に作用してしまい、目的とした効果が得られないことがある。また、アニオン系の界面活性剤では、油滴の表面がアニオン性に弱く帯電していることから樹脂への馴染みが悪く、樹脂分による発酵阻害を十分に防止することができないことがある。また、本発明においては、単独の界面活性剤だけでなく、複数の界面活性剤を組み合わせ使用することも可能である。   In the present invention, an anaerobic treatment is performed by adding a surfactant to the pulp waste water. The surfactant to be used is not particularly limited as long as the effects of the present invention are not impaired, but nonionic or anionic surfactants are preferable, and nonionic surfactants are more preferable. In the case of a cationic surfactant, the surface of the sludge is anionicly charged, so that it acts on the sludge in preference to the resin component, and the intended effect may not be obtained. In addition, with an anionic surfactant, the surface of the oil droplet is weakly charged anionicly, so that it is not well adapted to the resin, and fermentation inhibition due to the resin component may not be sufficiently prevented. In the present invention, not only a single surfactant but also a plurality of surfactants can be used in combination.

本発明の界面活性剤のHLB値は、3以上であることが好ましく、8以上であることがより好ましい。一方、HLB値の上限としては、13以下が好ましく、12以下であることがより好ましい。HLB値とは、界面活性剤の水と油への親和性の程度を表す値であり、0から20までの値を取り、0に近いほど親油性が高く20に近いほど親水性が高くなる。界面活性剤のHLB値が3より低い場合には界面活性剤が排水中に分散しにくいことから、樹脂分と均一に接触することができないことがある。一方、HLB値が13より高い場合には樹脂への馴染みが悪く、効率良く樹脂分に作用することができない。したがって、本発明の界面活性剤のHLB値としては、好ましくは3〜13、より好ましくは3〜12、さらに好ましくは8〜12、最も好ましくは9〜11である。   The HLB value of the surfactant of the present invention is preferably 3 or more, and more preferably 8 or more. On the other hand, the upper limit of the HLB value is preferably 13 or less, and more preferably 12 or less. The HLB value is a value representing the degree of affinity of the surfactant with water and oil. The value is from 0 to 20, and the closer to 0, the higher the lipophilicity and the closer to 20, the higher the hydrophilicity. . When the HLB value of the surfactant is lower than 3, the surfactant is difficult to disperse in the waste water, and therefore, it may not be possible to make uniform contact with the resin component. On the other hand, if the HLB value is higher than 13, the familiarity with the resin is poor, and the resin cannot be efficiently applied. Accordingly, the HLB value of the surfactant of the present invention is preferably 3 to 13, more preferably 3 to 12, still more preferably 8 to 12, and most preferably 9 to 11.

本発明の界面活性剤の主成分として、ノニオン系の界面活性剤ではポリオキシエチレン型であるポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルエステル、ポリオキシエチレンポリオキシプロピレンアルキルエーテル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレン硬化ひまし油が好適に使用できる。また、ソルビタン脂肪酸エステル、アルキレンアルキルエーテル等でも良い。その他、脂肪酸カリウム塩等といったアニオン系の界面活性剤も使用できる。特に限定されるものではないが、ポリオキシエチレンソルビタン脂肪酸エステルがより好ましく、この理由としては、汚泥に対する毒性が少なく排水への分散性も良好で、かつ効果が高いことが挙げられる。   As the main component of the surfactant of the present invention, polyoxyethylene alkyl ethers, polyoxyethylene alkyl esters, polyoxyethylene polyoxypropylene alkyl ethers, polyoxyethylene fatty acid esters which are polyoxyethylene type nonionic surfactants Polyoxyethylene hydrogenated castor oil can be preferably used. Moreover, sorbitan fatty acid ester, alkylene alkyl ether, etc. may be used. In addition, an anionic surfactant such as a fatty acid potassium salt can also be used. Although it is not particularly limited, polyoxyethylene sorbitan fatty acid ester is more preferable, and the reason for this is that it is less toxic to sludge, has good dispersibility in wastewater, and is highly effective.

本発明における界面活性剤の添加量としては、排水に対して0.1〜3.0重量%が好ましく、排水に対して0.3〜1.5重量%がより好ましい。0.1重量%より少ない場合には、樹脂分による発酵阻害の影響を十分に緩和することができない。一方、3.0重量%より多い場合にはランニングコストが高くなるうえ、過剰量の添加は汚泥に対して悪影響を及ぼす場合がある。   As addition amount of surfactant in this invention, 0.1 to 3.0 weight% is preferable with respect to waste_water | drain, and 0.3 to 1.5 weight% with respect to waste_water | drain is more preferable. When the amount is less than 0.1% by weight, the influence of fermentation inhibition by the resin component cannot be sufficiently mitigated. On the other hand, if it is more than 3.0% by weight, the running cost becomes high, and addition of an excessive amount may adversely affect sludge.

本発明における界面活性剤の添加は、界面活性剤をそのまま添加してもよく、あるいは系内の排水や処理水、または水道水等の適宜の水に溶解したものを添加してもよい。添加方法は、逐次的に添加する方法、あるいは連続的または断続的に添加する方法のいずれでも構わない。また、本発明の嫌気性処理は、バッチ式、連続式、あるいはセミバッチ式で実施することができる。   In the present invention, the surfactant may be added as it is, or a surfactant dissolved in an appropriate water such as waste water, treated water, or tap water in the system may be added. The addition method may be either a sequential addition method or a continuous or intermittent addition method. Further, the anaerobic treatment of the present invention can be carried out in a batch, continuous or semi-batch manner.

本発明における嫌気性処理は、公知の方法で行うことができ、例えば、UASB(Upflow Anaerobic Sludge Bed)法やその改良法などを利用することができる。また、嫌気性処理は、処理対象のパルプ系排水に応じて適宜調節することができる。嫌気性処理の制御は、例えば、温度、pH、さらには滞留時間により行うことができる。また、嫌気状態についてはORPなどで管理することが可能である。   The anaerobic treatment in the present invention can be performed by a known method. For example, a UASB (Upflow Anaerobic Sludge Bed) method or an improved method thereof can be used. Moreover, anaerobic processing can be suitably adjusted according to the pulp-type waste water of a process target. The anaerobic treatment can be controlled by, for example, temperature, pH, and residence time. An anaerobic state can be managed by ORP or the like.

本発明の嫌気性処理で使用する嫌気性微生物に特に限定はなく、一般的なものを使用することができるが、グラニュール汚泥と呼ばれる自己集塊化ペレットを好適に用いることができる。メタン菌の種類としては、メタノール分解菌(Methanosarcina)や酢酸分解菌(Methanosaeta)などが挙げられる。   There is no particular limitation on the anaerobic microorganisms used in the anaerobic treatment of the present invention, and general ones can be used, but self-aggregated pellets called granule sludge can be suitably used. Examples of methane bacteria include methanol-degrading bacteria (Methanosarcina) and acetic acid-degrading bacteria (Methanosaeta).

また、ある観点からは、本発明はバイオガスの製造方法である。上記したように、本発明はパルプ系排水を嫌気性処理方法であるが、嫌気性処理によってメタンガスを主成分とするバイオガスが生成する。したがって、1つの観点において本発明は、パルプ系排水に界面活性剤を添加して嫌気性処理することを含む、バイオガスの製造方法である。本発明による産物は主にメタンであるが、パルプ工場内でエネルギー源として使用することもでき、また、バイオガス自体を他の用途に使用することもできる。   Moreover, from a certain viewpoint, this invention is a manufacturing method of biogas. As described above, the present invention is an anaerobic treatment method for pulp wastewater, but biogas mainly containing methane gas is generated by anaerobic treatment. Therefore, in one aspect, the present invention is a method for producing biogas, which includes anaerobic treatment by adding a surfactant to pulp wastewater. The product according to the invention is mainly methane, but can also be used as an energy source in pulp mills, and the biogas itself can be used for other applications.

本発明によって得られたバイオガスをエネルギー源として使用する場合、輸送コストの観点から、同じ工場内で使用することが好ましい。典型的には、本発明によるバイオガスは、良質な燃料として回収ボイラやキルンなどで利用することができる。   When using the biogas obtained by this invention as an energy source, it is preferable to use in the same factory from a viewpoint of transportation cost. Typically, the biogas according to the present invention can be used as a high-quality fuel in a recovery boiler or kiln.

また、本発明においては、本発明の特徴を損なわない限りにおいて、嫌気性処理工程の他に、追加の工程を加えることが可能である。追加の工程としては、分離工程、精製工程、濃縮工程、乾燥工程などを挙げることができ、具体的な用途や装置構成に応じて適切な工程を追加することができる。例えば、本発明による嫌気性処理に、好気性処理を組み合わせることも可能である。その他、好ましい態様として、得られたバイオガスを脱硫する工程を追加することができる。   Moreover, in this invention, unless the characteristic of this invention is impaired, it is possible to add an additional process other than the anaerobic treatment process. Examples of the additional process include a separation process, a purification process, a concentration process, a drying process, and the like, and an appropriate process can be added according to a specific application or apparatus configuration. For example, anaerobic treatment can be combined with the anaerobic treatment according to the present invention. In addition, as a preferred embodiment, a step of desulfurizing the obtained biogas can be added.

さらに、本発明による方法を最適な条件で行うために、本発明は、その他の工程とのバランスを調整する制御工程を含むことができる。例えば、本発明と本発明により得られるバイオガスを利用したエネルギー回収工程とを1つの系として運転する場合、制御方法として例えばフィードバック制御などを採用して系全体を最適に制御することが可能である。   Furthermore, in order to perform the method according to the present invention under optimum conditions, the present invention can include a control step of adjusting the balance with other steps. For example, when the present invention and the energy recovery process using biogas obtained by the present invention are operated as one system, it is possible to optimally control the entire system by adopting, for example, feedback control as a control method. is there.

以下に実施例を示すが、この実施例は本発明の範囲を限定するものではない。
(パルプ系排水の嫌気性処理実験)
本実施例においては、パルプ系排水として、クラフトパルプ製造工程から発生するアルカリ廃液(黒液)を濃縮する際の蒸留排水(以下、KPエバドレンという)を使用した。KPエバドレンは、メタノールを主に含む有機性排水であって、樹脂分を含む。処理対象のKPエバドレンは、COD濃度が2830mg/L、樹脂分濃度が249mg/Lであった。
Examples are shown below, but these examples do not limit the scope of the present invention.
(Anaerobic treatment of pulp wastewater)
In this example, distilled waste water (hereinafter referred to as KP Evadren) used for concentrating the alkaline waste liquid (black liquor) generated from the kraft pulp manufacturing process was used as the pulp waste water. KP evadrene is an organic wastewater mainly containing methanol and contains a resin component. The KP evadrene to be treated had a COD concentration of 2830 mg / L and a resin content concentration of 249 mg / L.

パルプ系排水の嫌気性処理の指標として、バイオガスの発生量を測定し、ガス発生率を求めた。ガス発生率は、以下の式:
ガス発生率(%)=ガス発生量(mL)/ガス発生理論量(mL)×100
により求めることができる。ここで、本実験におけるガス発生理論量は、COD量と菌量(グラニュール汚泥量)から、9.90mLと算出される。
As an index for anaerobic treatment of pulp wastewater, the amount of biogas generated was measured and the gas generation rate was determined. The gas generation rate is the following formula:
Gas generation rate (%) = gas generation amount (mL) / theoretical gas generation amount (mL) × 100
It can ask for. Here, the theoretical gas generation amount in this experiment is calculated as 9.90 mL from the COD amount and the amount of bacteria (granule sludge amount).

本実験においては、ガス発生率によって、グラニュール汚泥による嫌気性処理が効率よく行われているかを評価した。
[実験例1]
アインホルン管に、グラニュール汚泥(メタン菌の凝集体)0.3g(絶乾重量)と、樹脂分を含有する排水としてKPエバドレン10mLを入れ、さらにノニオン系界面活性剤(レオドールTW−O106[花王製]、HLB値:10.0、ポリオキシエチレンソルビタン脂肪酸エステル)を排水に対して1重量%添加し、37℃で24時間放置した。
In this experiment, it was evaluated whether anaerobic treatment with granular sludge was performed efficiently based on the gas generation rate.
[Experiment 1]
Into the Einhorn tube, 0.3 g of granule sludge (aggregate of methane bacteria) (absolutely dry weight) and 10 mL of KP Evadren as the waste water containing the resin content were added, and nonionic surfactant (Leodol TW-O106 [Kao] Manufactured], HLB value: 10.0, polyoxyethylene sorbitan fatty acid ester) was added in an amount of 1% by weight based on the waste water, and the mixture was allowed to stand at 37 ° C for 24 hours.

放置後、ガス発生量を目盛にて測定した。
[実験例2]
界面活性剤を添加しない以外は、実験例1と同様に試験した。
After standing, the amount of gas generated was measured on a scale.
[Experimental example 2]
The test was performed in the same manner as in Experimental Example 1 except that the surfactant was not added.

[実験例3]
界面活性剤としてアニオン系界面活性剤(FR−25[花王製]、ヒマシ油カリ石鹸)を使用した以外は、実験例1と同様に試験した。
[Experiment 3]
The test was conducted in the same manner as in Experimental Example 1 except that an anionic surfactant (FR-25 [manufactured by Kao Corporation], castor oil potash soap) was used as the surfactant.

[実験例4]
界面活性剤としてカチオン系界面活性剤(アセタミン24[花王製]、アルキルアミン酢酸塩)を使用した以外は、実験例1と同様に試験した。
[Experimental Example 4]
The test was conducted in the same manner as in Experimental Example 1 except that a cationic surfactant (acetamine 24 [manufactured by Kao Corporation], alkylamine acetate) was used as the surfactant.

[実験例5]
界面活性剤としてノニオン系界面活性剤(レオドールSP−O30[花王製]、HLB値:1.8、ソルビタン脂肪酸エステル)を使用した以外は、実験例1と同様に試験した。
[Experimental Example 5]
The test was conducted in the same manner as in Experimental Example 1 except that a nonionic surfactant (Leodol SP-O30 [manufactured by Kao Corporation], HLB value: 1.8, sorbitan fatty acid ester) was used as the surfactant.

[実験例6]
界面活性剤としてノニオン系界面活性剤(レオドールTW−L106[花王製]、HLB値:13.3、ポリオキシエチレンソルビタン脂肪酸エステル)を使用した以外は、実験例1と同様に試験した。
[Experimental Example 6]
The test was conducted in the same manner as in Experimental Example 1 except that a nonionic surfactant (Leodol TW-L106 [manufactured by Kao Corporation], HLB value: 13.3, polyoxyethylene sorbitan fatty acid ester) was used as the surfactant.

[実験例7]
界面活性剤としてノニオン系界面活性剤(エマノーンCH−25[花王製]、HLB値:10.7、ポリオキシエチレン硬化ヒマシ油)を使用した以外は、実験例1と同様に試験した。
[Experimental Example 7]
The test was conducted in the same manner as in Experimental Example 1 except that a nonionic surfactant (Emanon CH-25 [manufactured by Kao Corporation], HLB value: 10.7, polyoxyethylene hydrogenated castor oil) was used as the surfactant.

[実験例8]
ノニオン系界面活性剤(レオドールTW−O106[花王製]、HLB値:10.0、ポリオキシエチレンソルビタン脂肪酸エステル)の添加量を0.2重量%とした以外は、実験例1と同様に試験した。
[Experimental Example 8]
Tested in the same manner as in Experimental Example 1 except that the addition amount of the nonionic surfactant (Rheidol TW-O106 [manufactured by Kao], HLB value: 10.0, polyoxyethylene sorbitan fatty acid ester) was 0.2% by weight. did.

[実験例9]
ノニオン系界面活性剤(レオドールTW−O106[花王製]、HLB値:10.0、ポリオキシエチレンソルビタン脂肪酸エステル)の添加量を2.0重量%とした以外は、実験例1と同様に試験した。
[Experimental Example 9]
Tested in the same manner as in Experimental Example 1 except that the addition amount of the nonionic surfactant (Leodol TW-O106 [manufactured by Kao], HLB value: 10.0, polyoxyethylene sorbitan fatty acid ester) was 2.0% by weight. did.

Figure 2009195852
Figure 2009195852

表1に実験結果を示す。界面活性剤を添加しない実験例2では、ガス発生率が45.5%だったのに対し、ノニオン系界面活性剤を添加した実験例1などでは、ガス発生率が高く、パルプ系排水が効率的に嫌気性処理されていることが明らかになった。実験例4では凝集物が発生しガスが発生せず、実験例5では、界面活性剤の親水性が低く不溶状態となった。   Table 1 shows the experimental results. In Experimental Example 2 in which the surfactant was not added, the gas generation rate was 45.5%, whereas in Experimental Example 1 in which the nonionic surfactant was added, the gas generation rate was high and the pulp drainage was efficient. It became clear that it was anaerobically treated. In Experimental Example 4, aggregates were generated and no gas was generated. In Experimental Example 5, the surfactant was low in hydrophilicity and insoluble.

表1の結果から明らかなように、パルプ系排水の嫌気性処理において界面活性剤を添加することで、木材由来の油分(樹脂)による発酵阻害を抑制できることが明らかになった。   As is apparent from the results in Table 1, it was revealed that fermentation inhibition by wood-derived oil (resin) can be suppressed by adding a surfactant in the anaerobic treatment of pulp wastewater.

Claims (7)

パルプ系排水を嫌気性処理する方法であって、
パルプ系排水に界面活性剤を添加して嫌気性処理することを含む、上記排水処理方法。
A method for anaerobically treating pulp wastewater,
The said waste water treatment method including adding a surfactant to a pulp-type waste water and performing anaerobic treatment.
前記パルプ系排水が、クラフトパルプ製造工程から発生する黒液を濃縮する際の蒸留排水である、請求項1に記載の排水処理方法。   The wastewater treatment method according to claim 1, wherein the pulp-based wastewater is distilled wastewater when the black liquor generated from the kraft pulp manufacturing process is concentrated. 前記界面活性剤がノニオン界面活性剤である、請求項1または2に記載の排水処理方法。   The wastewater treatment method according to claim 1 or 2, wherein the surfactant is a nonionic surfactant. 前記界面活性剤のHLB値が3〜14である、請求項1〜3のいずれか1項に記載の排水処理方法。   The waste water treatment method of any one of Claims 1-3 whose HLB value of the said surfactant is 3-14. 前記界面活性剤がポリオキシエチレンソルビタン脂肪酸エステルを含んでなる、請求項1〜4のいずれか1項に記載の排水処理方法。   The wastewater treatment method according to any one of claims 1 to 4, wherein the surfactant comprises a polyoxyethylene sorbitan fatty acid ester. 前記界面活性剤の添加量が排水に対して0.1〜3.0重量%である、請求項1〜5のいずれか1項に記載の排水処理方法。   The wastewater treatment method according to any one of claims 1 to 5, wherein an addition amount of the surfactant is 0.1 to 3.0% by weight with respect to the wastewater. パルプ系排水に界面活性剤を添加して嫌気性処理することを含む、バイオガスの製造方法。   A method for producing biogas, which comprises anaerobic treatment by adding a surfactant to pulp wastewater.
JP2008041961A 2008-02-22 2008-02-22 Anaerobic treatment method for pulp wastewater Expired - Fee Related JP5117882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008041961A JP5117882B2 (en) 2008-02-22 2008-02-22 Anaerobic treatment method for pulp wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008041961A JP5117882B2 (en) 2008-02-22 2008-02-22 Anaerobic treatment method for pulp wastewater

Publications (2)

Publication Number Publication Date
JP2009195852A true JP2009195852A (en) 2009-09-03
JP5117882B2 JP5117882B2 (en) 2013-01-16

Family

ID=41139987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008041961A Expired - Fee Related JP5117882B2 (en) 2008-02-22 2008-02-22 Anaerobic treatment method for pulp wastewater

Country Status (1)

Country Link
JP (1) JP5117882B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011218298A (en) * 2010-04-09 2011-11-04 Ihi Corp Anaerobic treatment facility and anaerobic treatment method
JP2012239954A (en) * 2011-05-17 2012-12-10 Sumitomo Heavy Ind Ltd Anaerobic treatment apparatus and anaerobic treatment method
JP2014030827A (en) * 2013-11-21 2014-02-20 Ihi Corp Anaerobic treatment facility and anaerobic treatment method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01249197A (en) * 1988-03-30 1989-10-04 Akua Runesansu Gijutsu Kenkyu Kumiai Method for inhibiting reduction of sulfate in anaerobic treatment and surfactant hindering growth of sulfate reducing bacteria
JP2001017990A (en) * 1999-07-07 2001-01-23 Ebara Corp Anaerobic treatment of oil and fat-containing waste water
JP2003155681A (en) * 2001-11-14 2003-05-30 Hymo Corp Method for treating papermaking white water

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01249197A (en) * 1988-03-30 1989-10-04 Akua Runesansu Gijutsu Kenkyu Kumiai Method for inhibiting reduction of sulfate in anaerobic treatment and surfactant hindering growth of sulfate reducing bacteria
JP2001017990A (en) * 1999-07-07 2001-01-23 Ebara Corp Anaerobic treatment of oil and fat-containing waste water
JP2003155681A (en) * 2001-11-14 2003-05-30 Hymo Corp Method for treating papermaking white water

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011218298A (en) * 2010-04-09 2011-11-04 Ihi Corp Anaerobic treatment facility and anaerobic treatment method
JP2012239954A (en) * 2011-05-17 2012-12-10 Sumitomo Heavy Ind Ltd Anaerobic treatment apparatus and anaerobic treatment method
JP2014030827A (en) * 2013-11-21 2014-02-20 Ihi Corp Anaerobic treatment facility and anaerobic treatment method

Also Published As

Publication number Publication date
JP5117882B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
Meyer et al. Anaerobic digestion of pulp and paper mill wastewater and sludge
Ahmed et al. Production of biogas and performance evaluation of existing treatment processes in palm oil mill effluent (POME)
Werkneh et al. Recent advances in brewery wastewater treatment; approaches for water reuse and energy recovery: A review
US8758617B2 (en) Wastewater processing method of hydrolysis-acidification enhanced by addition of zero-valent iron (ZVI)
Gebreeyessus et al. A review on progresses and performances in distillery stillage management
Aggelis et al. SE—Structures and environment: Combined and separate aerobic and anaerobic biotreatment of green olive debittering wastewater
He et al. Performance of membrane bioreactor (MBR) system with sludge Fenton oxidation process for minimization of excess sludge production
CN103359876A (en) Harmless dimethylacetamide wastewater treatment method
Chakraborty et al. Integration of biological pre-treatment methods for increased energy recovery from paper and pulp biosludge
Ramos-Vaquerizo et al. Anaerobic treatment of vinasse from sugarcane ethanol production in expanded granular sludge bed bioreactor
Agrawal et al. Integrated approach for the treatment of industrial effluent by physico-chemical and microbiological process for sustainable environment
JP5117882B2 (en) Anaerobic treatment method for pulp wastewater
JP2012210584A (en) Method for treating kraft pulp wastewater
Singh et al. Treatment and recycling of wastewater from sugar mill
Arshad et al. Anaerobic digestion of NSSC pulping effluent
Lin et al. Pilot‐scale sequential anaerobic–aerobic biological treatment of waste streams from a paper mill
WO2016103949A1 (en) Treatment method and treatment device for fat and/or oil-containing waste water
CA3027693A1 (en) A method of treating cellulose containing waste water sludge for the manufacture of linerboard and cellulosic ethanol production
JP2012210585A (en) Method and apparatus for anaerobic treatment of kraft pulp wastewater
CN108585378A (en) A kind of High-concentration organic wastewater treatment method
Bajpai et al. Anaerobic treatment of pulp and paper industry effluents
JP2010000423A (en) Wastewater treatment method
Zhang Biogas recovery from anaerobic digestion of selected industrial wastes
Shi et al. Pilot study on ceramic flat membrane bioreactor in treatment of coal chemical wastewater
Ortega-Clemente et al. Integrated biological treatment of recalcitrant effluents from pulp mills

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110816

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120919

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121018

R150 Certificate of patent or registration of utility model

Ref document number: 5117882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees