JP2009195786A - Method and apparatus for treating porous base stock with ultraviolet ray - Google Patents

Method and apparatus for treating porous base stock with ultraviolet ray Download PDF

Info

Publication number
JP2009195786A
JP2009195786A JP2008038313A JP2008038313A JP2009195786A JP 2009195786 A JP2009195786 A JP 2009195786A JP 2008038313 A JP2008038313 A JP 2008038313A JP 2008038313 A JP2008038313 A JP 2008038313A JP 2009195786 A JP2009195786 A JP 2009195786A
Authority
JP
Japan
Prior art keywords
porous material
pores
mixed gas
ultraviolet treatment
ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008038313A
Other languages
Japanese (ja)
Inventor
Keisuke Mizuno
敬介 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2008038313A priority Critical patent/JP2009195786A/en
Publication of JP2009195786A publication Critical patent/JP2009195786A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for treating not only the surface of a porous base stock but also the insides of pores thereof efficiently with ultraviolet rays. <P>SOLUTION: The method for treating the porous base stock with ultraviolet rays includes a filling step of sucking a gaseous mixture containing a small amount of oxygen, which is in contact with the porous base stock, from the back surface of the porous base stock to fill the pores thereof with the gaseous mixture; and a modification step of treating the porous base stock, which is treated at the filling step, with ultraviolet rays to modify the insides of the pores, in the apparatus and method, includes the steps of: introducing the gaseous mixture containing a small amount of oxygen into a reaction chamber 100 through a pipeline 20; supporting the porous base stock 1 by a porous support 32; sucking the gaseous mixture from the back surface of the porous base stock 1; and irradiating the resulting porous base stock 1 with ultraviolet rays emitted from an ultraviolet lamp 10 to modify the insides of the pores of the porous base stock 1. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、多孔性素材を紫外線処理する方法及び処理装置に関し、特に多孔性プラスチックフィルムの表面及び細孔内を紫外線処理する方法及び処理装置に関する。   The present invention relates to a method and an apparatus for ultraviolet treatment of a porous material, and more particularly to a method and an apparatus for ultraviolet treatment of the surface and pores of a porous plastic film.

プラスチック、ガラス、セラミックス、金属、半導体等の疎水性表面を親水化する方法として、紫外線処理が用いられることがある。これは紫外線により表面の異物を除去する効果と、紫外線照射により被処理物表面の化学結合が切れ、そこに親水性を示す官能基が生成されることによる。   Ultraviolet treatment may be used as a method for hydrophilizing hydrophobic surfaces such as plastic, glass, ceramics, metals, and semiconductors. This is due to the effect of removing foreign substances on the surface by ultraviolet rays, and the chemical bond on the surface of the object to be treated is broken by the irradiation of ultraviolet rays, and a functional group showing hydrophilicity is generated there.

一方多孔性素材は電池のセパレーターや、フィルター、気体分離、再生医療の培地等様々な分野で使用されており今後も多くの多孔性素材が使用されると予想される。   On the other hand, porous materials are used in various fields such as battery separators, filters, gas separation, regenerative medicine culture media, and many porous materials are expected to be used in the future.

しかしながら多孔性素材の表面だけではなく細孔内も親水化処理する必要がある場合、従来提案されている表面処理方法は被処理物の表面のみを改質する方法が大半である。数少ない報告の中で特許文献1(特開2007−302806号公報)は大気下でプラズマ処理によって細孔内を処理しようという試みを行っている。今後、多孔質細孔内処理を目的とした更に多くの処理方法及び、処理装置が必要になると考えられる。
特開2007−302806号公報
However, when it is necessary to hydrophilize not only the surface of the porous material but also the inside of the pores, most of the conventionally proposed surface treatment methods are methods for modifying only the surface of the object to be treated. Among a few reports, Patent Document 1 (Japanese Patent Laid-Open No. 2007-302806) attempts to treat the inside of the pores by plasma treatment in the atmosphere. In the future, it is considered that more treatment methods and treatment apparatuses aiming at treatment in the porous pores will be required.
JP 2007-302806 A

従って、本発明の目的は、多孔性素材の表面のみならず細孔内も効率的に紫外線照射により改質するする方法及び処理装置を提供することである。   Accordingly, an object of the present invention is to provide a method and an apparatus for efficiently modifying not only the surface of a porous material but also the inside of pores by ultraviolet irradiation.

請求項1に記載の発明は、多孔性素材を紫外線処理する方法において、微量の酸素を含む混合ガスを、前記多孔性素材に接触させた状態で前記多孔性素材の裏面から吸引することにより、前記混合ガスを前記多孔性素材の細孔内に充填する充填工程と、前記充填工程後、前記多孔性素材に紫外線処理を施し、前記細孔内を改質する改質工程とを有する多孔性素材の紫外線処理方法である。
請求項2に記載の発明は、多孔性素材を紫外線処理する方法において、微量の酸素を含む混合ガスを、前記多孔性素材に吹き付け、前記混合ガスを前記多孔性素材の細孔内に充填する充填工程と、前記多孔性素材に紫外線処理を施し、前記細孔内を改質する改質工程とを有する多孔性素材の紫外線処理方法である。
請求項3に記載の発明は、反応室と、前記反応室内に微量の酸素を含む混合ガスを導入するガス導入手段と、前記反応室内で多孔性素材を支持するとともに前記多孔性素材の裏面から前記混合ガスを吸引する支持手段と、前記多孔性素材に紫外線を照射する紫外線処理手段とを備え、前記ガス導入手段により導入された混合ガスを、前記多孔性素材に接触させた状態で前記支持手段によって前記多孔性素材の裏面から吸引し、前記混合ガスを前記多孔性素材の細孔内に充填した後、前記紫外線処理手段によって前記多孔性素材に紫外線処理を施し、前記細孔内を改質するように構成したことを特徴とする多孔性素材の紫外線処理装置である。
請求項4に記載の発明は、反応室と、前記反応室内に微量の酸素を含む混合ガスを導入するとともに多孔性素材に前記混合ガスを吹き付けるガス吹付け手段と、前記反応室内で多孔性素材を支持する支持手段と、前記多孔性素材に紫外線を照射する紫外線処理手段とを備え、前記ガス吹付け手段により前記混合ガスを前記多孔性素材の細孔内に充填した後、前記紫外線処理手段によって前記多孔性素材に紫外線処理を施し、前記細孔内を改質するように構成したことを特徴とする多孔性素材の紫外線処理装置である。
請求項5に記載の発明は、前記支持手段が、前記多孔性素材を搬送する機能を兼ね備え、前記多孔性素材を前記反応室に連続的に搬送しながら、前記紫外線処理を行うように構成したことを特徴とする請求項3または4に記載の紫外線処理装置である。
The invention according to claim 1 is a method for ultraviolet treatment of a porous material, by sucking a mixed gas containing a small amount of oxygen from the back surface of the porous material in a state of being in contact with the porous material, Porous having a filling step of filling the mixed gas into the pores of the porous material, and a modifying step of modifying the inside of the pores by applying an ultraviolet treatment to the porous material after the filling step This is an ultraviolet treatment method for the material.
According to a second aspect of the present invention, in the method for ultraviolet treatment of a porous material, a mixed gas containing a trace amount of oxygen is sprayed onto the porous material, and the mixed gas is filled in the pores of the porous material. An ultraviolet treatment method for a porous material, comprising: a filling step; and a modification step of modifying the inside of the pores by subjecting the porous material to ultraviolet treatment.
The invention according to claim 3 is a reaction chamber, a gas introduction means for introducing a mixed gas containing a small amount of oxygen into the reaction chamber, a porous material supported in the reaction chamber, and from the back surface of the porous material. A support means for sucking the mixed gas; and an ultraviolet treatment means for irradiating the porous material with ultraviolet light, and the mixed gas introduced by the gas introduction means is in contact with the porous material. After sucking from the back surface of the porous material by means and filling the mixed gas into the pores of the porous material, the porous material is subjected to ultraviolet treatment by the ultraviolet treatment means, and the pores are modified. It is the ultraviolet processing apparatus of the porous material characterized by comprising so that it may quality.
The invention described in claim 4 includes a reaction chamber, a gas spraying means for introducing a mixed gas containing a small amount of oxygen into the reaction chamber and blowing the mixed gas onto a porous material, and a porous material in the reaction chamber. Supporting means and ultraviolet treatment means for irradiating the porous material with ultraviolet light, and filling the mixed gas into the pores of the porous material by the gas spraying means, and then the ultraviolet treatment means. The porous material ultraviolet treatment apparatus is characterized in that the porous material is subjected to ultraviolet treatment to modify the inside of the pores.
The invention according to claim 5 is configured such that the supporting means has a function of transporting the porous material and performs the ultraviolet treatment while continuously transporting the porous material to the reaction chamber. The ultraviolet ray processing apparatus according to claim 3 or 4, wherein

本発明の多孔性素材の紫外線処理方法及び処理装置によれば、多孔性素材の表面のみならず細孔内も効率的に改質することができる。特に本発明の紫外線処理を受けたプラスチック微多孔膜は、表面のみならず細孔内も親水化されており、電池用セパレーター、各種フィルター、各種機能性素材の担体等として有用である。   According to the ultraviolet ray treatment method and treatment apparatus for a porous material of the present invention, not only the surface of the porous material but also the pores can be efficiently modified. In particular, the microporous plastic film that has been subjected to the ultraviolet treatment of the present invention is hydrophilicized not only on the surface but also in the pores, and is useful as a battery separator, various filters, a carrier for various functional materials and the like.

[1] 多孔性素材
本発明の紫外線処理方法を適用できる多孔性素材の材質は特に制限されず、例えば各々多孔性を有するプラスチック、ガラス、セラミックス、金属、半導体等が挙げられる。多孔性素材の形状も特に制限されないが、フィルム状又は板状であるのが好ましい。中でも多孔性プラスチックフィルムが好ましい。多孔性プラスチックフィルムとしては、熱可塑性樹脂微多孔膜、熱可塑性樹脂不織布等が挙げられる。これら微多孔膜又は不織布を構成する熱可塑性樹脂としては、ポリオレフィン(PO)、ポリエステル、ポリアミド、ポリアリーレンエーテル、ポリアリーレンスルフィド等が挙げられる。
ここで本発明でいう多孔性素材とは、空孔率が30〜80%の範囲内であって、且つ、JIS P8117で測定される透気度が5秒〜2000秒の範囲のものをさす。
[1] porous material
The material of the porous material to which the ultraviolet treatment method of the present invention can be applied is not particularly limited, and examples thereof include porous plastic, glass, ceramics, metal, and semiconductor. The shape of the porous material is not particularly limited, but is preferably a film shape or a plate shape. Among these, a porous plastic film is preferable. Examples of the porous plastic film include a thermoplastic resin microporous film and a thermoplastic resin nonwoven fabric. Examples of the thermoplastic resin constituting the microporous film or the nonwoven fabric include polyolefin (PO), polyester, polyamide, polyarylene ether, polyarylene sulfide and the like.
Here, the porous material referred to in the present invention refers to a material having a porosity of 30 to 80% and an air permeability measured by JIS P8117 of 5 seconds to 2000 seconds. .

[2] 紫外線処理方法及び処理装置
本発明の方法では、(a) 微量の酸素を含む混合ガスを、前記多孔性素材に接触させた状態で多孔性素材の裏面から吸引することにより、混合ガスを多孔性素材の細孔内に充填し(充填工程)、多孔性素材に紫外線照射区域を通過させ、細孔内を改質するか(改質工程)、(b) 混合ガスを所定の流量で多孔性素材に吹き付け、混合ガスを多孔性素材の細孔内に充填し(充填工程)、多孔性素材に紫外線照射区域を通過させ、細孔内を改質するか(改質工程)、のいずれかの方法が採用される。
[2] UV treatment method and treatment equipment
In the method of the present invention, (a) a mixed gas containing a trace amount of oxygen is sucked from the back surface of the porous material in a state of being in contact with the porous material, whereby the mixed gas is introduced into the pores of the porous material. Filling (filling process), allowing the porous material to pass through the UV irradiation area and modifying the inside of the pores (modification process), or (b) spraying the mixed gas on the porous material at a predetermined flow rate, and mixing the gas Either is filled in the pores of the porous material (filling process), and the porous material is passed through the ultraviolet irradiation area to modify the pores (modification process). .

[3]紫外線源
本発明において紫外線源は十分な効果が得られるものであれば特に限定はしない。
[3] Ultraviolet source In the present invention, the ultraviolet source is not particularly limited as long as a sufficient effect can be obtained.

[4]混合ガス
混合ガスは多孔性素材の材質に応じて適宜選択するが、通常の紫外線照射処理においてパージガスとして使用される窒素を主成分とするものが好ましい。窒素ガス以外の不活性ガスを用いても良いがコストの面で不利である。また酸素量も適宜選択するが、あまり混合しすぎると紫外線照射により酸素からオゾンへ変化する際に紫外線がエネルギーを奪われてしまい十分な紫外線処理ができなくなる。従って酸素の混合率は1vol%〜15vol%程度が最適である。
[4] Mixed gas The mixed gas is appropriately selected according to the material of the porous material, but it is preferable that the main component is nitrogen used as a purge gas in a normal ultraviolet irradiation process. An inert gas other than nitrogen gas may be used, but is disadvantageous in terms of cost. The amount of oxygen is also selected as appropriate, but if it is mixed too much, the ultraviolet light is deprived of energy when changing from oxygen to ozone by ultraviolet irradiation, and sufficient ultraviolet light treatment becomes impossible. Therefore, the mixing ratio of oxygen is optimally about 1 vol% to 15 vol%.

[5]処理時間
処理時間は、所望の特性を得られれば特に限定はしないが処理時間があまり短いと十分な効果が得られない。
[5] Processing time The processing time is not particularly limited as long as desired characteristics can be obtained. However, if the processing time is too short, a sufficient effect cannot be obtained.

以下フィルム状の多孔性素材を紫外線処理する場合を例にとり、図面を参照して詳細に説明する。図1は、フィルム状の多孔性素材1をプラズマ処理する装置の一例を示す概略図である。この例では、フィルム状の多孔性素材1をバッチ式に紫外線処理する。この装置は、反応室100と、反応室100内に微量の酸素を含む混合ガスを導入するガス導入手段としての管20と、反応室100内で多孔性素材1を支持するとともに多孔性素材1の裏面から混合ガスを吸引する支持手段としての板状の多孔性支持体32と、多孔性素材1に紫外線を照射する紫外線処理手段としての紫外線ランプ10とを備える。多孔性支持体32は、厚さ方向及び多孔性素材1に接する面方向に連通する細孔を有し、配管33を介して減圧手段34と接続され、多孔性素材1の裏面から混合ガスを吸引することができる。また、試料台31は、多孔性支持体32をさらに支持する機能を有する。混合ガスは、流量コントローラ21によって流量が調節される。   Hereinafter, a case where a film-like porous material is treated with ultraviolet rays will be described as an example with reference to the drawings. FIG. 1 is a schematic view showing an example of an apparatus for plasma processing a film-like porous material 1. In this example, the film-like porous material 1 is subjected to ultraviolet treatment in a batch manner. This apparatus supports a porous material 1 while supporting a porous material 1 in the reaction chamber 100, a tube 20 as a gas introducing means for introducing a mixed gas containing a small amount of oxygen into the reaction chamber 100, and the porous material 1. The plate-shaped porous support body 32 as a support means for sucking the mixed gas from the back surface thereof, and the ultraviolet lamp 10 as the ultraviolet treatment means for irradiating the porous material 1 with ultraviolet light. The porous support body 32 has pores communicating with each other in the thickness direction and the surface direction in contact with the porous material 1, and is connected to the decompression unit 34 through the pipe 33, so that the mixed gas is supplied from the back surface of the porous material 1. Can be aspirated. The sample stage 31 has a function of further supporting the porous support 32. The flow rate of the mixed gas is adjusted by the flow rate controller 21.

フィルム状の多孔性素材1を多孔性支持体32上に固定し、流量コントローラ21により流量を調節しながら反応室100内に混合ガスを導入し、紫外線ランプ10を点灯させる。多孔性素材1は多孔性支持体32上に固定され、かつ減圧手段34によって多孔性素材1および多孔性支持体32を介して混合ガスを吸引するようにしているので、混合ガスが多孔性素材1中を通過することができる。そのため多孔性素材1の全表面及び細孔内に微量の酸素が導入でき、紫外線処理を施すことにより、細孔内に酸素由来の官能基が生成し、改質される。なお前述のように、混合ガスを所定の流量で多孔性素材に吹き付け、混合ガスを多孔性素材の細孔内に充填することもできる。この形態では、図1において、図示しない吹付け手段を別途反応室内に設定し、混合ガスを多孔性素材1の表面に吹き付けるようにしてもよい。いずれの形態においても、反応室100内の空気を除去し、また、反応室内への空気の侵入を防ぎ、反応室100内の酸素量、水分量をコントロールすることが好ましい。混合ガスの流量は、例えば10〜200 lsmである。混合ガスの流量は、例えば多孔質素材1の裏面からの混合ガス吸引量により調整することもできる。また、明確に図示していないが、反応室100は、混合ガス以外のガスが混入しないように気密状態を保てるように構成されていてもよい。ただし、反応室100内に混合ガスを過剰に導入する場合には、この限りではない。   The film-like porous material 1 is fixed on the porous support 32, the mixed gas is introduced into the reaction chamber 100 while adjusting the flow rate by the flow rate controller 21, and the ultraviolet lamp 10 is turned on. Since the porous material 1 is fixed on the porous support 32 and the mixed gas is sucked through the porous material 1 and the porous support 32 by the decompression means 34, the mixed gas is the porous material. 1 can pass through. Therefore, a very small amount of oxygen can be introduced into the entire surface and pores of the porous material 1, and by performing ultraviolet treatment, oxygen-derived functional groups are generated and modified in the pores. As described above, the mixed gas can be sprayed onto the porous material at a predetermined flow rate, and the mixed gas can be filled into the pores of the porous material. In this embodiment, in FIG. 1, a spraying means (not shown) may be separately set in the reaction chamber, and the mixed gas may be sprayed onto the surface of the porous material 1. In any form, it is preferable to remove the air in the reaction chamber 100, prevent the intrusion of air into the reaction chamber, and control the amount of oxygen and moisture in the reaction chamber 100. The flow rate of the mixed gas is, for example, 10 to 200 lsm. The flow rate of the mixed gas can be adjusted by, for example, the amount of mixed gas sucked from the back surface of the porous material 1. Although not clearly shown, the reaction chamber 100 may be configured to be kept airtight so that a gas other than the mixed gas is not mixed. However, this is not the case when an excessive amount of mixed gas is introduced into the reaction chamber 100.

図2は、ロール状のフィルム状の多孔性素材1を紫外線処理する装置の例を示す概略図である。図2において、この装置は、反応室100と、反応室100内に微量の酸素を含む混合ガスを導入するガス導入手段としての管20と、多孔性素材1に紫外線を照射する紫外線処理手段としての紫外線ランプ10を備えていることは図1と同様であるが、多孔性素材1のロールの巻き出し機構35、巻き取り機構36を備えており、反応室内100に多孔性素材1を連続的に搬送し、紫外線処理を行うことができる。搬送手段としては、多孔質ロール37が用いられ、反応室100内の紫外線ランプ10にほぼ対向する位置に設置されている。多孔質ロール37は、配管33を介して真空ポンプのような減圧手段34と連結されており多孔性素材1の裏面を吸引しながら回転し、多孔性素材1を搬送することができる。また、明確に図示していないが、図1と同様に、反応室100は、混合ガス以外のガスが混入しないように気密状態を保てるように構成されていてもよい。ただし、反応室100内に混合ガスを過剰に導入する場合には、この限りではない。   FIG. 2 is a schematic view showing an example of an apparatus for performing ultraviolet treatment on a roll-like film-like porous material 1. In FIG. 2, this apparatus includes a reaction chamber 100, a tube 20 as a gas introduction means for introducing a mixed gas containing a small amount of oxygen into the reaction chamber 100, and an ultraviolet treatment means for irradiating the porous material 1 with ultraviolet rays. 1 is provided with a roll unwinding mechanism 35 and a winding mechanism 36 for the porous material 1, and the porous material 1 is continuously placed in the reaction chamber 100. And can be subjected to ultraviolet treatment. As the conveying means, a porous roll 37 is used, and is installed at a position almost opposite to the ultraviolet lamp 10 in the reaction chamber 100. The porous roll 37 is connected to a decompression means 34 such as a vacuum pump through a pipe 33 and rotates while sucking the back surface of the porous material 1, and can transport the porous material 1. Although not clearly shown, the reaction chamber 100 may be configured to be kept airtight so that a gas other than the mixed gas is not mixed, as in FIG. However, this is not the case when an excessive amount of mixed gas is introduced into the reaction chamber 100.

巻き取り速度(多孔性素材1の搬送速度)は混合ガスの流量と改質速度によって変化するが、概ね1m/min〜200m/minぐらいが適当である。   The winding speed (conveying speed of the porous material 1) varies depending on the flow rate of the mixed gas and the reforming speed, but approximately 1 m / min to 200 m / min is appropriate.

以上のような紫外線処理方法および装置により、多孔性素材1の表面のみならず細孔内を処理することができる。ポリオレフィン系(PO)の微多孔膜を処理した場合、カルボキシル基、カルボニル基等の含酸素官能基を導入でき、親水性が向上する。特に本発明の紫外線照射処理を受けたPO微多孔膜は、電池用セパレーター、各種フィルター、各種機能性素材の担体等として有用である。   By the ultraviolet treatment method and apparatus as described above, not only the surface of the porous material 1 but also the inside of the pores can be treated. When a polyolefin (PO) microporous membrane is treated, an oxygen-containing functional group such as a carboxyl group or a carbonyl group can be introduced to improve hydrophilicity. In particular, the PO microporous membrane subjected to the ultraviolet irradiation treatment of the present invention is useful as a battery separator, various filters, a carrier for various functional materials, and the like.

紫外線は深さ方向全体にわたり、照射することができる。したがって、細孔内に酸素を含む混合ガスを充填させることにより、深さ方向すべてにわたって細孔内を親水性に改質することが可能となる。   Ultraviolet rays can be irradiated over the entire depth direction. Therefore, by filling the pores with a mixed gas containing oxygen, the pores can be modified to be hydrophilic throughout the depth direction.

本発明を以下の実施例によりさらに詳細に説明するが、本発明はこれらの例に限定されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

実施例1
図1に示すバッチ式装置を用いて、大気圧下でポリエチレン(PE)微多孔膜[商品名:セティーラ、東燃化学(株)製、10cm×10cm、厚さ:30μm、空孔率60%、透気度(JIS P8117)100秒]を紫外線処理した。処理区域の多孔性支持体でできた試料台30上に、PE微多孔膜1を固定した。処理区域に酸素3%混合乾燥窒素ガスを供給しながら紫外線ランプ10(岩崎電気社製:UEEX503)を点灯させた。多孔性支持体32に接続したポンプ(減圧手段34)で吸引しながら、3分間照射した。混合ガスの流量は、100 lsmとした。
Example 1
Using the batch type apparatus shown in FIG. 1, a polyethylene (PE) microporous membrane [trade name: Cetilla, manufactured by Tonen Chemical Co., Ltd., 10 cm × 10 cm, thickness: 30 μm, porosity 60%, Air permeability (JIS P8117) 100 seconds] was subjected to ultraviolet treatment. The PE microporous membrane 1 was fixed on a sample table 30 made of a porous support in the treatment area. The ultraviolet lamp 10 (Iwasaki Electric Co., Ltd .: UEEX503) was turned on while supplying dry nitrogen gas mixed with 3% oxygen to the treatment area. Irradiation was performed for 3 minutes while sucking with a pump (pressure reduction means 34) connected to the porous support 32. The flow rate of the mixed gas was 100 lsm.

紫外線処理を施したPE微多孔膜1の両面について、純水に対する接触角(以下特段の断りがない限り、単に「水接触角」という)を測定したところ、上面(紫外線ランプ10側の面)では40°であり、下面(多孔性支持体32側の面)では50°であった。なお測定機としては、協和界面科学株式会社製の接触角計を用いた。PE微多孔膜の初期接触角は120°なので、細孔内を抜けて裏面まで処理されたといえる。   When both sides of the PE microporous membrane 1 subjected to UV treatment were measured for the contact angle with pure water (hereinafter simply referred to as “water contact angle” unless otherwise specified), the top surface (surface on the UV lamp 10 side) was measured. The angle was 40 °, and the lower surface (the surface on the porous support 32 side) was 50 °. As a measuring machine, a contact angle meter manufactured by Kyowa Interface Science Co., Ltd. was used. Since the initial contact angle of the PE microporous membrane is 120 °, it can be said that it has been processed through the pores to the back surface.

実施例2
PE微多孔膜の裏面からの吸引を行なわなかったこと以外は実施例1と同様にして、大気圧下でPE微多孔膜を紫外線処理した。このとき、混合ガスの流量を200 lsmとし、混合ガスをPE微多孔膜に吹き付けるようにした。得られたPE微多孔膜の両面の水接触角を測定したところ、上面では40°であり、下面では70°であった。下面まで効果的に紫外線処理されていることが分かった。
Example 2
The PE microporous membrane was subjected to UV treatment under atmospheric pressure in the same manner as in Example 1 except that suction from the back surface of the PE microporous membrane was not performed. At this time, the flow rate of the mixed gas was set to 200 lsm, and the mixed gas was sprayed onto the PE microporous membrane. When the water contact angles on both sides of the obtained PE microporous membrane were measured, it was 40 ° on the upper surface and 70 ° on the lower surface. It was found that the bottom surface was effectively UV-treated.

比較例1
混合ガスを用いずにアルゴンガスのみを用いた以外は実施例1と同様にして、PE微多孔膜を紫外線処理した。得られたPE微多孔膜の両面の水接触角を測定したところ、上面では110°であったが、下面では114°であった。紫外線処理したPE微多孔膜の両面について酸素由来の官能基が導入されず、接触角が下がらなかった。
Comparative Example 1
The PE microporous membrane was treated with ultraviolet rays in the same manner as in Example 1 except that only argon gas was used without using a mixed gas. When the water contact angle on both sides of the obtained PE microporous membrane was measured, it was 110 ° on the upper surface and 114 ° on the lower surface. Oxygen-derived functional groups were not introduced on both sides of the ultraviolet-treated PE microporous membrane, and the contact angle did not decrease.

フィルム状の多孔性素材をプラズマ処理する装置の一例を示す概略図である。It is the schematic which shows an example of the apparatus which plasma-processes a film-form porous material. ロール状のフィルム状の多孔性素材を紫外線処理する装置の例を示す概略図である。It is the schematic which shows the example of the apparatus which ultraviolet-processes a roll-form film-form porous material.

符号の説明Explanation of symbols

1 多孔性素材、10 紫外線ランプ、20 ガス導入手段としての管、32 多孔性支持体、34 減圧手段、37 多孔質ロール、100 反応室。   DESCRIPTION OF SYMBOLS 1 Porous material, 10 UV lamp, 20 Tube as gas introduction means, 32 Porous support body, 34 Decompression means, 37 Porous roll, 100 Reaction chamber.

Claims (5)

多孔性素材を紫外線処理する方法において、微量の酸素を含む混合ガスを、前記多孔性素材に接触させた状態で前記多孔性素材の裏面から吸引することにより、前記混合ガスを前記多孔性素材の細孔内に充填する充填工程と、前記充填工程後、前記多孔性素材に紫外線処理を施し、前記細孔内を改質する改質工程とを有する多孔性素材の紫外線処理方法。   In the method for ultraviolet treatment of a porous material, the mixed gas containing a trace amount of oxygen is sucked from the back surface of the porous material while being in contact with the porous material. An ultraviolet treatment method for a porous material, comprising: a filling step for filling the pores; and a modification step for modifying the inside of the pores by subjecting the porous material to ultraviolet treatment after the filling step. 多孔性素材を紫外線処理する方法において、微量の酸素を含む混合ガスを、前記多孔性素材に吹き付け、前記混合ガスを前記多孔性素材の細孔内に充填する充填工程と、前記多孔性素材に紫外線処理を施し、前記細孔内を改質する改質工程とを有する多孔性素材の紫外線処理方法。   In the method for ultraviolet treatment of a porous material, a filling step of spraying a mixed gas containing a small amount of oxygen onto the porous material and filling the mixed gas into the pores of the porous material; An ultraviolet treatment method for a porous material, comprising an ultraviolet treatment and a modification step of modifying the inside of the pores. 反応室と、前記反応室内に微量の酸素を含む混合ガスを導入するガス導入手段と、前記反応室内で多孔性素材を支持するとともに前記多孔性素材の裏面から前記混合ガスを吸引する支持手段と、前記多孔性素材に紫外線を照射する紫外線処理手段とを備え、前記ガス導入手段により導入された混合ガスを、前記多孔性素材に接触させた状態で前記支持手段によって前記多孔性素材の裏面から吸引し、前記混合ガスを前記多孔性素材の細孔内に充填した後、前記紫外線処理手段によって前記多孔性素材に紫外線処理を施し、前記細孔内を改質するように構成したことを特徴とする多孔性素材の紫外線処理装置。   A reaction chamber; gas introduction means for introducing a mixed gas containing a trace amount of oxygen into the reaction chamber; and support means for supporting the porous material in the reaction chamber and sucking the mixed gas from the back surface of the porous material; UV treatment means for irradiating the porous material with ultraviolet light, and the mixed gas introduced by the gas introduction means is brought into contact with the porous material from the back surface of the porous material by the support means. After being sucked and filled with the mixed gas into the pores of the porous material, the porous material is subjected to ultraviolet treatment by the ultraviolet treatment means to modify the inside of the pores. An ultraviolet treatment device for porous materials. 反応室と、前記反応室内に微量の酸素を含む混合ガスを導入するとともに多孔性素材に前記混合ガスを吹き付けるガス吹付け手段と、前記反応室内で多孔性素材を支持する支持手段と、前記多孔性素材に紫外線を照射する紫外線処理手段とを備え、前記ガス吹付け手段により前記混合ガスを前記多孔性素材の細孔内に充填した後、前記紫外線処理手段によって前記多孔性素材に紫外線処理を施し、前記細孔内を改質するように構成したことを特徴とする多孔性素材の紫外線処理装置。   A reaction chamber; a gas blowing means for introducing a mixed gas containing a small amount of oxygen into the reaction chamber and blowing the mixed gas onto a porous material; a supporting means for supporting the porous material in the reaction chamber; Ultraviolet treatment means for irradiating the porous material with ultraviolet light, and after the mixed gas is filled in the pores of the porous material by the gas spraying means, the porous material is subjected to ultraviolet treatment by the ultraviolet treatment means. An ultraviolet treatment apparatus for a porous material, characterized in that it is configured to modify the inside of the pores. 前記支持手段が、前記多孔性素材を搬送する機能を兼ね備え、前記多孔性素材を前記反応室に連続的に搬送しながら、前記紫外線処理を行うように構成したことを特徴とする請求項3または4に記載の紫外線処理装置。   The said support means has a function to convey the porous material, and is configured to perform the ultraviolet treatment while continuously conveying the porous material to the reaction chamber. 4. The ultraviolet treatment apparatus according to 4.
JP2008038313A 2008-02-20 2008-02-20 Method and apparatus for treating porous base stock with ultraviolet ray Withdrawn JP2009195786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008038313A JP2009195786A (en) 2008-02-20 2008-02-20 Method and apparatus for treating porous base stock with ultraviolet ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008038313A JP2009195786A (en) 2008-02-20 2008-02-20 Method and apparatus for treating porous base stock with ultraviolet ray

Publications (1)

Publication Number Publication Date
JP2009195786A true JP2009195786A (en) 2009-09-03

Family

ID=41139929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008038313A Withdrawn JP2009195786A (en) 2008-02-20 2008-02-20 Method and apparatus for treating porous base stock with ultraviolet ray

Country Status (1)

Country Link
JP (1) JP2009195786A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021030177A (en) * 2019-08-28 2021-03-01 株式会社明電舎 Method for modifying porous material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021030177A (en) * 2019-08-28 2021-03-01 株式会社明電舎 Method for modifying porous material
WO2021038957A1 (en) * 2019-08-28 2021-03-04 株式会社明電舎 Reforming device and reforming method for porous material
TWI761906B (en) * 2019-08-28 2022-04-21 日商明電舍股份有限公司 Modification device and modification method of porous material
US11512177B2 (en) 2019-08-28 2022-11-29 Meidensha Corporation Reforming device and reforming method for porous material

Similar Documents

Publication Publication Date Title
JP4930913B2 (en) Plasma processing method and processing apparatus for porous material
TWI394653B (en) Atmospheric pressure microwave plasma treated porous membranes
EP2764908A1 (en) Gas separation membrane, method of producing the same, and gas separation membrane module using the same
US8501058B2 (en) Method of cleaning template and pattern forming method
US6368493B1 (en) Electrolytic machining method and apparatus
EP3088451B1 (en) Plasma assisted hydrophilicity enhancement of polymer materials
KR102060354B1 (en) Surface processing apparatus and surface processing method
KR20040085168A (en) Fluidized Bed Activated by Excimer Plasma and Materials Produced Therefrom
KR20170015140A (en) Hydrophilizing ptfe membranes
JP5320665B2 (en) Ultrapure water production apparatus and method
JP2009195786A (en) Method and apparatus for treating porous base stock with ultraviolet ray
JP7084824B2 (en) Board processing equipment
JP3455611B2 (en) Method and apparatus for modifying porous body
Li et al. Controllable modification of polymer membranes by LDDLT plasma flow: membrane module scale-up and hydrophilic stability
US20190318943A1 (en) Wafer cutting device and method
JP5814831B2 (en) Manufacturing method of separation membrane
EP2888029A1 (en) Method of treating a porous substrate and manufacture of a membrane
US11512177B2 (en) Reforming device and reforming method for porous material
JPH04338286A (en) Air diffusion pipe and tube used for the pipe
JP2000208458A (en) Substrate cleaning unit
JP2005332784A (en) Plasma treatment device
JP2019220659A (en) Substrate processing apparatus
JP2008161806A (en) Metal surface treatment method
JP2007149938A (en) Substrate processing apparatus, substrate processing method and display device
JP2010221070A (en) Gas reaction vessel, gas reaction device, and method for gas reaction treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110125

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110328