JP2009191764A - Hermetic compressor - Google Patents

Hermetic compressor Download PDF

Info

Publication number
JP2009191764A
JP2009191764A JP2008034153A JP2008034153A JP2009191764A JP 2009191764 A JP2009191764 A JP 2009191764A JP 2008034153 A JP2008034153 A JP 2008034153A JP 2008034153 A JP2008034153 A JP 2008034153A JP 2009191764 A JP2009191764 A JP 2009191764A
Authority
JP
Japan
Prior art keywords
suction
recess
suction hole
hermetic compressor
valve plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008034153A
Other languages
Japanese (ja)
Inventor
Jun Sato
純 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008034153A priority Critical patent/JP2009191764A/en
Publication of JP2009191764A publication Critical patent/JP2009191764A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compressor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hermetic compressor of high refrigeration capacity and efficiency in which a suction reed opens earlier and it is made easier to fill refrigerant into a compression chamber since the suction reed is pushed and opened by expansion force of high pressure refrigerant remaining in a recess. <P>SOLUTION: A valve plate 133 is provided with the recess 141 surrounding a whole circumference or a part of a suction hole 131 at a seat surface 138 of the valve plate 133 on which a head part 139 of the suction reed 135 is seated, and is provided with an extended groove 143 providing communication between a non-seating surface 142 on which the head part 139 is not seated and the recess 141. Also, the valve plate is provided with a suction read seat surface 145 formed by the recess 141 and the suction hole 131. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は家庭用冷蔵庫、自動販売機及びエアコン、ヒートポンプ等の冷凍サイクルに使用される密閉型圧縮機に関するものである。   The present invention relates to a hermetic compressor used in a refrigeration cycle such as a household refrigerator, a vending machine, an air conditioner, and a heat pump.

この種の密閉型圧縮機は、電動要素と機械要素とを密閉容器に冷媒と共に収納し、シリンダの開口端に固定されたバルブプレートと吸入孔の開閉を行う吸入リードを備え、吸入リードの開閉により、冷媒を吸入、吐出する動作をするものであり、近年、吸入リードの動作性の向上による高効率化が求められている(例えば、特許文献1参照)。   This type of hermetic compressor stores an electric element and a mechanical element together with a refrigerant in a hermetic container, and includes a valve plate fixed to the opening end of the cylinder and a suction lead that opens and closes the suction hole. Thus, the operation of sucking and discharging the refrigerant is performed. In recent years, high efficiency has been demanded by improving the operability of the suction lead (for example, see Patent Document 1).

以下、図面を参照しながら上記従来の密閉型圧縮機について説明する。   The conventional hermetic compressor will be described below with reference to the drawings.

図6は、特許文献1に記載された従来の密閉型圧縮機の密閉容器を切り欠いてシリンダ側を手前にして内部構成部品を見た場合の正面図、図7は、従来の密閉型圧縮機を左右に切断した場合の縦断面図である。また、図8は、図7の要部拡大断面図であり、吸入リードが開いた吸入行程の要部断面図である。   FIG. 6 is a front view of a conventional hermetic compressor described in Patent Document 1 in which a hermetic container is cut out and the internal components are viewed with the cylinder side facing forward, and FIG. 7 is a conventional hermetic compressor. It is a longitudinal cross-sectional view at the time of cutting a machine into right and left. FIG. 8 is an enlarged cross-sectional view of the main part of FIG. 7, and is a cross-sectional view of the main part of the suction stroke in which the suction lead is opened.

図6から図8において、密閉容器1内には、冷媒2が満たされるとともに、底面には冷凍機油3が貯留され、電動要素4と圧縮要素5はともに密閉容器1内に弾性支持されている。   6 to 8, the airtight container 1 is filled with the refrigerant 2, the refrigerating machine oil 3 is stored on the bottom surface, and both the electric element 4 and the compression element 5 are elastically supported in the airtight container 1. .

電動要素4は、回転子11と固定子12よりなり、電動要素4は圧縮要素5の上方に配置され、電動要素4によって駆動されている。   The electric element 4 includes a rotor 11 and a stator 12. The electric element 4 is disposed above the compression element 5 and is driven by the electric element 4.

次に、圧縮要素5の詳細を以下に説明する。   Next, details of the compression element 5 will be described below.

シャフト13は、回転子11を嵌合係止した主軸部14と、主軸部14に対して偏芯して形成された偏芯部15を備えている。シリンダブロック21は、略円筒形のシリンダ22を有し、シリンダ22には、ピストン23が遊嵌され、ピストン23は、偏芯部15と連結手段24によって連結されている。   The shaft 13 includes a main shaft portion 14 that engages and locks the rotor 11, and an eccentric portion 15 that is formed eccentric to the main shaft portion 14. The cylinder block 21 has a substantially cylindrical cylinder 22. A piston 23 is loosely fitted in the cylinder 22, and the piston 23 is connected to the eccentric portion 15 by a connecting means 24.

密閉容器1の外部の冷凍サイクル(図示せず)から、冷媒2を吸入する吸入パイプ31が密閉容器1を貫通して取り付けられており、吸入パイプ31は、ジョイントスプリング32と吸入管33を介して、PBTなどの断熱性のあるプラスチックよりなる吸入マフラー34に連通している。   A suction pipe 31 for sucking the refrigerant 2 from a refrigeration cycle (not shown) outside the sealed container 1 is attached through the sealed container 1, and the suction pipe 31 is connected via a joint spring 32 and a suction pipe 33. The suction muffler 34 is made of a heat-insulating plastic such as PBT.

吸入マフラー34は、シリンダヘッド35の吸入口36に連通している。シリンダヘッド35は、シリンダブロック21にバルブプレート37を挟み込んで固定されている。   The suction muffler 34 communicates with the suction port 36 of the cylinder head 35. The cylinder head 35 is fixed by sandwiching a valve plate 37 in the cylinder block 21.

以上のように構成された密閉型圧縮機について、以下その動作を説明する。   The operation of the hermetic compressor configured as described above will be described below.

電動要素4の固定子12に電気が供給されると、回転子11が回転し、回転子11に嵌合係止された主軸部14が回転する。   When electricity is supplied to the stator 12 of the electric element 4, the rotor 11 rotates and the main shaft portion 14 fitted and locked to the rotor 11 rotates.

主軸部14の回転により、シャフト13の偏芯部15が偏芯運動をし、偏芯部15と連結手段24によって連結されたピストン23がシリンダ22内を往復運動し、圧縮室41内で冷媒2の吸入と圧縮が繰り返される。   As the main shaft portion 14 rotates, the eccentric portion 15 of the shaft 13 performs an eccentric motion, and the piston 23 connected to the eccentric portion 15 by the connecting means 24 reciprocates in the cylinder 22, and the refrigerant in the compression chamber 41. 2 inhalation and compression are repeated.

冷媒2は、密閉容器1外部の冷凍サイクル(図示せず)より、密閉容器1に固着された吸入パイプ31を通り、ジョイントスプリング32、吸入管33を通って吸入マフラー34に吸入される。   The refrigerant 2 passes through a suction pipe 31 fixed to the sealed container 1 from a refrigeration cycle (not shown) outside the sealed container 1, and is sucked into the suction muffler 34 through a joint spring 32 and a suction pipe 33.

吸入マフラー34は、シリンダヘッド35の吸入口36と、吸入口36とバルブプレート37に穿設された吸入孔38に連通しており、冷媒2は、吸入リード39が開くことによって、吸入口36と吸入孔38を通って圧縮室41内に吸入される。
特開2000−291559号公報
The suction muffler 34 communicates with a suction port 36 of the cylinder head 35, and a suction hole 38 formed in the suction port 36 and the valve plate 37. The refrigerant 2 is opened when the suction lead 39 is opened. And is sucked into the compression chamber 41 through the suction hole 38.
JP 2000-291559 A

しかしながら、上記従来の構成では、吸入リード39とバルブプレート37との間に付着した冷凍機油3の粘性による付着力が大きいために、吸入行程が進んで圧縮室41内の圧力が大きく低下するまで吸入リード39は開かずに、圧縮室41への冷媒2の吸入開始は遅くなり、吸入損失の増大や、圧縮室41への冷媒2の充填量の不足による冷凍能力の低下、効率の低下が発生するという課題を有していた。   However, in the above-described conventional configuration, since the adhesion force due to the viscosity of the refrigerating machine oil 3 adhering between the suction lead 39 and the valve plate 37 is large, the suction stroke proceeds and the pressure in the compression chamber 41 greatly decreases. The suction lead 39 is not opened, and the start of suction of the refrigerant 2 into the compression chamber 41 is delayed, and an increase in suction loss, a decrease in refrigerating capacity due to an insufficient amount of refrigerant 2 filled in the compression chamber 41, and a decrease in efficiency. It had the problem of occurring.

本発明は、上記従来の課題を解決するもので、吸入行程の開始に伴って速やかに吸入リードが開いて圧縮室内に冷媒を吸入するため、吸入損失が小さく、冷凍能力、効率の高い密閉型圧縮機を提供することを目的とする。   The present invention solves the above-described conventional problems, and since the suction lead is quickly opened and the refrigerant is sucked into the compression chamber with the start of the suction stroke, the suction type has a small suction loss, a high refrigerating capacity and high efficiency. An object is to provide a compressor.

上記従来の課題を解決するために、本発明の密閉型圧縮機は、吸入孔を開閉するヘッド部を有する吸入リードを備え、ヘッド部が着座するバルブプレートの着座面に、吸入孔の全周又は一部を取り囲む凹部を設けるとともに、凹部とヘッドが着座しない非着座面とを連通する延出溝を備えたもので、圧縮行程時に、延出溝を介して高圧圧力の冷媒を凹部に導いて溜め、吸入行程の開始とともに凹部に溜まった冷媒の高圧圧力により、吸入リードを押し開くため、吸入リードの開きが早くなるという作用を有する。   In order to solve the above-described conventional problems, a hermetic compressor according to the present invention includes a suction lead having a head portion that opens and closes the suction hole, and the entire circumference of the suction hole is formed on the seating surface of the valve plate on which the head portion is seated. Alternatively, a recess that surrounds a part is provided, and an extension groove that communicates the recess and the non-sitting surface on which the head is not seated is provided. During the compression stroke, high-pressure refrigerant is guided to the recess through the extension groove. Since the suction lead is pushed open by the high pressure of the refrigerant accumulated in the recess as the suction stroke starts, the suction lead opens faster.

本発明の密閉型圧縮機は、吸入孔を開閉するヘッド部を有する吸入リードを備え、ヘッド部が着座するバルブプレートの着座面に、吸入孔の全周又は一部を取り囲む凹部を設けるとともに、凹部とヘッドが着座しない非着座面とを連通する延出溝を備えたもので、吸入行程の開始に伴って速やかに吸入リードが開いて圧縮室内に冷媒を吸入するため、吸入損失が小さく、冷凍能力、効率の高い密閉型圧縮機を提供することができる。   The hermetic compressor of the present invention includes a suction lead having a head part that opens and closes the suction hole, and a seating surface of the valve plate on which the head part is seated is provided with a recess surrounding the entire circumference or part of the suction hole. With an extension groove that communicates the recess and the non-sitting surface where the head does not sit, the suction lead opens quickly with the start of the suction stroke, and the refrigerant is sucked into the compression chamber, so the suction loss is small, A hermetic compressor with high refrigerating capacity and efficiency can be provided.

請求項1に記載の発明は、シリンダブロックに形成されたシリンダと、前記シリンダ内を往復自在に挿入されたピストンと、前記シリンダの端部に備えられ、吸入孔が穿設されたバルブプレートと、板ばね材によって形成され、前記バルブプレートの前記シリンダ側に設けられて前記吸入孔を開閉する吸入リードとを備え、前記吸入リードは前記吸入孔を開閉するヘッド部を備え、前記ヘッド部が着座する前記バルブプレートの着座面に、前記吸入孔の全周又は一部を取り囲む凹部を設けるとともに、前記凹部と前記ヘッドが着座しない非着座面とを連通する延出溝を備えたものであり、圧縮行程時には、高圧圧力の冷媒を、延出溝を介してヘッド部が着座する吸入孔を取り囲む凹部に導いて溜め、吸入行程の開始とともに凹部に溜まった冷媒の高圧圧力により、吸入リードを押し開くため、吸入行程の開始に伴って速やかに吸入リードが開いて圧縮室内に冷媒を吸入するため、吸入損失が小さく、冷凍能力、効率の高い密閉型圧縮機を提供することができる。   According to a first aspect of the present invention, there is provided a cylinder formed in a cylinder block, a piston inserted reciprocally in the cylinder, a valve plate provided at an end of the cylinder and having a suction hole formed therein. A suction lead formed by a leaf spring material and provided on the cylinder side of the valve plate to open and close the suction hole, and the suction lead includes a head portion that opens and closes the suction hole. The seating surface of the valve plate to be seated is provided with a recess surrounding the entire circumference or part of the suction hole, and an extension groove that communicates the recess with a non-sitting surface on which the head is not seated. During the compression stroke, the high-pressure refrigerant is introduced into the recess surrounding the suction hole through which the head portion is seated via the extending groove, and stored in the recess as the suction stroke starts. The high-pressure pressure pushes the suction lead open, and as the suction stroke starts, the suction lead opens quickly and sucks refrigerant into the compression chamber. Can be provided.

請求項2に記載の発明は、請求項1に記載の発明において、吸入孔の投影面積に対する凹部の投影面積の比が1%〜5%の範囲としたものであり、吸入行程の開始に伴って速やかに吸入リードが開くように、最小限の高圧冷媒を溜める凹部とするとともに、凹部に溜まった高圧冷媒による再膨張損失を抑制し、請求項1に記載の発明の効果に加えてさらに、圧縮室内への冷媒の充填量が向上し、高い冷凍能力が得られるとともに、効率も向上させることができる。   According to a second aspect of the present invention, in the first aspect of the invention, the ratio of the projected area of the recess to the projected area of the suction hole is in the range of 1% to 5%. In addition to the effect of the invention according to claim 1, in addition to the effect of the invention according to claim 1, a recess for storing a minimum of high-pressure refrigerant is provided so that the suction lead can be quickly opened. The charging amount of the refrigerant into the compression chamber is improved, high refrigeration capacity is obtained, and efficiency can be improved.

請求項3に記載の発明は、請求項1または2に記載の発明において、凹部と吸入孔により形成された吸入リードシート面を備え、前記吸入孔の投影面積に対する前記吸入リードシート面の投影面積の比が3%〜60%の範囲としたものであり、吸入孔部と凹部とのシール性を確保するとともに、吸入リードシート面と吸入リードとの間に付着した冷凍機油の粘性抵抗を抑制することができるため、請求項1または2に記載の発明の効果に加えてさらに、吸入リードシート面におけるシール性を確保しつつ吸入リードの開きが早くなり、圧縮室内への冷媒の充填量が向上し、高い冷凍能力が得られるとともに、効率も向上させることができる。   The invention according to claim 3 is the invention according to claim 1 or 2, further comprising a suction lead sheet surface formed by a recess and a suction hole, and a projected area of the suction lead sheet surface with respect to a projected area of the suction hole. The ratio is 3% to 60%, ensuring sealing between the suction hole and the recess, and suppressing the viscous resistance of the refrigerating machine oil adhering between the suction lead sheet surface and the suction lead. Therefore, in addition to the effect of the invention described in claim 1 or 2, the suction lead opens more quickly while ensuring the sealing performance on the suction lead sheet surface, and the amount of refrigerant filled in the compression chamber is reduced. It is possible to improve and obtain a high refrigeration capacity and to improve the efficiency.

請求項4に記載の発明は、請求項1から3のいずれか一項に記載の発明において、吸入リードシート面は環状であり、幅が0.3mm〜0.8mmの範囲としたものであり、吸入孔部と凹部とのシール性を確保するとともに、吸入リードシート面と吸入リードとの間に付着した冷凍機油の粘性抵抗を抑制することができるため、請求項1から3のいずれか一項に記載の発明の効果に加えてさらに、吸入リードシート面におけるシール性を確保しつつ吸入リードの開きが早くなり、圧縮室内への冷媒の充填量が向上し、高い冷凍能力が得られるとともに、効率も向上させることができ、さらに加工が容易なため加工工数を低減でき低コストで製作することができる。   The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein the suction lead sheet surface is annular and the width is in the range of 0.3 mm to 0.8 mm. The sealability between the suction hole and the recess can be ensured, and the viscous resistance of the refrigerating machine oil adhered between the suction lead sheet surface and the suction lead can be suppressed, so that any one of claims 1 to 3 can be used. In addition to the effects of the invention described in the item, the suction lead opens more quickly while ensuring the sealing performance on the suction lead sheet surface, the amount of refrigerant filled in the compression chamber is improved, and high refrigeration capacity is obtained. Further, the efficiency can be improved, and further, the processing is easy, so the number of processing steps can be reduced and the manufacturing can be performed at low cost.

請求項5に記載の発明は、請求項1から4のいずれか一項に記載の発明において、非着座面と連通する延出溝の断面積は、前記非着座面側の開口部よりも吸入孔側の開口部の断面積を小さくなるように形成したものであり、圧縮行程時に、高圧圧力の冷媒が延出溝を介してヘッド部が着座する吸入孔を取り囲む凹部に導かれやすくなり、また吸入行程の開始直後において、凹部に充填された高圧圧力の冷媒が延出溝から漏れにくくすることができ、請求項1から4のいずれか一項に記載の発明の効果に加えてさらに、吸入リードの開きが早くなり、圧縮室内への冷媒の充填量が向上し、高い冷凍能力が得られるとともに、効率も向上させることができる。   According to a fifth aspect of the present invention, in the invention according to any one of the first to fourth aspects, the cross-sectional area of the extending groove communicating with the non-sitting surface is greater than the opening on the non-sitting surface side. It is formed so as to reduce the cross-sectional area of the opening on the hole side, and during the compression stroke, the high-pressure refrigerant is easily guided to the recess surrounding the suction hole where the head portion is seated via the extension groove, Further, immediately after the start of the suction stroke, the high-pressure refrigerant filled in the recess can be made difficult to leak from the extension groove, and in addition to the effect of the invention according to any one of claims 1 to 4, The suction lead opens faster, the amount of refrigerant filled in the compression chamber is improved, high refrigeration capacity is obtained, and efficiency can be improved.

請求項6に記載の発明は、請求項1から5のいずれか一項に記載の発明において、凹部は略V字状の断面形状をなすものであり、ヘッド部に対向する凹部の投影面積を維持しつつ、凹部の容積を低減することができるため、凹部に溜まった冷媒による再膨張損失量を抑制することができ、請求項1から5のいずれか一項に記載の発明の効果に加えてさらに、圧縮室内への冷媒の充填量が向上し、高い冷凍能力が得られるとともに、効率も向上させることができる。   According to a sixth aspect of the present invention, in the invention according to any one of the first to fifth aspects, the concave portion has a substantially V-shaped cross-sectional shape, and the projected area of the concave portion facing the head portion is determined. Since the volume of the recess can be reduced while maintaining, the amount of re-expansion loss due to the refrigerant accumulated in the recess can be suppressed, and in addition to the effect of the invention according to any one of claims 1 to 5. In addition, the amount of refrigerant filled in the compression chamber is improved, high refrigeration capacity is obtained, and efficiency can be improved.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における密閉型圧縮機の縦断面図、図2は、同実施の形態の密閉型圧縮機におけるバルブプレートの正面図、図3は、吸入リードとの相対位置を示した図2の要部拡大図、図4は、図2のA−A線における縦断面図、図5は、同実施の形態の密閉型圧縮機における吸入リードの正面図である。
(Embodiment 1)
1 is a longitudinal sectional view of a hermetic compressor according to Embodiment 1 of the present invention, FIG. 2 is a front view of a valve plate in the hermetic compressor of the same embodiment, and FIG. 3 is relative to a suction lead. FIG. 4 is a longitudinal sectional view taken along the line AA in FIG. 2, and FIG. 5 is a front view of the suction lead in the hermetic compressor according to the embodiment.

図2において、バルブプレート133に対する吸入リード135の相対位置を説明するために、吸入リード135を波点線で示している。   In FIG. 2, in order to explain the relative position of the suction lead 135 with respect to the valve plate 133, the suction lead 135 is indicated by a dotted line.

図1から図5において、密閉容器101には、冷媒103が満たされるとともに、底面には冷凍機油105が貯留され、電動要素107と圧縮要素109はともに密閉容器101内に弾性支持されている。   In FIGS. 1 to 5, the sealed container 101 is filled with the refrigerant 103, the refrigerating machine oil 105 is stored on the bottom surface, and both the electric element 107 and the compression element 109 are elastically supported in the sealed container 101.

電動要素107は、回転子111と固定子113よりなり、電動要素107は圧縮要素109の下方に配置され、電動要素107によって駆動される。   The electric element 107 includes a rotor 111 and a stator 113. The electric element 107 is disposed below the compression element 109 and is driven by the electric element 107.

次に圧縮要素109の詳細を以下に説明する。   Next, details of the compression element 109 will be described below.

シャフト115は、回転子111を嵌合係止した主軸部117と、主軸部117に対して偏芯して形成された偏芯部119を備えている。シリンダブロック121は、略円筒形のシリンダ123を有し、シリンダ123には、ピストン125が遊嵌され、ピストン125は、偏芯部119と連結手段127によって連結されている。   The shaft 115 includes a main shaft portion 117 that engages and locks the rotor 111, and an eccentric portion 119 that is formed eccentric to the main shaft portion 117. The cylinder block 121 has a substantially cylindrical cylinder 123, and a piston 125 is loosely fitted in the cylinder 123, and the piston 125 is connected to the eccentric portion 119 by a connecting means 127.

シリンダ123の開口端の一端はピストン125により塞がれて、他端は、吸入孔131が穿設されたバルブプレート133と、バルブプレート133のシリンダ123側に設けられ、吸入孔131を開閉する吸入リード135によって塞がれて、シリンダ123内に圧縮室137が形成されている。   One end of the opening end of the cylinder 123 is closed by the piston 125, and the other end is provided on the side of the cylinder 123 of the valve plate 133 having the suction hole 131 and the valve plate 133 to open and close the suction hole 131. A compression chamber 137 is formed in the cylinder 123 by being blocked by the suction lead 135.

吸入リード135は、吸入孔131を開閉するヘッド部139を備えている。   The suction lead 135 includes a head portion 139 that opens and closes the suction hole 131.

バルブプレート133は、吸入リード135のヘッド部139が着座するバルブプレート133の着座面138に、吸入孔131の全周又は一部を取り囲む凹部141を設けるとともに、ヘッド部139が着座しない非着座面142と凹部141とを連通する延出溝143を備えている。また、凹部141と吸入孔131により形成された吸入リードシート面145を備えている。   The valve plate 133 is provided with a recess 141 surrounding the entire circumference or part of the suction hole 131 on the seating surface 138 of the valve plate 133 on which the head portion 139 of the suction lead 135 is seated, and the non-sitting surface on which the head portion 139 is not seated. An extension groove 143 that communicates 142 and the recess 141 is provided. In addition, a suction lead sheet surface 145 formed by the recess 141 and the suction hole 131 is provided.

吸入される冷媒103は、吸入室147からバルブプレート133に穿設された吸入孔131を通り、吸入リード135が開かれた後に、圧縮室137に導かれる。   The sucked refrigerant 103 passes through a suction hole 131 formed in the valve plate 133 from the suction chamber 147 and is guided to the compression chamber 137 after the suction lead 135 is opened.

以上のように構成された密閉型圧縮機について、以下その動作、作用を説明する。   The operation and action of the hermetic compressor configured as described above will be described below.

電動要素107の固定子113に電気が供給されると、回転子111が回転し、回転子111に嵌合係止された主軸部117が回転する。   When electricity is supplied to the stator 113 of the electric element 107, the rotor 111 rotates, and the main shaft portion 117 fitted and locked to the rotor 111 rotates.

主軸部117の回転により、シャフト115の偏芯部119が偏芯運動をし、偏芯部119と連結手段127によって連結されたピストン125がシリンダ123内を往復運動し、圧縮室137内で冷媒103の吸入と圧縮が繰り返される。   The eccentric portion 119 of the shaft 115 performs an eccentric motion by the rotation of the main shaft portion 117, and the piston 125 connected to the eccentric portion 119 by the connecting means 127 reciprocates in the cylinder 123, and the refrigerant in the compression chamber 137. 103 inhalation and compression are repeated.

吸入リード135は、吸入行程の時は圧縮室137の内側に押し曲げられることにより、バルブプレート133に穿設された吸入孔131が開放され、低圧圧力の冷媒103が圧縮室137内に吸い込まれる。   The suction lead 135 is pushed and bent inside the compression chamber 137 during the suction stroke, whereby the suction hole 131 formed in the valve plate 133 is opened and the low-pressure refrigerant 103 is sucked into the compression chamber 137. .

一方、圧縮行程の時は圧縮室137内の圧力の増加で、吸入孔131の圧力より、圧縮室137内の圧力が高くなると、吸入リード135のヘッド部139は、吸入孔131を閉じ、その後、圧縮室137内の容積変化により更に圧力が増加して、高圧圧力の冷媒103は、吐出孔(図示せず)より吐出される。   On the other hand, during the compression stroke, when the pressure in the compression chamber 137 becomes higher than the pressure in the suction hole 131 due to an increase in the pressure in the compression chamber 137, the head portion 139 of the suction lead 135 closes the suction hole 131, and then The pressure further increases due to the volume change in the compression chamber 137, and the high-pressure refrigerant 103 is discharged from a discharge hole (not shown).

吸入行程において吸入リード135が開くためには、吸入リード135を開かせる力(F1)が開くことを抑制する力(F2)を上回ることが必要である。   In order to open the suction lead 135 in the suction stroke, the force (F1) for opening the suction lead 135 needs to exceed the force (F2) for suppressing the opening.

ここで、吸入リード135を開かせる力(F1)は、吸入室147の圧力と圧縮室137の圧力との圧力差(P)とバルブプレート133に穿設された吸入孔131の投影面積(A)との積に、凹部141に貯留された高圧圧力の冷媒による膨張力(E)を加算したものである。   Here, the force (F1) for opening the suction lead 135 is the pressure difference (P) between the pressure in the suction chamber 147 and the pressure in the compression chamber 137, and the projected area (A) of the suction hole 131 formed in the valve plate 133. ) And an expansion force (E) due to the high-pressure refrigerant stored in the recess 141.

また、吸入リード135が開くことを抑制する力(F2)は、吸入リード135のばね力(a)と吸入リード135とバルブプレート133に設けられた吸入リードシート面145との間に付着した冷凍機油105の粘性による付着力(b)を加算したものである。   Further, the force (F2) for suppressing the opening of the suction lead 135 is the refrigeration adhering between the spring force (a) of the suction lead 135 and the suction lead 135 and the suction lead sheet surface 145 provided on the valve plate 133. The adhesion force (b) due to the viscosity of the machine oil 105 is added.

ここで、吸入リード135のばね力(a)は、吸入リード135の板厚及び形状に影響を受け、吸入リード135とバルブプレート133に設けられた吸入リードシート面145との間に付着した冷凍機油105の粘性による付着力(b)は、吸入リードシート面145の面積・幅及び冷凍機油105の粘度に影響を受ける。   Here, the spring force (a) of the suction lead 135 is affected by the plate thickness and shape of the suction lead 135, and the refrigeration adhering between the suction lead 135 and the suction lead seat surface 145 provided on the valve plate 133. The adhesion force (b) due to the viscosity of the machine oil 105 is affected by the area / width of the suction lead sheet surface 145 and the viscosity of the refrigerating machine oil 105.

本発明では、吸入リード135のヘッド部139が着座するバルブプレート133の着座面138に、吸入孔131の全周又は一部を取り囲む凹部141を設けるとともに、凹部141とヘッド部139が着座しない非着座面142とを連通する延出溝143を備えることで、圧縮行程時には、吸入リード135のヘッド部139は、バルブプレート133に穿設された吸入孔131を封止するとともに、吸入リード135のヘッド部139はバルププレート133に備えられた凹部141を封止し、延出溝143を介して高圧圧力の冷媒103を凹部141に溜める。   In the present invention, the seating surface 138 of the valve plate 133 on which the head portion 139 of the suction lead 135 is seated is provided with a recess 141 that surrounds the entire circumference or part of the suction hole 131, and the recess 141 and the head portion 139 are not seated. By providing the extending groove 143 that communicates with the seating surface 142, the head portion 139 of the suction lead 135 seals the suction hole 131 formed in the valve plate 133 during the compression stroke, and the suction lead 135. The head portion 139 seals the concave portion 141 provided in the valve plate 133 and accumulates the high-pressure refrigerant 103 in the concave portion 141 through the extending groove 143.

次に、吸入行程時には、凹部141に溜まった高圧圧力の冷媒103は、圧縮室137内の圧力低下とともに、ただちに膨張する。この膨張力(E)により、吸入リード135のヘッド部139は、吸入孔131が穿設されたバルブプレート133の着座面138から押し開かれ、吸入行程の開始に伴って速やかに吸入孔131が開放される。   Next, during the intake stroke, the high-pressure refrigerant 103 accumulated in the recess 141 immediately expands as the pressure in the compression chamber 137 decreases. Due to this expansion force (E), the head portion 139 of the suction lead 135 is pushed open from the seating surface 138 of the valve plate 133 in which the suction hole 131 is formed, and the suction hole 131 is quickly opened as the suction stroke starts. Opened.

従って、吸入行程の開始に伴って速やかに、吸入リード135が開いて圧縮室137内に冷媒103を吸入するため、吸入損失が小さく、冷凍能力、効率の高い密閉型圧縮機を提供することができる。   Therefore, since the suction lead 135 is opened quickly and the refrigerant 103 is sucked into the compression chamber 137 as the suction stroke starts, it is possible to provide a hermetic compressor with low suction loss and high refrigeration capacity and efficiency. it can.

また、吸入孔131の投影面積に対する凹部141の投影面積の比が1%〜5%の範囲としたもので、吸入行程の開始に伴って速やかに吸入リード135が開くよう、最小限の高圧圧力の冷媒103を溜める凹部141とするとともに、凹部141に溜まった高圧圧力の冷媒103による再膨張損失を抑制するため、さらに圧縮室137内への冷媒103の充填量が向上し、高い冷凍能力が得られるとともに、効率も向上させることができる。   In addition, the ratio of the projected area of the recess 141 to the projected area of the suction hole 131 is in the range of 1% to 5%, and the minimum high pressure pressure is set so that the suction lead 135 is quickly opened with the start of the suction stroke. In order to reduce the re-expansion loss due to the high-pressure refrigerant 103 accumulated in the recess 141, the charging amount of the refrigerant 103 into the compression chamber 137 is further improved, and high refrigerating capacity is achieved. As a result, the efficiency can be improved.

また、凹部141と吸入孔131により形成された吸入リードシート面145を備え、吸入孔131の投影面積に対する吸入リードシート面145の投影面積の比が3%〜60%の範囲としたもので、吸入孔131部と凹部141とのシール性を確保するとともに、吸入リードシート面145と吸入リード135との間に付着した冷凍機油105の粘性抵抗を抑制することができるため、吸入リードシート面145におけるシール性を確保しつつ、吸入リード135と吸入リードシート面145との付着力を抑制することができることから、さらに吸入リード135の開きが早くなり、圧縮室137への冷媒103の充填量が向上し、高い冷凍能力が得られるとともに、効率も向上させることができる。   In addition, a suction lead sheet surface 145 formed by the recess 141 and the suction hole 131 is provided, and the ratio of the projected area of the suction lead sheet surface 145 to the projected area of the suction hole 131 is in the range of 3% to 60%. Since the sealing performance between the suction hole 131 and the recess 141 can be secured and the viscous resistance of the refrigerating machine oil 105 adhering between the suction lead sheet surface 145 and the suction lead 135 can be suppressed, the suction lead sheet surface 145 Since the adhesion force between the suction lead 135 and the suction lead sheet surface 145 can be suppressed while ensuring the sealing performance at the same time, the suction lead 135 opens more quickly, and the amount of the refrigerant 103 filling the compression chamber 137 is increased. It is possible to improve and obtain a high refrigeration capacity and to improve the efficiency.

また、吸入リードシート面145は環状であり、幅が0.3mm〜0.8mmの範囲としたもので、吸入孔131部と凹部141とのシール性を確保するとともに、吸入リードシート面145と吸入リード135との間に付着した冷凍機油105の粘性抵抗を抑制することができ、吸入リード135と吸入リードシート面145との付着力を抑制させることができるため、さらに吸入リード135の開きが早くなり、圧縮室137内への冷媒103の充填量が向上し、高い冷凍能力が得られるとともに、効率も向上させることができ、さらに加工が容易なため加工工数を低減でき低コストで製作することができる。   The suction lead sheet surface 145 has an annular shape and a width in the range of 0.3 mm to 0.8 mm. The suction lead sheet surface 145 secures the sealing performance between the suction hole 131 and the recess 141, and Since the viscous resistance of the refrigerating machine oil 105 adhering to the suction lead 135 can be suppressed and the adhesion force between the suction lead 135 and the suction lead sheet surface 145 can be suppressed, the suction lead 135 is further opened. Faster, the charging amount of the refrigerant 103 into the compression chamber 137 is improved, high refrigeration capacity can be obtained, the efficiency can be improved, and the processing is easy, so the number of processing steps can be reduced and the manufacturing can be performed at low cost. be able to.

また、非着座面142と連通する延出溝143の断面積は、非着座面142側の開口部よりも吸入孔131側の開口部の断面積を小さくなるように形成したもので、圧縮行程時に、高圧圧力の冷媒103が延出溝143を介してヘッド部139が着座する吸入孔131を取り囲む凹部141に導かれやすくなり、また吸入行程の開始直後において、凹部141に充填された高圧圧力の冷媒103が延出溝143から漏れにくくすることができることから、凹部141に溜められた高圧圧力の冷媒の膨張力を十分に生かせることから、さらに吸入リード135の開きが早くなり、圧縮室137内への冷媒103の充填量が向上し、高い冷凍能力が得られるとともに、効率も向上させることができる。   The cross-sectional area of the extending groove 143 communicating with the non-sitting surface 142 is formed so that the cross-sectional area of the opening on the suction hole 131 side is smaller than the opening on the non-sitting surface 142 side. Sometimes, the high-pressure refrigerant 103 is easily guided to the concave portion 141 surrounding the suction hole 131 where the head portion 139 is seated via the extending groove 143, and the high-pressure pressure filled in the concave portion 141 immediately after the start of the suction stroke. The refrigerant 103 can be made difficult to leak from the extending groove 143, and the expansion force of the high-pressure refrigerant stored in the recess 141 can be sufficiently utilized. Therefore, the suction lead 135 is opened more quickly, and the compression chamber 137 is opened. The charging amount of the refrigerant 103 into the inside is improved, high refrigeration capacity is obtained, and efficiency can be improved.

また、凹部141は、略V字状の断面形状をなすもので、凹部141の投影面積を維持することで、吸入リード135を押し上げる面圧を確保しつつ、凹部141の体積を小さくすることができることから、凹部141に溜まった冷媒103による再膨張損失量を抑制するため、さらに、圧縮室137内への冷媒103の充填量が向上し、冷凍能力が上がると共に、効率も向上させることができる。   The concave portion 141 has a substantially V-shaped cross-sectional shape. By maintaining the projected area of the concave portion 141, the volume of the concave portion 141 can be reduced while ensuring the surface pressure for pushing up the suction lead 135. Therefore, in order to suppress the amount of re-expansion loss due to the refrigerant 103 accumulated in the recess 141, the amount of the refrigerant 103 filled in the compression chamber 137 can be further improved, the refrigeration capacity can be increased, and the efficiency can be improved. .

なお、本実施の形態において、電動要素107がインバータであり、商用電源周波数以外の周波数で運転されるもので、吸入リード135の固有値と回転数が合った場合はよいが、回転数によっては、吸入リード135の固有値が一致せず、吸入リード135の開きが大幅に遅れたり、開き量が小さかったりする場合があるが、本発明では、どのような回転数においても、凹部141に溜めた高圧圧力の冷媒103による膨張力により、吸入行程の開始に伴って速やかに吸入リード135が押し開かれ、吸入孔131が開放されることから、圧縮室137内への冷媒103の充填量が向上し、インバータの回転数全域で高い冷凍能力が得られるとともに、効率も向上させることができる。   In the present embodiment, the electric element 107 is an inverter and is operated at a frequency other than the commercial power supply frequency, and it is good if the eigenvalue of the suction lead 135 matches the rotation speed, but depending on the rotation speed, The eigenvalues of the suction lead 135 do not match, and the opening of the suction lead 135 may be significantly delayed or the opening amount may be small. However, in the present invention, the high pressure accumulated in the recess 141 at any rotational speed. Due to the expansion force of the refrigerant 103 under pressure, the suction lead 135 is quickly pushed open with the start of the suction stroke, and the suction hole 131 is opened, so that the amount of the refrigerant 103 filled in the compression chamber 137 is improved. In addition, a high refrigeration capacity can be obtained over the entire rotation speed of the inverter, and the efficiency can be improved.

なお、本実施の形態において、使用する冷媒103をR600aとしたもので、R600aの場合、R134aなどの他の冷媒103と比べると吸入圧力が低いため、圧力差が得られにくく、吸入リード135が開くまでに時間を要していたが、本発明では、凹部141に溜まった高圧圧力の冷媒103による膨張力により、吸入行程の開始に伴って速やかに吸入リード135が押し開かれ、吸入孔131が開放されることから、特にR600aのような低圧圧力の低い冷媒103においても、圧縮室137内への冷媒103の充填量が向上し、高い冷凍能力が得られるとともに、効率も向上させることができる。   In the present embodiment, the refrigerant 103 to be used is R600a. In the case of R600a, the suction pressure is lower than that of other refrigerants 103 such as R134a, so that it is difficult to obtain a pressure difference. Although it took time to open, in the present invention, due to the expansion force of the high-pressure refrigerant 103 accumulated in the recess 141, the suction lead 135 is quickly pushed open with the start of the suction stroke, and the suction hole 131. Therefore, even in the refrigerant 103 having a low low pressure, such as R600a, the amount of the refrigerant 103 filled in the compression chamber 137 can be improved, so that a high refrigerating capacity can be obtained and the efficiency can be improved. it can.

以上のように、本発明にかかる密閉型圧縮機は、吸入リードは吸入孔を開閉するヘッド部を備え、ヘッド部が着座するバルブプレートの着座面に、吸入孔の全周又は一部を取り囲む凹部を設けるとともに、凹部とヘッド部が着座しない非着座面とを連通する延出溝を備えたもので、冷凍能力及び効率を向上させることができることから、家庭用冷蔵庫を初めとして、除湿機やショーケース、自販機等、冷凍サイクルを用いたあらゆる用途にも適用できる。   As described above, in the hermetic compressor according to the present invention, the suction lead includes the head portion that opens and closes the suction hole, and the seating surface of the valve plate on which the head portion is seated surrounds the entire circumference or part of the suction hole. It is provided with a recess and an extension groove that communicates the recess and the non-sitting surface on which the head portion does not sit, and can improve refrigeration capacity and efficiency. It can be applied to all uses using refrigeration cycles such as showcases and vending machines.

本発明の実施の形態1における密閉型圧縮機の縦断面図1 is a longitudinal sectional view of a hermetic compressor according to Embodiment 1 of the present invention. 同実施の形態の密閉型圧縮機におけるバルブプレートの正面図Front view of valve plate in hermetic compressor of the embodiment 吸入リードとの相対位置を示した図2の要部拡大図2 is an enlarged view of the main part of FIG. 2 showing the relative position to the suction lead. 図2のA−A線における縦断面図Longitudinal sectional view taken along line AA in FIG. 同実施の形態の密閉型圧縮機における吸入リードの正面図Front view of suction lead in hermetic compressor of the embodiment 従来の密閉型圧縮機の内部構成を示す正面図Front view showing the internal structure of a conventional hermetic compressor 従来の密閉型圧縮機の縦断面図Vertical section of a conventional hermetic compressor 図7の要部拡大断面図Fig. 7 is an enlarged cross-sectional view of the main part

符号の説明Explanation of symbols

121 シリンダブロック
123 シリンダ
125 ピストン
131 吸入孔
133 バルブプレート
135 吸入リード
138 着座面
139 ヘッド部
141 凹部
142 非着座面
143 延出溝
145 吸入リードシート面
121 Cylinder block 123 Cylinder 125 Piston 131 Suction hole 133 Valve plate 135 Suction lead 138 Seating surface 139 Head portion 141 Recess 142 Non-sitting surface 143 Extension groove 145 Suction lead sheet surface

Claims (6)

シリンダブロックに形成されたシリンダと、前記シリンダ内を往復自在に挿入されたピストンと、前記シリンダの端部に備えられ、吸入孔が穿設されたバルブプレートと、板ばね材によって形成され、前記バルブプレートの前記シリンダ側に設けられて前記吸入孔を開閉する吸入リードとを備え、前記吸入リードは前記吸入孔を開閉するヘッド部を備え、前記ヘッド部が着座する前記バルブプレートの着座面に、前記吸入孔の全周又は一部を取り囲む凹部を設けるとともに、前記凹部と前記ヘッド部が着座しない非着座面とを連通する延出溝を備えた密閉型圧縮機。   Formed by a cylinder formed in a cylinder block, a piston reciprocally inserted in the cylinder, a valve plate provided at an end of the cylinder and having a suction hole, and a leaf spring material, A suction lead provided on the cylinder side of the valve plate for opening and closing the suction hole, the suction lead having a head portion for opening and closing the suction hole, and a seating surface of the valve plate on which the head portion is seated A hermetic compressor provided with a recess surrounding the entire circumference or part of the suction hole and having an extending groove that communicates the recess with a non-sitting surface on which the head portion is not seated. 吸入孔の投影面積に対する凹部の投影面積の比が1%〜5%の範囲である請求項1に記載の密閉型圧縮機。   The hermetic compressor according to claim 1, wherein the ratio of the projected area of the recess to the projected area of the suction hole is in the range of 1% to 5%. 凹部と吸入孔により形成された吸入リードシート面を備え、前記吸入孔の投影面積に対する前記吸入リードシート面の投影面積の比が3%〜60%の範囲である請求項1または2に記載の密閉型圧縮機。   The suction lead sheet surface formed by a recess and a suction hole is provided, and the ratio of the projected area of the suction lead sheet surface to the projected area of the suction hole is in the range of 3% to 60%. Hermetic compressor. 吸入リードシート面は環状であり、幅が0.3mm〜0.8mmの範囲である請求項1から3のいずれか一項に記載の密閉型圧縮機。   The hermetic compressor according to any one of claims 1 to 3, wherein the suction lead sheet surface has an annular shape and a width in a range of 0.3 mm to 0.8 mm. 非着座面と連通する延出溝の断面積は、前記非着座面側の開口部よりも吸入孔側の開口部の断面積を小さくなるように形成した請求項1から4のいずれか一項に記載の密閉型圧縮機。   5. The cross-sectional area of the extending groove communicating with the non-sitting surface is formed so that the cross-sectional area of the opening on the suction hole side is smaller than the opening on the non-sitting surface side. The hermetic compressor described in 1. 凹部は略V字状の断面形状をなす請求項1から5のいずれか一項に記載の密閉型圧縮機。   The hermetic compressor according to any one of claims 1 to 5, wherein the recess has a substantially V-shaped cross-sectional shape.
JP2008034153A 2008-02-15 2008-02-15 Hermetic compressor Pending JP2009191764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008034153A JP2009191764A (en) 2008-02-15 2008-02-15 Hermetic compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008034153A JP2009191764A (en) 2008-02-15 2008-02-15 Hermetic compressor

Publications (1)

Publication Number Publication Date
JP2009191764A true JP2009191764A (en) 2009-08-27

Family

ID=41074000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008034153A Pending JP2009191764A (en) 2008-02-15 2008-02-15 Hermetic compressor

Country Status (1)

Country Link
JP (1) JP2009191764A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012127806A1 (en) * 2011-03-23 2012-09-27 パナソニック株式会社 Hermetic compressor
CN108561292A (en) * 2017-12-20 2018-09-21 大同压缩机(中山)有限公司 A kind of valve plate and the compressor with the valve plate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5179006U (en) * 1974-12-19 1976-06-22
JPH062654A (en) * 1992-06-18 1994-01-11 Nippondenso Co Ltd Compressor
JPH10339269A (en) * 1997-06-04 1998-12-22 Carrier Corp Reciprocating compressor
JPH11117868A (en) * 1997-10-14 1999-04-27 Calsonic Corp Compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5179006U (en) * 1974-12-19 1976-06-22
JPH062654A (en) * 1992-06-18 1994-01-11 Nippondenso Co Ltd Compressor
JPH10339269A (en) * 1997-06-04 1998-12-22 Carrier Corp Reciprocating compressor
JPH11117868A (en) * 1997-10-14 1999-04-27 Calsonic Corp Compressor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012127806A1 (en) * 2011-03-23 2012-09-27 パナソニック株式会社 Hermetic compressor
JP2012197769A (en) * 2011-03-23 2012-10-18 Panasonic Corp Hermetic compressor
CN108561292A (en) * 2017-12-20 2018-09-21 大同压缩机(中山)有限公司 A kind of valve plate and the compressor with the valve plate

Similar Documents

Publication Publication Date Title
KR20070085071A (en) Hermetic compressor
JP5040934B2 (en) Hermetic compressor
EP3184822B1 (en) Rotary compressor and refrigeration cycle device
JP4734901B2 (en) Compressor
JP6286364B2 (en) Hermetic compressor and refrigeration system
JP5991958B2 (en) Rotary compressor
KR20080000996A (en) Hermetic type compressor
JP2009191764A (en) Hermetic compressor
US20050142009A1 (en) Reciprocating compressor
JP2012225229A (en) Hermetic compressor
JP2013057284A (en) Hermetic compressor
JP5246052B2 (en) Compressor
JP2015140737A (en) Hermetic compressor and refrigerator using same
US20040228746A1 (en) Suction valve assembly of reciprocating compressor
JP4802636B2 (en) Compressor assembly method and compressor obtained by the assembly method
JP2015007381A (en) Hermetic compressor
JP2007255245A (en) Compressor
KR101263432B1 (en) Hermetic type compressor
JP5810273B2 (en) Hermetic compressor and refrigeration system
JP2002235667A (en) Refrigerant compressor
JP2010112173A (en) Rotary compressor
WO2007128713A1 (en) A compressor
JP2005240564A (en) Rotary compressor
JP2013050073A (en) Hermetic compressor
JP2013256901A (en) Hermetic compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100301

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD01 Notification of change of attorney

Effective date: 20100413

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A977 Report on retrieval

Effective date: 20111124

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120619