JP2009192588A - Shg element and method of manufacturing the same - Google Patents

Shg element and method of manufacturing the same Download PDF

Info

Publication number
JP2009192588A
JP2009192588A JP2008030252A JP2008030252A JP2009192588A JP 2009192588 A JP2009192588 A JP 2009192588A JP 2008030252 A JP2008030252 A JP 2008030252A JP 2008030252 A JP2008030252 A JP 2008030252A JP 2009192588 A JP2009192588 A JP 2009192588A
Authority
JP
Japan
Prior art keywords
substrate
ferroelectric
shg element
protective film
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008030252A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kurotake
弘至 黒竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008030252A priority Critical patent/JP2009192588A/en
Publication of JP2009192588A publication Critical patent/JP2009192588A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase the productivity of the SHG element in: an SHG element which has periodical polarization inversion regions formed on a ferroelectric substrate and also has an optical waveguide overlapping with the regions; and a method of manufacturing the same. <P>SOLUTION: The SHG element 1 is formed by further sticking a silicon substrate 7 on a principal surface of a protective film 6 constituting the SHG element 1, and polishing an incident/projection surface of the optical waveguide 3, formed of end surfaces of the ferroelectric substrate 4, protective film 6, and silicon substrate 7, as the same polished surface. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、強誘電体基板に周期的な分極反転領域を形成し、その領域とオーバラップするような光導波路を有するSHG素子およびこの製造方法に関する。   The present invention relates to an SHG element having an optical waveguide in which a periodic domain-inverted region is formed in a ferroelectric substrate and overlaps the region, and a method of manufacturing the SHG device.

従来の強誘電体基板に周期的な分極反転領域を形成しその領域とオーバラップするような光導波路を有し、入射される光線の波長を反波長に変換する光第2高調波発生素子(以下、SHG素子と称す)は、背面に支持基板を貼り合わせた光導波路を構成するトレンチを形成した強誘電体基板の主面に保護膜が設けられた構成であった。   An optical second harmonic generating element (having an optical waveguide that forms a periodic domain-inverted region on a conventional ferroelectric substrate and overlaps the region, and converts the wavelength of the incident light beam to the opposite wavelength) Hereinafter, the SHG element) has a configuration in which a protective film is provided on the main surface of a ferroelectric substrate in which a trench constituting an optical waveguide having a support substrate bonded to the back surface is formed.

そして、このようなSHG素子を形成する場合、先ず分極反転領域を形成した強誘電体基板の裏面に支持基板を貼り付け、その後に強誘電体基板を厚み方向に研磨して所望の厚みとし、次いで強誘電体基板の主面に光導波路を構成するトレンチを形成するとともにその表面に保護膜を形成し、その後にダイシングにより個片分割し端面研磨するものである。   When forming such an SHG element, first, a support substrate is attached to the back surface of the ferroelectric substrate on which the domain-inverted regions are formed, and then the ferroelectric substrate is polished in the thickness direction to obtain a desired thickness. Next, a trench constituting an optical waveguide is formed on the main surface of the ferroelectric substrate, and a protective film is formed on the surface thereof. Thereafter, the substrate is divided into individual pieces by dicing and the end surfaces are polished.

なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1が知られている。
特開2006−18243号公報
As prior art document information related to the invention of this application, for example, Patent Document 1 is known.
JP 2006-18243 A

しかしながら、このようにして形成されたSHG素子は、光導波路を構成するトレンチ部分がSHG素子の外周面に近接配置されてしまうため、ウエハを用いた多数個一括成形におけるダイシングによる個片分割や、光導波路の入出射面の研磨においてトレンチの端部に大きな加工応力が集中的に加わり、この結果SHG素子の製造過程における割れ、欠けの原因となっていた。   However, in the SHG element formed in this way, since the trench portion constituting the optical waveguide is disposed close to the outer peripheral surface of the SHG element, the individual division by dicing in the batch forming of a large number using a wafer, In the polishing of the light incident / exit surface of the optical waveguide, a large processing stress is concentrated on the end portion of the trench, resulting in cracking and chipping in the manufacturing process of the SHG element.

そこで、本発明はこのような問題を解決し、SHG素子の生産性を高めることを目的とする。   Therefore, the present invention aims to solve such problems and increase the productivity of SHG elements.

そして、この目的を達成するため本発明は、SHG素子を構成する保護膜の主面にさらにシリコン基板を貼り合わせるとともに、光導波路の入出射面を研磨面となる強誘電体基板、保護膜およびシリコン基板の端面を同一研磨面としたのである。   In order to achieve this object, the present invention provides a ferroelectric substrate, a protective film, and a protective substrate, in which a silicon substrate is further bonded to the main surface of the protective film constituting the SHG element, and the incident / exit surface of the optical waveguide is a polished surface. The end surface of the silicon substrate is the same polished surface.

この構成により、SHG素子の生産性を向上させることが出来るのである。   With this configuration, the productivity of the SHG element can be improved.

以下、本発明の一実施形態について図を用いて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1はSHG素子1を金属ベース2上に実装した状態の断面構造を示したもので、光導波路3を形成した強誘電体基板4の主面に支持基板5を貼り合わせ、この一主面の反対側の一主面に保護膜6及びシリコン基板7を貼り合わせた構造である。   FIG. 1 shows a cross-sectional structure of a state in which the SHG element 1 is mounted on a metal base 2. A support substrate 5 is bonded to the main surface of a ferroelectric substrate 4 on which an optical waveguide 3 is formed. The protective film 6 and the silicon substrate 7 are bonded to one main surface on the opposite side.

なお、強誘電体基板4はマグネシウムをドープした5°Y−Cutニオブ酸リチウム基板を使用しており、支持基板5はY−Cutニオブ酸リチウム基板を使用しており、保護膜6は酸化ケイ素を使用している。   The ferroelectric substrate 4 is a magnesium-doped 5 ° Y-Cut lithium niobate substrate, the support substrate 5 is a Y-Cut lithium niobate substrate, and the protective film 6 is silicon oxide. Is used.

また、強誘電体基板4は図2で後述するように、保護膜6が設けられる一主面に一対のトレンチ8が形成されており、このトレンチ8の間に形成されたリッジ9が光導波路3を構成するとともに、この光導波路3に対してその延伸方向において周期的に複数の分極反転領域10が配置することで波長変換を行う構造となっている。   Further, as will be described later with reference to FIG. 2, the ferroelectric substrate 4 has a pair of trenches 8 formed on one main surface on which the protective film 6 is provided, and a ridge 9 formed between the trenches 8 is an optical waveguide. 3 and a plurality of domain-inverted regions 10 are periodically arranged in the extending direction of the optical waveguide 3 to perform wavelength conversion.

そして、その製造方法としては図2に示すように、厚みが約300μmのウエハ状の強誘電体基板4の主面に分極反転構造のピッチ、幅に相当するパターンに形成された櫛型アルミ電極11をフォトリソグラフィーによって形成するとともに、裏面の略全面にアルミ電極12を形成する。次いで、櫛型アルミ電極11とアルミ電極12の間にパルス電界を印加することでそれぞれの櫛からZ軸方向に分極反転領域10が形成され、その後、アルカリ性のエッチング液に浸漬して櫛型アルミ電極11とアルミ電極12を除去する。   As a manufacturing method thereof, as shown in FIG. 2, a comb-shaped aluminum electrode formed in a pattern corresponding to the pitch and width of the domain-inverted structure on the main surface of the wafer-like ferroelectric substrate 4 having a thickness of about 300 μm. 11 is formed by photolithography, and an aluminum electrode 12 is formed on substantially the entire back surface. Next, by applying a pulse electric field between the comb-shaped aluminum electrode 11 and the aluminum electrode 12, the domain-inverted regions 10 are formed in the Z-axis direction from the respective combs, and then immersed in an alkaline etchant to form the comb-shaped aluminum. The electrode 11 and the aluminum electrode 12 are removed.

そして、櫛型アルミ電極11が設けられていた面に厚みが約200μmの支持基板5をエポキシ系の接着剤13を用いて貼り合わせてから、強誘電体基板4が約4.5μmとなるまで鏡面研磨し、その後ドライエッチングにより一対のトレンチ8を形成し、この間に幅約10μm、高さ約1.5μmのリッジ9(光導波路3)を構成する。   Then, after the support substrate 5 having a thickness of about 200 μm is bonded to the surface on which the comb-shaped aluminum electrode 11 is provided using the epoxy adhesive 13, until the ferroelectric substrate 4 becomes about 4.5 μm. A pair of trenches 8 are formed by mirror polishing and then dry etching, and a ridge 9 (optical waveguide 3) having a width of about 10 μm and a height of about 1.5 μm is formed therebetween.

なお、支持基板5と強誘電体基板4を直接接合する場合においては、接着剤13で接合するものとは異なり接合する基板材料の屈折率に差がなくなり、光導波路3からの信号漏れが生じるため、特に図示していないがリッジ9と強誘電体基板4の間に屈折率が異なる樹脂などの材料を充填するギャップを設けることが必要となる。   In the case where the support substrate 5 and the ferroelectric substrate 4 are directly bonded, unlike the case of bonding with the adhesive 13, there is no difference in the refractive index of the substrate material to be bonded, and signal leakage from the optical waveguide 3 occurs. Therefore, although not shown in particular, it is necessary to provide a gap for filling a material such as a resin having a different refractive index between the ridge 9 and the ferroelectric substrate 4.

次いで、光導波路3が形成された強誘電体基板4の表面にスパッタリングにより酸化ケイ素膜を保護膜6として形成し、その表面にエポキシ系の接着剤14で厚みが約150μmのシリコン基板7を貼り合わせるのである。なお、ここまでの一連の工程はウエハ基板(特に図示せず)を用いた多数個一括成形で実施しており、シリコン基板7を貼り合わせた後にダイシングにより個片分割し、個片化された各素子の入出射面を鏡面研磨することでSHG素子1を作成するのである。   Next, a silicon oxide film is formed as a protective film 6 by sputtering on the surface of the ferroelectric substrate 4 on which the optical waveguide 3 is formed, and a silicon substrate 7 having a thickness of about 150 μm is attached to the surface with an epoxy adhesive 14. To match. The series of steps up to this point is performed by batch molding using a wafer substrate (not shown in particular). After the silicon substrate 7 is bonded, it is divided into individual pieces by dicing. The SHG element 1 is created by mirror-polishing the incident / exit surface of each element.

そして、SHG素子1の構成を光導波路3上に設けられた保護膜6上にさらにシリコン基板7を設けたことにより、SHG素子1の生産性を従来の製造方法より高めることが出来たのである。すなわち、光導波路3上に設けられた保護膜6上にさらにシリコン基板7を設けることで、光導波路3を形成するリッジ9やトレンチ8の端面のエッジ部分が従来の構造に比して素子全体の中央部分に配置されることとなり、個片分割の際のダイシング時に加わる加工応力の影響が小さくなり製造過程における割れ、欠けによる歩留まり劣化を抑制できるのである。   Further, by providing the silicon substrate 7 on the protective film 6 provided on the optical waveguide 3 in the configuration of the SHG element 1, the productivity of the SHG element 1 can be improved as compared with the conventional manufacturing method. . That is, by further providing a silicon substrate 7 on the protective film 6 provided on the optical waveguide 3, the edge portions of the ridges 9 and the end surfaces of the trenches 8 forming the optical waveguide 3 are compared to the conventional structure. Therefore, the influence of the processing stress applied during dicing when dividing the individual pieces is reduced, and yield deterioration due to cracks and chips in the manufacturing process can be suppressed.

また、鏡面研磨時においてもダイシング時と同様に割れ、欠け抑制が低減出来るとともに、SHG素子1の入出射面の全面を同一研磨面として研磨するので、シリコン基板7まで形成されたウエハ状の基板をダイシングし研磨面の中央部分より外周部分の研磨量が大きくなってしまう現象、いわゆるダレ現象による光導波路3の端面精度への影響も併せて減少できるのである。   In addition, cracking and chipping suppression can be reduced during mirror polishing as well as during dicing, and the entire incident / exit surface of the SHG element 1 is polished as the same polished surface, so that a wafer-like substrate formed up to the silicon substrate 7 is also obtained. The effect on the end face accuracy of the optical waveguide 3 due to the phenomenon that the polishing amount of the outer peripheral portion becomes larger than the central portion of the polished surface, that is, the so-called sagging phenomenon, can be reduced.

なお、保護膜6上にシリコン基板7を貼り合わせるにあたっては、単に基板同士を貼り合わせればシリコン基板7の厚み分だけSHG素子1の厚みが増して大型化してしまうのであるが、シリコン基板7を貼り合わせた後に支持基板5を研磨し厚みを調節することで製品の大型化を防止出来るのである。これは、支持基板5は光導波路3を形成する薄い強誘電体基板4の基板強度を補強するためのものであり、保護膜6上にシリコン基板7を設けた場合、このシリコン基板7も基板強度を補強することになるため、シリコン基板7により得られる補強強度分だけ支持基板5の厚みを小さく出来るので、シリコン基板7の貼り合わせに伴う製品の大型化を抑制することが出来るのである。   When the silicon substrate 7 is bonded onto the protective film 6, if the substrates are simply bonded to each other, the thickness of the SHG element 1 is increased by the thickness of the silicon substrate 7, but the silicon substrate 7 is enlarged. By polishing the support substrate 5 and adjusting the thickness after bonding, it is possible to prevent an increase in size of the product. This is because the support substrate 5 reinforces the substrate strength of the thin ferroelectric substrate 4 forming the optical waveguide 3, and when the silicon substrate 7 is provided on the protective film 6, the silicon substrate 7 is also a substrate. Since the strength is reinforced, the thickness of the support substrate 5 can be reduced by an amount corresponding to the reinforcement strength obtained by the silicon substrate 7, so that an increase in size of the product accompanying the bonding of the silicon substrate 7 can be suppressed.

また、このようなSHG素子1は、光源となるレーザ発振素子が設けられた金属ベース2上に接着剤を用いて実装されるのであるが、レーザ発振素子の光軸とSHG素子1における光導波路3の光軸を一致させなければならず、この実装過程においては実装面の面内方向のみならず、この実装面に対する高さ方向をも高精度に合わせる必要がある。   In addition, such an SHG element 1 is mounted on a metal base 2 provided with a laser oscillation element serving as a light source by using an adhesive, and an optical axis of the laser oscillation element and an optical waveguide in the SHG element 1 In this mounting process, it is necessary to match not only the in-plane direction of the mounting surface but also the height direction with respect to the mounting surface with high accuracy.

そして、従来のSHG素子1の構成で有れば実装面となる保護膜6が酸化ケイ素からなる薄く硬い膜であり、このような保護膜6を挟み金属ベース2と光導波路3を形成するトレンチ8やリッジ9の端面エッジ部分が近接する構造となるため、このような構成でSHG素子1を金属ベース2に実装する場合保護膜6の強度を考慮しあまり大きな力で金属ベース2に圧接出来ず、接着剤による層厚が大きくなってしまい、接着剤の硬化収縮の影響を大きく受けてしまい、レーザ光源に対するSHG素子1の位置決め精度を高めることが困難であった。   In the case of the configuration of the conventional SHG element 1, the protective film 6 serving as a mounting surface is a thin and hard film made of silicon oxide, and a trench that forms the metal base 2 and the optical waveguide 3 with the protective film 6 interposed therebetween. 8 and the edge of the ridge 9 are close to each other. Therefore, when the SHG element 1 is mounted on the metal base 2 in such a configuration, it can be pressed against the metal base 2 with a very large force in consideration of the strength of the protective film 6. Therefore, the layer thickness due to the adhesive is increased, and the influence of the curing shrinkage of the adhesive is greatly increased, and it is difficult to increase the positioning accuracy of the SHG element 1 with respect to the laser light source.

しかしながら、図1に示すSHG素子1の構造で有れば保護膜6と金属ベース2との間にシリコン基板7がさらに介在するため、実装時においてシリコン基板7が光導波路3の保護層として作用するので、SHG素子1を金属ベース2に十分に圧接でき、この結果としてSHG素子1と金属ベース2との間に介在する接着剤の層が薄くなり接着剤の硬化収縮の影響を抑制することが出来るのである。   However, if the structure of the SHG element 1 shown in FIG. 1 is used, since the silicon substrate 7 is further interposed between the protective film 6 and the metal base 2, the silicon substrate 7 acts as a protective layer for the optical waveguide 3 during mounting. Therefore, the SHG element 1 can be sufficiently pressed against the metal base 2, and as a result, the adhesive layer interposed between the SHG element 1 and the metal base 2 becomes thin, thereby suppressing the influence of curing shrinkage of the adhesive. Is possible.

また、近年においてSHG素子1に入射されるレーザ光源のパワーが大きくなっており、SHG素子1における熱対策も重要な検討課題となっており、上述したようにSHG素子1の保護膜6の上にシリコン基板7を設けることでSHG素子1と金属ベース2との間に介在する接着剤15の厚みを薄くでき、つまり、熱伝達経路における熱伝導性の悪い樹脂材料で形成される接着剤15の厚みが小さくできるとともに、シリコン基板7自体の熱伝導率が接着剤15や保護膜6より格段に高いことから、SHG素子1の放熱性が高められるのである。   Further, in recent years, the power of the laser light source incident on the SHG element 1 has increased, and countermeasures against heat in the SHG element 1 have become an important study subject, and as described above, on the protective film 6 of the SHG element 1. The thickness of the adhesive 15 interposed between the SHG element 1 and the metal base 2 can be reduced by providing the silicon substrate 7 on the surface, that is, the adhesive 15 formed of a resin material having poor thermal conductivity in the heat transfer path. In addition, the heat conductivity of the silicon substrate 7 itself is much higher than that of the adhesive 15 and the protective film 6, so that the heat dissipation of the SHG element 1 is enhanced.

本発明に係るSHG素子およびこの製造方法ではSHG素子の生産性を高めることができ、主として光ピックアップ装置等に用いられる短波長レーザ発振モジュール用途において有用となる。   The SHG element and the manufacturing method according to the present invention can increase the productivity of the SHG element, and are useful mainly for short wavelength laser oscillation module applications used in optical pickup devices and the like.

本発明の一実施形態のSHG素子を金属ベース上に実装した状態を示す断面図Sectional drawing which shows the state which mounted the SHG element of one Embodiment of this invention on the metal base 同SHG素子の製造方法を示す模式図Schematic showing the manufacturing method of the SHG element

符号の説明Explanation of symbols

1 SHG素子
3 光導波路
4 強誘電体基板(強誘電体ウエハ)
5 支持基板
6 保護膜
7 シリコン基板
8 トレンチ
10 分極反転領域
1 SHG element 3 Optical waveguide 4 Ferroelectric substrate (ferroelectric wafer)
5 Support substrate 6 Protective film 7 Silicon substrate 8 Trench 10 Polarization inversion region

Claims (2)

強誘電体ウエハに分極反転領域を形成する工程と、前記強誘電体ウエハに支持基板を貼り合わせる工程と、前記強誘電体基板における前記支持基板が貼り合わされた面とは反対側の面を研磨する工程と、前記研磨された誘電体基板の面にトレンチを形成して光導波路を形成する工程と、前記強誘電体ウエハの光導波路が形成された面に保護膜を形成する工程と、前記強誘電体ウエハの保護膜が形成された面にシリコン基板を貼り合わせる工程と、前記シリコン基板を貼り合わせた強誘電体ウエハを個片分割する工程を備えたことを特徴とするSHG素子の製造方法。 A step of forming a domain-inverted region on a ferroelectric wafer, a step of bonding a support substrate to the ferroelectric wafer, and a surface of the ferroelectric substrate opposite to the surface on which the support substrate is bonded Forming a trench on the surface of the polished dielectric substrate to form an optical waveguide, forming a protective film on the surface of the ferroelectric wafer on which the optical waveguide is formed, A process for producing an SHG element comprising: a step of bonding a silicon substrate to a surface of a ferroelectric wafer on which a protective film is formed; and a step of dividing the ferroelectric wafer bonded with the silicon substrate into pieces. Method. 分極反転領域を有する強誘電体基板と、この強誘電体基板の主面に形成された光導波路と、前記強誘電体基板の主面に設けられた保護膜と、前記強誘電体基板の裏面に設けられた支持基板とを備え、前記保護膜の主面にシリコン基板を貼り合わせるとともに、前記強誘電体基板、保護膜およびシリコン基板の端面で形成される前記光導波路の入出射面を同一研磨面としたことを特徴とするSHG素子。 A ferroelectric substrate having a domain-inverted region, an optical waveguide formed on the main surface of the ferroelectric substrate, a protective film provided on the main surface of the ferroelectric substrate, and a back surface of the ferroelectric substrate A silicon substrate is bonded to the main surface of the protective film, and the input / output surfaces of the optical waveguide formed by the end surfaces of the ferroelectric substrate, the protective film, and the silicon substrate are the same. A SHG element having a polished surface.
JP2008030252A 2008-02-12 2008-02-12 Shg element and method of manufacturing the same Pending JP2009192588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008030252A JP2009192588A (en) 2008-02-12 2008-02-12 Shg element and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008030252A JP2009192588A (en) 2008-02-12 2008-02-12 Shg element and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2009192588A true JP2009192588A (en) 2009-08-27

Family

ID=41074693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008030252A Pending JP2009192588A (en) 2008-02-12 2008-02-12 Shg element and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2009192588A (en)

Similar Documents

Publication Publication Date Title
JP2003140214A (en) Method of manufacturing thin-film substrate for wavelength conversion element and method of manufacturing wavelength conversion element
JP2008052108A (en) Method of producing slab type two-dimensional photonic crystal structure
JP2009217009A (en) Harmonic wave generator
CN102841481A (en) Optical device and method for manufacturing optical device
US7710638B2 (en) Wavelength conversion devices
JP2010156787A (en) Method for manufacturing optical functional element
JP4806427B2 (en) Wavelength conversion element and manufacturing method thereof
JP2009192588A (en) Shg element and method of manufacturing the same
JP7346876B2 (en) Optical waveguide device
JP2009217133A (en) Harmonic wave generator
US7589886B1 (en) Wavelength converter structure and method for preparing the same
JP2009271496A (en) Method of fabricating optical functional element
JP2008209451A (en) Wavelength conversion element
JP2004295089A (en) Compound substrate and method for manufacturing the same
JP2013097072A (en) Laser source and method for manufacturing laser source
JP2002139755A (en) Wavelength conversion element and its manufacturing method
KR100923458B1 (en) A optical wavelength converter apparatus and a method thereof
JP3999748B2 (en) Method for manufacturing wavelength conversion element
WO2011024781A1 (en) Wavelength conversion element and method for manufacturing same
JP2007079465A (en) Optical control element and its manufacturing method
JP2012141338A (en) Optical waveguide element
JP6107331B2 (en) Optical waveguide device
KR100721318B1 (en) Fabricating method for quasi-phase- matched waveguides
JP4333534B2 (en) Optical waveguide manufacturing method
JP5556787B2 (en) Manufacturing method of light control element