JP2010000423A - Wastewater treatment method - Google Patents

Wastewater treatment method Download PDF

Info

Publication number
JP2010000423A
JP2010000423A JP2008159827A JP2008159827A JP2010000423A JP 2010000423 A JP2010000423 A JP 2010000423A JP 2008159827 A JP2008159827 A JP 2008159827A JP 2008159827 A JP2008159827 A JP 2008159827A JP 2010000423 A JP2010000423 A JP 2010000423A
Authority
JP
Japan
Prior art keywords
chryseobacterium
activated sludge
wastewater
cod
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008159827A
Other languages
Japanese (ja)
Inventor
Kazushiro Nakagawa
和城 中川
Koji Hori
公二 堀
Hironobu Oka
浩伸 岡
Wataru Sugiura
渉 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miki Riken Kogyo KK
Original Assignee
Miki Riken Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miki Riken Kogyo KK filed Critical Miki Riken Kogyo KK
Priority to JP2008159827A priority Critical patent/JP2010000423A/en
Publication of JP2010000423A publication Critical patent/JP2010000423A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method which efficiently decomposes and removes hardly decomposable substances by microorganisms, can be operated by existing facilities without requiring large equipment, and low in chemical cost and operating cost, and uses Pseudomonadaceae Pseudomonas sp. W-4 and Chryseobacterium Chryseobacterium sp. W-6 as the microorganism for decomposing the hardly decomposable substances to decompose PVA in a short time by an activated sludge treatment method, which is a biological treatment method. <P>SOLUTION: Two strains, Pseudomonadaceae Pseudomonas sp. W-4 and Chryseobacterium Chryseobacterium sp. W-6, found and isolated from an activated sludge tank in a bio-decolorization system for colored wastewater are cultured and added to the activated sludge tank, thereby reducing TOC and COD. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、微生物を利用して難分解性物質を分解処理する、排水処理方法に関する。   The present invention relates to a wastewater treatment method for decomposing a hardly decomposable substance using microorganisms.

近年、自然環境保護の観点から、排水処理の方法として、エネルギー損失が少なく、汚泥排出の少ない微生物処理方法が、大変注目されている。しかしながら、排水の中には、合成高分子をはじめ、微生物による分解を受けにくいものが多数存在する。また、処理したい物質を分解する微生物を発見して、実際の処理においてその能力を活用したとしても、その分解能を効果的に発現、維持するのは非常に難しい問題である。繊維染色排水には色々な物質が、水質汚濁法の排水基準のCODに関与している。そのCOD源を生物処理法である活性汚泥方法では分解されにくく、難分解性物質といわれています。
繊維染色排水には、染色する前の工程では染色する布を漂白、精練する工程があり、
この漂白・精練工程から排出されるCOD源は難分解性物質が多く含有していることは
分かっている。活性汚泥処理方法では、漂白・精練工程から排出されるCOD源の
処理は困難である。一般に、繊維染色工業の排水は、精練工程から、ポリビニルアルコール、ポリアクリル酸、澱粉等の糊剤、糊抜き剤、界面活性剤等が排出され、染色工程からは、反応性染料、分散染料、酸性染料等の染色廃水、染色助剤、洗浄廃水等が排出され、仕上げ工程からは、油剤、熱硬化性樹脂、熱可塑性樹脂等が排出される。これらの排水は、多くの場合著しく着色した濁った液体で、環境負荷を表すCODが高い。漂白・精練工程から排出されるCOD源の難分解性物質の主成分はポリビニルアルコ−ル(以下PVAと記する)で繊維工業の経糸剤、接着剤、フィルム、紙加工材などとして広く用いられている。
In recent years, from the viewpoint of protecting the natural environment, a microbial treatment method with less energy loss and less sludge discharge has received much attention as a wastewater treatment method. However, there are many wastewaters that are not easily decomposed by microorganisms, including synthetic polymers. Even if a microorganism that degrades the substance to be treated is discovered and its ability is utilized in actual treatment, it is a very difficult problem to effectively express and maintain the resolution. A variety of substances are involved in the fiber dyeing wastewater, which is involved in COD, the wastewater standard of the Water Pollution Law. The COD source is said to be hardly degradable by the activated sludge method, which is a biological treatment method, and is said to be a hardly degradable substance.
Fiber dyeing wastewater has a process of bleaching and scouring the cloth to be dyed in the process before dyeing,
It is known that the COD source discharged from this bleaching and scouring process contains a lot of persistent substances. In the activated sludge treatment method, it is difficult to treat the COD source discharged from the bleaching / scouring process. In general, wastewater from the textile dyeing industry is drained from the scouring process, such as polyvinyl alcohol, polyacrylic acid, starch and other pastes, desizing agents, surfactants, and the like. From the dyeing process, reactive dyes, disperse dyes, Dyeing wastewater such as acid dyes, dyeing assistants, washing wastewater, and the like are discharged, and oil agent, thermosetting resin, thermoplastic resin, and the like are discharged from the finishing process. These wastewaters are often turbid liquids that are highly colored and have a high COD representing environmental impact. Polyvinyl alcohol (hereinafter referred to as PVA) is the main component of the COD source, which is discharged from the bleaching and scouring process, and is widely used as warping agents, adhesives, films and paper processing materials in the textile industry. ing.

従来より用いられている繊維染色工業の排水における代表的な物理化学的処理方法は、鉄塩、アルミニウム化合物等の金属塩が主成分の無機系凝集剤やポリアクリルアミド等の高分子凝集剤を多量に添加し、凝集沈殿処理又は加圧浮上処理などの物理化学的方法及び活性汚泥処理などの生物学的方法を組み合わせた処理が採用されている場合が多い。しかしながら物理学的方法では、ポリアクリルアミド中に含まれる不純物のアクリルアミドモノマ−に神経毒、発ガン性などの環境・健康問題が指摘されている。また多量の凝集剤が必要とするために凝集剤コストを要し、また大量に生成する凝集された汚泥、スラッジが排出されている。現状では凝集した汚泥、スラッジを脱水された脱水ケ−キのまま埋め立て処分されたり、一部は焼却されている。これからは凝集剤の価格や汚泥・スラッジの処分費の高騰や排水処理の運転コストが更に高くなるので、埋め立て処分や焼却は難しくなってくる。また活性汚泥方法では、用いる活性汚泥中曝気槽に、PVAを分解または資化できる菌が存在するか、また割合が低いか、またはPVAを資化する微生物が存在していたとしてもその増殖速度・増殖率が非常に小さいため、通常運転の24時間滞留では効率良く処理されていないで未分解として排出されている。 A typical physicochemical treatment method for wastewater from the textile dyeing industry used in the past is a large amount of inorganic flocculants mainly composed of metal salts such as iron salts and aluminum compounds, and polymer flocculants such as polyacrylamide. In many cases, a combination of a physicochemical method such as coagulation sedimentation treatment or pressurized flotation treatment and a biological method such as activated sludge treatment is employed. However, in the physical method, environmental and health problems such as neurotoxin and carcinogenicity are pointed out to acrylamide monomer, which is an impurity contained in polyacrylamide. Further, since a large amount of flocculant is required, the cost of the flocculant is required, and agglomerated sludge and sludge generated in a large amount are discharged. At present, the agglomerated sludge and sludge are disposed of in landfills with dewatered cake dehydrated or partly incinerated. From now on, the price of the flocculant, the disposal cost of sludge / sludge, and the operating cost of wastewater treatment will become higher, making landfill disposal and incineration difficult. In the activated sludge method, the aeration tank in the activated sludge used has a growth rate even if there are bacteria capable of decomposing or assimilating PVA, a low ratio, or microorganisms assimilating PVA.・ Because the growth rate is very small, it is not efficiently treated and discharged as undecomposed during 24-hour residence in normal operation.

PVAを含有する排水の他の物理化学的方法として、気泡分離法、凝集沈殿法、限外濾過法、活性炭吸着法、重金属キレ−ト法などで処理されている。活性炭吸着法の場合は、活性炭の消費量が膨大になり、更に使用後の活性炭を再生することも多額の処理費用を要する。一方微生物を用いた排水処理方法は、一般的に生物処理、活性汚泥処理等の処理装置の提案が多く微生物を特定した処理方法は少ない。 As other physicochemical methods of waste water containing PVA, it is treated by a bubble separation method, a coagulation precipitation method, an ultrafiltration method, an activated carbon adsorption method, a heavy metal chelate method, and the like. In the case of the activated carbon adsorption method, the amount of activated carbon consumed is enormous, and it is also expensive to recycle the activated carbon after use. On the other hand, wastewater treatment methods using microorganisms generally have many proposals for treatment devices such as biological treatment and activated sludge treatment, and few treatment methods specify microorganisms.

特許文献1記載の技術には培地に過酸化水素分解力を有する酵素を添加することを特徴とする微生物の培養方法、特定の有機化合物、該有機化合物を分解する微生物及び過酸化水素分解力を有する酵素からなる組成物、特定の有機化合物の酸化能又は資化能を示す微生物の培養菌体又は培養菌体成分を、過酸化水素分解力を有する酵素の存在下で、該有機化合物に作用させることを特徴とする該有機化合物の分解方法、受託番号「FERM P−14773」のポリビニルアルコール資化菌、並びに、受託番号「FERM P−14857」のポリビニルアルコール資化菌であると記載されている。また特許文献2記載の技術にはポリビニルアルコールを唯一の炭素源として生育し、窒素源の存在下、30℃10日間の好気培養で、添加されたポリビニルアルコールの少なくとも40%を分解し、上記ポリビニルアルコール分解菌は、シュードモナス属に属する細菌、アシネトバクター属に属する細菌であり得ると記載されている。 The technique described in Patent Document 1 includes a method for culturing a microorganism characterized by adding an enzyme capable of decomposing hydrogen peroxide to a medium, a specific organic compound, a microorganism decomposing the organic compound, and a decomposing ability of hydrogen peroxide. A composition comprising an enzyme having an enzyme, a cultured cell or component of a microorganism exhibiting the ability to oxidize or assimilate a specific organic compound, in the presence of an enzyme capable of decomposing hydrogen peroxide; And a method for decomposing the organic compound characterized in that it is a polyvinyl alcohol-assimilating bacterium having a deposit number of “FERM P-14773” and a polyvinyl alcohol-assimilating bacterium having a deposit number of “FERM P-14857”. Yes. The technique described in Patent Document 2 grows with polyvinyl alcohol as the sole carbon source, decomposes at least 40% of the added polyvinyl alcohol in an aerobic culture at 30 ° C. for 10 days in the presence of a nitrogen source, It is described that the polyvinyl alcohol-degrading bacteria can be bacteria belonging to the genus Pseudomonas and bacteria belonging to the genus Acinetobacter.

特開平8−275773号公報JP-A-8-275773 特開2006−180706号公報JP 2006-180706 A

特許文献1,2ともPVAの分解に要する時間が4〜10日と長く、一般的な繊維染色工業の滞留時間24時間の活性汚泥処理においてこの技術を利用しようとすると設備、施設が大きくなり、設備コスト、容積、面積が広く必要になり現実的でない。
本発明が解決しようとする課題は大型の設備を必要とせず、現行の施設の運転で可能で
あり、薬剤コスト、運転コストが安く効率的に微生物による難分解物質の分解除去方法
を、提供することにある。すなわち難分解性物質を分解する微生物がPseudomonadaceae属
Pseudomonas sp.W-4及びChryseobacterium属Chryseobacterium sp. W-6である微生物
を用いて、生物処理法の活性汚泥方法処理で短時間にPVAを分解する方法を提供するもの
である。
In both Patent Documents 1 and 2, the time required for the decomposition of PVA is as long as 4 to 10 days, and when using this technology in activated sludge treatment with a residence time of 24 hours in the general textile dyeing industry, facilities and facilities become large, Equipment cost, volume, and area are widely required, which is not realistic.
The problem to be solved by the present invention does not require a large-scale facility, and can be achieved by operating a current facility, and provides a method for efficiently decomposing and removing a hardly decomposable substance by microorganisms at a low drug cost and operation cost. There is. In other words, microorganisms that decompose persistent substances are Pseudomonadaceae
The present invention provides a method for decomposing PVA in a short time by an activated sludge method treatment of a biological treatment method using microorganisms of Pseudomonas sp. W-4 and Chryseobacterium genus Chryseobacterium sp. W-6.

本発明者らは上記問題点に鑑みて、種々検討を重ねた結果科学技術振興機構の独創的シーズ展開事業 委託開発の開発課題「着色排水のバイオ脱色処理システム」として平成17年10月から平成19年10月にかけて企業化開発を進めていた活性汚泥槽から検索して、微生物の分離を試みた。この処理システムはCOD,TOC(PVA成分)の除去率が高く、この装置で染色排水中に含有しているCOD成分,TOC成分が分解されて処理排水中のCOD,TOCの値が水質汚濁法の排水規制値以下になることが得られた。この結果から、活性汚泥槽中にはCOD成分,TOC成分を分解するバクテリア(細菌、微生物)が存在すると考えられる。COD成分,TOC成分を分解するバクテリア(細菌、微生物)を、活性汚泥槽から検索して、分離を試みた。その結果、12種類の菌株を分離した。それらの菌株を用いて、染色排水処理装置の染色排水原水を滅菌処理し、その溶液でそれぞれの菌株を用いて培養実験を行うとCOD成分,TOC成分を分解、減少させる2菌株が見つけた。 In light of the above-mentioned problems, the present inventors have conducted various studies, and as a result of the original seed development business of the Japan Science and Technology Agency, the development issue of “contained development biodecolorization treatment system for colored wastewater” from October 2005 to Heisei A search was made from an activated sludge tank that had been under development for commercialization until October 1999, and an attempt was made to separate microorganisms. This treatment system has a high COD and TOC (PVA component) removal rate, and the COD and TOC components contained in the dyed wastewater are decomposed by this equipment, so that the COD and TOC values in the treated wastewater are water pollution methods. It became possible to become less than the drainage regulation value. From this result, it is considered that bacteria (bacteria, microorganisms) that decompose the COD component and the TOC component exist in the activated sludge tank. Bacteria (bacteria, microorganisms) that decompose COD and TOC components were searched from the activated sludge tank and attempted to be separated. As a result, 12 strains were isolated. When these strains were used to sterilize the dyed wastewater from the dyeing and wastewater treatment equipment and a culture experiment was carried out using each of these strains, two strains were found that decompose and reduce the COD and TOC components.

本発明は生物処理法の活性汚泥処理により、難分解性物質のPVAを短時間で分解除去することにより、施設費、設備費を低減化し、薬剤費、汚泥処理費等のランニングコストの低減、コンパクトな処理装置が可能になる。 The present invention is an activated sludge treatment of a biological treatment method, which decomposes and removes PVA, a hardly degradable substance, in a short time, thereby reducing facility costs and equipment costs, reducing running costs such as chemical costs and sludge treatment costs, A compact processing device is possible.

以下、本発明を詳細に説明する。
科学技術振興機構(以下JST)の独創的シーズ展開事業 委託開発の開発課題「着色排水の
バイオ脱色処理システム」とはバチルス属に属する菌種の菌体Bacillus OY1
−2(受託番号:微工研菌寄第13118号)用い、バチルス菌バイオリアクタ−槽、活
性汚泥槽、原水調整槽、PH調整槽、沈澱槽、バチルス菌培養槽等からなり、バイオリアク
タ−1槽は好気(連続曝気)、2,3槽は嫌気(間欠曝気)処理を行い着色排水を脱色するシステムで、滞留時間はバイオリアク タ−槽は8時間、活性汚泥槽は24時間で処理を行う。この処理を行う事によりTOC,CODが低減された。また上記活性汚泥槽より発見した
難分解性物質を分解する2種の微生物Pseudomonadaceae属Pseudomonas sp.W-4及び
Chryseobacterium属Chryseobacterium sp. W-6を培養し、活性汚泥槽に添加、投入して
難分解性物質(PVA)を分解することにより、染色排水処理水中のTOC,COの低減を
行う。新規に発見された2種の菌は好気条件下で良好に生育し、そしてPVAを分解する。
好気条件は、通常、微生物に酸素を供給する手段によって行われる。
「着色排水のバイオ脱色処理システム」のフロ−シ−トを図1に示す
Hereinafter, the present invention will be described in detail.
The original seed development project of the Japan Science and Technology Agency (JST) The development issue of contract development “Biodecolorization treatment system for colored wastewater” refers to the bacteria Bacillus OY1 belonging to the genus Bacillus
-2 (Accession No .: Microtechnical Laboratories No. 13118), consisting of Bacillus bioreactor tank, activated sludge tank, raw water adjustment tank, PH adjustment tank, precipitation tank, Bacillus bacteria culture tank, etc. 1 tank is aerobic (continuous aeration), 2 and 3 are anaerobic (intermittent aeration) treatment, and the colored waste water is decolorized. The residence time is 8 hours for the bioreactor tank and 24 hours for the activated sludge tank. I do. TOC and COD were reduced by this treatment. In addition, two microorganisms Pseudomonadaceae genus Pseudomonas sp.
Chryseobacterium genus Chryseobacterium sp. W-6 is cultured, added to the activated sludge tank, and put into the sludge tank to decompose the hardly decomposable substance (PVA), thereby reducing TOC and CO in the dyed wastewater treated water. Two newly discovered bacteria grow well under aerobic conditions and degrade PVA.
The aerobic condition is usually performed by a means for supplying oxygen to the microorganism.
A flow chart of the “colored wastewater bio-decolorization treatment system” is shown in FIG.

以下、実施例を挙げて本発明を具体的に説明する。
実施例1
上記「着色排水のバイオ脱色処理システム」での平成19年9、10月のCOD値を図2に示す。COD除去率は85%以上の結果が得られた。
Hereinafter, the present invention will be specifically described with reference to examples.
Example 1
Figure 2 shows the COD values for September and October 2007 in the above-mentioned “colored wastewater bio-decolorization treatment system”. The COD removal rate was 85% or more.

実施例2
乾燥ブイヨン(日水製薬)0.5%を染色排水原水に添加、混合し、オ−トクレ−ブで121℃x15分滅菌後、それぞれの培養液にPseudomonadaceae属Pseudomonas sp. W-4、
Chryseobacterium属Chryseobacterium sp. W-6それぞれの菌株を106cfu/ml接種し36℃,
攪拌速度100R/minで攪拌し 2日間、培養後 その培養液のTOCを測定した。
測定結果を表1に示した。

Figure 2010000423
Pseuomonas sp. W-4 と Chryseobacterium sp. W-を組み合わせた2日後のTOC除去率は70%以上で単独の効果より併用するほうがTOCの減少が高いことが分かった。 Example 2
Dry bouillon (Nissui Pharmaceutical) 0.5% was added to the dyeing wastewater, mixed, sterilized by autoclaving at 121 ° C for 15 minutes, and each culture solution was mixed with Pseudomonadaceae sp. Pseudomonas sp. W-4,
Chryseobacterium sp Chryseobacterium sp. W-6 of each strain 10 6 cfu / ml inoculation with 36 ° C.,
After culturing for 2 days with stirring at 100 R / min, the TOC of the culture was measured.
The measurement results are shown in Table 1.
Figure 2010000423
The TOC removal rate after 2 days when Pseuomonas sp. W-4 and Chryseobacterium sp. W- were combined was 70% or more, and it was found that the reduction in TOC was higher when used together than when used alone.

実施例3
染色排水原水のみによる培養
染色排水原水をオ−トクレ−ブで121℃x15分滅菌後、その培養液に、それぞれの菌株を
106cfu/ml接種し36℃攪拌速度100R/minで攪拌し 2日間、培養後 その培養液
CODを測定した。その測定結果を表2に示した。

Figure 2010000423
前項の実施例3の方法に前培養としてBacillus sp.OY1-2 で培養し、その培養液にそれぞれの菌株Pseudomonas sp. W-4 Chryseobacteriumsp. W-6 を接種して、培養した結果 Pseudomonas sp. W-4 とChryseobacterium sp. W-を組み合わせたほうがCODの減少が高いことが分かった。 Example 3
After sterilizing the original dyed wastewater with autoclave at 121 ° C for 15 minutes, put each strain on the culture solution.
10 6 cfu / ml was inoculated, stirred at 36 ° C. with a stirring rate of 100 R / min, and cultured for 2 days. The culture solution COD was measured. The measurement results are shown in Table 2.
Figure 2010000423
As a pre-culture in the method of Example 3 in the previous section, the cells were cultured with Bacillus sp. OY1-2, and the culture solution was inoculated with each strain Pseudomonas sp. W-4 Chryseobacterium sp. W-6. It was found that COD reduction was higher when W-4 and Chryseobacterium sp. W- were combined.

実施例4
染色排水にPVA100mg/Lを添加した実験
染色排水原水にPVA(和光純薬製)100mg/Lを添加した培養液を、滅菌した後それぞれの培養液にPseudomonadaceae属Pseudomonas sp. W-4、Chryseobacterium属Chryseobacterium sp. W-6それぞれの菌株を106cfu/ml接種し36℃,攪拌速度100R/minで攪拌し 2日間、培養後 その培養液のCODを測定した。
そのCODの測定結果を表3に示した。

Figure 2010000423
Example 4
Experiment in which 100 mg / L of PVA was added to the dyed wastewater Culture medium in which 100 mg / L of PVA (manufactured by Wako Pure Chemical Industries) was added to the dyed wastewater was sterilized and then sterilized and then added to each culture solution in the Pseudomonadaceae sp. Each strain of Chryseobacterium sp. W-6 was inoculated with 10 6 cfu / ml, stirred at 36 ° C. and stirred at 100 R / min for 2 days, and then the COD of the culture was measured.
The COD measurement results are shown in Table 3.
Figure 2010000423

PVAは繊維産業以外にも産業用として接着剤等の合成高分子の懸濁重合、フィルム、紙加工材等広く使われ、また家庭用としても洗濯糊等様々な用途に使用されている。
PVAを短時間で分解する菌が発見された事により、繊維産業以外の排水処理、下水処理にも利用可能である。
In addition to the textile industry, PVA is widely used for industrial applications such as suspension polymerization of synthetic polymers such as adhesives, films, paper processing materials, etc., and also for household use in various applications such as laundry glue.
The discovery of bacteria that degrade PVA in a short period of time enables it to be used for wastewater treatment and sewage treatment outside of the textile industry.

着色排水のバイオ脱色処理システムのフローシートFlow sheet for bio-decolorization treatment system for colored wastewater 着色排水のバイオ脱色処理システムで運転によるCODの変動についてChanges in COD due to operation in bio-decolorization treatment system for colored wastewater

Claims (2)

難分解性物質を分解する微生物がPseudomonadaceae属Pseudomonas sp.
W-4及びChryseobacterium属Chryseobacterium sp. W-6である難分解性物質
の除去方法。
Microorganisms that decompose persistent substances are Pseudomonadaceae sp.
A method for removing a hardly degradable substance that is W-4 and Chryseobacterium sp.
難分解性物質の主成分がポリビニルアルコ−ルである請求項2記
載の難分解性物質の除去方法。
The method for removing a hardly decomposable substance according to claim 2, wherein the main component of the hardly decomposable substance is polyvinyl alcohol.
JP2008159827A 2008-06-19 2008-06-19 Wastewater treatment method Pending JP2010000423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008159827A JP2010000423A (en) 2008-06-19 2008-06-19 Wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008159827A JP2010000423A (en) 2008-06-19 2008-06-19 Wastewater treatment method

Publications (1)

Publication Number Publication Date
JP2010000423A true JP2010000423A (en) 2010-01-07

Family

ID=41582574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008159827A Pending JP2010000423A (en) 2008-06-19 2008-06-19 Wastewater treatment method

Country Status (1)

Country Link
JP (1) JP2010000423A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4536158B1 (en) * 2010-04-15 2010-09-01 三木理研工業株式会社 Colored wastewater treatment method and colored wastewater treatment apparatus used in the method
JP2012245497A (en) * 2011-05-31 2012-12-13 Miki Riken Kogyo Kk Method and apparatus for treating wastewater
JP2013116959A (en) * 2011-12-02 2013-06-13 Osaka Municipal Technical Research Institute Method of removing polyvinyl alcohol from cultural properties
JP5504396B1 (en) * 2013-03-21 2014-05-28 潤 海面 Decolorization treatment method of dyeing wastewater colored with azo dye

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4536158B1 (en) * 2010-04-15 2010-09-01 三木理研工業株式会社 Colored wastewater treatment method and colored wastewater treatment apparatus used in the method
JP2011224415A (en) * 2010-04-15 2011-11-10 Miki Riken Kogyo Kk Colored waste water treatment method and colored waste water treatment apparatus used for the method
JP2012245497A (en) * 2011-05-31 2012-12-13 Miki Riken Kogyo Kk Method and apparatus for treating wastewater
JP2013116959A (en) * 2011-12-02 2013-06-13 Osaka Municipal Technical Research Institute Method of removing polyvinyl alcohol from cultural properties
JP5504396B1 (en) * 2013-03-21 2014-05-28 潤 海面 Decolorization treatment method of dyeing wastewater colored with azo dye

Similar Documents

Publication Publication Date Title
He et al. Application of integrated ozone biological aerated filters and membrane filtration in water reuse of textile effluents
Kumar et al. Effect of mixed liquor volatile suspended solids (MLVSS) and hydraulic retention time (HRT) on the performance of activated sludge process during the biotreatment of real textile wastewater
He et al. Performance of membrane bioreactor (MBR) system with sludge Fenton oxidation process for minimization of excess sludge production
CN103359876A (en) Harmless dimethylacetamide wastewater treatment method
KR101394888B1 (en) 1,4-dioxane-containing wastewater treatment method and disposal plant
Assadi et al. Anaerobic–aerobic sequencing batch reactor treating azo dye containing wastewater: effect of high nitrate ions and salt
CN101041531A (en) Multiple combined technique for high concentration hard-degraded organic waste water treatment
Tatoulis et al. A hybrid system comprising an aerobic biological process and electrochemical oxidation for the treatment of black table olive processing wastewaters
Agrawal et al. Integrated approach for the treatment of industrial effluent by physico-chemical and microbiological process for sustainable environment
Rahman et al. Assessment of sewage sludge bioremediation at different hydraulic retention times using mixed fungal inoculation by liquid-state bioconversion
JP2010000423A (en) Wastewater treatment method
Pal et al. Recent advances in biological treatment processes for wastewater and water treatment
TWI642633B (en) A method of treating cellulose containing waste water sludge for the manufacture of linerboard and cellulosic ethanol production
CN209537247U (en) Laser printing waste water treatment system
Bian et al. Pilot-scale textile dyeing wasted sludge reduction via microbial agent and aeration: Parameter optimization and mechanisms exploration
Adebiyi et al. Decolourisation and degradation of reactive blue 2 by sulphate reducing bacteria (SRB) and zero valent iron in a biosulphidogenic reactor
Kamat et al. Bioremediation of industrial effluent containing reactive dyes
Moo-Young Pulp and paper effluent management
CN209740911U (en) Equipment for zero discharge treatment of textile auxiliary production wastewater
JP2012245497A (en) Method and apparatus for treating wastewater
JP2005013915A (en) Waste water treatment method
Raut et al. Dye Removal Using Activated Sludge
Van Ginkel et al. Biodegradation of EDTA in pulp and paper mill rffluents by activated sludge
JP2006326438A (en) Apparatus and method for treating sludge
Begum et al. Treatment of pulp and paper mill wastewater