JP2009191357A - Etching liquid - Google Patents

Etching liquid Download PDF

Info

Publication number
JP2009191357A
JP2009191357A JP2008267719A JP2008267719A JP2009191357A JP 2009191357 A JP2009191357 A JP 2009191357A JP 2008267719 A JP2008267719 A JP 2008267719A JP 2008267719 A JP2008267719 A JP 2008267719A JP 2009191357 A JP2009191357 A JP 2009191357A
Authority
JP
Japan
Prior art keywords
copper
etching solution
etching
phenyltetrazole
nitrobenzotriazole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008267719A
Other languages
Japanese (ja)
Other versions
JP4278705B1 (en
Inventor
Sachiko Nakamura
幸子 中村
Keiichi Nakajima
慶一 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MEC Co Ltd
Original Assignee
MEC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MEC Co Ltd filed Critical MEC Co Ltd
Priority to JP2008267719A priority Critical patent/JP4278705B1/en
Priority to TW097144318A priority patent/TWI398552B/en
Priority to CN2008101877176A priority patent/CN101487122B/en
Priority to KR1020090003344A priority patent/KR101550069B1/en
Application granted granted Critical
Publication of JP4278705B1 publication Critical patent/JP4278705B1/en
Publication of JP2009191357A publication Critical patent/JP2009191357A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid

Abstract

<P>PROBLEM TO BE SOLVED: To provide an etching liquid for micro-etching a copper surface which can securely maintain adhesion between a copper layer and an insulating layer even under high temperature conditions, and further can improve adhesion to wide insulating materials. <P>SOLUTION: Disclosed is an etching liquid for copper comprising: sulfuric acid of 60 to 220 g/L; hydrogen peroxide of 5 to 70 g/L; and water, and comprising: phenyl tetrazoles of 0.01 to 0.7 g/L; and nitro benzotriazoles of 0.01 to 1.5 g/L, and further comprising: benzenesulfonic acids; and chloride ions. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、硫酸、過酸化水素及び水を含む銅のエッチング液に関する。   The present invention relates to a copper etching solution containing sulfuric acid, hydrogen peroxide and water.

銅または銅合金からなる層を含む配線層形成材(以下、単に「銅材」という)と、絶縁材とが積層された積層基材は、プリント配線板等の製造に使用される場合、銅層と絶縁層との密着性が要求される。そのため、銅材と絶縁材とを積層する前に、例えば、硫酸、過酸化水素及び水を含むエッチング液(硫酸/過酸化水素系マイクロエッチング液)で銅材表面を粗化(マイクロエッチング)して、銅層と絶縁層との密着性を向上させている。   A laminated base material in which a wiring layer forming material (hereinafter simply referred to as “copper material”) including a layer made of copper or a copper alloy and an insulating material is laminated is used when manufacturing a printed wiring board or the like. Adhesion between the layer and the insulating layer is required. Therefore, before laminating the copper material and the insulating material, for example, the surface of the copper material is roughened (microetching) with an etching solution (sulfuric acid / hydrogen peroxide microetching solution) containing sulfuric acid, hydrogen peroxide and water. Thus, the adhesion between the copper layer and the insulating layer is improved.

上記のような用途に使用されるエッチング液(マイクロエッチング液)においては、銅層と絶縁層との密着性を向上させるために、銅材表面に凹凸形状を均一に形成することが要求されていた。そのため、エッチング液にアゾール類等の種々の添加剤を添加することが従来から検討されていた(例えば、特許文献1〜13参照)。   In the etching liquid (microetching liquid) used for the above-mentioned uses, in order to improve the adhesion between the copper layer and the insulating layer, it is required to form an uneven shape uniformly on the surface of the copper material. It was. Therefore, it has been conventionally studied to add various additives such as azoles to the etching solution (see, for example, Patent Documents 1 to 13).

特開平11−21517号公報JP-A-11-21517 特開平10−96088号公報JP-A-10-96088 特開2000−234084号公報JP 2000-234084 A 特表2003−535224号公報Special table 2003-535224 gazette 特開平11−315381号公報JP-A-11-315381 特開平11−140669号公報Japanese Patent Laid-Open No. 11-140669 特開2002−76610号公報JP 2002-76610 A 特開2002−76611号公報JP 2002-76611 A 特開平8−335763号公報JP-A-8-335763 特開2000−282265号公報JP 2000-282265 A 特開平11−29883号公報Japanese Patent Laid-Open No. 11-29883 特開2002−47583号公報JP 2002-47583 A 特開2007−189059号公報JP 2007-189059 A

しかし、高信頼性が要求されるプリント配線板においては、上記特許文献1〜13に記載された技術を用いても、銅層と絶縁層との密着性が不充分であったため、さらなる改良が求められている。特に、近年、車載用などの耐熱性が要求されるプリント配線板などには、耐熱性の高い絶縁材が用いられるが、この場合には高温条件下でも銅層と絶縁層との密着性が維持される必要がある。また、はんだリフロー工程などのように高温条件下で基板が処理される工程においても、銅層と絶縁層との密着性が維持される必要がある。さらに、環境対策としてハロゲンフリー材が絶縁材として使用される場合もあるが、ハロゲンフリー材は、一般的に銅材との密着性が低いため、従来のマイクロエッチング液による処理では、銅層と絶縁層との密着性が不充分であった。   However, in printed wiring boards that require high reliability, even if the techniques described in Patent Documents 1 to 13 are used, the adhesion between the copper layer and the insulating layer is insufficient, so that further improvements can be made. It has been demanded. In particular, in recent years, insulating materials with high heat resistance are used for printed wiring boards and the like that are required for heat resistance such as in-vehicle use. In this case, the adhesion between the copper layer and the insulating layer is high even under high temperature conditions. Need to be maintained. In addition, the adhesion between the copper layer and the insulating layer needs to be maintained even in a process in which the substrate is processed under a high temperature condition such as a solder reflow process. In addition, halogen-free materials are sometimes used as insulating materials as environmental measures. However, since halogen-free materials generally have low adhesion to copper materials, conventional micro-etching solution treatments use a copper layer. Adhesion with the insulating layer was insufficient.

本発明は、上記実情に鑑みてなされたものであり、高温条件下においても銅層と絶縁層との密着性を確実に維持することができる上、広範な絶縁材に対して密着性を向上させることができるエッチング液を提供する。   The present invention has been made in view of the above circumstances, and can reliably maintain the adhesion between the copper layer and the insulating layer even under high temperature conditions, and also improves the adhesion to a wide range of insulating materials. An etching solution that can be applied is provided.

上記目的を達成するため、本発明のエッチング液は、硫酸、過酸化水素及び水を含む銅のエッチング液であって、フェニルテトラゾール類及びニトロベンゾトリアゾール類を含むことを特徴とする。   In order to achieve the above object, an etching solution of the present invention is a copper etching solution containing sulfuric acid, hydrogen peroxide and water, and includes phenyltetrazoles and nitrobenzotriazoles.

なお、上記本発明のエッチング液は、銅のエッチング液であるが、この「銅」には、純銅だけでなく銅合金も含まれる。また、本明細書において「銅」は、純銅又は銅合金をさす。   The above-described etching solution of the present invention is a copper etching solution, and this “copper” includes not only pure copper but also a copper alloy. In this specification, “copper” refers to pure copper or a copper alloy.

本発明のエッチング液によれば、高温条件下においても銅層と絶縁層との密着性を確実に維持することができる上、広範な絶縁材に対して密着性を向上させることができる。   According to the etching solution of the present invention, the adhesion between the copper layer and the insulating layer can be reliably maintained even under high temperature conditions, and the adhesion to a wide range of insulating materials can be improved.

本発明のエッチング液は、硫酸、過酸化水素及び水を含む銅のエッチング液であって、フェニルテトラゾール類及びニトロベンゾトリアゾール類を含む。本発明では、フェニルテトラゾール類とニトロベンゾトリアゾール類とを組み合わせることで、銅材表面を均一に粗化することができるため、はんだリフロー工程などの高温条件下においても銅層と絶縁層との密着性を確実に維持することができる上、ハロゲンフリー材を含む広範な絶縁材に対して密着性を向上させることができる。なお、本発明のエッチング液は、銅材表面を粗化することによって、アンカー効果で銅層と絶縁層との密着性を向上させる機能の他、化学的な作用で上記密着性を向上させる機能も有すると考えられる。この化学的な作用については、例えば、フェニルテトラゾール類及びニトロベンゾトリアゾール類が銅材表面に付着することによって、これらの成分と銅イオンとが皮膜を形成し、この皮膜が絶縁材に固着することにより、上記密着性が向上することが考えられる。   The etching solution of the present invention is a copper etching solution containing sulfuric acid, hydrogen peroxide and water, and contains phenyltetrazoles and nitrobenzotriazoles. In the present invention, the surface of the copper material can be uniformly roughened by combining phenyltetrazole and nitrobenzotriazole, so the adhesion between the copper layer and the insulating layer even under high temperature conditions such as a solder reflow process. In addition, the adhesion can be improved with respect to a wide range of insulating materials including halogen-free materials. The etching solution of the present invention has a function of improving the adhesion by a chemical action in addition to a function of improving the adhesion between the copper layer and the insulating layer by an anchor effect by roughening the surface of the copper material. Is also considered to have. Regarding this chemical action, for example, phenyltetrazole and nitrobenzotriazole adhere to the surface of the copper material, so that these components and copper ions form a film, and this film adheres to the insulating material. Thus, it is considered that the adhesion is improved.

上記エッチング液中の硫酸の濃度は、エッチング速度やエッチング液の銅溶解許容量に応じて調整されるが、60〜220g/Lが好ましく、90〜150g/Lがより好ましい。60g/L以上の場合は、エッチング速度が速くなるため、銅材表面を速やかに粗化することができる。一方、220g/L以下の場合は、溶解した銅が硫酸銅として析出するのを防止できる。   Although the density | concentration of the sulfuric acid in the said etching liquid is adjusted according to an etching rate and the copper dissolution tolerance of an etching liquid, 60-220 g / L is preferable and 90-150 g / L is more preferable. In the case of 60 g / L or more, since the etching rate is increased, the surface of the copper material can be rapidly roughened. On the other hand, in the case of 220 g / L or less, it can prevent that the melt | dissolved copper precipitates as copper sulfate.

上記エッチング液中の過酸化水素の濃度は、エッチング速度や表面粗化能力に応じて調整されるが、5〜70g/Lが好ましく、7〜56g/Lがより好ましく、10〜30g/Lがさらに好ましい。5g/L以上の場合は、エッチング速度が速くなるため、銅材表面を速やかに粗化できる。一方、70g/L以下の場合は、銅材表面をより均一に粗化できる。   The concentration of hydrogen peroxide in the etching solution is adjusted according to the etching rate and surface roughening ability, but is preferably 5 to 70 g / L, more preferably 7 to 56 g / L, and more preferably 10 to 30 g / L. Further preferred. In the case of 5 g / L or more, since the etching rate is increased, the surface of the copper material can be rapidly roughened. On the other hand, in the case of 70 g / L or less, the copper material surface can be roughened more uniformly.

本発明のエッチング液には、フェニルテトラゾール類及びニトロベンゾトリアゾール類が配合されているため、フェニルテトラゾール類とニトロベンゾトリアゾール類との相乗効果により、従来のエッチング液に比べ銅材表面を均一に粗化できる。よって、高温条件下においても銅層と絶縁層との密着性を確実に維持することができる上、広範な絶縁材に対して密着性を向上させることができる。また、これらの成分を配合することにより、銅材表面の凹凸形状を、絶縁材との密着性を高めるのに適した形状にすることができる。   Since the etching solution of the present invention contains phenyltetrazole and nitrobenzotriazole, the copper material surface is more uniformly roughened than conventional etching solutions due to the synergistic effect of phenyltetrazole and nitrobenzotriazole. Can be Therefore, the adhesiveness between the copper layer and the insulating layer can be reliably maintained even under high temperature conditions, and the adhesiveness can be improved for a wide range of insulating materials. Moreover, by mix | blending these components, the uneven | corrugated shape of a copper material surface can be made into the shape suitable for improving adhesiveness with an insulating material.

また、上記フェニルテトラゾール類及びニトロベンゾトリアゾール類は、酸性溶液への溶解性が高いため、エッチング液中での安定性に優れている。よって、本発明のエッチング液は、連続してエッチング処理を行った場合でも、液中に析出物が生じることなく、銅材表面を均一に粗化できる。なお、従来の硫酸/過酸化水素系マイクロエッチング液に、ベンゾトリアゾールやテトラゾールなどを添加した場合、連続してエッチング処理を行うと、上記添加成分と銅とが結合した黒い析出物が生じ、これが銅材表面に付着して後工程に影響を及ぼすおそれがあった。具体的には、上記析出物が銅配線パターン間に残留した場合などは、ショートの原因になる可能性があった。従来は、このような析出物を除去するために、フィルターでマイクロエッチング液をろ過するなどの処理が必要であったため、製造工程が煩雑になりコスト高となっていた。本発明のエッチング液には、上記フェニルテトラゾール類及びニトロベンゾトリアゾール類が配合されているため、上記析出物の発生を効果的に抑制できる。   Moreover, since the said phenyltetrazole and nitrobenzotriazole are highly soluble in an acidic solution, they are excellent in stability in an etching solution. Therefore, the etching liquid of the present invention can uniformly roughen the surface of the copper material without causing precipitates in the liquid even when the etching process is continuously performed. In addition, when benzotriazole, tetrazole, or the like is added to the conventional sulfuric acid / hydrogen peroxide microetching solution, when the etching process is continuously performed, a black precipitate is formed in which the additive component and copper are combined. There was a risk of adhering to the copper material surface and affecting subsequent processes. Specifically, when the deposit remains between the copper wiring patterns, it may cause a short circuit. Conventionally, in order to remove such precipitates, a process such as filtering the microetching liquid with a filter has been required, which complicates the manufacturing process and increases the cost. Since the said phenyltetrazole and nitrobenzotriazole are mix | blended with the etching liquid of this invention, generation | occurrence | production of the said deposit can be suppressed effectively.

上記フェニルテトラゾール類としては、1−フェニルテトラゾール及びその誘導体、5−フェニルテトラゾール及びその誘導体等が挙げられる。なかでも、ニトロベンゾトリアゾール類との相乗効果により銅層と絶縁層との密着性を高めるには、上記フェニルテトラゾール類が、5−フェニルテトラゾールであることが特に好ましい。フェニルテトラゾール類の誘導体としては、−SH基が導入された化合物(例えば、1−フェニル−5−メルカプト−1Hテトラゾール)や、−NH基が導入された化合物(例えば、5(3−アミノフェニル)1Hテトラゾール)等が例示できる。また、1−フェニルテトラゾールの金属塩や5−フェニルテトラゾールの金属塩を使用してもよく、これらの金属塩のカウンターカチオンとしては、カルシウムイオン、第一銅イオン、第二銅イオン、リチウムイオン、マグネシウムイオン、ナトリウムイオン等が例示できる。 Examples of the phenyltetrazole include 1-phenyltetrazole and derivatives thereof, 5-phenyltetrazole and derivatives thereof, and the like. Especially, in order to improve the adhesiveness of a copper layer and an insulating layer by a synergistic effect with nitrobenzotriazole, it is especially preferable that the said phenyltetrazole is 5-phenyltetrazole. Examples of the derivatives of phenyltetrazole include a compound in which a —SH group is introduced (for example, 1-phenyl-5-mercapto-1Htetrazole) and a compound in which a —NH 2 group is introduced (for example, 5 (3-aminophenyl). ) 1H tetrazole) and the like. In addition, a metal salt of 1-phenyltetrazole or a metal salt of 5-phenyltetrazole may be used. Counter ions of these metal salts include calcium ions, cuprous ions, cupric ions, lithium ions, Examples thereof include magnesium ions and sodium ions.

上記フェニルテトラゾール類の濃度は、粗化形状やエッチング液の銅溶解許容量に応じて調整されるが、0.01〜0.7g/Lが好ましく、0.03〜0.6g/Lがより好ましく、0.05〜0.4g/Lがさらに好ましい。0.01g/L以上の場合は、エッチング速度が速くなるため、銅材表面を速やかに粗化できる。一方、0.7g/L以下の場合は、エッチング液中で析出するのを防止できる。   The concentration of the phenyltetrazole is adjusted according to the roughened shape and the copper dissolution tolerance of the etching solution, but is preferably 0.01 to 0.7 g / L, more preferably 0.03 to 0.6 g / L. 0.05 to 0.4 g / L is more preferable. In the case of 0.01 g / L or more, since the etching rate is increased, the surface of the copper material can be rapidly roughened. On the other hand, in the case of 0.7 g / L or less, precipitation in the etching solution can be prevented.

上記ニトロベンゾトリアゾール類としては、4−ニトロベンゾトリアゾール及びその誘導体、5−ニトロベンゾトリアゾール及びその誘導体等が挙げられる。なかでも、フェニルテトラゾール類との相乗効果により銅層と絶縁層との密着性を高めるには、上記ニトロベンゾトリアゾール類が、4−ニトロベンゾトリアゾール又は5−ニトロベンゾトリアゾール、あるいは4−ニトロベンゾトリアゾールと5−ニトロベンゾトリアゾールの混合物であることが好ましい。特に、4−ニトロベンゾトリアゾールを使用した場合には、酸性溶液への溶解性が高く、エッチング液中で析出物が生じにくいため好ましい。   Examples of the nitrobenzotriazoles include 4-nitrobenzotriazole and derivatives thereof, 5-nitrobenzotriazole and derivatives thereof, and the like. Among these, in order to enhance the adhesion between the copper layer and the insulating layer by a synergistic effect with phenyltetrazoles, the above nitrobenzotriazoles are 4-nitrobenzotriazole, 5-nitrobenzotriazole, or 4-nitrobenzotriazole. And a mixture of 5-nitrobenzotriazole. In particular, when 4-nitrobenzotriazole is used, it is preferable because the solubility in an acidic solution is high and precipitates are hardly generated in the etching solution.

上記ニトロベンゾトリアゾール類の濃度は、粗化形状やエッチング液の銅溶解許容量に応じて調整されるが、0.01〜1.5g/Lが好ましく、0.1〜1.0g/Lがより好ましく、0.2〜0.8g/Lがさらに好ましい。0.01g/L以上の場合は、銅材表面をより均一に粗化できる。一方、1.5g/L以下の場合は、エッチング液中で析出するのを防止できる。   The concentration of the nitrobenzotriazoles is adjusted according to the roughened shape and the copper dissolution tolerance of the etching solution, but is preferably 0.01 to 1.5 g / L, more preferably 0.1 to 1.0 g / L. More preferred is 0.2 to 0.8 g / L. In the case of 0.01 g / L or more, the copper material surface can be roughened more uniformly. On the other hand, in the case of 1.5 g / L or less, precipitation in the etching solution can be prevented.

また、高温条件下における銅層と絶縁層との密着性をより向上させるには、上記フェニルテトラゾール類の濃度をAg/Lとし、上記ニトロベンゾトリアゾール類の濃度をBg/Lとした場合に、B/Aが1.0〜3.0であることが好ましい。特に、B/Aが1.5〜3.0の場合は、銅材表面をより均一に粗化できるため、より好ましい。   Further, in order to further improve the adhesion between the copper layer and the insulating layer under high temperature conditions, when the concentration of the phenyltetrazole is Ag / L and the concentration of the nitrobenzotriazole is Bg / L, B / A is preferably 1.0 to 3.0. In particular, B / A of 1.5 to 3.0 is more preferable because the surface of the copper material can be more uniformly roughened.

本発明のエッチング液には、上述した成分以外にも、本発明の効果を妨げない程度に他の成分を添加してもよい。例えば、過酸化水素の安定剤として、クレゾールスルホン酸、ベンゼンスルホン酸、トルエンスルホン酸、m−キシレンスルホン酸、フェノールスルホン酸、スルホサリチル酸、m−ニトロベンゼンスルホン酸、p−アミノベンゼンスルホン酸などのベンゼンスルホン酸類を添加してもよい。この場合、ベンゼンスルホン酸類の濃度は、過酸化水素の安定性の観点から、10g/L以下が好ましく、2〜4g/Lがより好ましい。なお、従来の硫酸/過酸化水素系マイクロエッチング液にベンゼンスルホン酸類を添加すると、銅とベンゼンスルホン酸類とが結合した析出物が生じる事があったが、本発明のエッチング液には、上記フェニルテトラゾール類及びニトロベンゾトリアゾール類が配合されているため、上記析出物の発生を効果的に抑制できる。   In addition to the components described above, other components may be added to the etching solution of the present invention to the extent that the effects of the present invention are not hindered. For example, as a hydrogen peroxide stabilizer, benzene such as cresol sulfonic acid, benzene sulfonic acid, toluene sulfonic acid, m-xylene sulfonic acid, phenol sulfonic acid, sulfosalicylic acid, m-nitrobenzene sulfonic acid, p-aminobenzene sulfonic acid, etc. Sulfonic acids may be added. In this case, the concentration of benzenesulfonic acids is preferably 10 g / L or less, more preferably 2 to 4 g / L, from the viewpoint of hydrogen peroxide stability. In addition, when benzenesulfonic acid was added to the conventional sulfuric acid / hydrogen peroxide microetching solution, a precipitate in which copper and benzenesulfonic acid were combined was sometimes generated. Since tetrazole and nitrobenzotriazole are blended, generation of the precipitate can be effectively suppressed.

また、本発明のエッチング液には、粗化後の銅材表面の凹みを深くするために、塩化物イオン源を配合してもよい。塩化物イオン源としては、例えば塩化ナトリウム、塩化カリウム、塩化アンモニウム、塩酸等が挙げられる。塩化物イオン源の濃度は、粗化形状やエッチング速度に応じて調整されるが、塩化物イオンとして1〜60ppmが好ましく、2〜30ppmがより好ましい。この範囲内であれば、銅材表面を充分に粗化できる。また、安定したエッチング速度を得るために、硫酸銅、塩化銅、酢酸銅などの銅化合物を溶解させてもよい。これらの銅化合物の濃度は、通常、銅濃度として5〜60g/L程度である。   Moreover, you may mix | blend a chloride ion source with the etching liquid of this invention in order to deepen the dent of the copper material surface after roughening. Examples of the chloride ion source include sodium chloride, potassium chloride, ammonium chloride, hydrochloric acid and the like. Although the density | concentration of a chloride ion source is adjusted according to a roughening shape and an etching rate, 1-60 ppm is preferable as a chloride ion, and 2-30 ppm is more preferable. Within this range, the copper material surface can be sufficiently roughened. In order to obtain a stable etching rate, a copper compound such as copper sulfate, copper chloride, or copper acetate may be dissolved. The concentration of these copper compounds is usually about 5 to 60 g / L as the copper concentration.

上記エッチング液は、上記の各成分を水に溶解させることにより、容易に調製することができる。上記水としては、イオン性物質や不純物を除去した水が好ましく、例えばイオン交換水、純水、超純水などが好ましい。   The etching solution can be easily prepared by dissolving the above components in water. As the water, water from which ionic substances and impurities have been removed is preferable. For example, ion exchange water, pure water, ultrapure water, and the like are preferable.

上記エッチング液は、各成分を使用時に所定の濃度になるように配合してもよく、濃縮液を調製しておき使用直前に希釈して使用してもよい。上記エッチング液の使用方法は、特に限定されず、浸漬処理、スプレー処理等の方法を採用できるが、銅材表面をより均一に粗化するには、浸漬処理が好ましい。また、使用時のエッチング液の温度は、特に制限はないが、銅材表面をより均一に粗化するには20〜40℃で使用することが好ましい。   The etching solution may be blended so that each component has a predetermined concentration when used, or a concentrated solution may be prepared and diluted immediately before use. The method of using the etching solution is not particularly limited, and methods such as immersion treatment and spray treatment can be adopted. However, immersion treatment is preferable in order to more uniformly roughen the copper material surface. Further, the temperature of the etching solution at the time of use is not particularly limited, but it is preferably used at 20 to 40 ° C. in order to roughen the copper material surface more uniformly.

次に、本発明に係るエッチング液の実施例について比較例と併せて説明する。なお、本発明は下記の実施例に限定して解釈されるものではない。   Next, examples of the etching solution according to the present invention will be described together with comparative examples. In addition, this invention is limited to a following example and is not interpreted.

表1(実施例)及び表2(比較例)に示す組成の各エッチング液を用いて、下記に示す測定方法により各項目について評価した。各エッチング液は、まず、硫酸及び過酸化水素をイオン交換水に溶解させた後、残りの成分を添加して調製した。なお、各エッチング液の塩化物イオン源としては、塩化ナトリウムを用いた。   Each item was evaluated by the measuring method shown below using each etching solution having the composition shown in Table 1 (Example) and Table 2 (Comparative Example). Each etching solution was prepared by first dissolving sulfuric acid and hydrogen peroxide in ion exchange water, and then adding the remaining components. In addition, sodium chloride was used as a chloride ion source of each etching solution.

<エッチング時間>
厚み35μmの銅箔を絶縁基材の両面に張り合わせた厚み0.2mmのガラス布エポキシ樹脂含浸銅張積層板を、試験基板として2種類用意した。具体的には、10cm×10cmに裁断したFR−4材(日立化成社製、製品名:MCL−E−67)と、同じく10cm×10cmに裁断したハロゲンフリー材(日立化成社製、製品名:MCL−BE−67G)を試験基板として用意した。次に、表1及び表2に示す各エッチング液(25℃)を満たした1Lビーカー中に、各試験基板を立てて投入し、60秒間浸漬して銅表面をエッチングした。そして、処理前後の各試験基板の重量から、下式によりエッチング速度(μm/秒)を算出し、このエッチング速度に基づき、銅表面から平均1.0μmの深さまでエッチングする時間と、銅表面から平均1.5μmの深さまでエッチングする時間とを算出した。なお、エッチング速度は、FR−4材及びハロゲンフリー材の間で相違はなかった。
エッチング速度(μm/秒)=(処理前の重量(g)−処理後の重量(g))÷基板面積(m2)÷銅の密度(g/cm3)÷浸漬時間(秒)
<Etching time>
Two types of glass cloth epoxy resin-impregnated copper clad laminates each having a thickness of 0.2 mm obtained by bonding a copper foil having a thickness of 35 μm to both surfaces of an insulating substrate were prepared as test substrates. Specifically, FR-4 material (product name: MCL-E-67 manufactured by Hitachi Chemical Co., Ltd.) cut to 10 cm × 10 cm and halogen-free material (product name manufactured by Hitachi Chemical Co., Ltd., product cut to 10 cm × 10 cm). : MCL-BE-67G) was prepared as a test substrate. Next, each test substrate was put up in a 1 L beaker filled with each etching solution (25 ° C.) shown in Table 1 and Table 2, and immersed for 60 seconds to etch the copper surface. Then, the etching rate (μm / second) is calculated from the weight of each test substrate before and after the treatment by the following equation, and based on this etching rate, the time for etching from the copper surface to an average depth of 1.0 μm is calculated from the copper surface. The etching time to an average depth of 1.5 μm was calculated. The etching rate was not different between the FR-4 material and the halogen-free material.
Etching rate (μm / second) = (weight before processing (g) −weight after processing (g)) ÷ substrate area (m 2 ) ÷ copper density (g / cm 3 ) ÷ dipping time (seconds)

<均一性>
表1及び表2に示す各エッチング液(25℃)を満たした1Lビーカー中に、上記試験基板と同様の試験基板を立てて投入し、上記算出したエッチング時間だけ浸漬して銅表面をエッチングした。これにより、銅表面から平均1.0μmの深さまでエッチングしたFR−4材及びハロゲンフリー材と、銅表面から平均1.5μmの深さまでエッチングしたFR−4材及びハロゲンフリー材とを得た。そして、これら処理後の試験基板(4種類)を目視にて観察して、粗化状態の均一性について、いずれの基板にもムラが全くなかったものを◎、いずれの基板にもムラはなかったが、少なくとも1種類の基板に薄いスジやテカリがあったものを○、少なくとも1種類の基板にムラがあったものを×として評価した。なお、均一性にムラがある場合は、通常、密着性にもムラができ、密着不良をおこすおそれがある。
<Uniformity>
In a 1 L beaker filled with each etching solution (25 ° C.) shown in Table 1 and Table 2, a test substrate similar to the above test substrate was placed upright and immersed for the calculated etching time to etch the copper surface. . As a result, an FR-4 material and a halogen-free material etched to an average depth of 1.0 μm from the copper surface, and an FR-4 material and a halogen-free material etched to an average depth of 1.5 μm from the copper surface were obtained. And after visually observing the test substrates (4 types) after these treatments, the uniformity in the roughened state is ◎, which is not uneven at all, and there is no unevenness at any of the substrates However, the case where thin streaks and shine were found on at least one type of substrate was evaluated as “◯”, and the case where at least one type of substrate was uneven was evaluated as “x”. In addition, when there is unevenness in uniformity, there is usually a possibility of unevenness in adhesion, which may cause poor adhesion.

<ピール強度(引き剥がし強さ)>
厚み35μmの電解銅箔を10cm×10cmに裁断し、上記均一性の評価の場合と同様の方法で光沢面をエッチングした。そして、エッチングを行った光沢面に、ガラス布エポキシ樹脂含浸プリプレグを積層プレス(プレス圧:30MPa、温度:170℃、時間:60分)により張り合わせた。この際のガラス布エポキシ樹脂含浸プリプレグには、FR−4材(日立化成社製、製品名:GEA−67N、厚さ0.15mm)と、ハロゲンフリー材(日立化成社製、製品名:GEA−67BE、厚さ0.1mm)の2種類を使用した。次いで、上記FR−4材又は上記ハロゲンフリー材が張り合わされた基板をJIS C 6481に準じて1cm幅にサンプリングし、ピール強度を求めた。
<Peel strength (peeling strength)>
An electrolytic copper foil having a thickness of 35 μm was cut into 10 cm × 10 cm, and the glossy surface was etched by the same method as in the evaluation of the uniformity. Then, a glass cloth epoxy resin-impregnated prepreg was laminated on the etched glossy surface by a lamination press (press pressure: 30 MPa, temperature: 170 ° C., time: 60 minutes). In this case, the glass cloth epoxy resin-impregnated prepreg includes FR-4 material (manufactured by Hitachi Chemical Co., Ltd., product name: GEA-67N, thickness 0.15 mm) and halogen-free material (manufactured by Hitachi Chemical Co., Ltd., product name: GEA). -67BE, thickness 0.1 mm) were used. Subsequently, the substrate on which the FR-4 material or the halogen-free material was bonded was sampled to a width of 1 cm in accordance with JIS C 6481 to determine the peel strength.

<はんだ耐熱性>
上記均一性の評価を行った後の各試験基板の両面に、ガラス布エポキシ樹脂含浸プリプレグを上記ピール強度の評価の場合と同様に積層プレスにより張り合わせた。この際、FR−4材(MCL−E−67)を用いた試験基板に対しては、FR−4材(日立化成社製、製品名:GEA−67N、厚さ0.15mm)を使用し、ハロゲンフリー材(MCL−BE−67G)を用いた試験基板に対しては、ハロゲンフリー材(日立化成社製、製品名:GEA−67BE、厚さ0.1mm)を使用した。次いで、積層した基板の周辺部を切り取ってテストピースを作製した。このテストピースを100℃(湿度:100%)中に4時間放置した後、JIS C 6481に準じて270℃の溶融はんだ浴中に30秒間浸漬した。そして、浸漬後の各試験基板を目視にて観察して、剥がれ・膨れが全く見られなかったものを◎、小さな膨れがあったものを○、大きな剥がれや膨れがあったものを×として評価した。
<Solder heat resistance>
A glass cloth epoxy resin-impregnated prepreg was bonded to both surfaces of each test substrate after the evaluation of the uniformity by a lamination press in the same manner as in the evaluation of the peel strength. At this time, FR-4 material (manufactured by Hitachi Chemical Co., Ltd., product name: GEA-67N, thickness 0.15 mm) is used for the test substrate using FR-4 material (MCL-E-67). A halogen-free material (manufactured by Hitachi Chemical Co., Ltd., product name: GEA-67BE, thickness 0.1 mm) was used for a test substrate using a halogen-free material (MCL-BE-67G). Next, a test piece was produced by cutting off the peripheral portion of the laminated substrate. This test piece was allowed to stand at 100 ° C. (humidity: 100%) for 4 hours, and then immersed in a molten solder bath at 270 ° C. for 30 seconds in accordance with JIS C 6481. Then, each test substrate after immersion was visually observed and evaluated as ◎ if there was no peeling or swelling, ○ if there was a small swelling, and × if there was a large peeling or swelling. did.

<析出物の有無>
表1及び表2に示す各エッチング液を50℃の恒温槽に168時間放置し、析出物の有無を目視にて確認した。
<Presence / absence of precipitate>
Each etching solution shown in Table 1 and Table 2 was left in a thermostatic bath at 50 ° C. for 168 hours, and the presence or absence of precipitates was confirmed visually.

Figure 2009191357
Figure 2009191357

Figure 2009191357
Figure 2009191357

表1及び表2に示すように、本発明の実施例1〜8は、いずれの評価項目についても良好な結果が得られた。特に、ニトロベンゾトリアゾール類の濃度が、フェニルテトラゾール類の濃度の1.0〜3.0倍である実施例1,2,6,7は、銅表面から平均1.0μmの深さまでエッチングしたハロゲンフリー材を用いても、はんだ耐熱性が◎の評価となった。一方、比較例1〜5については、実施例1〜8と比較していずれの評価項目についても劣る結果となった。特に、ハロゲンフリー材を用いた場合に、ピール強度及びはんだ耐熱性の少なくとも一方が実施例1〜8に比べ極端に劣る結果となった。このことから、本発明によれば、高温条件下においても銅層と絶縁層との密着性を確実に維持することができる上、広範な絶縁材に対して密着性を向上させ得ることが分かった。   As shown in Table 1 and Table 2, in Examples 1 to 8 of the present invention, good results were obtained for any of the evaluation items. In particular, Examples 1, 2, 6, and 7 in which the concentration of nitrobenzotriazoles is 1.0 to 3.0 times the concentration of phenyltetrazoles are halogen etched to an average depth of 1.0 μm from the copper surface. Even when a free material was used, the solder heat resistance was evaluated as ◎. On the other hand, about Comparative Examples 1-5, it became a result inferior also about any evaluation item compared with Examples 1-8. In particular, when a halogen-free material was used, at least one of peel strength and solder heat resistance was extremely inferior to Examples 1-8. Thus, according to the present invention, it is found that the adhesion between the copper layer and the insulating layer can be reliably maintained even under high temperature conditions, and the adhesion can be improved with respect to a wide range of insulating materials. It was.

Claims (10)

硫酸、過酸化水素及び水を含む銅のエッチング液であって、
フェニルテトラゾール類及びニトロベンゾトリアゾール類を含むことを特徴とするエッチング液。
An etching solution for copper containing sulfuric acid, hydrogen peroxide and water,
An etching solution comprising phenyltetrazole and nitrobenzotriazole.
前記フェニルテトラゾール類の濃度が、0.01〜0.7g/Lである請求項1に記載のエッチング液。   The etching solution according to claim 1, wherein the concentration of the phenyltetrazole is 0.01 to 0.7 g / L. 前記ニトロベンゾトリアゾール類の濃度が、0.01〜1.5g/Lである請求項1又は2に記載のエッチング液。   The etching solution according to claim 1 or 2, wherein the concentration of the nitrobenzotriazoles is 0.01 to 1.5 g / L. 前記フェニルテトラゾール類の濃度をAg/Lとし、前記ニトロベンゾトリアゾール類の濃度をBg/Lとした場合に、B/Aが1.0〜3.0である請求項1〜3のいずれか一項に記載のエッチング液。   The B / A is 1.0 to 3.0 when the concentration of the phenyltetrazole is Ag / L and the concentration of the nitrobenzotriazole is Bg / L. The etching liquid as described in a term. 前記フェニルテトラゾール類が、1−フェニルテトラゾール、5−フェニルテトラゾール、これらに−NH基又は−SH基が導入された化合物、及びこれらの金属塩のうちの少なくとも一つである請求項1〜4のいずれか一項に記載のエッチング液。 5. The phenyltetrazole is at least one of 1-phenyltetrazole, 5-phenyltetrazole, a compound in which a —NH 2 group or a —SH group is introduced, and a metal salt thereof. The etching liquid as described in any one of these. 前記ニトロベンゾトリアゾール類が、4−ニトロベンゾトリアゾール及び5−ニトロベンゾトリアゾールのうちの少なくとも一方である請求項1〜5のいずれか一項に記載のエッチング液。   The etching solution according to claim 1, wherein the nitrobenzotriazole is at least one of 4-nitrobenzotriazole and 5-nitrobenzotriazole. 前記硫酸の濃度が、60〜220g/Lであり、
前記過酸化水素の濃度が、5〜70g/Lである請求項1〜6のいずれか一項に記載のエッチング液。
The concentration of the sulfuric acid is 60 to 220 g / L,
The etching solution according to any one of claims 1 to 6, wherein a concentration of the hydrogen peroxide is 5 to 70 g / L.
ベンゼンスルホン酸類を更に含む請求項1〜7のいずれか一項に記載のエッチング液。   The etching solution according to any one of claims 1 to 7, further comprising benzenesulfonic acids. 塩化物イオン源を更に含む請求項1〜8のいずれか一項に記載のエッチング液。   The etching solution according to claim 1, further comprising a chloride ion source. 前記塩化物イオン源が、塩化ナトリウム、塩化カリウム、塩化アンモニウム及び塩酸のうちの少なくとも一つである請求項9に記載のエッチング液。   The etching solution according to claim 9, wherein the chloride ion source is at least one of sodium chloride, potassium chloride, ammonium chloride, and hydrochloric acid.
JP2008267719A 2008-01-16 2008-10-16 Etching solution Active JP4278705B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008267719A JP4278705B1 (en) 2008-01-16 2008-10-16 Etching solution
TW097144318A TWI398552B (en) 2008-01-16 2008-11-17 Etching solution
CN2008101877176A CN101487122B (en) 2008-01-16 2008-12-31 Etching solution
KR1020090003344A KR101550069B1 (en) 2008-01-16 2009-01-15 Etching solution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008007327 2008-01-16
JP2008267719A JP4278705B1 (en) 2008-01-16 2008-10-16 Etching solution

Publications (2)

Publication Number Publication Date
JP4278705B1 JP4278705B1 (en) 2009-06-17
JP2009191357A true JP2009191357A (en) 2009-08-27

Family

ID=40872192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008267719A Active JP4278705B1 (en) 2008-01-16 2008-10-16 Etching solution

Country Status (4)

Country Link
JP (1) JP4278705B1 (en)
KR (1) KR101550069B1 (en)
CN (1) CN101487122B (en)
TW (1) TWI398552B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011071061A1 (en) * 2009-12-11 2011-06-16 日本軽金属株式会社 Aluminium/resin/copper composite, manufacturing method for same, and lid member for sealed battery
WO2011093445A1 (en) * 2010-01-28 2011-08-04 三菱瓦斯化学株式会社 Etching liquid for a copper/titanium multilayer thin film
KR20110108252A (en) * 2010-03-26 2011-10-05 멕크 가부시키가이샤 Etching solution for copper and substrate manufacturing method
CN115404480A (en) * 2022-08-30 2022-11-29 昆山市板明电子科技有限公司 Recyclable copper surface roughening micro-etching solution and use method thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101693383B1 (en) * 2010-08-12 2017-01-09 동우 화인켐 주식회사 Etching solution composition for metal layer comprising copper and titanium
CN102477262B (en) * 2010-11-30 2015-01-28 安集微电子(上海)有限公司 Chemically mechanical polishing slurry
CN103510089B (en) * 2012-06-29 2017-04-12 三菱瓦斯化学株式会社 Liquid composition for etching and preparing method of multilayer printed wiring board using same
CN104769159B (en) * 2012-12-03 2017-09-19 Mec股份有限公司 The forming method of etching solution, bulking liquor and copper wiring
JP6424559B2 (en) * 2013-11-22 2018-11-21 三菱瓦斯化学株式会社 Composition for etching and method of manufacturing printed wiring board using the same
JP6164614B2 (en) * 2013-12-06 2017-07-19 メック株式会社 Etching solution, replenisher, and method for forming copper wiring
CN106167915A (en) * 2016-08-30 2016-11-30 广东成德电子科技股份有限公司 A kind of regeneration recovery method of electrochemistry acidic etching liquid used for printed circuit board
KR20210002454A (en) * 2018-04-24 2021-01-08 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Etching solution for copper foil and manufacturing method of printed wiring board using the same, and etching solution for electrolytic copper layer and manufacturing method of copper filler using the same
CA3110357A1 (en) * 2021-02-25 2022-08-25 Sixring Inc. Modified sulfuric acid and uses thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000282265A (en) 1999-03-31 2000-10-10 Mec Kk Microetching agent for copper or copper alloy and surface treating method using the same
JP4033611B2 (en) 2000-07-28 2008-01-16 メック株式会社 Copper or copper alloy microetching agent and microetching method using the same
US6599370B2 (en) * 2000-10-16 2003-07-29 Mallinckrodt Inc. Stabilized alkaline compositions for cleaning microelectronic substrates
JP4312582B2 (en) 2003-12-02 2009-08-12 株式会社Adeka Etching method
JP4606919B2 (en) * 2005-03-28 2011-01-05 朝日化学工業株式会社 Etching composition
WO2007019342A2 (en) 2005-08-05 2007-02-15 Advanced Technology Materials, Inc. High throughput chemical mechanical polishing composition for metal film planarization
US20090301996A1 (en) * 2005-11-08 2009-12-10 Advanced Technology Materials, Inc. Formulations for removing cooper-containing post-etch residue from microelectronic devices

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011071061A1 (en) * 2009-12-11 2011-06-16 日本軽金属株式会社 Aluminium/resin/copper composite, manufacturing method for same, and lid member for sealed battery
JP2011124142A (en) * 2009-12-11 2011-06-23 Nippon Light Metal Co Ltd Aluminum/resin/copper composite article, its manufacturing method, and lid member for sealed battery
WO2011093445A1 (en) * 2010-01-28 2011-08-04 三菱瓦斯化学株式会社 Etching liquid for a copper/titanium multilayer thin film
CN102834547A (en) * 2010-01-28 2012-12-19 三菱瓦斯化学株式会社 Etching liquid for a copper/titanium multilayer thin film
JPWO2011093445A1 (en) * 2010-01-28 2013-06-06 三菱瓦斯化学株式会社 Etching solution for copper / titanium multilayer thin film
CN102834547B (en) * 2010-01-28 2014-08-20 三菱瓦斯化学株式会社 Etching liquid for a copper/titanium multilayer thin film
US8980121B2 (en) 2010-01-28 2015-03-17 Mitsubishi Gas Chemical Company, Inc. Etching liquid for a copper/titanium multilayer thin film
JP5685204B2 (en) * 2010-01-28 2015-03-18 三菱瓦斯化学株式会社 Etching solution for copper / titanium multilayer thin film
KR20110108252A (en) * 2010-03-26 2011-10-05 멕크 가부시키가이샤 Etching solution for copper and substrate manufacturing method
JP2011202242A (en) * 2010-03-26 2011-10-13 Mec Kk Etchant of copper and method of manufacturing substrate
KR101603739B1 (en) 2010-03-26 2016-03-15 멕크 가부시키가이샤 Etching solution for copper and substrate manufacturing method
CN115404480A (en) * 2022-08-30 2022-11-29 昆山市板明电子科技有限公司 Recyclable copper surface roughening micro-etching solution and use method thereof

Also Published As

Publication number Publication date
CN101487122B (en) 2011-04-06
KR101550069B1 (en) 2015-09-03
JP4278705B1 (en) 2009-06-17
KR20090079172A (en) 2009-07-21
TW200932955A (en) 2009-08-01
CN101487122A (en) 2009-07-22
TWI398552B (en) 2013-06-11

Similar Documents

Publication Publication Date Title
JP4278705B1 (en) Etching solution
TW591120B (en) Etchant for copper or copper alloys
JP4033611B2 (en) Copper or copper alloy microetching agent and microetching method using the same
JP5505847B2 (en) Etching agent
TWI630261B (en) Etching composition and method of manufacturing printed circuit board using the same
JP4881916B2 (en) Surface roughening agent
WO2003000954A1 (en) Surface treatment agent for copper and copper alloy
TWI553155B (en) Etchant and etching method using the same
JP3930885B2 (en) Microetching agents for copper and copper alloys
JP2011179085A (en) Pretreatment agent and pretreatment method for electroplating and electroplating method
TWI707984B (en) Surface treatment agent for copper and copper alloy surfaces and method for treating copper or copper alloy surfaces
JP2019059962A (en) Copper surface roughening method and method for producing wiring board
TWI575110B (en) The liquid composition for etching and the manufacturing method of the multilayer printed circuit board using the liquid composition
JP4836365B2 (en) Composition for circuit board manufacture
JP5317099B2 (en) Adhesive layer forming solution
JP4431860B2 (en) Surface treatment agent for copper and copper alloys
JP5576525B1 (en) Copper etchant
JP2004218021A (en) Surface treatment agent for microetching copper and copper alloy, and roughening treatment method for surface of copper and copper alloy
JP2016204679A (en) Etching liquid of copper and copper alloy
JP2004003020A (en) Micro-etching agent for copper and copper alloy and method for micro-roughening copper or copper alloy by using the agent
JP2019060013A (en) Copper micro etching agent
JP2015078443A (en) Pretreatment agent for electrolytic copper plating, pretreatment method for electrolytic copper plating, and electrolytic copper plating method
JP2013065892A (en) Etching method
JP2013001944A (en) Metal surface treatment liquid

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090310

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4278705

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250